Attacking Suggest Boxes in Web Applications
Over HTTPS Using Side-Channel
Stochastic Algorithms*

Alexander Schaub!, Emmanuel Schneider!, Alexandros Hollender!,
Vinicius Calasans', Laurent Jolie!, Robin Touillon!, Annelie Heuser?**,
Sylvain Guilley?? and Olivier Rioul®2

!Ecole Polytechnique, CMAP, Palaiseau, France
{alexander .schaub, emmanuel . schneider,alexandros.hollender,vinicius.calasans,
laurent.jolie,robin.touillon,olivier.rioul}@polytechnique.edu
2Télécom ParisTech, CNRS LTCI, Dept. Comelec, Paris, France
{annelie.heuser,sylvain.guilley,olivier.rioul}@telecom-paristech.fr
3Secure-IC S.A.S., Rennes, France

Abstract. Web applications are subject to several types of attacks. In
particular, side-channel attacks consist in performing a statistical anal-
ysis of the web traffic to gain sensitive information about a client. In
this paper, we investigate how side-channel leaks can be used on search
engines such as Google or Bing to retrieve the client’s search query. In
contrast to previous works, due to payload randomization and compres-
sion, it is not always possible to uniquely map a search query to a web
traffic signature and hence stochastic algorithms must be used. They
yield, for the French language, an exact recovery of search word in more
than 30% of the cases. Finally, we present some methods to mitigate
such side-channel leaks.
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1 Introduction

Recent revelations by Edward Snowden have shown that there is no more pri-
vacy over the Internet. While it should perhaps not come as a surprise that
governments worldwide are able to spy on their citizens, it has been widely be-
lieved that today’s technology can at least protect our sensitive data from our
neighbors or competitors. Actually, this is not so sure.

Search histories can be considered as sensitive data. As shown in the 2006
New York Times article [1], using a leakage in AOL search data, it is possible

* The online demo of the attack (presented at the CRiSIS 2014 conference) is available
on YouTube, at address: http://youtu.be/ynG6tugqeIuM
** Annelie Heuser is Google European fellow in the field of privacy and is partially
founded by this fellowship.
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to identify a person only from his search history. At company scale, a look at
the search history of competitors can be used to predict their future actions in
order to gain a strategical advantage over them. Google recognized the necessity
to protect this sensitive data during the fall of 2011, when they announced that
they enabled SSL for all of their signed-in users [2]. Later they forced the use
of SSL for every search query, by automatically redirecting every user to the
HTTPS version of their website [3]. Unfortunately, this is not enough to hide
search queries completely because some information still leaks through side-
channels.

Side-channel leaks appear each time an interaction between a user and a
website requires transmission of information packets containing relevant data.
Assuming that the connection between the client and the server is encrypted
(using a protocol such as HTTPS), three parameters of the packet flow can be
observed:

— lengths of individual packets;
— directions of packet flow (client to server or server to client);
— times of packets’ departure and arrivall.

By analyzing the packet flow associated with the suggest boxes? from Google
(or any other search engine), it is observed that for every character typed in the
search box, several packets are exchanged between the server and the client. One
of these packets contains relevant data that depends on the list of suggestions
from the search engine. In particular, by analyzing packet lengths associated to
different characters, it is possible to guess the most likely word that the user
typed in, and thus uncover sensitive information about his search history.

The remainder of this paper is organized as follows. First, Section 2 gives a
current state of the art and Section 3 describes the structure of relevant infor-
mation packets for today’s Google and Bing (Microsoft) search engines. Then,
Section 4 investigates novel algorithms to carry out side-channel attacks, that
use data structures such as trees and stacks. The corresponding test results and
some implementation issues are given in Section 5. Finally, Section 6 concludes by
giving some perspectives on this work and methods for mitigating side-channel
leaks.

2 Previous Work

Numerous studies on the detection and analysis of side-channel data leaks in web
applications can be found in the literature. The general approach is to examine
the properties of packet sequences sent between a client and a server, in order
to infer a relationship between these properties and the exchanged information.

1 See for instance the blog post entitled “Demasking Google Users With a Timing
Attack” by Andrew Cantino [4].

2 See description of Google Instant: http://goo.gl/WI9Zu and Google Autocomplete:
http://goo.gl/jv3£Q.
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The authors of [5] used a deterministic model of web applications that allowed
them to deduce recorded diseases and types of physician of users of some medical
advice application, or to obtain details on the annual income and expenses of
a family in a tax return software used in the USA. These results were obtained
through a simple analysis of packet sizes exchanged between the client and the
server. Most of the time, one could map each input mouse selection or typed word
to a single sequence of packet lengths. Therefore, the user input can be retrieved
simply by comparing the sequence to a database of precomputed sequences.

In [6], the authors attempt to find the sources of a certain user connection by
comparing the received data to a list of predetermined website profiles. Effective
methods carry out the comparison on packet sizes, using either a similarity metric
(Jaccard coefficient) or a Bayesian classification. Under certain assumptions, the
origin of the data can be traced in more than 6 cases out of 10. The effectivity
of this fingerprinting attack is improved in [7] using a multinomial Naive-Bayes
classifier.

An interesting information theoretic approach is investigated in [8] to de-
scribe the interaction between server and client. A web application is modeled
as a finite-state machine, where state changes produce “traces” (specifically, the
exchanged packets). Since these do not follow a deterministic law, a stochastic
analysis is performed using mutual information to estimate the average reduc-
tion of uncertainty on the input when the attacker intercepts the packets. The
method is tested on a simple yes/no questionnaire that redirects to two different
sites depending on the answer.

In [9], side-channel attacks are carried out on search engines such as Google.
The search box operates using AJAX to display suggestions to the client as he
types search terms, and the attack again consists of intercepting the exchanged
packets in order to infer the user’s query. The authors have assumed a deter-
ministic relationship between input letters and exchanged packet lengths®. The
query can therefore be deduced by pre-computing every possible query and then
comparing the captured packets using this information. While there may be sev-
eral possible results for a same sequence of packet sizes, words that are not in
some dictionary are unlikely to have been typed in. Therefore, it is only necessary
to compute and store the sequences of packet sizes corresponding to legitimate
words in the chosen dictionary.

We found that their method does not work any longer on Google since the
suggestion list sent to the user has been changed in summer 2012 in such a way
that there are now many possible sequences of packet lengths corresponding to
a given search query.

3 More precisely, the sizes of the packets sent by the user are fixed for a given number
of letters, and the sizes of received packets containing suggestions depend only on
the word typed by the user (it may only change if Google changes the suggested
search queries).



3 Packet Structure

Exchanged packets between a client and a server can be observed using an inter-
net packet sniffer such as Wireshark. In our interceptions, we see that Google uses
TLS v1.2, and that the handshake selects the TLS_ECDHE_RSA_WITH_AES_128_GCM-
_SHA256 cipher suite. To the best of our knowledge and as reported by nmap
--script ssl-cert,ssl-enum-ciphers -p 443 www.google.fr, no public at-
tack on this configuration of TLS is known. Therefore, our side-channel attack is,
as of today, the only working attack to get to know the user inputs despite the
encryption provided by HTTPS. In order to determine which packet contains
the relevant information, we simply decrypted the packet flow using Fiddler*
and determined the size of the packet we were supposed to observe. After these
initial tries, we were able, whenever a character was typed in, to filter out the
only packet with a reasonable size. It is then easy to isolate the important packet
containing the suggest-box data, as shown in Fig. 1.

We observed that packet sizes fluctuate for identical requests. To understand
how, we have decrypted and unzipped the packets to study their structure. Even
if the attacker will eventually not access the content of the encrypted packets,
this structure helps understand how packet sizes and search queries are related.
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Content Type: Application Data (23)

Version: TLS 1.2 (0x0303)

Length: 82

Encrypted Application Data: ©00000000066600db8bOCTe21fadfcc21912851802cfcc389. ..
¥TLSv1.2 Record Layer: Application Data Protocol: http

Content Type: Application Data (23)

Version: TLS 1.2 (8x8303)
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Fig. 1. A captured packet containing the suggest box data.

4 http://www.telerik.com/fiddler.
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3.1 Google Packets

Previous works implementing side-channel attacks on suggest boxes did not an-
alyze the structure of the exchanged packets. In [9], the only information needed
is the link giving access to the packet related to a given search string. This is
because, prior to summer 2012, there was no randomness in the packets that
Google sent. Typing in an “a” for example, would always yield the same packet,
and therefore the same packet length.

{"e" : "|Ok6DUSHUDfD50gW6_oCADg|" ,"c":0,"u":"https://www.google.fr/s
?7gs_rn=45&gs_ri=psy-ab&pq=a&cp=1&gs_id=[dsl&¢xhr=t&q=a&
es_nrs=true&pf=p&output=search&sclient=psy-ab&oq=&kgs_1l=&
pbx=1&bav=on.2,o0or.r_qf .&bvm=bv.[67720277],d .[d2]k&fp=
[1811953923e3£22[& biw=[1855]&bih=[718]&tch=1&ech=2&psi=
[kaDU—joOsaHOAXH—4HYAw. 1401114308196.3]" ,"p":true,"d":"["a",[["a
<b>mazon</b>",0],["a<b>llocine</b>",0],["a<b>meli</b
>" 0] ,["a<b>ir france</b>",0]],{"t":{"bpc":false,"tlw":
falsel},"q":"[.LZt_R7tHgjpU3Eask82JbvHZEY|" ," j": "[ds]"}]1"}/*" "/

Fig. 2. A packet sent by Google to a French user that hit an “a”.

But at present, Google packets contain some kind of token (the value of which
appears random to us), a milli-timestamp, and other numbers (which also appear
random for an observer not aware of Google’s protocols semantic). Fig. 2 shows
boxed| elements that are random and change between two requests, even if the
same list of suggestions is sent to the client. Since packets are compressed using
GZip, the packet length also becomes random. For example, typing in “a” twice
will yield different packet lengths.

Using this knowledge of packet structure it is possible to carry out a calcu-
lation in order to approximate the probability distributions of packet sizes for a
given search string. First, as in [9], by using Firefox’s development tools we can
identify a URL corresponding to the list of suggestions. At the time this paper
was written (May 2014), it looked like:

url (search-string) = https://www.google.fr/s?gs_rn=45&gs_ri=psy-ab&
pg=a&cp=1&gs_id=ds&xhr=t&q=search-string&
es_nrs=true&pf=p&output=search&sclient=psy-ab&oq=&gs_1=&
pbx=1&bav=on.2,or.r_qf.&bvm=bv.67720277,d.d2k&fp=
1811953923e3£22&biw=1855&bih=718&tch=1&ech=2&psi=
xk6DU-joO0saHOAXH-4HYAw.1401114308196.3

From this we can approximate the required probability distribution as follows.
First, the file given by url (search-string) is fetched. This is done only once
for a given search string. Then, the identified random parts are replaced with
randomly generated strings or numbers. Finally, the file is compressed using



GZip, and the size of the compressed file is recorded. Repeating the last two
steps (replace & compress) enables one to reliably estimate the distribution of
the packet sizes, such as the one shown in Fig. 3. For our test purposes, we
fetched every relevant file once, and replaced the random parts 1000 times in
order to compute these probability laws.
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0,05]
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S

Fig. 3. Distribution of packet sizes (in bytes) for the letter “p”, on the French version
of Google.

3.2 Bing

Bing does not encrypt its traffic, despite the massive trend worldwide to in-
crease the privacy of web applications [10]. Still, it is interesting to analyze its
auto-suggest feature. For example, side-channel attacks can also work on WPA-
protected wireless traffic.

Before May 2014, the packets sent by Bing for the auto-suggest feature were
neither compressed nor did they contain any random element. It was then very
easy to find the search string by analyzing a sequence of packets: the same
method used for Google in [9] did work out very well. But now the situation has
just changed: the packets are compressed and do contain some random elements.
The corresponding file can be fetched at the following addresses:

url(search-string) = http://www.bing.com/AS/Suggestions?
pt=Page.Home&qry=search-string&cp=1&o=hs&css=1&
cvid=fbeb395a6a9b4f15bac899892c09b6al

or

url(search-string) = http://www.bing.com/AS/Suggestions?



pt=Page.Home&qry=search-string&cp=1&o=hs&
cvid=fbeb395a6a9b4f15bac899892c09b6al

There is an important difference between these two links: by specifying css=1,
the whole CSS-code used for formatting the results will be sent. This happens
when the first letter is typed in after having reloaded the web page. As a result,
for some search strings, in particular those of length 1 (i.e., “a”, “b”, etc.), two
different distributions must be computed by the attacker. However by looking at
the file size it is easy to differentiate between a packet containing the CSS and
a packet without CSS code (typically < 3 KB for the CSS-free uncompressed
version, > 5 KB for the uncompressed file containing the CSS code).

4 Stochastic Algorithms

In this section, we describe the algorithms and data structures that we have used
to solve the following problem.

Let [ be the number of characters of a given word typed in by the user
and let I be an interception vector containing the lengths of the [ intercepted
packets corresponding to the prefixes of length ¢ of the given word for ¢ = 1 to [.
Using pre-computed probability distributions of packets lengths, determined as
explained in the previous section, the goal is to find the most probable word (or
list of words) that is most likely to have been typed by the user.

4.1 Restricting Possibilities

To simplify the problem, we make the plausible assumption that the user does
not type a random sequence of letters but rather a sequence that makes sense.
Therefore, we restrict the set of possible words to a certain “language” or dic-
tionary, i.e., some predefined set of valid words. In our studies, we have chosen
a simple French dictionary.

Restricting the set of possibilities has two main advantages. First, the algo-
rithms will always return a valid word (or a list of valid words). Second, they
will not waste computation time and memory space on words that do not even
exist. As an example, there are about 11 million 5-letter sequences, for only 6812
valid French 5-letter words.

4.2 Data Structure

Once the dictionary is chosen, an adequate data structure representation of it
should be implemented. Because a packet is intercepted for each prefix of the
typed word, we choose to represent the set of all possible words of a given length
| as a prefir tree. This tree has the empty word “” at its root, and contains
each valid word of length [ as a leaf. Going from the root to a certain word, one
passes through the nodes representing all increasing prefixes of the word. This
is called a Trie structure [11].



4.3 A Stack Algorithm

Recall from the previous section that at our disposal we have an algorithm, that
we call LAW , that estimates the probability law of the packet length associated
with a certain word prefix. Thus as an example, LAW (“plage”, 435, €) returns an
estimate of the probability that the packet sent by the server after the user has
typed the last character of “plage”, has a length in the interval [435 —¢, 435+ €].
Here € is a tolerance parameter that is necessary for practical reasons. Because
of the way the information is encapsulated during a packet exchange between a
client and a server, it is not always possible to precisely determine the size of
the relevant information that is hidden in the captured packets. An error of one
or two bytes is not uncommon, and this is what e represents.

Our first algorithm computes the likelihood f as the product of the estimated
probabilities. For example, to measure how likely the prefix “pla” would be, we
compute:

F(épla” I, €) := LAW (“p”, I[1],€) x LAW (“pl”, I[2],€) x LAW (“pla”, I[3],¢)

where I[i] is the size if the i-th intercepted packet. We have also tried other
measures of likelihood f: sum of the prefix probabilities; or weighted sum (e.g.,
to emphasize the first letters of the word).

The detailed “stack” algorithm works as follows in the case { = 5 (p.children
is the list of all children of prefix p in the prefix tree):
partial_solutions = {""} # contains the empty word
amount_stored = {10, 20, 30, 20, 15} # example

for i =1 to 5:
new_solutions = {} # empty list
for each prefix p in partial_solutions
for each prefix r in p.children
add r in new_solutions
sort prefixes pr in new_solutions by value of f(pr, I, epsilon)
put amount_stored[i] first prefixes from new_solutions into partial_solutions

return partial_solutions

At each step the algorithm keeps the best prefixes in a stack. It then goes
deeper in the tree to find the best possible ways to extend those prefixes. The
output is a list of words sorted by value of f, which are deemed most likely by
the algorithm. Results obtained with this algorithm are presented in the next
section.

4.4 Threshold Variant

A slightly modified version of the stack algorithm uses a different criterion to
decide whether to keep or discard a prefix in the stack. Instead of selecting a fixed
amount of prefixes in each step, all prefixes pr for which the value LAW (pr, I, €)



is greater than a given threshold are kept. The value T of this threshold varies
from one step to another. Only the “local” probability LAW (pz,I,¢) is taken
into account in each step, not the global f(pr,I,¢€), resulting in a more efficient
computation. Results obtained with this variant are also presented next.

5 Test Results

This section presents the results of our algorithms tested on Google, by simulat-
ing an interception over Ethernet or Wifi. To simplify we assume a fixed value
[ =5, i.e., a 5-letter French word is typed by the user.

5.1 Results using the Stack Algorithm

The number of stored prefixes in each step from ¢ = 1 to 5 were chosen as
{20, 30,50, 30,15}. The final list will thus contain 15 possible words, ranked
from the most to the least probable. Ten different target words were chosen,
with ten retries per target, yielding 100 result samples. Table 1 shows the rank
€ [1,15] of the target word in the final list or a cross (x) if the word was not
found at all.

Table 1. Results of the stack algorithm when f is the product of the probabilities:
f =TI, LAW (pri, I[i], €). Success rates are 81% for target found in the final list; 52%
found in the top 3; 34% ranked first.

Tested word|N1|N2|N3|N4|N5/N6|N7|N8NI|N10
bases 411 x[2]4|8|x|x|6]9
barbe 311125 |74 |x]|1] 4
bague 11 |x|[1|1]1|6]|1]|1]1
atome 1|x|1]1]3[3]2]6]|11| 4
cache 15| 7| x| x[12| 7| x| x|11]| X
cadre 15| x| x |4 | x |15 x| x| x| X%
maman 12112111111
parle 12112105 |5]2] 1
pomme 5111813121 ]1|2]9
neige 2|51 |x|[1]10{1|1[3] 2

Table 2 shows that much poorer results would be obtained if one kept only 15
prefixes at each step in the algorithm. This shows the importance of considering
larger numbers of stored prefixes at intermediate steps.

5.2 Other choices for the likelihood function

For the stack algorithm with a fixed number of kept words at each step, in
addition to the choice where f is the product of the probabilities:

f= H LAW (pry, I[i], €)



Table 2. Results of the stack algorithm when f is the product of the probabilities and
only 15 prefixes are kept at each step in the algorithm. Success rates drop down to
50% for target found in the final list; 38% found in the top 3; 25% ranked first.

Tested word|N1|N2{N3{N4|N5/N6|N7|N8N9|N10
bases 1| x| x|1|x|x|1|x|x]|1
barbe X |2 |x|1|x|x|x|x|3]| x
bague X| 1| X|X|xX|x|2]x]|1]|X
atome 22| x| x|x|1]1|x|x]| 3
cache X | x|9(10{11]10[11| x | x | x
cadre X|6|X|X|[xX[|4]|x]|x|3]| X%
maman 112 (x|1|x|[1]1|x|1] X%
parle T11 | x|x|[1]|1]|x|1[|1] 2
pomme 51215 |x 12|53 |x]|1
neige X121 x[1]1|x|1]d] X

we have tested other formulas for the likelihood function: sum of the probabili-
ties:

f= ZLAW(pri,I[z’],e)

and weighted sum
f= Z(n — ) LAW (pry, I[i], €)
i
that gives more importance to the first letters. The choice of likelihood as a
product of probabilities gives the best results among the tested functions (see
Fig. 4 below), which is coherent with the theory.

5.3 Results using the Threshold Variant

For the threshold version of the algorithm, taking likelihood f as the product of
the probabilities is again the best choice. A lower threshold allows more accuracy,
in spite of a slightly longer execution time (which remains less than 15 minutes).
Table 3 is presented similarly as above, except that the target rank may now be
larger than 15.

5.4 Global performance

Our results are summarized in Fig. 4. This chart shows how often the target
word was found by the algorithm, how often it was among the best 5 matches,
among the best 3 matches and how often it was the best match.

The results show that the variants perform similarly, except the weighted
sum version which actually performs worse. On average, the target word is in
the word list 8 times out of 10, in the best three matches more than 5 times out
of 10, and is the best match about 3 times out of 10.

Interestingly, the tables show that some words are missed quite often, like
cache or cadre. We found two plausible reasons for this:
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Table 3. Results of the stack algorithm with threshold 7' = 0.1. Success rates are 89%
for target found in the final list; 56% found in the top 3; 36% ranked first.
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Tested word|N1|N2{N3|N4|N5/N6|N7|N8N9|N10
bases 1| x|x|x|1]1|2]2]|2]1
barbe 11112 |x]|2[2|x]|1
bague 61 |1|7(1|5(1]1(3]1
atome 121|531 |x|1|1]|1
cache 4 (1711} 4 [11|37|18|21| 4| 20
cadre 30(11|29|18|26|56(13| 3|3 | 8
maman 1111111111
parle 2131 |x[3|4(2]|3|x]| 4
pomme 5141411 |x|1]5|1[2] 5
neige 21411136345 |x]| x
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(Sum)
Stack Algorithm
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Fig. 4. Results of additional test runs. The threshold variant was tested once with a
threshold of 0.15 and once with a threshold of 0.2. The likelihood variants were the
product, sum and weighted sum of the probabilities.

— Google loads the result page after three (“cad”) of four (“cadr”) letters. Since
we have assumed that two result page loadings cannot be distinguished, there
remains few different packet sizes available;

— it turns out that those sizes are very common among all possible packet sizes
(about 480 bytes which is the most probable packet length): too many words
match the same sizes.



5.5 Implementation Issues

From our experience, the step that is always the most time-consuming is the
first one that fetches the relevant file from the search engine. It is a good idea
to cache the results in order to save time. Once a probability law is computed,
it is stored so that it is not necessary to compute it again. This is particularly
effective when several tests are performed; even on a single run, the duration
may be divided by 2. Also, most of the time is wasted by waiting for the search
engine to respond, using several threads can be more efficient.

Side-channel attacks can be used to work over Ethernet as well as protected
Wifi networks. However, we noticed that Google often sends the important data
in a packet containing two or more encrypted Application Data chunks. This is
not a problem for an attack over Ethernet, since the different chunk sizes can
be easily determined, but it is more of an issue over Wifi. Also, some constant
offset is to be determined, that depends on the wireless access point configura-
tion, which allows to convert the compressed suggestion data size to the actual
captured packet size. This offset depends on the other data chunks in the inter-
cepted packet, and it may therefore require some time to determine the actual
suggestion data size for a packet captured over Wifi.

6 Conclusion

In this paper, the side-channel leakage of a major search engine, Google, has
been analyzed. Knowledge of encrypted packet lengths can be used to deduce
the user’s search query, even if the packet sizes are randomized. Stack algorithms
are presented to achieve this, based on multiple probabilities for each typed
prefix and on natural language to limit the possibilities. These algorithms can
be adapted to any other search engine that uses suggest boxes or similar features.
Therefore, randomizing packet lengths is certainly not enough to mitigate side-
channel leaks.

6.1 Perspectives
Some improvements and issues remain topics for future investigations.

Several words In order to handle the use of the space key, it would be necessary
to slightly alter the structure of the tree representing the dictionary. Every
leaf (word) should be arrowed back to the root, where the arrow represents
the whitespace character. It would actually not be a tree anymore, but rather
a cyclic structure.

Use of backspaces Our algorithm cannot find the search query if an user hits
the backspace key because it would be searching for a word that would be
too long. For example, for the word “mub<m”, one would receive 5 packets
related to the queries “m”, “mu”, “mub”, “mu” and “mum”. It is possible
to add words like “mub<+m” (considering this as a 5-letter word) but this
increases the size of the 5-letter dictionary by 264 = 456976 times the size of



a 4-letter dictionary (even without considering that the backspace key may
be used more than once).

Automatic downloads Sometimes, Google is pretty sure about what the user
is looking for and loads the corresponding page—for example, if one starts by
hitting “f”, Google will load the page with Facebook-oriented links.? This of
course results in many packets sent by Google which can be easily detected.

Localization and customization Google’s suggestions depend on the user’s
language defined in his/her Google homepage, and on the country of his/her
ISP. They also depend on the browsing history and previous search history.
This is the major problem for our algorithm since the latter relies on the
fact that the victim and attacker get the same suggestions from Google. This
would still be the case, however, if the victim uses the “Private Mode” imple-
mented on most browsers—which here, ironically, causes a loss of privacy.
Our algorithms could also be tested with other dictionaries, for example
with a complete English dictionary and English search-terms, to see how it
performs in this case. We don’t expect the results to be much different.

Server’s response time We have only considered the lengths of the packets
that are being sent. Another important side-channel information would be
the time when the packets arrive to the client (or are intercepted by the
attacker [12]). Figure 5 shows the estimated probability of time between the
departure of the request and the arrival of Google’s answer for two different
letters “a” and “b”. The two curves seem shifted: Google’s computation time
for letter “b” is longer than the one for letter “a”, and this type of information
could have been used in our algorithm. However, the delay between the two
signals is very small compared to their deviations. Also, computing these
curves is quite time-consuming—unlike packet lengths, it is not possible to
compute the response times after having fetched only one file.

Multiple requests One possible improvement of the attack would be to make
Google send the suggestions several times, since this would reduce the uncer-
tainty of the packet lengths. This could perhaps be achieved by re-sending
the victim’s encrypted request to Google, but it may not be easy to trick
Google into thinking that the attacker is the victim.

6.2 How to Mitigate Side-Channel Leaks

Today, as we have shown, using a simple personal computer, it is possible to
spy on anybody using a Wifi connection, even if this connection is made secure
by other means. This is a serious threat to privacy over the Internet. Even
though the randomization of packet lengths makes it harder to infer a search
query, it is still possible to guess the target correctly in many cases. There have
been numerous attempts to mitigate side-channel leaks in general [13,14], but
it is generally considered that preventing every side-channel leak source is very
difficult [15].

5 This is known as Google Instant.
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Fig. 5. Google response time for two different queries.

However, for the particular leak exploited in this paper, it would be easy to
implement an efficient countermeasure by sending only packets of a given, fixed
size (e.g., the size of the longest possible packet in response of a request). A
similar procedure can be carried out for response times. For example, the server
could always wait a fixed time before answering.

The cost of such a procedure can be criticized, but it would definitely make
our present method useless. Nonetheless, we notice that such method can be
limited to sensitive traffic (e.g., contextual to user interaction with the server).
A simple way of achieving this would be to pad every packet to a fixed size M,
and disable any compression feature. The remaining problem is to choose the
correct value of M. A solution would be to choose the maximum packet length
for M, but it is not always possible to determine this maximum. Whenever the
initial packet length exceeds M, one could pad it to the closest multiple of M.
Although this gives the attacker some information, it should not be enough to
guess the search query.
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