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Abstract. Motivated by the recent success of Bitcoin we study the question of constructing distributed crypto-
graphic protocols in a fully peer-to-peer scenario (without any trusted setup) under the assumption that the adver-
sary has limited computing power. We propose a formal model for this scenario and then we construct the following
protocols working in it:

(i) a broadcast protocol secure under the assumption that the honest parties have computing power that is some
non-negligible fraction of computing power of the adversary (this fraction can be small, in particular it can be
much less than 1/2),

(ii) a protocol for identifying a set of parties such that the majority of them is honest, and every honest party belongs
to this set (this protocol works under the assumption that the majority of computing power is controlled by the
honest parties).

Our broadcast protocol can be used to generate an unpredictable beacon (that can later serve, e.g., as a genesis block
for a new cryptocurrency). The protocol from Point (ii) can be used to construct arbitrary multiparty computation
protocols. Our main tool for checking the computing power of the parties are the Proofs of Work (Dwork and Naor,
CRYPTO 92). Our broadcast protocol is built on top of the classical protocol of Dolev and Strong (SIAM J. on
Comp. 1983). Although our motivation is mostly theoretic, we believe that our ideas can lead to practical imple-
mentations (probably after some optimizations and simplifications). We discuss some possible applications of our
protocols at the end of the paper. We stress however that the goal of this paper is not to propose new cryptocurrencies
or to analyze the existing ones.

1 Introduction

Distributed cryptography is a term that refers to cryptographic protocols executed by a number of mutually
distrusting parties in order to achieve a common goal. One of the first primitives constructed in this area were
the broadcast protocols [43,23] using which a party P can send a message over a point-to-point network in
such a way that all the other parties will reach consensus about the value that was sent (even ifP is malicious).
Another standard example are the secure multiparty computations (MPCs) [53,34,14,9], where the goal of
the parties is to simulate a trusted functionality. The MPCs turned out to be a very exciting theoretical topic.
They have also found some applications in practice (in particular they are used to perform the secure on-line
auctions [12]). Despite of this, the MPCs unfortunately still remain out of scope of interest for most of the
security practitioners, who are generally more focused on more basic cryptographic tools such as encryption,
authentication or the digital signature schemes.

One of very few examples of distributed cryptography techniques that attracted attention from general
public are the cryptographic currencies (also dubbed the cryptocurrencies), a fascinating recent concept
whose popularity exploded in the past 1-2 years. Historically the first, and the most prominent of them is
the Bitcoin, introduced in 2008 by an anonymous developer using a pseudonym “Satoshi Nakamoto” [48].
Other examples include the Litecoin [50], Peercoin [42], and dozens of other so-called “Altcoins” (see, e.g.,
[1] for a list of them). Although initially these currencies were used mostly by a limited group enthusiasts,
they quickly gained noticeable attention among the general public, and their economic importance has been
rapidly growing — the current capitalization of Bitcoin is around 5 billion USD, and the average number
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of transactions per day is well above 50.000. Admittedly, this currency is not yet widely accepted by the
merchants, but this situation is likely to change in close future. Indeed, recently some major US companies
like Amazon [38], Dish Network [31], eBay and PayPal [37] expressed their interest in adopting Bitcoin.

The cryptocurrencies, unlike the cryptographic payment systems (e.g. [15]), are “independent” curren-
cies whose exchange rate fluctuates freely. They owe their popularity mostly to the fact that they have no
central authority, and hence it is infeasible for anyone to take control over the system, “print” the money
(to generate inflation), or shut the entire system down. The money is transferred directly between the parties
— they do not have to trust any third party for this. Bitcoin works as a peer-to-peer network in which the
participants jointly emulate the central server that controls the correctness of transactions, in particular: it
ensures that there was no “double spending”, i.e., a given coin was not spent twice by the same party.

Although the idea of multiple users jointly “emulating a digital currency” sounds like a special case of
the MPCs, the creators of Bitcoin did not directly use the tools developed in this area, and it is not clear
even to which extend they were familiar with this literature (in particular, Nakamoto [48] did not cite any of
MPC papers in his work). Nevertheless, at the first sight, there are some resemblances between these areas.
In particular: the Bitcoin system works under the assumption that the majority of computing power in the
system is operated by the honest users (we write more on this below), while the classical results from the
MPC literature state that in general constructing MPC protocols is possible when the majority of the users is
honest.

At a closer look, however, it becomes clear that there are some important differences between both areas.
In particular the main reason why the MPCs cannot be used directly to construct the cryptocurrencies is that
the scenarios in which these protocols are used are fundamentally different. The MPCs are always supposed
to be executed by a fixed (and known in advance) set of parties, out of which some may be honestly following
the protocol, and some other ones may be corrupt (i.e. controlled by the adversary). In the most standard case
the number of misbehaving parties is bounded by some threshold parameter t. This can be generalized in
several ways. For example, instead of assuming a bound on the number of malicious parties one can specify a
family of sets of potentially malicious parties (the so-called adversary structures [40]). Up to our knowledge,
however, until now all these generalizations use a notion of a “party” as a separate and well-defined entity
that is either corrupt or honest.1

The model for the cryptocurrencies is very different, as they are supposed to work in a purely peer-to-peer
environment, and hence the notion of a “party” becomes less clear. This is because they are constructed with
a minimal trusted setup (as we explain in a moment the only “trusted setup” in Bitcoin was the generation
of an unpredictable “genesis block”), and in particular they do not rely on any Public Key Infrastructure
(PKI), or any type of a trusted authority that would, e.g., “register” the users. Therefore the adversary can
always launch a so-called Sybil attack [24] by creating a large number k of “virtual” parties that remain
under his control. In this way, even if in reality he is just a single entity, from the point of view of the
other participants he will control a large number of parties. In some sense the cryptocurrencies lift the “lack
of trust” assumption to a whole new level, by considering the situation when it is not even clear who is a
“party”. The Bitcoin system overcomes this problem in the following way: the honest majority is defined
in terms of the “majority of computing power”. This is achieved by having all the honest participants to
constantly prove that they devote certain computing power to the system, via the so-called “Proofs of Work”
(PoWs) [25,26].

The high level goal for this work is to bridge the gap between these two areas In particular, we propose
a formal model for the peer-to-peer communication and the Proofs of Work concept used in Bitcoin. We
also show how some standard primitives from the distributed computation, like broadcast and MPCs, can
be implemented in this model. Our protocols do not require any trusted setup assumptions, unlike Bitcoin

1 A mixed case when an honest party can leak some information to the adversary was also considered in a sequence of works on
the leakage-resilient MPCs [13,22,10].
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that assumes a trusted generation of an unpredictable “genesis block” (See Appendix A for more details).
Besides of being of general interest, our work is motivated twofold. Firstly, recently discovered weaknesses
of Bitcoin [29,7] come, in our opinion, partially from the lack of a formal framework for this system. Our
work can be viewed as a step towards better understanding of this model. Secondly, we believe that the
“PoW-based distributed cryptography” can find several other applications in the peer-to-peer networks (we
describe some of them). In particular, as the Bitcoin example shows, the “lack of trusted setup” can be very
attractive to users2. In fact, there are already some ongoing efforts to use the Bitcoin paradigm for purposes
other than the cryptocurrencies. For example Garman et al. [33] propose to use the Bitcoin’s PoW-based
distributed consensus in order to create a decentralized system for anonymouns credentials, and Fromknecht
et al. [18] present an idea of applying the same technology to create a decentralized PKI, also IBM recently
announced an “Adept” system [39], where the blockchain technology is used for the “Internet of Things”
applications. Many of these applications require only some kind of a “distributed consensus mechanism”,
and hence one can use our protocols there (as a replacement of the blockchain). We also believe that our
protocols can potentially lead to improved constructions of new cryptocurrencies. We would like to stress
however, that this is not the main purpose of our work, and that we do not provide a full description of a new
currency. Our goal is also not the full analysis of the security of Bitcoin (which would be a very ambitious
project that would also need to take into account the economical incentives of the participants). We discuss
this problems further in Section 7.3. The technical description of Bitcoin and some recent attacks on its PoW
scheme appears in Appendix A.

Our contribution. Motivated by the cryptocurrencies we initiate a formal study of the distributed peer-to-
peer cryptography based on the Proofs of Work. From the theory perspective the first most natural questions
in this field is what is the right model for communication and computation in this scenario? And then, is it
possible to construct in this model some basic primitives from the distributed cryptography area, like: (a)
broadcast, (b) unpredictable beacon generation, or (c) general secure multiparty computations? We propose
such a model (in Section 3). Our model does not assume any trusted setup (in particular: we do not assume
any trusted beacon generation). Then, in Section 6 we answer the questions (a)-(c) positively. To describe
our results in more detail let n denote the number of honest parties, let π be the computing power of each
honest party (for simplicity we assume that all the honest parties have the same computing power), let πmax

be the maximal computing power of all the participants of the protocol (the honest parties and the adversary),
and let πA ≤ πmax − nπ be the actual computing power of the adversary. Of course in general it is better to
have protocols depending on πA, not on πmax. On the other hand, sometimes the dependence from πmax is
unavoidable, as the participants need to have some rough estimate on the power of the adversary (e.g. clearly
it is hard to construct any protocol when π is negligible compared to πmax). Note that also Bitcoin started
with some arbitrary assumption on the computing power of the participant (this was reflected by setting the
initial “mining difficulty” to 232 hash computations). Our contribution is as follows.

1. We construct a broadcast protocol secure against any πmax, working in time linear in dπmax/πe (in
Section 6.2). Using this protocol as a subroutine we later (in Section 7.2) construct a scheme for an
unpredictable beacon generation.

2. Using the broadcast protocol from the previous point, we construct (in Section 6.3) a protocol for iden-
tifying a set K of parties such that the majority of them is honest, and every honest party belongs to this
set. The protocol also works in time dπmax/πe. It requires an assumption that n ≥ dπA/πe. Moreover
the parties in K know each other public keys. This allows them to execute any standard MPC protocol
that works under the assumption that the majority of the participants in honest (we argue about it in
Section 7.1).

2 Actually, probably one of the reasons why the MPCs are not widely used in practice is that the typical users do not see a
fundamental difference between assuming a trusted setup and delegating the whole computation to a trusted third party.
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One technical problem that we need to address is that, since we work in a purely peer-to-peer model, an
adversary can always launch a Denial of Service Attack, by “flooding” the honest parties with his messages,
hence forcing them to work forever. Thus, in order for the protocols to terminate in a finite time we also
need some mild upper bound θ on the number of messages that the adversary can send (much greater than
what the honest parties will send). We write more on this in Section 3.4. Although our motivation is mostly
theoretic, we believe that our ideas can lead to practical implementations (probably after some optimizations
and simplifications). We discuss some possible applications of our protocols in Section 7.

2 Preliminaries

Signature schemes. We recall here the definition of the signature schemes. This is done for the reference, as
some of our protocol definitions can be viewed as extensions of this standard definitions. A signature scheme
is a tuple of poly-time randomized algorithms (Gen,Sign,Vrfy) where Gen is a key generation algorithm that
takes as input a security parameter 1κ ∈ N and produces as output a key pair (pk, sk) ∈ {0, 1}∗×{0, 1}∗. The
signing algorithm Sign takes as input the private key sk and a message m ∈ {0, 1}∗ and produces as output
a signature σ = Sign(sk,m), and the verification algorithm Vrfy takes as input the public key pk, a message
m and a signature σ ∈ {0, 1}∗ and produces as output a bit Vrfy(pk,m, σ) ∈ {true, false}. We require that
always Vrfy(pk,Sign(sk,m),m) = true. The security of the signature scheme is defined by the following
game played be a poly-time adversary A (for some fixed 1κ): (1) let (pk, sk) ← Gen(1κ), (2) the adversary
A learns 1κ and pk, (2) the adversary can apply a chosen-message attack, i.e., he can adaptively specify a
sequence of messages m1, . . . ,ma and learn Sign(sk,mi) for each mi, and (3) the adversary produces a pair
(m̂, σ̂). We say that A won if Vrfy(pk, m̂, σ̂) = true and m̂ 6∈ {m1, . . . ,ma}. We say that (Gen,Sign,Vrfy)
is secure if for every A the probability that A wins is negligible in κ.

Random oracle model. We model the hash functions as random oracles [8]. It will be convenient to assume
that our algorithms have access to a family H = {Hλ}λ∈Λ of random oracles, where the finite set Λ will be
fixed for every input size of a given algorithm (and, in particular |Λ| will never be larger than the running
time of the algorithm). Clearly one random oracle is enough to simulate the existence of such a family (as λ
can be treated simply as an additional argument). Without loss of generality assume that every algorithm A
that we consider never queries each random oracleHλ on the same input more than once. The hash functions
that we use often take inputs from the set {0, 1}κ×{0, 1}κ ∪ {0, 1}κ (for some natural parameter κ). In this
case we will denote each individual hash function as Hκ

λ , and the family {Hκ
λ}λ∈Λ of such functions asHκ.

Some additional machinery needed for analyzing the random oracles appears in Appendix B.

Binary trees. A (binary) tree is a finite non-empty set T ⊂ {0, 1}∗ that is prefix-closed (i.e.: for every
x ∈ T every prefix of x is also in T ). We say that a tree T ′ is a sub-tree of T if T ′ ⊆ T . Every element
x ∈ T is called a node and its length |x| is called its depth. The depth of the tree T is equal to the maximal
depth of its nodes. The size of the tree T is equal to |T |. The empty string ε is called the root of T . For every
x ∈ T the elements x||0 ∈ T and x||1 ∈ T will be called the left (resp.: right) child of x (where “||” denotes
concatenation). Moreover x||0 and x||1 will be called siblings (of each other). A node without children in
T will be called a leaf. A path is a set of nodes v1, . . . , vi such that each vi+1 is a child of vi. Sometimes it
will be useful we to fix an ordering 2 on the nodes of a binary tree. We will assume that if v0, v1 are nodes
of the same depth then 2 compares the nodes accordingly to the lexicographic order, and otherwise v0 2 v1
if and only if the depth of v0 is smaller or equal to the depth of v1. A tree T is called complete if every leaf
x ∈ T has the same depth d. It is easy to see that in this case d has to be equal to log2(|T | + 1) − 1. A tree
is almost complete if every leaf x ∈ T has depth either blog2(|T |+ 1)− 1c or dlog2(|T |+ 1)− 1e (hence
every almost complete tree of size 2i − 1, for a natural i, is complete). It is easy to see that every almost
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complete tree of size t has exactly dt/2e leaves. To make the almost complete tree unique for every tree size
t we assume that all the leafs of length dlog2(|T |+ 1)e are always “shifted to the left”, i.e., for every node
λ ∈ T all the other strings that are smaller according to the 2 ordering are also in T . A labelled binary tree
is a pair (T, f), where T is a binary tree and f is a labelling function of a type T → X (for some set X of
labels). In this case f(λ) (for λ ∈ T ) will be called a label of the node λ. We will often abuse the notation
and use T also as the labelling function (i.e. T (λ) will denote the label of λ).

3 Model

In this section we present our model for reasoning about computing power and the peer-to-peer protocols.

3.1 Modeling hashrate

Since in general proving lower bounds on the computational hardness is very difficult, we make some sim-
plifying assumptions about our model. In particular, following a long line of previous works both in theory
and in the systems community (see e.g. [26,48,6]), we establish the lower bounds on computational diffi-
culty by counting the number of times a given algorithm calls some random oracle. We will use the random
oracle family Hκ = {Hκ

λ}λ∈Λ defined in Section 2, where κ is a security parameter. This will be called an
Hκ-model. Note that the input and output size of each Hκ

λ is fixed for every value of the parameter κ. Hence
assuming that each invocation of such a function takes some fixed unit of time is realistic.

Our protocols are executed by a number of devices and attacked by one device controlled by an ad-
versary A, each running some code represented as a Turing machine. Everything happens in real time (see
Section 3.2). The exact way in which time is measured is not important, but it is useful to fix a unit of time
∆ (think of it as 1 minute, say). Each device D that participates in our protocols will be able to perform
some fixed number π of queries toHκ in time ∆. The parameter π is called the hashrate of D (per time ∆ in
the Hk-model). The other steps of the algorithms do not count as far as the hashrate is considered (they will
count, however, when we measure the efficiency of our protocols, see paragraph Computational complexity
in Section 3.2). Moreover we assume that the parties have access to a ,,cheap” random oracle, calls to this
oracle do not count as far as the hashrate is considered. This assumption is made to keep the model as simple
as possible. It should be straightforward that in our protocols we do not abuse this assumption, and in on
any reasonable architecture the time needed for computing Hκ’s would be the dominating factor during the
Proofs of Work (Sec. 5.1). In particular: any other random oracles will be invoked a much smaller number
of times than Hκ. Note that, even if this number were comparable, one could still make Hκ evaluate much
longer than any other hash function F , e.g., by definingHκ to be equal to multiple iterations of F .

3.2 Multiparty protocols

Unlike in the traditional MPC settings, in our case the number of parties executing the protocol is not known
in advance (even to the parties executing it). Because of this it makes no sense to specify a protocol by a
finite sequence (M1, . . . ,Mn) of Turing machines. Instead, we will simply assume that there is one Turing
machine whose code Π will be executed by each party participating in the protocol (think of it as many
independent executions of the same program). This, of course, does no mean that these parties have identical
behavior, since their actions depend also on their inputs and random coins. Another unusual property of our
model is that there is no concept of “corrupting a party”. Since we are in the peer-to-peer scenario without
any trusted setup, thus the parties have no way to check the integrity of the messages. Hence, we can simply
assume that the adversary is an external entity and give him full access to the communication channels (as
we discuss below, in order to prevent the adversary from stopping the whole communication we will assume
that he cannot block the messages sent between the honest parties). This is clearly as powerful as assuming
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that some parties may be corrupt, but it makes the model cleaner. Let us stress that whenever we use the term
“party” it means an honest party, since there are no “corrupt” parties in the system.

Formally, a multiparty protocol (in theHκ-model) is an a randomized algorithm described as an interac-
tive Turing machineΠ with access to the random oraclesHκ (see Sect. 3.1), and possibly some other random
oracles. The algorithm Π will be run in n copies (for some parameter n ∈ N) on devices P1, . . . , Pn called
the (honest) parties. Each device will have a hashrate π per time ∆ in theHκ-model.3 Each Pi gets as input
enceher own identifier i and the security parameter 1κ. The assumption that every party knows her identifier
is used only in the “bilateral communication model” (see Section 3.3), where the parties need to attach iden-
tifiers to messages that they send. Equivalently we could simply assume that at the beginning of the protocol
each party generates her identifier randomly (say: by drawing it uniformly from {0, 1}κ). Assumption that
these identifiers are the consecutive natural number is stated only to simplify the exposition.

Moreover Pi can take an input xi ∈ {0, 1}∗ and produce an output yi ∈ {0, 1}∗. The protocol is attacked
by an adversaryA which is also a Turing machine that can query the same random oracles as the parties and
is run on a device with hashrate πA. The number n will not be given as input to the honest parties, but it
will be known by the adversary. In other words: the protocol should work in the same way for any n. On the
other hand: each Pi will get as input her own hashrate π and the upper bound πmax on the total combined
hashrate of all the parties and the adversary. The running time of Pi can depend on these parameters. Note
that n · π + πA ≤ πmax, but this inequality may be sharp, and even n · π + πA � πmax is possible, as, e.g.,
the adversary can use much less hashrate than the maximal amount that he is allowed to4.

Since we do not assume any trusted set-up (like a PKI or shared private keys) modeling the communica-
tion between the parties is a bit tricky. We assume that the parties have access to a public channel C which
allows every party and the adversary to post a message on it. One can think of C as being implemented using
some standard (cryptographically insecure) “network broadcast protocol” like the one in Bitcoin [52]. The
contents of C is publicly available. The message m sent in time t by some Pi is guaranteed to arrive to Pj
within time t′ such that t′ − t ≤ ∆. Note that some assumption of this type needs to be made, as if the mes-
sages can be delayed arbitrarily then there is little hope to measure the hashrate reliably. Also observe that
we have to assume that the messages always reach their destinations, as otherwise an honest party could be
“cut of” the network. Similar assumptions are made (implicitly) in Bitcoin. Obviously without assumptions
like this, Bitcoin would be easy to attack (e.g. if the miners cannot send messages to each other reliably then
it is easy to make a “fork” in the blockchain).

We give to the adversary full access to C: he learns (without any delay) every message that is sent through
C, and he can insert messages into it. The adversary may decide that the messages inserted into C by him
arrive only to a certain subset of the parties (he also has a full control over the timing when they arrive). The
only restriction is that he cannot erase or modify the messages that were sent by the other parties (but he
can delay them for time at most ∆). For simplicity we assume that every Pi that posts a message through C
attaches his identifier i to it. Of course it should not be understood as any type of a cryptographically-strong
message authentication (in particular: A can also post messages “in the name of Pi”).

To keep the model simple we will assume that the parties have perfectly synchronized clocks. This
assumption could be easily relaxed by assuming that clocks can differ by a small amount of time δ, and our
protocols would also be secure in this model5

3 Note that we assume that all the honest devices have identical hashrate. This is done only to make the exposition simpler. Our
protocols easily generalize to the case when each party has a device with hashrate πi and the πi’s are distinct. Note also that if
a party has a hashrate tπ (for natural t) then we can as well think about her as of t parties of hashrate π each. Making it formal
would require changing the definition of the “honest majority” in the MPCs (e.g. in Section 6.3) to include also “weights” of the
parties.

4 In particular it is important to stress that the assumption that the majority of the computing power is honest means that n·π > πA,
and not, as one might think, n · π > πmax/2.

5 This is because one can think of δ as being “counted into” the time ∆ that it takes for the messages to arrive to all receivers.
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Computational complexity We will also measure the running time of our algorithms in the standard
complexity-theoretic way. In order to avoid confusion with the notion of the real time (introduced in Section
3.1), we always use the term “time complexity” in this context. More precisely we say that a an execution of
an algorithm has time complexity n if a Turing machine executes it in n steps. Each random oracle call (to
Hκ or to some other oracle) counts as one step. It will be important to assume that the adversary’s computa-
tional complexity is poly-time, since otherwise he could query the random oraclesHκ on all possible inputs
before the protocol starts or break the underlying cryptographic primitives (like the signature schemes that
we use frequently in our protocols).

Communication and message complexity Our main measure of communication complexity is based on
the public channel C. We say that an execution of a protocol Π has communication complexity γ for a party
Pi if the total number of bits that the party Pi sends is γ. Similarly, the communication complexity of the
adversaryA attacking a protocolΠ is the total number bits thatA sends over the channel. We also define the
message complexity of an execution of a protocol Π for a party Pi as the total number of messages the party
Pi sends, and analogously the message complexity of the adversary A attacking a protocol Π as the number
of messages that the adversary sends. The notion of a message complexity will be useful when we will be
reasoning about the denial of service attacks, since arguably in many cases it is easier for an adversary to
send say 1 message of size 1MB than 1 million messages of 1 byte size, e.g. if each message requires starting
a new IP session. We explain this in more detail in Section 3.4.

3.3 The bilateral communication model

The reader may object that this way of measuring the communication complexity ignores the fact that sending
messages over C may be expensive, as the messages on C have to arrive to every party in the system. What
sometimes might be more realistic is to measure the communication complexity by looking at messages sent
directly between the parties. Such an approach would take into account differences between the costs of
sending a message to one party and sending it to a large number of parties. We propose the following model
for this. Each party Pi is able to send messages either through C, or directly to some other party Pj . Since
the number n of parties is unknown to Pi, hence in principle j can be any natural number. Therefore in our
protocols we will always assume that Pi replies to a message of Pj that was earlier sent through C (remember
that we assumed that Pj’s identifier j is attached to every such message, and hence it will be known to Pi).
The security properties of the direct channel between Pi and Pj are exactly like C, i.e., A can listen to it,
insert his own messages and delay the messages by time at most ∆. Of courseA can create a “fake identity”
Pk and hence provoke Pi to send messages to a non-existing Pk.

We say that an execution of a protocol Π has communication complexity γ for a party Pi in the bilateral
model if the total number of bits that the party Pi sends is γ. The message complexity of an execution of a
protocol Π for a party Pi is the total number of messages that the party Pi sends. In all the cases above the
messages sent over C count n times (where n is the number of honest parties). These notions extend naturally
to the communication and message complexities of the adversary in the bilateral model.

3.4 Resistance to the denial of service attacks

As already mentioned in the introduction, in general a complete prevention of the denial of service attacks
against fully distributed peer-to-peer protocols seems very hard. Since we do not assume any trusted set-up
phase, hence from the theoretical point of view the adversary is indistinguishable from the honest users,
and hence he can always initiate a connection with an honest user forcing it to perform some work. Even
if this work can be done very efficiently, it still costs some effort (e.g. it requires the user to verify a PoW
solution), and hence it allows a powerful (yet poly-time bounded) adversary to force each party to work
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for a very long amount of time, and in particular to exceed some given deadline for communicating with
the other parties. Since any PoW-based protocol inherently needs to have such deadlines, thus we need to
somehow restrict the power of adversary. We do it in the following way. First of all, we assume that if a
message m sent to Pi is longer than the protocols specifies then Pi can discard it without processing it.6

Secondly, we assume that there is a total bound θ on the number of messages that all the participants can
send during each interval ∆. Since this includes also the messages sent by the honest parties, thus the bound
on the number of messages that the adversary A sends will be slightly more restrictive, but from practical
point of view (since the honest parties send very few messages) it is approximately equal to θ. This bound
can be very generous, and, moreover it will be much larger than the number of messages sent by the honest
users7. In practice such a bound could be enforced using some ad-hoc methods. For example each party
could limit the number of messages it can receive from a given IP address. Although from the theoretical
perspective no heuristic method is fully satisfactory, in practice they seem to work. For example Bitcoin
seems to resist pretty well the DoS attacks thanks to over 30 ad-hoc methods of mitigating them (see [51]).
Hence, we believe that some bound on θ is reasonable to assume (and, as argued above, seems necessary).
We will use this bound in a weak way, in particular the number of messages sent by the honest parties will
not depend on it, and the communication complexity will (for any practical choice of parameters) be linear
in θ for every party (in other words: by sending θ messages the adversary can force an honest party to send
one long message of length O(θ)). The real time of the execution of the protocol can depend on θ. Formally
it is a linear dependence (again: this seems to be unavoidable, since every message that is sent to an honest
party Pi forces Pi to do some non-trivial work). Fortunately, the constant of this linear function will be really
small. For example, in the RankedKeys (Figure 3, Page 14) the time each round takes (in the “key ranking
phase”) will be ∆+ θ · timeV/π, where timeV is small. Observe that, e.q, θ/π = 1 if the adversary can send
the messages at the same speed as the honest party can compute the Hκ queries, hence it is reasonable to
assume that θ/π < 1.

4 Security definitions

In this section we present the security definitions of our main constructions. We start with the broadcast
protocol, which is defined as follows.

Definition 1. Consider a multi-party protocol Π in the Hκ-model. Let (P1, . . . , Pn) denote the honest par-
ties executing Π , each of them having a device with hashrate π > 0 per time ∆ in the Hκ-model. Each
Pi takes as input xi ∈ {0, 1}κ, and it produces as output a set Yi ⊂ {0, 1}κ. The protocol Π is called a
πmax-secure broadcast protocol if it terminates is some finite time and for any poly-time adversary A whose
device has hashrate πA < πmax and who attacks this protocol (in the model from Section. 3.2) the following
conditions hold (except with probability negligible in κ):

Consistency: All sets Yi are equal, i.e.: Y1 = · · · = Yn. Call this set Y .
Validity: For every i ∈ {1, . . . , n} we have xi ∈ Y .
Bounded creation of inputs: The size of Y is at most n+ dπA/πe.

Note that we do not require any lower bound on π other than 0. In practice, however, running this protocol
will make sense only for π being a noticeable fraction of πmax, since the running time of our protocol is
linear in πmax/π. This protocol is implemented in Section 6.2 (it is denoted RankedBroadcast).

The second main primitive that we construct is a protocol allowing the parties to agree on a set of parties,
such that it is guaranteed that the majority of the parties in this set is honest. Formally, this will mean that the

6 Discarding incorrect messages is actually a standard assumption in the distributed cryptography. Here we want to state it explicitly
to make it clear that the processing time of too long messages does not count into the computing steps of the users.

7 This is important, since otherwise we could trivialize the problem by asking each user to prove that he is honest by sending a
large number of messages.
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parties output a set K of public keys such that n of these keys “belong” to the honest party (pki belongs to
Pi if she knows the secret key ski corresponding to pki), and the set of the remaining keys is of size less than
n. Obviously, this is possible to construct only if the majority of the computing power is honest, which will
be formally expressed as dπA/πe < n. Each secret key ski corresponding to pki’s needs to be secret after
executing the protocol (also with respect to all the parties other than Pi). This is formalized by requiring the
protocol is a secure key-generation protocol for some signature scheme Σ.

Definition 2. Let Σ = (Gen,Sign,Vrfy) be a signature scheme and let ` ∈ N be an arbitrary parameter.
Consider a multi-party protocol Π in the Hκ-model. Let (P1, . . . , Pn) denote the honest parties executing
Π , each of them having a device with hashrate π per time ∆ in the Hκ-model. Each Pi takes as input a
security parameter 1κ, and it produces as output a tuple (ski, pki,Ki), where (ski, pki) ∈ {0, 1}∗ × {0, 1}∗
is called a (private key, public key) pair of Pi, and the finite set Ki ⊂ {0, 1}∗ will be some set of public keys.

The protocol Π is called an honest majority Σ-key generation protocol for Σ if it terminates in finite
time and for any poly-time adversary A whose device has hashrate πA and who attacks this protocol (in the
model from Section. 3.2) the following conditions hold, provided that dπA/πe < n:

Key-generation: Π is a key-generation algorithm for every Pi, by which we mean the following. First of all,
for every i = 1, . . . , n and every m ∈ {0, 1}∗ we have that Vrfy(pki, Sign(ski,m)) = true. Moreover
ski can be securely used for signing messages in the following sense. Suppose the adversary A learns
the entire information received by all the parties except of some Pi, and later A engages in the “chosen
message attack” (see Sect. 2) against an oracle that signs messages with key ski. Then any such A has
negligible (in κ) probability of forging a valid (under key pki) signature on a fresh message.

Consistency The sets Ki that were produced by the honest parties are identical. Let K := K1(= K2 =
· · · = Kn).

Validity: For every i it is the case that pki ∈ K.
Bounded generation of identities: The size of K is at most n + dπA/πe (hence the adversary “controls”

at most dπA/πe identities).

5 Ingredients

Merkle trees. We use a standard cryptographic tool called the Merkle trees [44]. Take any κ ∈ N, c ∈
{0, 1}κ and β ∈ N. Let Λt be an almost complete binary tree of size t = 2β (cf. Section 2). Let Hκ be a
family of hash functions defined in Section 2, i.e.: {Hκ

λ}λ∈Λt , where eachHκ
λ is of a type {0, 1}∗×({0, 1}∗∪

{0, 1}κ × {0, 1}κ)→ {0, 1}κ. Define a function MHashH
κ
: ({0, 1}κ)β → {0, 1}κ as on Figure 5.1.

The Merkle trees are useful since they allow for very efficient proofs that a given value vi was used to
calculate r = MHashH

κ
(v1, . . . , vβ). To be more precise, there exists a procedure MProofH (described on

Figure 5.1) that on input (v1, . . . , vβ) ∈ ({0, 1}κ)β outputs a certificateM′ that proves that vi was used to
calculate r = MHash(v1, . . . , vβ). The certificateM′ is a labelled subtree ofM induced by i, i.e. consisting
of all nodes on a path from the leaf λi to the root and their siblings. Such a proof can be verified by a proce-
dure MVrfyH

κ
(described on Figure 5.1) that takes as input vi ∈ {0, 1}κ, i ∈ {1, . . . , β}, r ∈ {0, 1}κ and a

labelled treeM′ and outputs true if the labeling ofM′ is correct. We clearly have that MVrfyH
κ
(vi, i, r,M′)

is equal to true if r = MHash(v1, . . . , vβ) andM′ = MProof((v1, . . . , vβ), i). It is easy to see that the fol-
lowing holds (the proof of this lemma appears in Appendix C).

Lemma 1. Consider any algorithmA running in time at most t̂. The algorithmA gets as input (v1, . . . , vβ) ∈
({0, 1}κ)β and then it outputs r ∈ {0, 1}κ, i ∈ {1, . . . , β}, and a treeM′. Suppose that it happened that
MVrfyH

κ
(vi, i, r,M′) = true. Then with probability at least 3t̂2 · 2−κ before the algorithm A producedM′

he made all the queries to theHκ oracles that are needed by the verification algorithm MVrfyH
κ
(vi, i, p,M′)

(in particular: he queried Hκ
λi

on vi).
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5.1 Proofs-of-Work

A natural way to prevent the adversary from launching Sybil attacks is to require some computational work
from each party in order to establish an identity. This is verified using so-called Proofs of Work. A Proof-
of-Work (PoW) scheme [25] is a pair of randomized algorithms: a prover P and a verifier V, working in the
Hκ-model (cf. Section 3.1), where κ is a security parameter. The algorithm P takes as input a challenge
c ∈ {0, 1}κ and produces as output a solution s ∈ {0, 1}∗. The algorithm V takes as input (c, s) and outputs
true or false. We require that for every c ∈ {0, 1}∗ it is that case that V(c,P(c)) = true.

Function MHashH
κ

:

On input (v1, . . . , vβ) the function MHashH
κ

first recursively labels the tree Λt (denote the resulting labelled almost com-
plete binary tree asMH

κ

c ) and then outputs the root of this tree. This is done as follows.

1. Let λ1 2 · · · 2 λβ be the leaves ofMH
κ

c . Each leaf λi is labelled with vi.
2. If a node λ has one child, and this child is labelled with v then letMH

κ

c (λ) := Hλ(v).
3. If a node λ has two children λ||0 and λ||1 and their respective labels are v and w then letMH

κ

c (λ) := Hλ(v, w).
4. Output the label of the root ofMH

κ

c .

Function MProofH
κ

:

On input (v1, . . . , vβ) ∈ ({0, 1}κ)β and i ∈ {1, . . . , β} outputs a labelled binary tree M′ that is a sub-tree of MH
κ

c

constructed as follows:

1. Run MHashH
κ

(v1, . . . , vβ). Let MH
κ

c be the output of this function (in many cases MH
κ

c will be already stored in
user’s memory, and hence there will be no need to compute it),

2. Define Λ′ := {(λ||j) ∈ MH
κ

c : λ is a prefix of λi, λ 6= λi and j ∈ {0, 1}} ∪ {ε} (recall that λi is an i-th leaf of Λ
accordingly to the 2 ordering). In other words, Λ′ is a subtree of Λ induced by λi (i.e. containing a path from λi to the
root, together with all the siblings of the nodes on this path).

3. LetM′ be the tree labelled likeMH
κ

c , but containing only nodes from Λ′.

Function MVrfyH
κ

Take as input vi ∈ {0, 1}κ, i ∈ {1, . . . , β}, r ∈ {0, 1}κ and a labelled treeM′, and output true if the labeling ofM′ is
correct. More precisely, it outputs true if the following conditions hold:

1. the leaf λi has label vi inM′,
2. every non-leaf node λ inM′ is labelled by the appropriate hash of its children,
3. the root ofM′ is labelled with r.

Otherwise it outputs false.

Fig. 1. The MHashH
κ
,MProofH

κ
and MVrfyH

κ
functions.

We say that a PoW (P,V) has prover complexity t (in the Hκ-model) if on every input c ∈ {0, 1}∗ the
prover P makes at most t queries to the oracles in Hκ. We say that (P,V) has verifier complexity t′ (in the
Hκ-model) if for every c, s ∈ {0, 1}∗ the verifier V makes at most t′ queries to the oracles in Hκ. Defining
security is a little bit tricky, since we need to consider also the malicious provers that can spend considerable
amount of computational effort before they get the challenge c. We will therefore have two parameters:
t̂0, t̂1 ∈ N, where t̂0 will be the bound on the total time that a malicious prover has, and t̂1 ≤ t̂0 will be
the bound on the time that a malicious prover got after he learned c. Consider the following game between
a malicious prover P̂ and a verifier V: (1) P̂ adaptively queries the oracles Hκ on the inputs of his choice,
(2) P̂ receives c ← {0, 1}κ, (3) P̂ again adaptively queries the oracles Hκ on the inputs of his choice, (4) P̂
sends a value s ∈ {0, 1}∗ to V. We say that P̂ won if V(c, s) = true. We say that (P,V) is (t̂0, t̂1)-secure
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with ε-error (in the Hκ-model) if for a uniformly random c ← {0, 1}∗ and every malicious prover P̂ that
makes in total at most t̂0 queries to Hκ in the game above, and at most t̂1 queries after receiving c we have
that P

(
P̂(c) wins the game

)
≤ ε. It will also be useful to use the asymptotic variant of this notion (where

κ is the security parameter). Consider a family {(Pκ,Vκ)}∞κ=1. We will say that it is t̂1-secure if for every
polynomial t̂0 there exists a negligible ε such that (Pκ,Vκ) is (t̂0(κ), t̂1)-secure in the Hκ model with error
ε(κ).

An example of a PoW scheme The PoW scheme used in Bitcoin is based on finding inputs for a hash
function that produce an output starting with a certain number of zeros. We cannot use this PoW here, since
the variance of the computational effort needed to solve it is to high: a lucky solver can solve the Bitcoin
PoW much quicker than an unlucky one. Instead, we use a PoW based on the Merkle trees and a variant of
the Fiat-Shamir transform [30]: a prover first constructs a Merkle tree with leaves depending on the challenge
c, and then hashes (using some hash function G) the value r in the root of this tree to obtain indices of α
leaves µ1, . . . , µα in the tree (for some parameter α). Finally, he sends r, the labels on the leaves µ1, . . . , µα
together with the Merkle Proofs that the these leaves are correct. We later prove that a malicious prover that
did not compute sufficiently large part of the Merkle tree cannot reply to all of these queries correctly with
non-negligible probability. Similar techniques were already used in [17,27,4,45,46]

Prover Pκ,αt :

On input c ∈ {0, 1}κ the prover Pκ,αt executes the following steps.

1. Compute r = MHashH
κ

(Hκ
λ1
(c), . . . , Hκ

λβ
(c)).

2. Let (µ1, . . . , µα) := G(r).
3. For every i = 1 to α compute M′i := MProofH

κ

((µ1, . . . , µα), i). For efficiency reasons we assume that the tree
MH

κ

c was not erased after Step 1, and hence each invocation of MProofH
κ

does not need to recompute it.
4. Output (M′1, . . . ,M′α, r).

Verifier Vκ,αt :

On input (c, (M1, . . . ,Mα, r)) the verifier Vκ,αt does the following:

1. Let (µ1, . . . , µα) := G(r).
2. For every i = 1 to α run MVrfy(Hκ

µi(c)). If in all the cases the output is true then output true. Otherwise output false.

Fig. 2. A PoW scheme (Pκ,αt ,Vκ,αt ).

We now define our PoW scheme (Pκ,αt ,Vκ,αt ) that is secure in theHκ model, for any natural parameters κ, α
and t. Let β := dt/2e and let λ1, . . . , λβ be the leaves of an almost complete binary tree of size t. Suppose
G : {0, 1}κ → {1, . . . , β}α is a hash function modeled as a random oracle. Note that we do not count the
calls to G in the hashrate of the devices. This is ok since the calls to Hκ will dominate (cf. Section 3.1).
Our PoW scheme is presented on Figure 2. It is easy to see that the following holds (the proof appears in
Appendix D).

Lemma 2. The prover complexity of (Pκ,αt ,Vκ,αt ) is t and its verifier complexity is α · dlog2 te.

The security of (Pκ,αt ,Vκ,αt ) is proven in the following lemma (whose proof appears in Appendix E).

Lemma 3. The PoW scheme (Pκ,αt ,Vκ,αt ) is (t̂0, t̂1)-secure with error t̂1((t̂1 + 1)/t)α + (3t̂20 + 1) · 2−κ.
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It will be sometimes convenient to use one security parameter κ instead of κ andα. Denote (PTreeκt ,VTree
κ
t ) :=

(Pκ,κt ,Vκ,κt ).The following fact can be easily derived from Lemma 3.

Corollary 1. For every function t : N → N s.t. t(κ) ≥ κ we have that (PTreeκt(κ),VTree
κ
t(κ)) has prover

complexity t and verifier complexity
⌈
κ log2 t

⌉
. Moreover the family {(PTreeκt(κ),VTree

κ
t(κ))}∞κ=1 is ξt-

secure for every constant ξ ∈ [0, 1).

6 Constructions

We are now ready to present the constructions of the protocols specified in Section 4. Our protocols will be
based on the PoW described in Section 5.1. One of the main challenges will be to prevent the adversary from
precomputing the solutions to PoW, as given enough time every puzzle can be solved even by a device with
a very small hashrate. Hence, each honest party Pi can accept a PoW proof only if it is computed on some
string that contains a freshly generated challenge c. Since we work in a completely distributed scenario, and
in particular we do not want to assume existence of a trusted beacon, thus the only way a Pi can be sure that
a challenge c was fresh is that she generated it herself at some recent moment in the past (and, say, sent it to
all the other parties).

This problem was already considered in [3], where the following solution was proposed. At the beginning
of the protocol each partyPi creates a fresh (public key, secret key) pair (pki, ski) (we will call the public keys
identities) and sends to all other parties a random challenge ci. Then, each party computes a Proof of Work
on her public key and all received challenges. Finally, each party sends her public key with a Proof of Work
to all other parties. Moreover, whenever a party receives a message with a given key for the first time, than
it forwards it to all other parties. An honest party Pi accepts only these public keys which: (1) she received
before some agreed deadline, and (2) are accompanied with a Proof of Work containing her challenge ci.
It is clear that each honest party accepts a public key of each other honest party and that after this process
an adversary can not control a higher fraction of all identities that his fraction of the computational power.
Hence, it may seem that the parties can later execute protocols assuming channels that are authenticated with
the secret keys corresponding to these identities.

Unfortunately there is a problem with this solution. Namely it is easy to see that the adversary can cause
a situation where some of his identities will be accepted by some honest parties and not accepted by some
other honest parties. This discrepancy can come from two reasons: (1) some messages could be received
by some honest parties before deadline and by some other after it, and (2) a Proof of Work can containing
challenges of some of the honest parties, but not all.

It is relatively easy to see that nevertheless the above protocol can be used to achieve Byzantine agree-
ment (and hence the broadcast protocol), under the assumption that the honest parties computing power is
more than (2/3) · πmax, where πmax is a total bound on the computing power of all the participants (honest
parties and the adversary). This is because in this case it is guaranteed that there exists a set P ′ of identities
such that all of them are controlled by the honest parties, and |P| is of size at least 2/3 of the total size of
identities accepted by the honest parties. Therefore the parties could execute a classical Byzantine agree-
ment protocol, which is secure if more than 2/3 of the parties are honest (each party will simply ignore the
messages signed by keys that she does not recognize).

It is a natural question whether we can achieve Byzantine agreement and broadcast without this assump-
tion. In the rest of this section we answer this question affirmatively. Our presentation is organized as follows.
First, in Section 6.1 we show a protocol that we call the “ranked key generation protocol”. Then we show
how to use it to construct a broadcast protocol (in Section 6.2). Finally, in Section 6.3 we show how to use
these protocols to construct a protocol for identifying a group of parties with honest majority.
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6.1 Ranked key sets

The main idea behind our protocol is that parties assign ranks to the keys they have received. If a key was
received before the deadline and the corresponding proof contains the appropriate challenge, then the key
is assigned a rank 0. In particular, keys belonging to honest parties are always assigned a rank 0. The rank
bigger than 0 means that the key was received with some discrepancy from the protocol (e.g. it was received
slightly after the deadline) and the bigger the rank is, the bigger this discrepancy was. More precisely each
party Pi computes a function ranki from the set of keys she knows Ki into the set {0, . . . , `} for some
parameter `. Note that this protocol bares some similarities with the “proxcast” protocol of Considine et al
[19]. The formal definition follows.

Definition 3. Let Σ = (Gen,Sign,Vrfy) be a signature scheme and let ` ∈ N be an arbitrary parameter.
Consider a multi-party protocolΠ in theHκ-model. Let (P1, . . . , Pn) denote the honest parties executingΠ ,
each of them having a device with hashrate π per time ∆ in theHκ-model. Each Pi takes as input a security
parameter 1κ, and it produces as output a tuple (ski, pki,Ki, ranki), where (ski, pki) ∈ {0, 1}∗ × {0, 1}∗ is
called a (private key, public key) pair of Pi, the finite set Ki ⊂ {0, 1}∗ will be some set of public keys, and
ranki : Ki → {0, . . . , `} will be called a key-ranking function (of Pi). We will say that an identity pk was
created during the execution Π if pk ∈ Ki for at least one honest Pi (regardless of the value of ranki(pk)).

The protocol Π is called a πA-secure `-ranked Σ-key generation protocol if for any poly-time adversary
A whose device has hashrate πA and who attacks this protocol (in the model from Section. 3.2) the following
conditions hold:

Key-generation: Π is a key-generation algorithm for every Pi in the same sense as in Definition 2.
Bounded creation of identities: We require that the number of created identities is at most n + dπA/πe

except with probability negligible in κ.
Validity: for every i it is the case that {pk1, . . . , pkn} ⊆ Ki and for every j ∈ {1, . . . , n} we have that

ranki(pkj) = 0,
Consistency: for every i ∈ {1, . . . , n} and every k ∈ Ki if ranki(k) < ` then for every j ∈ {1, . . . , n} we

have that k ∈ Kj and rankj(k) ≤ ranki(k) + 1.

Our construction of a ranked key generation protocol RankedKeys is presented on Figure 3. The protocol
RankedKeys work in theHκ-model. It also uses another hash function F : {0, 1}∗ → {0, 1}κ that is modeled
as a random oracle, but its computation does not count into the hashrate. It uses a Proof of Work scheme
(P,V) with prover time timeP and verifier time timeV. We will later instantiate this PoW scheme with the
scheme (PTree,VTree) from Section 5.1. The parameter ` will be equal to dπmax/πe.

Let us present some intuitions behind our protocol. First, recall that the problem with the protocol from
[3] (described at the beginning of this section) was that some public keys could be recognized only by a subset
of the honest parties. A key could be dropped because: (1) it was received too late; or (2) the corresponding
proof did not contained the appropriate challenge. Informally, the idea behind the RankedKeys protocol is to
make these conditions more granular. If we forget about the PoWs, and look only at the time constrains then
our protocol could be described as follows: keys received with a delay at most ∆ are assigned rank 0, keys
received in time at most 2∆ are assigned rank 1, and so on. Since we instruct every honest party to forward
to everybody all the keys that she receives, hence if a key receives rank k from some honest party, then he
receives rank at most k + 1 from all the other honest parties.

If we also consider the PoWs then the description of the protocol becomes a bit more complicated.
The RankedKeys protocol consists of 3 phases. We now sketch them informally. The “challenges phase” is
divided into `+ 2 rounds, each of them taking time ∆. At the beginning of the first round each Pi generates
his challenge c0i randomly and sends it to all the other parties. Then, in each kth round each Pi collects the
messages a1, . . . , am sent to him in the previous round, concatenates then into Aki = (a1, . . . , am), hashes
them, and sends the result cki = F (Aki ) to all the other parties.
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The challenges phase

This phase consists of `+ 2 rounds, each lasting exactly one interval ∆ of real time:

– Round 0: Each party Pi draws a random challenge ci ← {0, 1}κ and sends his challenge message of level 0 equal to
(Challenge0, c0i ) to all parties (including herself).

– For k = 1 to ` + 1 in round k each party Pi does the following. It waits for the messages of a form (Challengek−1, a)
that were sent in the previous round (note that some of them might have already arrived earlier, but, by our assumptions
they are all guaranteed to arrive before round k ends). Of course if the adversary does not perform any attack then
there will be exactly n such messages (one from every party), but in general there can be much more of them. Let
(Challengek−1, a1), . . . , (Challenge

k−1, am) be all messages received by Pi. Denote Aki = (a1, . . . , am). Then Pi
computes her challenge in round k as cki = F (Aki ) and sends (Challengek, cki ) to all parties (this is not needed in the
last rounds, i.e., when k = `+ 1).

The Proof of Work phase

This phase takes real time timeP/π. Each party Pi performs the following.

1. Generate a fresh key pair (ski, pki) ← Gen(1k) and compute Soli = P(F (pki, A
`+1
i )) (recall that A`+1

i contains all
the challenges that Pi received in the last round of the “challenges phase”).

2. Send to all the other parties a message (Key0, pki, A
`+1
i , Soli). This message contains Pi’s public key pki, the sequence

A`+1
i of challenges that he received in the last round of the “challenges phase”, and a Proof of Work Soli. The reason

why she sends the entire A`+1
i , instead of F (pki, A

`+1
i ), is that in this way every other party will be able check if her

challenge was used as an input to F when F (pki, A
`+1
i ) was computed (this check will be performed in the next phase).

The key ranking phase

This phase consists of `+ 1 rounds, each lasting real time ∆+ (θ · timeV)/π. During these rounds each party Pi constructs
set Ki of ranked keys, together with a ranking function ranki : Ki → {0, . . . , `} (the later a key is added to Ki the higher
will be its rank). Initially all Ki’s are empty.

– Round 0: Each party Pi waits for time∆ for message of the form (Key0, pk, B`+1, Sol) received in the “proof-of-work”.
Then, for each such message she checks the following conditions:
• Sol is a correct PoW solution for the challenge F (pk, B`+1), i.e., if V(F (pk, B`+1), Sol) = true,
• c`i appears in B`+1, i.e., c`i ≺ B`+1.

If both of these conditions hold then Pi accepts the key pk with rank 0, i.e., Pi adds pk to the set Ki and sets
ranki(pk) := 0. Moreover Pi notifies all the other parties about this fact by sending to every other party a message
(Key1, pk, A`i , B

`+1, Sol).
– For k = 1 to ` in round k each party Pi does the following. It waits for messages of a form (Keyk, pk, B`+1−k, . . . ,
B`+1, Sol). After time ∆ passed Pi stops listening and for each received message she checks the following conditions:
• the key pk has not been yet added to Ki, i.e.: pk 6∈ Ki
• Sol is a correct PoW solution for the challenge F (pk, B`+1), i.e., if V(F (pk, B`+1), Sol) = true,
• c`−ki ≺ B`+1−k and for every i = `+ 1− k to ` it holds that F (Bi) ≺ Bi+1.

If all of these conditions hold then Pi accepts the key pk with rank k, i.e., Pi adds pk to the setKi and sets ranki(pk) :=
k. Moreover if k < ` then Pi notifies all the other parties about this fact by sending at the end of the round to every other
party a message (Keyk+1, pk, A`−ki , B`+1−k, . . . , B`+1,Sol) (recall that Aki is equal to the set of challenges received
by Pi in the kth round of the “challenges phase”, and F (Aki ) = cki ).

At the end of the protocol each party Pi outputs (ski, pki,Ki, ranki).

Fig. 3. The RankedKeys protocol.

Let a ≺ (b1, . . . , bm) denote the fact that a = bi for some i. We say that the string b dependents on a if
there exists a sequence a = v1, . . . , vm = b, such that for every 1 ≤ i < m, it holds that F (vi) ≺ vi+1.The
idea behind this notion is that b could not have been predicted before a was revealed, because b is created
using a series of concatenations and queries to the random oracle starting from the string a. Note that in
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particular cki depends on ck−1j for any honest Pi, Pj 8 and 1 ≤ k ≤ ` and hence F (Akj ) depends on ci for any
honest Pi, Pj and an arbitrary 1 ≤ k ≤ `+ 1.

Then, during the “Proof of Work” phase each honest party Pi draws a random key pair (ski, pki) and
creates a proof of work9 P(F (pki, A

`+1
i )). Then, she sends her public key together with the proof to all the

other parties.
Later, during the “key ranking phase” the parties receive the public keys of the other parties and assign

them ranks. To assign the public key pk rank k the party Pi requires that she receives it in the kth round in
this phase and that it is accompanied with a proof P(F (pki||s)) for some string s, which depends on c`−ki .
Such a proof could not been precomputed, because c`−ki depends on c0i , which was drawn randomly by Pi
at the beginning of the protocol and hence could not been predicted before the execution of the protocol.
If those conditions are met, than Pi forwards the message with the key to the other parties. This message
will be accepted by other parties, because it will be received by them in the (k + 1)-st round of this phase
and because s depends on c`−ki , which depends on c`−(k+1)

j for any honest Pj . In the effect, all other honest
parties, which have not yet assigned pk a rank will assign it a rank k + 1.

Let RankedKeysκ denote the RankedKeys scheme instantiated with the PoW scheme (PTreeκtimeP
,VTreeκtimeP

)
(from Section 5.1), where timeP := κ2 · (`+2)∆ · π. Note that therefore timeV := κ dlog2 timePe . We now
have the following fact (its proof appears in Appendix F).

Lemma 4. Assume the total hashrate of all the participants is at most πmax, the hashrate of each honest
party if π, and the adversary can not send more than (θ − dπmax/πe) messages in every interval ∆ (where
n is the number of honest parties). Then the RankedKeysκ protocol is a πA-secure `-ranked key generation
protocol, for ` = dπmax/πe, whose total execution takes real time∆(2`+3)+timeP/π+(`+1)(θ·timeV)/π.

Communication and message complexity of the RankedKeysκ protocol is analysed in Appendix G.

6.2 The RankedBroadcast protocol

The reason why ranked key sets are useful is that they allow to construct a reliable broadcast protocol, which
is secure against an adversary that has an arbitrary hashrate. The only assumption that we need to make is
that the total hashrate in the system is bounded by some πmax and the adversary cannot send more than θ−n
messages in one interval (for some parameter θ). Our protocol, denoted RankedBroadcastκ, works in time
that is linear in ` = dπmax/πe plus the execution time of RankedKeysκ. It is based on a classical authenticated
Byzantine agreement by Dolev and Strong [23] (and is similar to the technique used to construct broadcast
from a proxcast protocol [19]). The protocol works as follows. First the parties execute the RankedKeysκ

protocol with parameters π, πmax and θ, built on top of a signature scheme (Gen, Sign,Vrfy). For convenience
assume that every signature σ contains information identifying the public key that was used to compute it.
Let (ski, pki,Ki, ranki) be the output of each Pi after this protocol ends (recall that (ski, pki) is her key
pair, Ki is the set of public keys that she accepted, ranki is the key ranking function). Then, each party Pd
executes the procedure RankedBroadcastκd depicted on Fig. 4 (this happens in parallel for every d). During
the execution each party Pi maintains a set Zdi initialized with ∅. The output of each party is equal to the
only elements of this set (if Zdi is a singleton) or ⊥ otherwise.
The security of this protocol is proven in the following lemma.

Lemma 5. The RankedBroadcastκ protocol is a πmax-secure broadcast protocol.

Proof. We consider the execution of each RankedBroadcastκd separately. The “validity” property follows
simply from the description of the protocol. Each honest party Pi receives in the first round the message

8 This is because ck−1
j ≺ Aki and F (Aki ) ≺ F (Aki ) = cki .

9 The reason why we hash the input before computing a PoW is that the PoW definition requires that the challenges are random.
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The protocol consists of `+ 1 rounds, each lasting one interval ∆:

– Round 0: The dealer Pd sends to every other party the message (xd, Signskd(xd, pkd)), where xd is his input that he
wants to broadcast.

– Round k, for 1 ≤ k ≤ `: Each party except of the dealer Pd waits for the messages of the form
(v,Signpka1

(v, pkd), . . . , Signpkak
(v, pkd)). Such a message is accepted by Pi if:

(1) all signatures are valid and are corresponding to different public keys,
(2) pka1 = pkd,
(3) pkaj ∈ Ki and ranki(pkaj ) ≤ k for 1 ≤ j ≤ k, and
(4) v 6∈ Zdi and |Zdi | < 2.
If a message is accepted then Pi adds v to her set Zdi and if k < ` she sends a message
(v,Signpka1

(v, pkd), . . . , Signak (v, pkd), Signpki(v, pkd)) to all other parties.

At the end of the protocol Pi outputs v ∈ Zdi if |Zdi | = 1 and ⊥ otherwise.

Fig. 4. The RankedBroadcastκd protocol.

(v,Signpkd(v, pkd)), so she sets Zdi = {v}, where v is the value the dealer wants to broadcast. Note that an
honest party will never accept a message with a different value, because the value has to be signed by the
dealer, what implies that at the end of the protocol Zdi = {v} for each honest Pi and hence each honest party
outputs v.

To prove the “consistency” consider for a moment a slightly simplified version of the RankedBroadcast
protocol, namely one with the condition |Zdi | < 2 omitted. We will now prove that in this simplified version
at the end of the protocol it holds that Zdi = Zdj for any two honest Pi, Pj at the end of the protocol. To this
end consider an arbitrary v ∈ Zdi . We will prove that v ∈ Zdj . Suppose that Pi added v to Zdi during kth
round. Consider two cases:

– k < `. It means that Pi sent a message

(v,Signpka1
(v, pkd), . . . ,Signpkak

(v, pkd), Signpki(v, pkd))

to Pj at the end of k-th round and it was received by Pj in the (k + 1)-st round. Pj will accept this
message as all conditions are satisfied (or it already had been that v ∈ Zdj ), namely:
• Conditions (1) and (2) are trivially satisfied.
• It holds that ranki(aq) ≤ k for any 1 ≤ q ≤ k, because otherwise Pi would have not accepted the

message containing the value v in the k-th round. Therefore, from the definition of ranked key sets
we have that rankj(aq) ≤ k+1 for any 1 ≤ q ≤ k. Moreover, rankj(pki) = 0, because Pi is honest.
Hence, condition (3) is satisfied.
• If the condition (4), namely v 6∈ Zdj is not satisfied than we already have that v ∈ Zdj .

Hence, either Pj accepted this message and added v to Zdj at (k + 1)-st round or it was already true that
v ∈ Zdj .

– k = `. It means that Pi received a message with a signatures of ` different parties on the value v.
Obviously we can assume that at least one party is honest (as otherwise n = 0 and the protocol is secure
trivially). Since there are at most ` = dπmax/πe identities created by the RankedKeys protocol, thus at
least one of these signatures comes from an honest party. Therefore, this honest party added this value
to her set in one of the previous rounds and sent a message with the value v to all other parties. Note
that messages sent by honest parties are always accepted by other honest parties (cf. analysis from the
previous point), so the message with this value was accepted by all honest parties.

Hence, in both cases it is true that v ∈ Pj and therefore at the end of the protocol each party has the same
value of the set Zdi and outputs the same value.
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The condition v ∈ Zdi is added to the RankedBroadcast protocol merely for the efficiency reasons, as
it puts down the number of the messages exchanges by the parties down to O(n2). Assume that at some
point of the protocol it holds that Zdi = {a, b} for some honest Pi and some a, b. Hence, Pi does not have to
broadcast any messages with values other than a and b, because already we know that during the execution
of the protocol each honest Pj will accept the message with values a and b unless it already had accepted
some other two values. Therefore, in this case each honest party outputs ⊥.

The “bounded creation of inputs” property comes from the “bounded creation of identities” property of
the RankedKeys protocol (as clearly the size of each Yi that is output by Pi cannot be larger than his set Ki).

ut

Note that resistance of RankedBroadcastκd to the DoS attacks comes from the fact that the parties are
only accepting one message per round for each recognized identity (and there are at most ` such identities).
It is also easy to see that (both in the public channel model and in the bilateral channels model) that the
communication and message complexities of the RankedBroadcastκ protocol are dominated by the execution
of RankedKeysκ, and hence asymptotically these complexities are as in case of the RankedKeysκ.

6.3 A group with an honest majority

We now show how to use the protocols from the previous sections to construct an honest majority generation
protocol. The protocol is depicted on Figure 5.

Lemma 6. The HonestMajκ protocol is an honest majority Σ-key generation algorithm.

Proof. The “key-generation” property holds trivially since the secret keys ski are generated using Gen and
are never used for signing messages. The “consistency” property holds since the output of each Pi is a
deterministic function of K (that has the same value for every Pi).

Suppose n, π and πA are such that dπA/πe < n. Since the broadcast protocol has the “bounded creation
of inputs” property, thus m ≤ n+ dπA/πe. Hence n > m/2, and therefore if k ∈ K then for at least one Pi
we have rank(k) = 0. By the “bounded creation of identities” property of the RankedKeys protocol the set
of such k’s is at most n+ dπA/πe thus the HonestMajκ protocol satisfies “bounded generation of identities”
property.

It is also easy to that every pki belongs to at least n sets in the family K (since rankj(k) = 0 for every
Pj). Since n > m/2 thus such pki ∈ K. This shows the “validity” property. ut

1. The party Pi execute the RankedKeysκ protocol. Let (ski, pki,Ki, ranki) be the output of each Pi. Let K0
i denote the

set of keys k such that ranki(k) = 0.
2. The parties execute the RankedBroadcastκ protocol with the input of each Pi being K0

i . Note that from the properties
of the broadcast protocol the output of every party is identical. Let {X1, . . . ,Xm} be the family of sets that the parties
receive as the output of this protocol.

3. Define K := {k : k belongs to more than m/2 of the sets X1, . . . ,Xm}
4. Output K

Fig. 5. The HonestMajκ protocol.

7 Applications

7.1 Multiparty computation protocols with honest majority of computing power

As already mentioned before, we can use the HonestMaj protocol from Section 6.3 to establish a group of
parties that can later perform the MPC protocols. This is possible, since the HonestMaj protocol identifies
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the parties by the set of their public keys. It is well-known, that given such a trusted set-up the parties can
emulate any trusted functionality [34], provided that the majority of them is honest (which is the case here).
Such a trusted functionality can be anything that the parties find useful. For example it can be a procedure for
generating a uniformly random beacon, or a system for maintaining a trusted server (a discussion board, say)
in the peer-to-peer network. It could also potentially be used for the “Internet of Things” applications, e.g.,
to replace the blockchain paradigm in the “Adept” technology [39]. In principle it can also lead to creations
a new digital currencies (we discuss it in Section 7.3).

7.2 Unpredictable beacon generation without honest majority of computing power

The RankedBroadcast protocols can also be used to produce unpredictable beacons even if there is no honest
majority of computing power in the system. This is done in the following straightforward way. First, each
party Pi draws at random a string si ← {0, 1}κ. Then, the parties P1, . . . , Pn execute the RankedBroadcastκ

protocol with inputs s1, . . . , sn respectively. Let s′1, . . . , s
′
m′ be the result. The parties compute the value of

the beacon as a hash H(s′1, . . . , s
′
m′). Note that obviously, the adversary can influence the result of this

computation by adding some si that he controls. He can even do it after he learns the inputs of all the
other honest parties. However, it is easy to see that if H is modeled as a random oracle, then a poly-time
limited adversary cannot make H(s′1, . . . , s

′
m′) equal to some value chosen by him in advance (except with

negligible probability). Hence, the value of the beacon is unpredictable. This is, of course, a weaker property
than the uniformity, but it still suffices for several applications (e.g. it is ok to use this value as a genesis
block for a new cryptocurrency).

7.3 Provably secure cryptocurrencies?

It might be tempting to say that the honest majority created by the HonestMaj protocol can be used to con-
struct a new cryptocurrency. In the simplest case, the parties selected by this procedure would simply emulate
a trusted ledger, but also more general functionalities could be emulated. This would have the following ad-
vantages over the blockchain-based systems: (1) possibly quicker transaction confirmation times (no need to
wait for new blocks), (2) security proof (which is especially important given the recent attacks on Bitcoin
described in the introduction). We think it is an interesting option to explore, but we leave it as future work,
since to fully solve this problem a good economic model for the cryptocurrencies is needed (and we are not
aware of such a model). Below we only state some simple ideas and observations that can be used in such
constructions.

One way of implementing a new currency using our methods would be as follows. Assume that the
“honest majority group” is selected once a day (using the HonestMaj protocol). The parties that constitute
this group are responsible for recording all the transactions. Independent of this, they also participate in a
process of selecting of a new group for the next day. Once such a group is selected it identifies itself with a
public key (whose corresponding private key is shared over all parties). Then the parties from the previous
group sign a statement that the “passes” the control over the currency to the new group.

One thing that we need to consider here is the public verifiability of the history of transactions. Currently
Bitcoin is designed in such a way that every new user can decide himself which chain is the proper one
(assuming he knows the genesis block). The protocols that we propose in this paper provide assurance of
correctness only to the players that were active during the execution of these protocols. This problem could
be dealt with in the following way: a new user of the system waits for 1 day before deciding which group to
trust (so that he can be sure that the “majority group” was selected honestly). The reader may object that in
this case the adversary can break the system if he gets control over large computing power for a short period
of time only. We want to stress that Bitcoin also suffers from this problem (as pointed out in [20]).
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A Description of Bitcoin

A.1 A short introduction to Bitcoin.

The PoWs that Bitcoin uses are based on computing the value of a hash function H (more concretely: H
is the SHA256 function) on multiple inputs. Therefore the “computing power” is measured in terms of the
speed at which a given party can compute a certain hash function. This speed is called a hashrate. Currently
almost all of the computing power in Bitcoin comes from dedicated hardware, as computing SHA256 in
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software is too inefficient. Bitcoin contains incentives for the users to contribute their computing power to
the system. We do not describe them here (the reader may find a description of this incentive system, e.g.,
in [48,11,2]). The same idea is used in several other cryptocurrencies like Litecoin [50] (that, instead of
SHA256, uses a hash function Script, which is designed in such a way, that it is difficult to implement it in
hardware efficiently), or Peercoin [42] (in combination with the so-called “Proof of Stake” which we will
not describe here).

The “trusted functionality” that the parties emulate is simply a public ledger on which the parties can post
their transactions. From the security perspective the Bitcoin ledger is very similar to a broadcast channel:
every party should be able to broadcast some value to all the other parties (i.e.: post it on the ledger) and
in case a malicious party posts several different values, the honest participants should be able to reach a
consensus about which of them is accepted as a valid one. One additional property (compared to the standard
broadcast definition) that the Bitcoin ledger has is the public verifiability, which in particular means that the
parties that joined the system long time after a given value v was posted can verify that v appeared on the
ledger.

We do not describe here the exact syntax of the Bitcoin transactions, as it is not relevant to this paper. The
Bitcoin ledger is implemented in the following clever way. The users maintain a chain of blocks. The first
block B0, called the genesis block, was generated by the designers of the system in January 2009 (this is the
only “trusted setup” that is required in Bitcoin, however, as we describe later, some heuristic methods were
applied to prove that B0 was generated honestly). Each new block Bi contains a list Ti of new transactions,
the hash of the previous block H(Bi−1), and some random salt R. The key point is that not every R works
for given Ti and H(Bi−1). In fact, the system is designed in such a way that it is moderately hard to find a
valid R. Technically it is done be requiring that the binary representation of the hash of (Ti||H(Bi−1)||R)
starts with a certain number m of zeros (the procedure of extending the chain is called mining, and the
machines performing it are called miners). The hardness of finding the right R depends of course on m, and
this parameter is periodically adjusted to the current computing power of the participants in such a way that
the extension happens on average each 10 minutes.

The idea of the block chain is that the longest chain C is accepted as the proper one. If some transaction
is contained in a block Bi and there are several new blocks on top of it, then it is infeasible for an adversary
with less than a half of the total computing power of the Bitcoin network to revert it — he would have to mine
a new chain C ′ bifurcating from C at block Bi−1 (or earlier), and C ′ would have to be longer than C. The
difficulty of that grows exponentially with number of new blocks on top of Bi. In practice the transactions
need 10 to 20 minutes (i.e. 1-2 new blocks) for reasonably strong confirmation and 60 minutes (6 blocks) for
almost absolute certainty that they are irreversible.

To sum up, when a user wants to post a transaction on the network, he sends it to other nodes. The
receivers validate this transaction and add it to the block they are mining. When some node solves the mining
problem, it broadcasts the new block Bi to the network. Nodes obtain a new block, check if the transactions
are correct, that it contains the hash of the previous block Bi−1 and that H(Bi) starts with an appropriate
number of zeros. If yes, then they accept it and start mining on top of it. Presence of the transaction in the
block is a confirmation of this transaction, but some users may choose to wait for several blocks on top of it
to get more assurance.

In [48] it was claimed that this system is secure as long as the majority of computing power is controlled
by the honest users. In other words: in order to break the system, the adversary needs to control machines
whose total computing power is comparable with the combined computing power of all the other participants
of the protocol. Unfortunately, no proof of this statement, or even a formal security definition was provided.
In our opinion, this is one of the main weaknesses of Bitcoin. We discuss it in the next section.
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A.2 Lack of security proof and the dishonest minority attacks on Bitcoin.

While the hard-core cryptography part (like the choice of the signature schemes and the hash functions) in
the most popular cryptocurrency systems looks perfectly sound, what seems much less understood is the
system of maintaining the trusted ledger. This is not just a theoretical weakness. In fact, recently in a very
interesting paper Ittay Eyal and Emin Gun Sirer [29] have shown that Nakamoto’s claim that no dishonest
majority can break the system is false. We will not present their attack (called the “selfish mining”) in detail
here, as it depends on Bitcoin incentive mechanism that we do not describe in this paper. Let us only say
that from a very high level view their strategy for the dishonest minority is to keep the newly mined blocks
secret, and to send them over the network only if certain conditions are satisfied.

One may argue, that performing such attacks by miners is financially irrational, because such attacks can
be easily noticed, what would cause a collapse in the Bitcoin price and subsequently would make mining
less profitable. Even if this argument is sound, it shows that we need some additional assumptions to make
Bitcoin secure, other than “the majority is honest”, what was claimed in the original Nakamoto’s paper.

Another claim from the original work of Nakamoto, which turned out not to be completely true is that a
probability of reverting a transaction in a block on top of which there are b other blocks decreases exponen-
tially with b. Surprisingly, Lear Bahack [7] has recently shown that this claim is no longer true if we consider
the difficulty adjustment algorithm, which is used in Bitcoin to gradually make mining new blocks more
difficult as the total computational power of all miners grows. In his paper Bahack shows than an adversary
can discard a block on any depth with a probability 1 regardless of his computational power if he is willing
to wait long enough. An interesting survey of the known strategies for dishonest miners and their discussion
can be found in [21].

In our opinion all of these weakness could have been avoided (or at least they could be known in advance)
if Bitcoin came with a formal model and mathematically proven security. Unfortunately, it was not the case.
This was probably partly due to the fact that designing a complete model for cryptocurrencies is a challenging
and ambitious project. For example such a model should take into account the incentive system for mining,
and hence should include elements of the rational cryptography framework [41,36,32].

A.3 The “genesis block” generation.

One a more theoretical side, what may be considered unsatisfactory is the fact that the Bitcoin genesis block
B0, announced by Satoshi Nakamoto on January 3, 2009, was generated using heuristic methods. More
concretely, in order to prove that he did not know B0 earlier, he included the text The Times 03/Jan/2009
Chancellor on brink of second bailout for banks in B0 (taken from the front page of the London Times on
that day). The unpredictability of B0 is important for Bitcoin to work properly, as otherwise a “malicious
Satoshi Nakamoto” A that knew B0 beforehand could start the mining process much earlier, and publish an
alternative block chain at some later point. Since he would have more time to work on his chain, it would
be longer than the “official” chain, even if A controls only a small fraction of the total computing power.
Admittedly, its now practically certain that no attack like this was performed, and that B0 was generated
honestly, as it is highly unlikely that any A invested more computing power in Bitcoin mining than all the
other miners combined, even if A started the mining process long before January 3, 2009.

However, if we want to use the Bitcoin paradigm for some other purpose (including starting a new
currency), it may be desirable to have an automatic and non-heuristic method of generating unpredictable
strings of bits. The problem of generating such random beacons [49] has been studied in the literature for a
long time. Informally: a random beacon scheme is a method (possibly involving a trusted party) of generating
uniformly random (or indistinguishable from random) strings that are unknown before the moment of their
generation. The beacons have found a number of applications in cryptography and information security,
including the secure contract signing protocols [49,28], voting schemes [47], or zero-knowledge protocols
[5,35]. Note that a random beacon is a stronger concept than the common reference string frequently used in
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cryptography, as it has to be unpredictable before it was generated (for every instance of the protocol using
it). Notice also that for Bitcoin we actually need something weaker than uniformity of the B0, namely it is
enough that B0 is hard to predict for the adversary.

Constructing random beacons is generally hard. Known practical solutions are usually based on a trusted
third party (like the servers www.random.org and beacon.nist.gov). Since we do not want to base the security
of our protocols on trusted third parties thus using such services is not an option for our applications. Another
method is to use public data available on the Internet, e.g. the financial data [16] (the Bitcoin genesis block
generation can also be viewed as an example of this method). Using publicly-available data makes more
sense, but also this reduces the overall security of the constructed system. For example, in any automated
solution the financial data would need to come from a trusted third party that would need to certify that the
data was correct. The same problem applies to most of other data of this type (like using a sentence from a
newspaper article).

One could also consider using the Bitcoin blocks as such beacons (in fact recently some on-line lotteries
started using them for this purpose). Treating Bitcoin blocks as a source of randomness can make sense for
some applications, even for running new cryptocurrencies, e.g., a genesis block for a new currency can be
based on some Bitcoin block. This solution is not fully satisfactory from a theoretical point of view since it
suffers from a “chicken or egg problem”: to create a cryptocurrency one needs to assume that another cryp-
tocurrency is already running. Also, from the practical point of view it has some weaknesses. In particular,
as described above, Bitcoin is not fully secure, and moreover one of the attacks described in the literature
[29] is based on the strategy of withholding blocks. Associating some external (possibly financial) incentive
for publishing only blocks that satisfy certain properties, can additionally change the economical model of
Bitcoin, and needs to be taken into account when the security of the whole system is considered10.

B Additional machinery for the random oracle model

Consider an algorithm A running in time t̂ and look at his calls to the random oracles in Hκ during his
execution. Call an execution canonical if it never happened that a malicious prover “guessed” an output of
any random oracle. More formally, an execution is canonical if for every λ ∈ Λ and every call q to Hκ

λ equal
to (w, v) ∈ {0, 1}κ × {0, 1}κ or w ∈ {0, 1}κ it is never the case that A receives v or w from Hκ

λ′ (for some
possibly different λ′ ∈ Λ) after he issues q . We now have the following.

Lemma 7. For every A running in time t̂ the probability that the execution of A is not canonical is at most
2t̂2 · 2−κ.

Proof. Consider a value u ∈ {0, 1}κ that A received from any Hλ′ on some query q. Since we assumed
that A never queries Hλ′ more than once on q, thus before A received H(q), it appeared uniform to him.
Therefore the probability that A earlier queried H on u, (w, u) or (u,w) (for some w ∈ {0, 1}κ) is at most
2t̂ · 2−κ. Since A issues at most t̂ oracle queries hence (by the union bound) we get that the probability that
the execution of A is not canonical is at most 2t̂2 · 2−κ. ut

Suppose every Hλ is of a type H : {0, 1}∗ → {0, 1}κ. Call an execution collision-free if it never happened
that there were two different calls q and q′ to Hλ (for some λ ∈ Λ) such that Hλ(q) = Hλ(q

′).

Lemma 8. For every A running in time t̂ the probability that the execution of A is not collision-free is at
most t̂2 · 2−κ.

Proof. For every output w of Hλ the probability that it was output already to some earlier call is at most
t̂ · 2−κ. Thus, the probability that this happens for some output w is at most t̂2 · 2−κ. ut
10 Actually, this is one of the reasons why modeling and proving Bitcoin’s security is so hard: one would need to also consider these

type of “environmental conditions” to model the whole economic system accurately.
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C Proof of Lemma 1

Proof. Without loss of generality assume that A also queries the oracle on r. Now, suppose his execution
was canonical and collision-free. This means that he also had to query the oracle on both children of the
root ofMHκc (i.e. onMHκc (0),MHκc (1), and then, recursively, on children of every node on the path from
the root to λi. Hence in this case A made all the queries that are needed by the verification algorithm
MVrfyH

κ
(vi, i, p, w). This finishes the proof, since, by Lemmas 7 and 8 the probability that the execution

was either not canonical or not collision-free is at most 3t̂2 · 2−κ. ut

D Proof of Lemma 2

The prover complexity of (Pκ,αt ,Vκ,αt ) is equal to the number of nodes of Merkleκt,c, and hence it is equal
to t. The verifier complexity is equal to the number of nodes in eachM′i times α, and hence it is equal to
α · dlog2 te. ut

E Proof of Lemma 3

Consider a malicious prover P̂ running in total time t̂0 and in time t̂1 after he received some c ∈ {0, 1}κ,
and look at his calls to the random oracles during his execution. Consider the labeled tree M that P̂ sends
to the verifier. Of course, every “reasonable” P̂ would check himself the conditions that the verifier checks
in Step 2, as otherwise his probability of guessing the correct labels are very small. In the proof, however,
we need to consider all possible strategies of P̂, and hence we also need to take into account the case when
he behaves in an unreasonable way. To make it formal, we say that an execution of P̂ is normal if the tree T
that he sends to V is such that during the execution P̂ issued all the oracle queries that V issues in Step 2. We
now have the following.

Lemma 9. If an execution of P̂ is not normal then the probability that V outputs true is at most 2−κ.

Proof. If P̂ never issued a query that will be issued during the verification process, then the only thing he
can do is try to guess it. Since the outputs of the random oracle are distributed uniformly, thus the probability
that he guesses correctly is at most 2−κ. Hence Lemma 9 is proven. ut

Lemma 10. Assume the execution of P̂ on some c ∈ {0, 1}k was canonical and collision-free (cf. Appendix
B) and normal. Then the probability that P̂(c) convinces the verifier V is at most t̂1((t̂1 + 1)/t)α.

Proof. LetQ denote the set of queries of a type (L,R) that P̂(c) ever made to the random oracle Hκ
ε (where

ε is the root of the tree). Clearly |Q| ≤ t̂1. Fix some q ∈ Q and define recursively a labeled binary tree U (of
depth at most dlog2 te) as follows:

– the root ε to U has a label Hκ(q),
– for every node of U with a label w:
• if during the execution there was a call (L,R) to Hκ

λ whose outcome was w then add to U nodes
(λ||0) and (λ||1) with labels L and R (resp.),
• if during the execution there was a call L to Hκ

λ whose outcome was w then add to U a nodes (λ||0)
with labels L.

Since we assumed that the execution is canonical and collision-free thus each value w appears at most once
as an output of an oracle. Therefore the binary tree U is defined uniquely for every q. Let Σ = {σ1, . . . , σm}
denote the leaves of U . Since U is a binary tree, hence its total number of nodes is at least equal to 2 ·m− 1.
It is also easy to see, that, since the execution is canonical, thus all the calls to Hκ that were issued during

24



the construction of U were made after P̂ learned c). Therefore the total number of nodes in U is at most t̂1,
and thus we obtain:

m ≤ (t̂1 + 1)/2 (1)

The fixed query q ∈ Q also determines the inputHκ(q) to the oracleG, and, in turn,G’s output (λ1, . . . , λα) :=
G(Hκ(q)). For i = 1, . . . , d let Xi denote the event that λi ∈ Σ. Since the execution is canonical Σ had to
be chosen before the query q was sent to Hκ, and thus the choice of Σ is independent from (λ1, . . . , λα).
Therefore the events X q1 , . . . ,X

q
α are independent. Moreover, since the outputs of the random oracle are uni-

form, hence for every i the probability of X qi is equal to the cardinality m of |Σ| divided by the total number
dt/2e ≥ t+ 1 of leaves in Merkleκt,c. Therefore, by (1), it is at most (t̂1 + 1)/t. Let X q denote the event that
for every i we have λi ∈ Σ, i.e. X q := ∧αi=1X

q
i . From the independence of X qi ’s we get that

P (X q) ≤ ((t̂1 + 1)/t)α

Let X denote the sum of events X q over all q ∈ Q. There are clearly at most t̂1 such q’s. Therefore, from
the union bound we have P (X ) = t̂1((t̂1 + 1)/t)α. If X did not happen then for every q ∈ Q the malicious
prover does not know the label of at least one leaf λi ∈ Hκ(q). Thus, since we assumed that the execution is
normal, he cannot send any tree T to V that would convince him. Hence the total probability of P̂ succeeding
is at most t̂1((t̂1 + 1)/t)α. This finishes the proof of Lemma 10. ut

We now go back to the proof of Lemma 3. Since, by Lemmas 7 and 8 (in Appendix B) and Lemma 9 the
total probability that an execution is either not normal or not collision-free or not cannonism is at most
(3t̂2 +1) · 2−κ. If this did not happen, then by Lemma 10 the malicious prover convinces V with probability
at most t̂1((t̂1 + 1)/t)α. Altogether, this probability is bounded by (3t̂2 + 1) · 2−κ + t̂1((t̂1 + 1)/t)α. ut

F Proof of Lemma 4

Proof. First observe that the honest parties have enough time to perform all the computations that the pro-
tocol requires them to perform. Clearly, this is true for the “challenges” and the “Proof of Work” phases. To
see why it holds for the “key ranking phase” assume for a while (it will be proved later), that each honest
party sends at most dπmax/πe messages to each other party in this phase and therefore altogether there are
at most θ messages delivered to each party in every interval. Therefore each party has to compute at most
θ times the V function, which altogether takes θ · timeV steps, which take real time (θ · timeV)/π. This is
exactly the time we have given to every Pi to compute it.

The key generation property is satisfied trivially since the secret keys ski of the honest parties are
never used in the protocol. It is also easy to see that if two parties Pi and Pj are honest then the mes-
sage (Key0, pki, A

`+1
i , Soli) will always be accepted in interval 0 of the “key ranking” phase, and hence the

validity property holds.
To see why the consistency property holds assume that k = ranki(pk) < ` for some pk. This means

that Pi received a message (Keyk, pk, B`+1−k, . . . , B`+1,Sol) in k-th round of the “key ranking” phase, and
she accepted this pk. Hence, she sent the message (Keyk+1, pk, A`−ki , B`+1−k, . . . , B`+1,Sol) to Pj , and
it was received by Pj in the (k + 1)-st round of the key ranking phase. If Pj already accepted pk in some
earlier interval then rankj(pk) ≤ k, and hence we are done. Suppose it was not the case. Then Pj , in order
to accept pk checks exactly the same conditions as Pi plus the condition that c`−(k+1)

j ≺ A`−κi . It is easy to

see that this condition has to hold, since an honest Pi always adds c`−(κ+1)
j (sent to him by an honest Pj in

the “challenges phase”) to A`−κi .
What remains is to prove the bounded creation of identities property. To see why it holds observe that

each party Pi accepts a public key pk if it comes with a proof of work computed on F (pk, B`+1), and a
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sequence B`+1−k, . . . , B`+1, such that for every `+1−k ≤ i ≤ ` we have F (Bi) ≺ Bi+1. Because of this,
clearly, F (pk, B`+1) is uniformly random to everybody (including the adversary) before a query F (B`+1−k)
is made to F . Party Pi also checks if c`−ki ≺ B`+1−k, where c`−ki is Pi’s challenge from the (`− k)th
interval. Since this challenge needs to be a function of Pi’s’ challenge c0i from the 0th interval, hence before
the protocol started it was uniform from the point of view of the adversary. Hence, altogether, F (pk, B`+1)
was uniform from A’s point of view before the protocol started. Hence, for each pk the adversary had to
invest some number of computing steps, let I denote the set of those pk’s where he worked for at least
ξtimeP steps, where

ξ :=
1 + π/(2πA)

1 + π/πA
.

Since ξ is a constant and is smaller than 1, thus (by Corollary 1) with overwhelming probability he will only
manage to create to identities from the set I . Hence, what remains is to give a bound on |I|. Let us look at
the total time T that the execution of the protocol takes. The “challenges phase” takes (` + 2)∆ time. The
“proof-of-work” phase takes timeP/π time, and the “key ranking phase” takes (` + 1)(∆ + (θ · timeV)/π)
time. Summing it up we obtain

T ≤ (`+ 2)∆+ timeP/π + (`+ 1)(∆+ (θ · timeV)/π)

≤ timeP/(κ
2π) + timeP/π + timeP/(κ

2π) + (`+ 1) · θ · timeV/π (2)

= (1 + 2/κ2) · timeP/π + (`+ 2) · θ · timeV/π

≤ (1 + 2/κ2) · timeP/π + (timeP/(κ
2 ·∆ · π)) · θ · timeV/π (3)

=
timeP
π
·
(
1 +

2 + θ · timeV/(∆ · π)
κ2

)
=

timeP
π
·
(
1 +

2

κ2
+
θ · dlog2 timePe

κ ·∆ · π︸ ︷︷ ︸
ε(κ):=

)
(4)

=
timeP
π
· (1 + ε(κ)), (5)

where (2) and (3) come from the fact that timeP = κ2 · (` + 2) · ∆ · π, and (4) comes from the fact that
timeV = κ dlog2 timePe. We get that

|I| ≤ timeP · πA
π

· (1 + ε(κ))/(ξ · timeP) (6)

=
πA
π
· (1 + ε(κ)) · 1 + π/πA

1 + π/(2πA)
(7)

=
(πA
π

+ 1
)
· 1 + ε(κ)

1 + π/(2πA)
. (8)

Since log timeP = 2 log κ+ log(`+2)+ log π thus ε(κ)→ 0. Hence for sufficiently large κ the value of (8)
is smaller than πA/π + 1, and hence, since it is an integer, it has to be at most dπA/πe. ut

G Communication and message complexity of the RankedKeysκ protocol

Communication and message complexity in the public channel model. Before we provide an efficiency
analysis of the RankedKeysκ scheme let us optimize it a bit11. First of all, observe that the only reason why

11 The reason why the first version of the protocol was presented without these optimizations was that we think that would make
the protocol harder to understand.
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(Keyk, pk, A`−ki , B`+1−k, . . . , B`+1, Sol) is sent by Pi at the end of the kth round of the “key ranking phase”
is that each other party Pj needs to be able to check in the the (k + 1)st round that c`−(k+1)

j ≺ A`−ki and
F (A`−ki ) ≺ B`+1−k, and F (B`) ≺ B`+1 (for i = k− 1 down to 0). An obvious way to optimize it is to use
the Merkle Trees (see Section 5) in the following way. Instead of using a hash function F we use MHash,
and then instead of sending A`−ki , B`+1−k, . . . , B`+1 we send A`−κi ,MHash(B`+1−k), . . . ,MHash(B`+1)
together with the Merkle proofs that F (A`−ki ) was used to compute the hash MHash(B`+1−k) and that
MHash(B`−i) was used to compute MHash(B`+1−i) (for i = k−1 down to 0). These proofs can be checked
efficiently using the MVrfy procedure. The security of such improved protocol easily follows from Lemma
1 (that states that no poly-time adversary can “fake” a Merkle proof with non-negligible probability). Since
the length of each Merkle proof is at most logarithmic in the length of its input, hence the total length of
every message sent during the “key ranking phase” is O(κ(θ+ ` log θ)+p), where p is the size of the proofs
generated by Sol algorithm 12. There are at most ` = dπmax/πe identities created in the execution of the
protocol (except a negligible probability), so each honest party sends at most ` messages in the ,,key ranking
phase” and hence the communication complexity of each party in this phase is O(`κ(θ + ` log θ) + `p).
It is also easy to see that the communication complexity of each party in the “challenges phase” is O(`κ),
and in the “Proof of Work” phase it is O(θκ + p). Therefore the total communication complexity of each
party is O(`κ(θ + ` log θ) + `p). Each honest party sends `+ 2 messages in the ,,challenge phase”, exactly
one message in the ,,Proof of Work” phase and at most ` messages in the ,,key ranking phase”, so the total
message complexity of every party is equal to 2`+ 3.

Communication and message complexity in the bilateral channels model. Recall that in the bilateral
channels model we assume unreliable channels between the parties and measure the communication and
message complexities by counting the total number of respectively bits and messages sent over all channels.
Of course, every protocol secure in the public key model can be run also in the bilateral model, by telling
each party to send through the bilateral channels all the messages that normally she would send over C.
This, however, would result in the communication complexity multiplied by n (since each channel counts
now separately). Fortunately, in case of our protocol we can do something more clever. Note that in the “key
ranking phase” the goal of sending theA`−ki vectors is to allow each party to check that here challenge (that is
c
`−(k+1)
j ) was used to compute c`−ki = F (A`−ki ). In the bilateral channels model we can modify this by using

once again the Merkle trees: each Pi sends to each Pj a Merkle hash MHash(A`−ki ) together with a proof
that Pj’s challenge c`−(k+1)

j was used to compute it. Later, Pj can easily verify it using the MVrfy procedure.
Hence, the communication complexity becomes O(κ`2 log θ + `p). Obviously, the message complexity is
O(n`).

12 A`−ki has a length O(κθ) and we have O(`) Merkle proofs of length O(κ log θ) each
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