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Abstract

The onion routing (OR) network Tor provides anonymity to its users by routing their encrypted
traffic through three proxies (or nodes). The key cryptographic challenge, here, is to establish symmetric
session keys using a secure key exchange between the anonymous user and the selected nodes. The
Tor network currently employs a one-way authenticated key exchange (1W-AKE) protocol ntor for this
purpose. Nevertheless, ntor as well as other known 1W-AKE protocols rely solely on some classical
Diffie-Hellman (DH) type assumptions for their (forward) security, and privacy of today’s anonymous
communication cannot be ensured once quantum computers arrive.

In this paper, we demonstrate utility of lattice-based cryptography towards solving this problem for
onion routing. In particular, we present a novel hybrid 1W-AKE protocol (HybridOR) that is secure
under the lattice-based ring learning with error (ring-LWE) assumption or the gap DH assumption. Due
to its hybrid design, HybridOR is not only resilient against quantum attacks but also allows the OR nodes
to use the current DH public keys and subsequently requires no modification to the current Tor public
key infrastructure. Moreover, thanks to the recent progress in lattice-based cryptography in the form of
efficient ring-based constructions, our protocol is also computationally more efficient than the currently
employed 1W-AKE protocol ntor, and it only introduces manageable communication overhead to the
Tor protocol.
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1 Introduction

Lattice-based cryptographic constructions have drawn an overwhelming amount of research attention in the
last decade [7, 34, 36, 39, 43]. Their strong provable worst case security guarantee, apparent resistance to
quantum attacks, high asymptotic efficiency and flexibility towards realizing powerful primitives (e.g., fully
homomorphic encryption [21]) have been the vital reasons behind their popularity. Although the powerful
primitives such as fully homomorphic encryption are still very far from being ideal for practical use, several
recent efforts have demonstrated that performance of lattice-based constructions for basic encryption and
authentication primitives is comparable with (and sometimes even better than) performance of correspond-
ing primitives in the classical RSA or DLog settings [25,32,34]. As a result, some work has started to appear
towards developing lattice-based version of real-world cryptographic protocols [6, 40, 48]. In this work, we
explore the utility of plausibly quantum-secure yet highly efficient lattice-based cryptography to anonymous
communication networks (ACNs).

Over the last three decades, several ACNs have been proposed and few implemented [11, 12, 16, 23,
41, 44]. Among these, with its more than two million users and six thousand onion routing (OR) proxies
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spread all across the world, the OR network Tor [16, 47] has turned out to be a huge success. Today, along
with anonymous web browsing and service hosting, Tor is also extensively used for censorship-resistant
communication [14].

A typical realization of an OR network (such as Tor) consists of an overlay network of proxies (or nodes)
that routes their users’ traffic to their Internet-based destinations. A user chooses an ordered sequence of OR
nodes (i.e., a path) through the OR network using a path selection strategy, and constructs a cryptographic
circuit using a public-key infrastructure (PKI) such that every node in the path shares a symmetric session
key with the anonymous user. While employing the circuit to send a message anonymously to a destination,
the user forms an onion by wrapping the message in multiple layers of symmetric encryption such that upon
receiving the onion every node can decrypt (or remove) one of the layers and then forward it to the next
node in the circuit.

From the cryptographic point of view, the key challenge with an OR protocol is to securely agree upon
the required session keys so that a user can individually authenticate the nodes in her circuits while main-
taining her anonymity (except from the first node). Since its inception, Tor employed an interactive forward-
secret key-exchange protocol called the Tor authentication protocol (TAP) to agree upon those session keys
in a telescoping (or multi-pass) construction [16]. Due to its atypical use of CPA-secure RSA encryption,
TAP was considered weaker in terms of performance as well as security [22]. Recently, Goldberg, Stebila
and Ustaoglu [24] formalized the OR key agreement security by introducing the concept of one-way au-
thenticated key exchange (1W-AKE), and designed a provably secure 1W-AKE protocol called ntor. With
its significantly better computation and communication efficiency, ntor has since replaced TAP in the real-
world Tor implementation [15].

Security of ntor and other 1W-AKE protocols [3, 10, 27–29] requires some variant of Diffie–Hellman
(DH) assumption in the classical discrete logarithm (DLog) setting. As the DLog problem and all of its
weaker DH variants can be solved in polynomial time (in the security parameter) using quantum computers,
the security of these 1W-AKE constructions and subsequently the confidentially and anonymity of the OR
communications will be broken in the post-quantum world. Importantly, the current 1W-AKE protocols are
also not forward-secure against the quantum attacks; the confidentially and anonymity of even today’s OR
communications can be violated once quantum computers arrive.

Although this raises concern regarding the privacy of today’s anonymous communication in the future,
making drastic modifications to the current OR infrastructure by replacing the current 1W-AKE construction
with a lattice-based construction may be injudicious; e.g., in Tor, this will require completely changing the
public key infrastructure (PKI). As a result, it presents an interesting challenge to define a lattice-based
1W-AKE protocol that offers forward security in the post-quantum world without significantly affecting the
current cryptographic infrastructure and performance.

Our Contribution. In this paper, we resolve this challenge by presenting a novel hybrid 1W-AKE protocol
(HybridOR) that combines lattice-based key exchange with the standard DH key exchange. The channel
security of HybridOR relies on the (standard) ring variant of learning with error (ring-LWE) assumption or
the gap Diffie–Hellman (GDH) assumption, while its forward secrecy and the security against an man-in-the-
middle impersonator rely respectively on the ring-LWE assumption and the GDH assumption. Moreover,
while achieving this enhanced security properties, HybridOR does not require any modifications to the
current Tor public keys or directory infrastructure.

We observe that HybridOR is computationally more efficient than the currently employed ntor protocol;
in particular, the efficiency improvement on both the client and the node sides is nearly 33%. Although this
improved security and efficiency comes at the cost of increased communication, both the client and the node
will have to communicate three Tor cells each, which we find to be manageable for the Tor network today.
Finally, along with apparent resistance to quantum attacks and the worst case security guarantee, as our
HybridOR protocol is a 1W-AKE, it can also be used to realize a universally composable OR protocol [2].



2 Background

In this section, we present a brief overview of the OR protocol, the GDH assumption in the DLog setting,
and describe the lattice-based learning with errors problem.

2.1 Onion Routing

In the original OR protocol [41] circuits were constructed in a non-interactive manner. In particular, a user
created an onion where each layer contained a symmetric session key for an OR node and the IP address
of the successor OR node in the circuit, all encrypted with the original node’s public key such that each
node can decrypt a layer, determine the symmetric session key and forward the rest of the onion along to the
next OR node. Unless public keys are rotated frequently, this approach cannot guarantee forward security
for the anonymous communication; thus, in the second generation OR network [16] (i.e., Tor), circuits are
constructed incrementally and interactively, where symmetric session keys are established using a forward-
secure authenticated Diffie–Hellman (DH) key exchange involving the OR node’s public key. In the second
generation Tor protocol, circuits are constructed using the Tor authentication protocol (TAP) involving a
CPA-secure RSA encryption and a DH key exchange. Currently, the third generation Tor network employs
the provably secure (against the GDH assumption [37]) and significantly more efficient ntor protocol [24].

In related efforts, Backes et al. [2] observe that, with minor modifications, universally composable (UC)
security [8] is possible for the existing Tor protocol, if the employed key agreement protocol is a one-way
authenticated key exchange [24].

One-way Authenticated Key Exchange—1W-AKE. Goldberg et al. introduce a security definition of (one-
way anonymous) one-way authenticated key exchanges (1W-AKE) to facilitate design of provably secure
session key agreement protocols for onion routing [24]. (See Section 3 for a complete 1W-AKE definition.)

They also fixed a key agreement protocol proposed in [38] to obtain a provably secure construction
called the ntor protocol, which has replaced the TAP protocol in the current Tor network. In ntor, the client
sends a fresh ephemeral key gx to the node. The node computes and sends a fresh ephemeral key gy to the
client and calculates the session key as H((gx)y, (gx)b), where b is the long term secret key of the node.

Recently, Backes, Kate, and Mohammadi [3] introduced a 1W-AKE protocol Ace that improves upon
the computational efficiency of ntor. In Ace the client sends two fresh ephemeral keys gx1 and gx2 to the
node. The node sends one fresh ephemeral key gy to the client. The client and node compute the shared
secret as gx1b+x2y = (gb)x1(gy)x2 = (gx1)b(gx2)y. The source of efficiency in Ace comes from the fact
that one can do two exponentiations at the same time using a multi-exponentiation trick. (See Figure 4 in
Appendix A for a pictorial illustration of ntor and Ace.)

In contrast to the above interactive 1W-AKE protocol, a single-pass construction using a non-interactive
key exchange is possible as well. However, achieving forward secrecy without regularly rotating the PKI
keys for all Tor nodes is not possible [29], and periodic public key rotation should be avoided for scalability
reasons. There have been attempts to solve this problem in the identity-based cryptography setting [29] or
the certificate-less cryptography setting [10]. Nevertheless, as discussed in [2], key authorities required in
these constructions can be difficult to implement in practice.

2.2 Gap Diffie-Hellman—GDH

Let G be a multiplicative group with large prime order p and g ∈ G be the generator of the group. Given
a triple (g, ga, gb) for a, b ∈r Z∗p, the gap version of Diffie-Hellman (GDH) problem is to find the element
gab with the help of a Decision Diffie-Hellman (DDH) oracle [37]. The DDH oracle Oddh takes input as
(G, g, ga, gb, z) for some z ∈ G and tells whether z = gab or not, that is whether the tuple is a DH tuple



or not. For the security parameter λ, solving GDH problem in G is assumed to be a hard problem. More
formally,

Definition 1 (GDH Assumption). For all algorithm A, the advantage of solving GDH in the group G is
defined as,

Advgdh
A = Pr[AO

ddh
(p, g, ga, gb) = gab, (a, b) ∈r Z∗p

2].

The GDH assumption states that Advgdh
A is a negligible function of the security parameter λ for all PPT

algorithms A.

2.3 Learning With Errors—LWE

Learning with errors (LWE) is a problem of distinguishing noisy random linear equations from truly random
ones, for a small amount of noise. It has been shown to be as hard as some worst case lattice problems [43],
and its different variants have been employed in designing lattice-based cryptosystems [33, 35, 42, 43]. The
main drawback of schemes based on LWE [43] is that they are based on matrix operations, which are quite
inefficient and result in large key sizes. To overcome these problems, in last few years, special lattices with
additional algebraic structures are used to construct cryptographic protocols.

LWE for Polynomial Ring. To reduce computation, communication and storage complexity, Lyuba-
shevsky [34] propose an algebraic variant of LWE, ring-LWE, the problem is defined over a polynomial
ring.

Let Zq be the set of integers from b−q/2c to bq/2c, and let Z[x] be the set of polynomials with co-
efficients in Z. Consider f(x) = xn + 1 ∈ Z[x], where the degree of the polynomial n ≥ 1 is a power
of 2, which makes f(x) irreducible over the Z. Let R = Z[x]/〈f(x)〉 be the ring of integer polynomials
modulo f(x) such that elements of R can be represented by integer polynomials of degree less than n.
Let q ≡ 1 mod 2n be a sufficiently large public prime modulus (bounded by a polynomial in n), and let
Rq = Zq[x]/〈f(x)〉 be the ring of integer polynomials modulo both f(x) and q. The ring Rq contains all
the polynomials of degree less than n with coefficient in Zq, along with two operations, polynomial addition
and multiplication modulo f(x).

Let χ be the error distribution overR, which is concentrated on small elements ofR. See [34] for details
of the error distribution for the security and the correctness of the system. We denote Ds,χ as the ring-LWE
distribution over R2

q , obtained by choosing uniformly random a← Rq and e← χ, and outputs (a, a · r+ e)
for some r ← Rq.

Decision ring-LWE problem. The decision version of ring-LWE is to distinguish between two distribu-
tions, Ds,χ, for uniformly random s ← Rq and a uniformly random distribution in Rq × Rq (denoted by
URq×Rq ), given a poly(n) number of independent samples. More formally,

Definition 2 (Decision ring-LWE Assumption). The decision ring-LWE problem for n, q, χ is to distinguish
the output of ODs,χ oracle from the output of an oracle URq×Rq that returns uniform random samples from
Rq ×Rq. If A is an algorithm, the advantage of A is defined as

AdvdrlweA = |Pr[AO
Ds,χ

(·)]− Pr[AO
URq×Rq

(·)]|.

The decision ring-LWE assumption states that for given values of n, q, and χ, for every PPT adversary A,
AdvdrlweA is negligible in the security parameter λ.

The hardness results for the LWE problem are described in [34, 39, 43]. Brakerski et al. [7] show the
classical hardness of the LWE problem. Ding et al. [13] mention that for any t ∈ Z+, such that gcd(t, q) = 1,
the LWE assumption still holds if we choose b = 〈a, r〉+ te. We use t = 2 for our construction.



It is important to note that ring-LWE samples are pseudorandom even when the secret r is chosen
from the error distribution [1, 36]. Ducas et al. [17] show that the ring-LWE problem is hard in any ring
Z[x]/〈Φm〉, for any cyclotomic polynomial Φm(x).

Robust extractors. One of the important problems with the lattice-based key exchange protocols is the
error correction (or reconciliation) of the shared secret. In literature, there are different methods [13, 20] to
agree on a shared secret from noisy shared secret values. For our construction we adopt the method due to
Ding et al. [13] and recall the corresponding concept of robust extractors and the signal functions below.
Intuition. Let Alice sends pA = asA + 2eA to Bob, and Bob sends pB = asB + 2eB to Alice, where
eA, eB ∈ χ and a, sA, sB ∈ Rq. Here, sA and sB are the secret keys of Alice and Bob respectively.
To compute the shared secret Alice computes KA = pBsA mod q = asAsB + 2eBsA mod q and Bob
computesKB = pAsB mod q = asAsB+2eAsB mod q. ClearlyKA−KB is even and small. Using the
robust extractor as explained in [13], it is possible for Alice and Bob to agree on the same value once they
have KA and KB respectively. To achieve this goal Bob has to send a signal value indicating whether KB

lies in [−q/4, q/4]
⋂
Z or not. If KB lies in [−q/4, q/4]

⋂
Z then KB = KA + 2(eAsB − eBsA) mod q.

Now 2(eAsB − eBsA) ≤ q/4, implies:

KB = KA + 2(eAsB − eBsA) mod q,

KB = KA mod q + 2(eAsB − eBsA),

(KB mod q) mod 2 = (KB mod q) mod 2.

This is also true when KB lies outside the interval [−q/4, q/4]
⋂
Z. However, this type of deterministic

extractor leaks the information whether KB lies inside or outside a certain interval. To solve this problem
Ding et. al. [13] propose a randomized signal generation algorithm that removes the bias of the distribution
of the extracted key.

Definition 3 (Robust Extractors). An algorithm f(·) is a robust extractor on Zq with error tolerance δ with
respect to a hint function h(·) if:

– f(·) takes an input x ∈ Zq and a signal α ∈ {0, 1}, and outputs k = f(x, α) ∈ {0, 1}.

– h(·) takes an input y ∈ Zq and outputs a signal value α = h(y) ∈ {0, 1}.

– f(x, α) = f(y, α), for any x, y ∈ Zq, such that (x− y) is even and |x− y| ≤ δ, where α = h(y).

We use the robust extractor as described in [13]. For q > 2 define α0 : Zq → {0, 1} and α1 : Zq →
{0, 1} as follows:

α0(x) =

{
0, if x ∈ [−b q4c, b

q
4c];

1, otherwise.
α1(x) =

{
0, if x ∈ [−b q4c+ 1, b q4c+ 1];

1, otherwise.

The hint algorithm h(·) generates the signal α for some y ∈ Zq by tossing a random coin b ← {0, 1}
and computing α = h(y) = αb(y). Finally the robust extractor computes the common value as:

f(x, α) = (x+ α · q − 1

2
mod q) mod 2,

where x ∈ Zq, |x− y| ≤ δ and x− y is even. In [13], the authors prove that f(·) is a randomness extractor
with respect to h(·) for an odd integer q > 8 with error tolerance δ = q

4 − 2. Also if x is uniformly random
in Zq, then f(x, α) is uniform in {0, 1}, where α = h(x).



It is easy to extend this notion for ring settings. Any element in Rq can be represented by a degree n− 1
polynomial. For example any a ∈ Rq can be written in the form a0 + a1x + · · · + an−1x

n−1. In that case
the extractor can extract n bits from an element of Rq. We extend αR0 (a), αR1 (a) : Rq → R2 as follows:

αR0 (a) =
n−1∑
i=0

α0(ai)x
i; αR1 (a) =

n−1∑
i=0

α1(ai)x
i.

The algorithm hR(·) can be defined in the same manner as hR(a) = αRb (a), for b← {0, 1}. Similarly define
the extractor in the ring settings fR(a, α) : Rq → R2 as:

fR(a, α) = (a+ α · q − 1

2
mod q) mod 2.

Authenticated key exchange in the lattice setting. Fujioka et al. [19] provide the first CK+ secure [9,
19, 30] authenticated key exchange (AKE) protocol from a key-encapsulation mechanism (KEM) based on
ring-LWE problem in the standard model. However due to the huge communication cost (≈ 139625 bytes)
their lattice-based AKE is not suitable for real-world applications. In [20], Fujioka et al. propose a generic
construction for AKE from OW-CCA KEMs in random oracle model. When instantiated with ring-LWE
settings, their AKE protocol gives a much more efficient solution to the problem. Still, communication cost
for [20] reaches about 10075 bytes. Peikert [40] proposes a new low-bandwidth error correction technique
for ring-LWE based key exchange, and provides practical lattice based protocols for key transport and AKE.
Ding et al. [13] propose another method for error correction and design a passively secure DH-like key
exchange scheme based on both the LWE and the ring-LWE problem. Zhang et al. [48] extend the above
AKE protocol to ideal lattice settings, and their lattice-based AKE protocol gives weak perfect forward
secrecy in the Bellare-Rogaway model [4]. Recently Bos et al. [6] demonstrate the practicality of using
ring-LWE based key exchange protocols in real life systems. They employ lattice-based key exchange in
TLS protocol. Their implementation reveals that the performance price for switching from pre-quantum-safe
to post-quantum-safe key exchange is not too high and can already be considered practical, which further
motivates our efforts towards defining a 1W-AKE protocol in the lattice setting.

3 1W-AKE Security Definition

Goldberg et al. [24] define the security requirements for a one-way authenticated key exchange (1W-AKE)
protocol, which are refined in [3]. In this section we recall the security requirements for a 1W-AKE protocol
between an anonymous client and an authenticated node.

A 1W-AKE protocol is a tuple of ppt algorithms (SetUp, Init,Resp,CompKey), where SetUp generates
the system parameters and the static long-term keys for the node. The client calls Init to initiate the 1W-
AKE protocol and the node uses Resp to respond to an Init. Finally, the client uses CompKey to verify the
key-confirmation message and compute the key. We assume that a PKI is given, that means for a node N all
parties {P1, · · · , Pm} can obtain a certified public key pkN .

Along with protocol correctness, a secure 1W-AKE protocol should respect the following properties:

1W-AKE security. An attacker should not learn anything about the session key of an uncompromised ses-
sion, even if it completely compromises several other sessions, introduces fake identities or even learn
some uncompromised session secret.

1W-anonymity. A node should not be distinguish between communicating with two different clients.



upon sendP (params, N):
(m, st ,Ψ)← Init(N, params, cs)
ake stP (Ψ)← (N, st); send (m,Ψ)

upon sendP (Ψ,m) and ake stP (Ψ) = ⊥:
(m ′, (k, ?, st),Ψ)← Resp(skP , P,m, cs);
result stP (Ψ)← (k, st , ?); send m ′

upon sendP (Ψ,m) and ake stP (Ψ) 6= ⊥:
(N, st)← ake stP (Ψ); check for a valid pkN
(k,N, st)← CompKey(pkN ,m,Ψ, (N, st))
erase ake stP (Ψ); result stP (Ψ)← (k,N, st)

upon reveal nextP :
(x,X)← Gen(1λ); append (x,X) to cs; send X

upon partnerP (X):
if a key pair (x,X) is in the memory then send x

upon sk revealP (Ψ):
if result stP (Ψ) = (k,N, st) then send k

upon establish certificate(N, pkN ):
register the public key pkN for the party N

upon testP (Ψ): (one time query)
(k,N, st)← result stP (Ψ)
if k 6= ⊥ and N 6= ? and Ψ is 1W-AKE fresh then

if b = 1 then send k else send k′ ←R {0, 1}|k|

Figure 1: 1W-AKE Security Challenger: ChKE
b (1λ), where λ is the security parameter. If any invocation

outputs ⊥, the challenger erases all session-specific information for that session and aborts that session. [3]

3.1 Correctness

In a 1W-AKE protocol an anonymous client (denoted by ~) tries to establish a shared secret key with a
node N . The client calls Init(N, pkN , cs), which returns an output message m, session id Ψ and session
state st. The client sends m to N . Init takes a queue cs as input, where cs stores already chosen keys. If
cs is empty then Init generates a fresh output message m. In response, N runs Resp(skN , N,m, cs) and
outputs (m′, (k,~,−→v ),ΨN ), where m′ is the response message to the client, k is the session key computed
by N , and −→v contains ephemeral public keys for the session ΨN . On receiving m′, the client computes
(k′, N,−→v ′) by calling CompKey(pkN , m

′,Ψ, st), where k′ is the session key computed by the client and
−→v ′ is the list of ephemeral public keys. An 1W-AKE protocol is correct if for every party N :

Pr[(m, st,Ψ)← Init(N, pkN , cs), (m
′, (k,~,−→v ),ΨN )← Resp(skN , N,m, cs),

(k′, N,−→v ′)← CompKey(pkN ,m
′,Ψ, st) : k = k′ ∧ −→v = −→v ′)] = 1.

3.2 1W-AKE Security

The goal of the adversary in the 1W-AKE security experiment is to distinguish the session key of an uncom-
promised session from a random key. It requires an active attacker to not learn anything about the key or be
able to impersonate an honest node.

In the security game, a challenger ChKE represents honest parties (P1, · · · , Pm) and allows the attacker
a fixed set of queries described in Figure 1. The challenger internally runs the 1W-AKE algorithm, and
simulates each party. For the challenge, the adversary asks ChKE for the session key of an uncompromised
session Ψ for a party P by querying testP (Ψ) (one time query). ChKE sends the correct session key or
a randomly chosen session key to the attacker with equal probability. The attacker’s task is to determine
whether the given key corresponds to the real session Ψ or is random.

For triggering the initiation session, triggering the response to a key exchange, and for completing a
key exchange, the challenger allows the adversary to query sendP (·,m). For the compromising parties, the
attacker can ask the following queries:

– reveal nextP : ask the party P to reveal the next public key that will be chosen.
– partnerP (X): ask for the secret key for a public key X .



– sk revealP (Ψ): ask for the session key of a session Ψ.
– establish certificate(N, pkN ): register new long-term public keys pkN for an unused identity N .

The challenger maintains several variables for each party P :

– params stores public parameters for the AKE protocol.
– ake stP (Ψ) stores the key exchange state for the party P in the session Ψ. It contains ephemeral keys

that will be deleted after the completion of the key exchange.
– result stP (Ψ) stores the resulting state for the party P for a completed session Ψ. This result state

contains the established session key k, the identity of the peer party, which is ~ if the peer is anony-
mous, otherwise the identity of the peer. A state st that typically contains two vectors −→v0 ,−→v1 that
contain the ephemeral and the long-term public keys used for establishing the session key of Ψ.

The attacker is a partner of a public key X if one of the following conditions hold:

– X has not been used yet.
– X is the public key that the attacker registered using a establish certificate(N,X) query.
– X was the response of a sendP or reveal nextP query and there is a successive query partnerP (X).

In order to prevent the attacker from trivially winning the game, Goldberg et al. [24] propose the freshness
notion for the challenge session. A challenge session is 1W-AKE fresh if the following conditions hold:

1. Let (k,N, st) = result stP (Ψ). For every vector −→vi in st there is at least one element X in −→vi such
that the attacker is not a partner of X .

2. If ake stP (Ψ) = (−→v ,N) for the challenge session Ψ, the adversary did not issue sk revealN (Ψ′), for
any Ψ′ such that ake stN (Ψ′) = (−→v ,~).

After a successful key exchange with a party N , an anonymous client outputs a tuple (k,N,−→v0 ,−→v1), where
k is the session key. −→v0 ,−→v1 is the transcript of the protocol. The node N outputs (k,~,−→v0 ,−→v1) to denote that
the peer party is anonymous.

Definition 4 (1W-AKE security). Let λ be a security parameter and let the number of parties m ≥ 1. A
protocol π is said to be 1W-AKE secure if, for all probabilistic polynomial time (ppt) adversaries A, the
advantage Adv1w-ake

A (π, λ,m) that A distinguishes a session of a 1W-AKE fresh session from a randomly
chosen session key is negligible in λ, where Adv1w-ake

A (π, λ,m) is defined as:

Adv1w-ake
A (π, λ,m) = |Pr(A(trans(π), k) = 1)− Pr(A(trans(π), k′) = 1|,

where trans(π) is the transcript of the protocol, k is the real session key and k′ is the random session key.

Forward Secrecy. In key exchange forward secrecy ensures that a session key derived from long-term
keys remains secret even if the long-term keys are compromised in the future. A 1W-AKE secure protocol
provides forward secrecy if the long-term public keys of the participating parties appear in the output vector
of the protocol [24]. In that case the adversary can be partner with a long-term public key, ensuring forward
secrecy in the security game.

3.3 One-way Anonymity

The purpose of one-way anonymity is that an adversary (even a server) cannot guess which client is partici-
pating in the key exchange. The client always knows that it is participating in a key exchange protocol with



the server, but from the server’s point of view (or from the view of any other user), the participating client
must be anonymous.

In Figure 2 the 1W-Anonymity game is explained in detail. In the security experiment the adversary can
communicate with all the parties directly through a ChKE challenger. The adversary chooses two distinct
party indices i and j for the key exchange challenge session Ψ∗ and gives that to ChAN. ChAN chooses a
candidate party by picking one index b∗ ← {i, j} randomly, and starts a key-exchange session Ψ∗ with
Pb∗ . Finally the adversary has to guess b∗. To prevent trivial winning the adversary can not execute certain
queries [3, 24] that leak the state of the candidate parties. Formally, to satisfy this condition we require that
ChAN internally runs a copy of 1W-AKE challenger ChKE. We denote the internal copy as IChKE.

Definition 5 (1W-anonymity). Let λ be the security parameter. Let P,N be ppt interactive turing machines,
and v denote the view of the adversary while interacting with P and N , i. e. v = 〈A(1λ), P (1λ), N(1λ)〉.
Let b be the output of the adversary after a 1W-anonymity game. A protocol π is said to be 1W-anonymous
if, for all ppt adversaries A, the advantage Adv1w-anon

A (π, λ,m) is negligible in λ, where:

Adv1w-anon
A (π, λ,m) = |Pr[b← 〈A(1λ),ChAN

b∗ (1λ),ChKE(1λ)〉|b = b∗]−
Pr[b← 〈A(1λ),ChAN

b∗ (1λ),ChKE(1λ)〉|b 6= b∗]|.

upon start(i, j, params,N): (one time query)
if i 6= j then

if b = 1 then i∗ ← i else i∗ ← j
send sendPi∗ (params, N) to IChKE

1 (1λ)
wait for the response (Ψ∗,m ′); send m ′ to
M

upon send(m):
forward sendPi∗ to IChKE

1 (1λ)

upon reveal next:
forward reveal nextPi∗ to IChKE

1 (1λ)

upon sk reveal:
forward sk revealPi∗ (Ψ∗) to IChKE

1 (1λ)

upon partner(X):
forward partnerPi∗ (X) to IChKE

1 (1λ)

Figure 2: The anonymizing machine ChAN
b (1λ): IChKE

1 (1λ) is an internally emulated copy of ChKE
1 (1λ) [3]

4 Our Protocol

In this section we describe the HybridOR protocol, a hybrid lattice-based onion routing protocol. We call
this protocol hybrid as the long-term part of the key comes from a DH key exchange, whereas the ephemeral
part of the key comes from a lattice based key exchange. Hence the security of the protocol essentially
depends on the hard problems in either setting, namely the hardness of the GDH problem from the DLog
setting or the hardness of the ring-LWE problem from the lattice-based setting.

In our HybridOR protocol, The client generates fresh ephemeral keys pC ∈ Rq and gx ∈ G and sends
them to the node. The node generates a fresh ephemeral key pN ∈ Rq and computes k1N = pCrN +
te′N ≈ arCrN , a signal value α = hR(k1N ). The node sends pN and α to the client. The client computes
k1C = pNrC + tr′C ≈ arCrN . Recall that t = 2. The client and node approximately agree on the shared
secret value k1C and k1N . To achieve exact agreement on the shared secret from the approximate shared
secret, the robust extractor fR(·) is used. The client and node compute the shared secret k1, k2, and sk as
follows:

k1 = fR(k1N , α), k2 = (gx)s, sk = H1(k1)⊕H2(k2) (node-side)

k1 = fR(k1C , α), k2 = (gs)x, sk = H1(k1)⊕H2(k2) (client-side)



SetUp(N,λ):

1. For the security parameter λ, generate system parameters (R,n, q, t, χ) and (G, g, p).
2. Sample a← Rq.
3. Sample s← Z∗p and compute gs.
4. Output (a, gs) as public key, and s as secret key.

Init((a, gs), N):

1. Sample (rC , eC) ∈ χ and x← Z∗p.
2. Generate ephemeral key pairs (rC , pC = arC + teC) and (x, gx).
3. Set session id ΨC ← Hst(pC , g

x).
4. Update st(ΨC)← (HybOR, N, rC , pC , x, g

x).
5. Set mC ← (HybOR, N, pC , g

x).
6. Output mC , ΨC .

Resp((a, gs), s, pC , g
x):

1. Sample (rN , eN , e
′
N ) ∈ χ.

2. Generate an ephemeral key pair (rN , pN = arN + teN ).
3. Compute k1N = pCrN + te′N and α = hR(k1N ).
4. Set session id ΨN ← Hst(pN , α).
5. Compute k1 = fR(k1N , α) and k2 = (gx)s.
6. Compute (skm, sk)← H1(k1, pC , pN , N,HybOR)⊕H2(k2, g

x, gs, N,HybOR).
7. Compute tN = PRF (skm, N, pN , α, pC , g

x,HybOR, node).
8. Set mN ← (HybOR, pN , α, tN ).
9. Erase rN and output mN .

CompKey((a, gs),ΨC , tN , pN , α):

1. Retrieve N , rC , pC , x, gx from st(ΨC) if it exists.
2. Compute k1C = pNrC + teC .
3. Compute k1 = fR(k1C , α) and k2 = (gs)x.
4. Compute (skm, sk)← H1(k1, pC , pN , N,HybOR)⊕H2(k2, g

x, gs, N,HybOR).
5. Verify tN = PRF (skm, N, pN , α, pC , g

x,HybOR, node).
6. Erase st(ΨC) and output sk.

If any verification fails, the party erases all session-specific information and aborts.

Figure 3: A detailed description of the HybridOR protocol

4.1 Construction

Figure 3 provides a detailed description of the HybridOR protocol. The node N runs the SetUp algorithm
to generate the system parameters. In HybridOR the SetUp algorithm can be seen as a combination of two
separate SetUp algorithms. One part generates the system parameters for the DH-like key exchange (as
in [3, 24]) and the other part generates the parameters for the lattice based settings (as in [13]).

The SetUp algorithm generates a group G with large prime order p, where the GDH [37] problem is
hard. Let g ∈ G be the generator of the group. The Setup algorithm further generates the public parameters
for the lattice based settings as described in Section 2.3. It publishes the dimension n, the prime modulus q,
the description of the ring R and the error distribution χ in the public parameter.

The node samples a ← Rq and s ← Z∗p, computes gs, and publishes (R,n, q, t, χ, a,G, g, gs) as the
public parameter of the protocol. where gs is the long term public key of the node with s as the secret



key. The node also publishes Hst(·), H1(·), H2(·) and a PRF (·) in the public parameter, where Hst(·)
is a collision-resistant hash function, H1(·) is a randomness extractor and H2(·) is a random oracle. The
PRF (·) is a pseudorandom function that is used to generate the key confirmation message. Note that
according to [18], we instantiate a randomness extractor with HMAC. However, we can also use the key
derivation function HKDF [31] to instantiate H1.

To initiate a new key exchange session the anonymous client C calls the Init algorithm. Init randomly
samples rC and eC from the error distribution χ and x from Z∗p. It computes the ephemeral key pair as
pkC = (pC , g

x) and skC = (rC , x), where pC = arC + teC mod q. Init sets the local session identifier as
ψC = Hst(pC , g

x), where Hst is a collision-resistant hash function. The session information of the client is
stored in the variable st(ψ) as st(ψC) = (HybOR, N, rC , pC , x, g

x). Init generates the outgoing message
mC = (HybOR, N, pC , g

x), and sends (ψC ,mC) to the node N over the network.
In response to the message the node runs Resp, which verifies whether pC ∈ Rq and gx ∈ G. On

successful verification it randomly samples rN and eN from the error distribution χ and computes pN =
arN + teN mod q. Resp outputs the ephemeral key pair (pN , rN ), where pN is the public part and rN
remains secret to the node. Resp further samples e′N ← χ and computes k1N = pCrN + te′N mod q
and α = hR(k1N ). hR(·) is a randomized algorithm used to generate the signal value α, as described in
section 2.3. To ensure the correctness of the shared secret computation, N sends α to the client [13]. The
node computes the short-term shared secret (k1) and the long-term shared secret (k2) as:

k1 = fR(k1N , α), k2 = (gx)s = gxs,

where fR(·) is the robust extractor as defined in Section 2.3. By short-term shared secret we mean the shared
secret computed using the client’s ephemeral key and node’s ephemeral key. By long-term shared secret we
mean the shared secret computed by using the client’s ephemeral key and node’s long-term or static key.

The node computes the session key sk, the PRF key skm and the key confirmation message tN as:

(skm, sk) =H1(k1, pC , pN , N,HybOR)⊕H2(k2, g
x, gs, N,HybOR)

tN =PRF (skm, N, pN , α, pC , g
x,HybOR, node).

The tag tN provides only a means for the key confirmation. Resp returns the session identifier ψN =
Hst(pN , α) and a message mN = (HybOR, pN , α, tN ). The node sends (ψN ,mN ) to the client. The node
completes the session by deleting (rN , eN , e

′
N ) and outputting (sk,~, (−→v0 ,−→v1)), where −→v0 = {pC , gx} and

−→v1 = {pN , gs}. ~ denotes that the identity of the client is not known to the node.
On receiving the message (ψN ,mN ) for the session ψC , the client C calls the algorithm CompKey to

compute the session key. CompKey first checks whether the session ψC is active; if so, it retrieves the
required session information, namely rC , pC , x, gx from st(ψC). Then it checks whether pN ∈ Rq. After
successful verification CompKey computes the shared secrets k1, k2 as follows:

k1C = pNrC + teC mod q,

k1 = fR(k1C , α), k2 = (gs)x = gxs.

The client computes (skm, sk) = H1(k1, pC , pN , N,HybOR) ⊕ H2(k2, g
x, gs, N, HybOR), where sk is

the session key and skm is the PRF key. It verifies the key-confirmation message tN using the key skm.
After that the client completes the session ψC by deleting st(ψC) and outputting (sk,N, (−→v0 ,−→v1)), where
−→v0 = {pC , gx} and −→v1 = {pN , gs}. If any verification fails during the session execution, the party erases all
session-specific information and aborts the session.

In Figure 4 in Appendix A, we compare HybridOR with the ntor and Ace protocols in the literature.

Correctness. To analyze the correctness of HybridOR, we can see HybridOR as a combination of two key
exchange protocols, namely the Diffie-Hellman key exchange protocol and the lattice-based protocol by



by Ding et. al [13]. Hence the correctness of HybridOR directly follows from the correctness of DH key
exchange and the correctness of the lattice-based protocol [13].

For the DH part, the node computes (gx)s = gxs and the client computes (gs)x = gxs. Further, both
client and node computesH2(g

xs, gx, gs, N,HybOR). For the lattice part the node computes k1N = pCrN+
te′N ≈ arCrN and the client computes k1C = pNrC+teC ≈ arCrN . The node also computesα = hR(k1N )
and sends it to the client. The client and node use α to make sure that the shared secret k1 computed from
k1N (for the node) and k1C (for the client) do not produce different results in modulo operation. They use
the robust extractor fR(·) (see Section 2.3) and compute k1 = fR(k1N , α) = fR(k1C , α). More details
of the robust extractor can be found in [13]. After computing the shared secret k1 the client and node both
computesH1(k1, pC , pN , N,HybOR). Further, from both parts of the shared secret they compute the session
key and PRF key for the protocol as (skm, sk) = H1(k1, pC , pN , N,HybOR)⊕H2(g

xs, gx, gs, N,HybOR).

5 Security Analysis

5.1 Type of Adversary

To analyze the 1W-AKE security of our protocol, we consider three types of 1W-AKE adversaries. We
classify the type of adversary depending on the power of the adversary in the test session. For all other
sessions the adversary can be partner to any public values, after respecting the freshness condition of the
1W-AKE security game.
Type-I adversary. The first type of adversary cannot be partner to any of the public values in the test

session. By proving security against this kind of adversary we show that an active adversary without
the knowledge of any secret values used in the test session cannot learn anything about the session
key.

Type-II adversary. The second type of adversary can be the partner with only the ephemeral public key
from a node N in the test session. By proving the security against this kind of adversary we give the
security guarantee of the protocol against a man-in-the-middle adversary trying to impersonate the
node N to the client.

Type-III adversary. The third type of adversary can be partner with only the long term public key in the
test session. This gives the guarantee of forward security of the protocol; i.e., even if some information
about the long-term private key is known to the adversary, the adversary cannot learn any information
about the already created session key.

5.2 Security against Type-I Adversary

We show that HybridOR is secure against Type-I adversary under either the GDH or the ring-LWE assump-
tion. The motivation of this security theorem is to show that even if the ring-LWE assumption or the GDH
assumption (but not both) is broken, HybridOR remains secure against Type-I adversary.

Theorem 6. The protocol HybridOR is 1W-AKE secure against a PPT Type-I adversary under the GDH
or the ring-LWE assumption, considering H1 as randomness extractor and H2 as random oracle. More
precisely, for any PPT Type-I adversary A,

Adv1w-ake
A ≤ min(Advdrlwe

A◦B0,1
+Advdrlwe

A◦B1,2
, AdvGDH

A◦B′),

where B0,1, B1,2 and B′ are the reduction algorithms as described in the proof.

Proof. To prove the security against a Type-I adversary, first we define a sequence of three games G0 to G2.
Let Ei be the event that the adversary guesses bit b∗ in game Gi.



G0: This is the original 1W-AKE security game, where the reduction algorithm B generates all the
public values honestly in all the sessions.

G1: This game is identical to G0, except here pC is generated uniformly at random in the test session.
G2: This game is similar to G1, except here pN is generated uniformly at random in the test session

and also the test session secret k1 is generated uniformly at random.
As G0 is the real 1W-AKE game, we can bound Pr(E0) as

Adv1w-ake
A = |Pr(E0)− 1/2|. (1)

Lemma 7. No PPT Type-I adversary can distinguish between G0 and G1 under the decision ring-LWE
assumption, if H1 is a randomness extractor and H2 is a random oracle.

Proof. If there exists a PPT Type-I adversary A that can distinguish between G0 and G1, then we can
construct a PPT reduction algorithm B0,1 that can efficiently distinguish between tuples from a ring-LWE
distribution and a uniform distribution.

In G0, (a, pC) are samples from a ring-LWE distribution, such that pC = arC + teC . In G1, (a, pC) are
samples from a uniform distribution over Rq × Rq. Under the decisional ring-LWE assumption these two
distributions are indistinguishable.

Solving decision ring-LWE. To simulate the 1W-AKE challenger for A the reduction algorithm B0,1

guesses ψi to be the test session. In the test session it honestly generates (G, g, gx, gs). B0,1 also takes a
pair (a0, u0) from the ring-LWE challenger and sets a = a0 and pC = u0. Now if (a0, u0) is a ring-LWE
sample, then there exists an rC , eC ∈ χ such that pC = arC + teC and in that case the output of B0,1 is dis-
tributed exactly as in G0. Whereas if (a0, u0) is sample from a uniform distribution over R2

q , B0,1 simulates
G1 for A. Thus, if A can distinguish G0 from G1, then A ◦ B0,1 can distinguish ring-LWE samples from
samples from a uniform distribution over R2

q . Thus if A can distinguish G0 from G1, A ◦B0,1 can solve the
decision ring-LWE problem. Hence,

|Pr(E0)− Pr(E1)| ≤ Advdrlwe
A◦B0,1

. (2)

Lemma 8. No PPT Type-I adversary can distinguish between G1 and G2 under the decision ring-LWE
assumption, if H1 is a randomness extractor and H2 is a random oracle.

Proof. If there exists a PPT Type-I adversary A that can distinguish between G1 and G2, then we can
construct an PPT reduction algorithm B1,2 that can efficiently distinguish between tuples from a ring-LWE
distribution and a uniform distribution.

In G1, (a, pN ) are samples from a ring-LWE distribution, such that pN = arN + teN . In G2, (a, pN )
are samples from a uniform distribution over Rq × Rq. Under the decisional ring-LWE assumption these
two distributions are indistinguishable. In G2, k1 is also distributed as a random element from Rq. In both
the cases pC is uniformly distributed over Rq.

Solving decision ring-LWE. To simulate the 1W-AKE challenger for A the reduction algorithm B1,2

guesses ψi to be the test session. In the test session it honestly generates (G, g, gu, gv). B1,2 also takes
{(a0, u0), (a1, u1)} from the ring-LWE challenger and sets a = a0, pC = a1, pN = u0 and k1 = u1. Now
if {(a0, u0), (a1, u1)} are ring-LWE samples, then there exist rN , eN , e′N ∈ χ such that pN = arN + teN
and k1 = pCrN + te′N . In that case the output of B1,2 is distributed exactly as in G1. Whereas if
{(a0, u0), (a1, u1)} are samples from uniform distribution over R2

q , B1,2 simulates G2 for A. Thus, if



A can distinguishG1 fromG2, thenA◦B1,2 can distinguish ring-LWE samples from samples from uniform
distribution over R2

q .
Thus if a PPT Type-I adversaryA can distinguish betweenG1 andG2, then we can construct a reduction

B1,2 which can efficiently solve the ring-LWE problem. As a result we can write,

|Pr(E1)− Pr(E2)| ≤ Advdrlwe
A◦B1,2

. (3)

Analysis of G2. In G2 the adversary has to guess a b∗ in the 1W-AKE game to distinguish between the real
session key sk and randomly chosen session key sk′. As pC , pN and k1 are chosen uniformly at random
from Rq, and H1(·) is a randomness extractor, the resulting session key sk is uniformly distributed over the
key space. On the other hand, sk′ is also chosen uniformly from the key space. As a result, the adversary
has no information about b∗, and hence

Pr(E2) = 1/2. (4)

By combining equation (1)− (4), we can write:

Adv1w-ake
A ≤ Advdrlwe

A◦B0,1
+Advdrlwe

A◦B1,2
. (5)

Lemma 9. The protocol HybridOR is 1W-AKE secure against a PPT Type-I adversary under the GDH
assumption in the random oracle model.

Proof. If there exists a PPT Type-I adversaryA that can break the 1W-AKE security of the protocol, then we
can construct a PPT reduction algorithmB′ against the GDH challenger. A is allowed to make a polynomial
number (poly(λ)) of session queries. B′ also simulates the random oracle H2. Let {G, g, gu, gv} be the
GDH challenge. B′ has to compute guv in order to win the game.

The algorithm B′ guesses ψi to be a test session. To simulate the ψi, C runs the SetUp and generates
(R,n, q, t, χ). It uses the group G and generator g from the GDH challenger in the public parameters. B′

samples a← R sets (a, gu) as the static key pair of the server and simulates ψi session by setting:

gx = gv, (pC)i = arC + teC , (pN )i = arN + teN ,

(K1)i = (pC)irN + te′N , (α)i = Signal((k1)i),

where, rC , rN , eC , eN , e′N ∈r χ. B′ tosses a coin and chooses b ∈r {0, 1}. If b = 0 then B′ computes the
session key by computing H1((k1)i, (pC)i, (pN )i, N, HybOR) ⊕H2(·, gx, gu, N,HybOR), where H1(·) is
a randomness extractor and B programs H2(·) as a random oracle. B sends the session key to A. If b = 1
then B sends a random session key to A.

But in order to compute the correct test session key and to win the game, A has to query the random
oracle H2(·) with the same input. Otherwise A cannot distinguish a real session key from a random one,
as H2(·) is modeled as a random oracle. Whenever A makes a query H2(Z, g

x, gu, N, HybOR) for some
Z ∈ G, B′ asks the DDH oracle whether (gx, gv, Z) is a valid DDH tuple. If that is the case, then Z = guv

andB′ sends the answer to the GDH challenger. Clearly the reductionB′ is efficient. B′ has to guess the test
session with probability 1/poly(λ), so if A breaks the 1W-AKE protocol with non-negligible probability
then B′ will be able to solve the GDH problem with significant probability. Hence we can write,

Adv1w-ake
A ≤ AdvGDH

A◦B′ . (6)

Note that for all other sessions with the same server, the reduction B′ has to simulate the protocol
correctly without the knowledge of the private key u. If not managed properly, simulation may fail due to
inconsistent H2 queries. B′ uses the DDH oracle to respond consistently to the H2 queries and the sk reveal
queries for the sessions that involve gu. In particularl forH2 queries that involve gs, B′ first verifies whether
the shared secrets are computed honestly before responding with the session key.



Conclusion. By combining equation (5) and (6), we prove the result.
Note that the Type-I adversary A cannot be partner to any of the public values in the test session only.

For all other sessions it can be a partner to almost all values after respecting the freshness criterion. So
in order to simulate a 1W-AKE challenger for the adversary A, the reduction perfectly simulates all other
sessions. As a result the challenger can satisfy any kind of queries (see Section 3.2) from the adversary A
during the simulation.

5.3 Security against Type-II Adversary

In this section we show that in the pre-quantum computing era (today) HybridOR is secure against PPT Type-
II adversary. Here we consider an active adversary which can actually become a partner with the ephemeral
key of the server. We show that even in that case the adversary will not be able to win the 1W-AKE game.

Theorem 10. The protocol HybridOR is 1W-AKE secure against a PPT Type-II adversary under the GDH
assumption in the random oracle model.

Proof. If there exists a PPT Type-II adversaryA that can break the 1W-AKE security of the protocol, then we
can construct a PPT reduction algorithm B against the GDH challenger. A is allowed to make a polynomial
number (poly(λ)) of session queries. B also simulates the random oracle H2. Let P = {P1, · · · , Pm} be
the set of parties. Let {G, g, gu, gv} be the GDH challenge. B has to compute guv in order to win the GDH
game.

The algorithm B guesses ψi to be a test session. To simulate the ψi, B runs the SetUp and generates
(R,n, q, t, χ). It uses the group G and generator g from the GDH challenger in the public parameters. B
samples a← R sets (a, gu) as the static key pair of the server and simulates ψi session by setting:

gx = gv,

(pC)i = arC + teC , (pN )i = arN + teN ,

(K1)i = (pC)irN + te′N , (α)i = Signal((k1)i),

where, rC , rN , eC , eN , e′N ∈r χ. B tosses a coin and chooses b ∈r {0, 1}. If b = 0 then B computes the
session key by computing H1((k1)i, (pC)i, (pN )i, N, HybOR) ⊕H2(·, gx, gu, N,HybOR), where H1(·) is
a randomness extractor and B programs H2(·) as a random oracle. B sends the session key to A. If b = 1
then B sends a random session key to A.

The adversary A can be partner with ephemeral key (pN )i of the server in the test session. In that case
the reduction B can answer A with the correct value of rN . A can compute H1((k1)i, (pC)i, (pN )i, N,
HybOR) using that information. But in order to compute the correct test session key and to win the game, A
has to query the random oracleH2(·) with the same input. OtherwiseA cannot distinguish a real session key
from a random one, as H2(·) is modeled as a random oracle. Whenever A makes a query H2(Z, g

x, gu, N,
HybOR) for some Z ∈ G, B asks the DDH oracle whether (gx, gv, Z) is a valid DDH tuple. If that
is the case, then Z = guv and B sends the answer to the GDH challenger. Clearly the reduction B is
efficient. B has to guess the test session with probability 1/poly(λ), so if A breaks the 1W-AKE protocol
with non-negligible probability then B will solve the GDH problem with significant probability.

Note that for all other sessions with the same server, the reduction B has to simulate the protocol cor-
rectly without the knowledge of the private key u. If not managed properly, simulation may fail due to
inconsistent H2 queries. B uses the DDH oracle to respond consistently to the H2 queries and the sk reveal
queries for the sessions that involve gu. In particular for H2 queries that involve gs, B first verifies whether
the shared secrets are computed honestly before responding with the session key.



Notice that this theorem directly imply that a Type-II adversary can break the 1W-AKE security of
HybridOR in a quantum world. As in the quantum world the Type-II adversary can compute the discrete log
of the long term secret gs and it is already partner to the ephemeral secret pN in the test session. Hence the
adversary can compute the session key and wins the 1W-AKE game.

In order to make this protocol secure against Type-II adversary in a quantum world we need replace the
long term key with a quantum secure component. But in that case we cannot use our current DH public keys
and subsequently requires modification to the current Tor public key infrastructure. So, in today’s scenario
it is sufficient to follow the HybridOR design in the current form. As we can deploy this easily in the current
Tor network.

5.4 Security against Type-III Adversary

A more important question to ask now is whether HybridOR provides forward security in the post-quantum
world. If not, then the privacy of today’s anonymous communication cannot be ensured once quantum
computers arrive. We prove that HybridOR is forward secure if the ring-LWE problem is hard. The motive
of this theorem is to show that by using HybridOR in Tor we can aim at the privacy of today’s anonymous
communication even after quantum computers arrive.

Theorem 11. HybridOR is 1W-AKE secure against a PPT Type-III adversary under the ring-LWE assump-
tion. More precisely, for any PPT Type-III adversary A,

Adv1w-ake
A ≤ Advdrlwe

A◦B0,1
+Advdrlwe

A◦B1,2
,

where B0,1 and B1,2 are the reduction algorithms as described in the proof.

Proof. To prove the security against a Type-III adversary, first we define a sequence of three games G0 to
G2.

G0: This is the original 1W-AKE security game, where the reduction algorithm B generates all the
values honestly in all the sessions.

G1: This game is identical to G0, except here pC is generated uniformly at random in the test session.
G2: This game is similar to G1, except here pN is generated uniformly at random in the test and also

the test session secret k1 is generated uniformly at random.

Lemma 12. No PPT Type-III adversary can distinguish between G0 and G1 under the decision ring-LWE
assumption, if H1 is a randomness extractor.

Lemma 13. No PPT Type-III adversary can distinguish between G1 and G2 under the decision ring-LWE
assumption, if H1 is a randomness extractor.

To prove Lemma 12 we consider that if there exists a PPT Type-III adversary A that can distinguish
between G0 and G1, then we can construct a PPT reduction algorithm B0,1 that can solve the decision ring-
LWE problem. Similarly for Lemma 13, if there exists a PPT Type-III adversary A that can distinguish
between G1 and G2, then we can construct a PPT reduction algorithm B1,2 to solve the decision ring-LWE
problem.

The proof of Theorem 11 is same as the proof of Theorem 6 (see Lemma 7, Lemma 8).

Quantum safe reduction. In [46] Song pointed out that a post-quantum secure scheme against a classical
adversary does not immediately guarantee that the scheme is also secure against a quantum adversary. Song
gives conditions under which a classical proof can be lifted to provide quantum security. One of the condition
is that the classical reduction is a straight-line reduction. That means that the reduction runs the adversary
from start to end without any rewinding or restarting. Our reductions against Type-III adversary are straight-
line, hence they satisfy Song’s criterion for security against a quantum adversary.



6 Performance Analysis

We analyze the performance of HybridOR, and compare it with the ntor protocol.

Parameters. To achieve computational efficiency and to reduce the size of the public parameters, in
HybridOR we use an algebraic variant of LWE called ring-LWE [34]. Similar to other ring-LWE based
protocols [6, 40, 48], the security and performance of HybridOR essentially depend on the three factors: n,
q, and β. Here, n is the degree of the irreducible polynomial f(x), q is the prime modulus and β =

√
2πσ

for the standard deviation σ of the error distribution χ.
Lindner and Peikert [32] show how the parameters (n, q, β) affect the security and performance of lattice

based systems. They choose parameter set (256, 4093, 8.35) for medium security level and claimed that to be
comparable with 128-bit AES security. Nevertheless, several implementations of lattice-based cryptographic
primitives [20, 45] use n = 512 to achieve high security. To be on the safer side, we also choose a high
security level, and use parameter set (512, 1051649, 8.00) (as used in [45]) in our implementation for Rq.

For the DLog group G, we use the elliptic curve cryptographic (ECC) setting with points (compressed
form) of size p = 256 bits, such as provided by Curve25519 [5].

Computation Cost. We assume that the elements rC , eC , pC and gx are precomputed on the client side,
and the elements rN , eN , e′N , and pN are precomputed on the node side, e.g. in idle cycles. In our analysis,
they are received by the code as an input. In that case, to compute the session secret {k1, k2}, the client and
the node each have to perform 1 multiplication and 1 addition in Rq and 1 exponentiation in G.

Multiplications over Rq can be performed efficiently using an FFT-based algorithm [34], which takes
O(n log n) for a serial implementation and O(log n) time for a parallel implementation [25]. It is important
to observe that these multiplications are more efficient than exponentiation in G (even in ECC settings). As
a result the total computation cost of the node (with precomputation) is mainly dominated by exponentiation
in G.

As a proof of concept, we implement our protocol in a machine with a 6-core Intel Xeon (W3690)
processor, each core running at 3.47 GHz. We use the GMP [26] library and the Tor library to implement
the protocol. The code is compiled with -O3 optimizations using gcc 4.6.3.

For our choice of parameter set (512, 1051649, 8.00) and ECC Curve25519, both the client and the
node require ≈ 150µs to compute the shared secret. The multiplication along with one addition in Rq only
requires ≈ 50µs, and the exponentiation in G requires ≈ 100µs.

The ntor protocol in Tor requires two exponentiations in G on both sides, and correspondingly requires
≈ 200µs to compute the shared secret. As a result, our unoptimized proof-of-concept HybridOR imple-
mentation is nearly 1.5 times faster than the ntor protocol used in Tor. Note that, for ntor, using some
parallelization technique both the node and the client can reduce the computation cost to 1.33 exponentia-
tions (for λ = 128) [3]; however, the current Tor implementation does not employ these.

Communication Cost. In the HybridOR protocol the client has to send an element gx ∈ G and an element
pC ∈ Rq to the node. We require 32 bytes to represent an element on Curve25519. On the other hand, for an
element in Rq, we require at most 1/8(n lg q) bytes, which is around 1280 bytes for the chosen parameter
set (512, 1051649, 8.0). Therefore, the client communicates 1312 bytes to the server.

On the other hand, the node has to send an element pN ∈ Rq, an n-bit signal α, and the key confirmation
message of 32 bytes to the client. That requires a total of 1/8(n lg q+n)+32 bytes. For the chosen parameter
set (512, 1051649, 8.0), the node has to send about 1376 bytes to the client.

The current Tor implementation employs 512-byte cells; thus, for HybridOR, the client and the node
each will have to communicate three cells. In comparison, for the currently employed ntor protocol, a
single cell from the client and the server suffices. However, it is possible to use smaller value for q without
affecting the security, which can reduce the communication overhead of the protocol.



7 Conclusion

Lattice-based cryptographic protocols are supposed to offer resilience against attacks by quantum comput-
ers, and the recent efficient ring-based constructions also put them in the realm of the practical use. In this
paper, we demonstrated their utility to onion routing. In particular, we have presented a novel lattice-based
1W-AKE protocol HybridOR, which extracts its security from both the classically secure GDH assump-
tion and the quantum-secure ring-LWE assumption. On one hand, we based its security against man-in-
the-middle impersonation attacks only on the GDH assumption as we do not expect an adversary to have
quantum capabilities today, and it allows us to leverage the current Tor PKI in its current form. On the other
hand, we base its forward secrecy on the arguably quantum-secure ring-LWE assumption, which allows us
to make HybridOR more efficient compared to the currently employed ntor protocol.

We also analyzed performance of our protocol in terms of its computation and communication cost for
the 128-bit security setting. Our performance analysis demonstrates that post-quantum 1W-AKE can already
be considered practical for use today.

Finally, we view our efficient HybridOR construction to be of independent interest to other authenticated
key exchange protocols as well as anonymous communication scenarios over the Internet, and we plan to
explore some those scenarios in the future.
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A Comparison Between the ntor, Ace, and HybridOR Protocols

The ntor Protocol
Client Node

(no long-term key) (long-term keys (s, gs))

x←R Z∗p
gx

−−−−−−−−−−→ y ←R Z∗p
gy

←−−−−−−−−−−
H((gy)x, (gs)x) = H(gyx, gsx) H((gx)y, (gx)s) = H(gxy, gxs)

(established session key H(gxy, gxs))

The Ace Protocol
Client Node

(no long-term key) (long-term keys (s, gs))

x1, x2 ←R Z∗p
gx1 ,gx2

−−−−−−−−−−→ y ←R Z∗p
gy

←−−−−−−−−−−
(gs)x1(gy)x2 = gx1s+x2y (gx1)s(gx2)y = gx1s+x2y

(established session key H(gx1s+x2y))

The HybridOR Protocol
Client Node

(no long-term key) (long-term keys (s, gs))
rC , eC , e

′
C ←R χ, x←R G

pC = arC + teC
pC ,g

x

−−−−−−−−−−→ rN , eN , e
′
N ←R χ

pN = arN + teN
k1N = pCrN + te′N
α = hR(k1N )

pN ,α

←−−−−−−−−−−
k1C = pNrC + te′C

k1 = fR(k1n, α), k2 = gsx k1 = fR(k1n, α), k2 = gxs

(established session key sk = H1(k1)⊕H2(k2))

Figure 4: A comparative overview of the ntor, Ace, and HybridOR protocols: For readability, we neglect
the information used for the key derivation and confirmation messages.
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