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Abstract

A key source of inefficiency in existing obfuscation schemes is that they operate on programs repre-
sented as Boolean circuits or (with stronger assumptions and costlier constructs) as Turing machines.

We bring the complexity of obfuscation down to the level of RAM programs. That is, assuming
injective one way functions and indistinguishability obfuscators for all circuits, we construct indistin-
guishability obfuscators for RAM programs with the following parameters, up to polylogarithmic factors
and a multiplicative factor in the security parameter: (a) The space used by the obfuscated program,
as well as the initial size of the program itself, are proportional to the maximum space s used by the
plaintext program on any input of the given size. (b) On each input, the runtime of the obfuscated
program is proportional to s plus the runtime of the plaintext program on that input. The security loss
is proportional to the number of potential inputs for the RAM program.

Our construction can be plugged into practically any existing use of indistinguishability obfuscation,
such as delegation of computation, functional encryption, non-interactive zero-knowledge, and multi-
party computation protocols, resulting in significant efficiency gains. It also gives the first succinct and
efficient one-time garbled RAM scheme. The size of the garbled RAM is proportional to the maximum
space s used by the RAM machine, and its evaluation time is proportional to the running time of the
RAM machine on plaintext inputs.

At the heart of our construction is a mechanism for succinctly obfuscating “iterated circuits”, namely
circuits that run in iterations, and where the output of an iteration is used as input to the next. As con-
tributions of independent interest, we also introduce (a) a new cryptographic tool called Asymmetrically
Constrained Encapsulation (ACE), that allows us to succinctly and asymmetrically puncture both the
encapsulation and decapsulation keys; and (b) a new program analysis tool called Inductive Properties
(IP), that allows us to argue about computations that are locally different, but yet globally the same.
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1 Introduction

The ability to cryptographically obfuscate general programs holds great prospects for securing the future
digital world. However, current general-purpose obfuscation mechanisms are highly inefficient. One of the
main sources of inefficiency is the fact that the existing mechanisms work in different models of computation
than those used to write modern computer programs. Specifically, the candidate indistinguishability obfus-
cator of Garg et. al [GGH+13] and most other general purpose obfuscators in the literature are designed for
boolean circuits, and incur a polynomial overhead in both the size and the depth of the circuit. Assuming
circuit-obfuscators that satisfy a stronger security property (differing input obfuscation, or DIO), Boyle et.
al [BCP14] and Ananth et al. [ABG+13] show how to transform the obfuscator of Garg et. al into one that
operates directly on Turing machines, where both the size of the obfuscated program and its runtime on
each input are polynomially related to the size and runtime of the input program.

However, working in either the circuit model or the Turing machine model does not allow taking advantage
of the fact that realistic computations are invariably the result of relatively short programs written for RAM
machines, where the program is executed on CPU with random access to large amount of memory. In other
words, when applying such an obfuscator to a RAM program (ie a program written for a RAM machine), one
has to first translate the program to a circuit or a Turing machine. Such translation may incur unreasonable
overhead in of itself, even before applying the obfuscator. Furthermore, since the obfuscated program is now
a circuit or a Turing machine, one cannot meaningfully exploit the advantages of the RAM model in running
it.

We present an indistinguishability obfuscator for RAM programs, that roughly preserves the time and
space requirements of the input program. Time is preserved on a per-input basis, whereas space is preserved
only in worst-case. More precisely, our obfuscator O takes as input a RAM program π and a length bound
n, and outputs a circuit π′ of size Õ(s)poly(k) and depth poly(k), where k is the security parameter and s is
the maximum space taken by π on any n-bit input.

Given an n-bit input x, π′ outputs a RAM program π′x of size |π′x| = poly(k) and an initialized Õ(s)-cells
random-access memory, where each cell is of size poly(k). π′x runs for Õ(t) steps and outputs π(x), where t
is the runtime of π on x.

As for security, we guarantee that O(π1, n) ≈ O(π2, n) for any two programs π1, π2 that have the same
runtime (more precisely, same same number of memory accesses) on all n-bit inputs x, and furthermore
π1(x) = π2(x).

Notice that the program π′x is in essence a garbled RAM program. This improves on the garbled RAM
scheme of Gentry et al. [?], where the size of the garbled program is proportional to the runtime of the
plaintext progam.

Our construction starts from any indistinguishability obfuscator for circuits, and in addition assumes
only existence of injective one way functions. We incur a loss in security that’s linear in the number of
different inputs on which π runs. That is, if the underlying obfuscator guarantees distinguishing probability
ε(k), and π takes ` different inputs, then our obfuscator guarantees distinguishing probability `poly(k)ε(k).

Applicability. Our obfuscation mechanism can be used in practically any place where indistinguishability
obfuscators for circuits have been used, with the commensurate efficiency gains. We remark that most com-
putations have relatively low space requirements (say, linear in the input size), thus making the dependence
on space less critical. A number of immediate applications include:

Publicly verifiable non-interactive delegation of computation: To delegate the computation of π(x)
for a RAM program π and input x, the delegator samples a pair (sk, vk) of signature and verification
keys of a digital signature scheme, and creates the program π′ = O(π̂x) where π̂ is the program that
runs π on input x, obtains the output y and outputs (y, Sign(sk, y)). It then sends π′,M, vk to the
worker. The result is accepted if the signature verifies with respect to vk. (Non-adaptive) soundness is
straightforward to argue. Note that, for space bounded computations, this protocol provides a publicly
verifiable alternative to the recent delegation scheme of Kalai et. al [KRR13]. Furthermore, the worker
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only incurs overhead relative to the RAM complexity of π. Note that here O operates on a single-input
program so the security loss in the reduction is minimal.

Functional encryption. Plugging our construction instead of the indistinguishability obfuscators in the
functional encryption scheme of Garg et al. [GGH+13], we obtain functional encryption where the
complexity of decryption is proportional only to the RAM complexity of the underlying function.

NIZK. Plugging our construction instead of the indistinguishability obfuscators in the non-interactive zero
knowledge protocol of Sahai and Waters [SW14], we obtain the first general NIZK where the complexity
of the prover is proportional only to the RAM complexity of the underlying relation.

Multiparty computation. Plugging our construction instead of the indistinguishability obfuscators in the
multiparty computation protocol of Garg et al. [GGHR14], which in turn uses the underlying protocol
of Gordon et al. [GKK+12], we obtain the first constant-round multiparty protocol where the overhead
of the parties is proportional only to the RAM complexity of the underlying function.

1.1 Our techniques

Succinct obfuscation of iterated functionalities. The key component in our solution approach is a
mechanism for succinctly obfuscating iterated computations. Consider the following problem: We are given
a function (in form of a circuit c) from {0, 1}n to {0, 1}n. We would like to create an indistinguishability
obfuscation of the function ct for some t. Clearly, one can just directly obfuscate the circuit ct which consists
of t copies of c composed in sequence. However, can one do better? Specifically, can one come up with
an obfuscation mechanism that, given c and t, outputs an obfuscated circuit O(c) = c′, whose size is only
polylogarithmic in t, such that c′t(x) = c(x)t on all x, and such that c′ is obfuscated in the sense that no
intermediate results are revealed by c′? Furthermore, can this be done assuming only indistinguishability
obfuscation for circuits?

We show how to do this using a mechanism for encapsulating the “state” information that’s passed from
one iteration of c′ to the next. The basic idea is simple: have c′ increment an “iteration number” in each
iteration, and then encrypt and authenticate the state information via keys that are known only to c′. (The
idea has been used before in different contexts, eg in [CGH04, CPS13].) Here however proving security of
this process is tricky, since the encryption and authentication keys are only protected by indistinguishability
obfuscation. In fact, the argument appears to be circular: indistinguishability of the obfuscation hinges on
the fact that c′ rejects fake “state information from the previous round”, but rejecting such fake information
hinges on the obfuscation being secure.

We get around this circularity using a primitive that we call Asymmetrically Constrained Encapsulation
(ACE). The idea is to have determinstic authenticated encryption where one can puncture keys only at the
reciving end, without puncturing them at the sending end. See formal definition within. We construct an
ACE scheme using the Sahai-Waters encapsulation mechanism on top of constrained (puncturable) PRFs
[SW14], along with any indistinguishability obfuscator.

Using ACE we show that O(c1, t) ≈ O(c2, t) for any two circuits c1, c2 such that ct1(x) = ct2(x) for all x,
even if, say, ct

′

1 (x) 6= ct
′

2 (x) for some t′ < t. However, this comes with a caveat: At each iteration, we incur
a security loss that is proportional to the number of values in the image of c (namely, 2n in this case). This
technique is thus most powerful when applied to circuits with small range.

Obfuscating RAM programs with fixed memory access pattern. Our next step is to obfuscate RAM
programs where the memory access pattern is fixed in advance, or in other words construct an obfuscator O
with the right efficiency parameters, and where O(π1) = O(π2) for any π1, π2 such that (a) π1(x) = π2(x)
for all x, and (b) π1, π2 have the same runtime and same memory access pattern for all x. In a sense, this
step can be seen as an extension of the generic iterated circuits obfuscation mechanism described above
to the case where the circuit takes its inputs in “small pieces”. Indeed, here the security loss incurred is
significantly smaller.
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We do this in two steps. First we construct a “single input obfuscation” mechanism, or in other words
a “succinct garbling” mechanism for such programs. The mechanism is straightforward: Given a RAM
program π and input x, O first chooses key a for an ACE scheme. It then prepares an initial memory map
µ. µ consists of s(|x|) memory elements, where each element is the result of applying ACE with the chosen
key a to a “plaintext cell”, where the contents of the plaintext cells are defined as follows. (Recall, s(|x|) is
the maximum memory size for inputs of size |x|.) Each plaintext memory cell contains its address (namely,
its index in the sequence of cells) and a timestamp initialized to 1. In addition, the first n plaintext cells
contain the corresponding bits of the input, and the remaining cells contain 0.

Next O prepares the garbled program π′. π′ is the result of applying an indistinguishability obfuscator
to the following program π′′, represented as a circuit. π′′ has the key a. It then runs the underlying π in
the natural way where the memory accesses made by π are translated to the actual, encapsulated memory.
In doing so, π′′ verifies the validity of the decapsulated information and updates the time counter values of
the written cells. Once π generates output, π′′ outputs whatever π outputs.

Correctness under honest execution and the complexity parameters of O are easy to verify. For security,
we show a strong simulatability property: The information gathered by any adversary given O(π, x) is
simulatable given only π(x), together with the (fixed) memory access pattern of π. This is done in t
steps, where t is the runtime of π(x). In step i we consider the hybrid execution where the memory is
initialized to its contents at step i of the computation, and π′′ is modified so that in the first i steps of the
computation it essentially idles and only updates the time counters of the accessed memory locations. The
actual computation then resumes from step i. We then reduce the indistinguishability of any two consecutive
hybrids to the security of the underlying ACE scheme.

The security loss in this reducion is minimal. On the down side, our proof of security crucially uses the
fact that O generates the entire memory map in advance; this is what causes the initial obfuscation to be
proportional to the space requirements of the plaintext RAM program.

This single-input obfuscation can be extended in a number of ways to an obfuscation that takes multiple
inputs. Perhaps the most direct way is to use the approach of Gentry et al. [GHRW14], namely to have Õ(π)
be the indistinguishability obfuscation of the circuit that has a puncturable PRF f hardwired, and given
and x, runs the obfuscator O described above on π, x, and random input f(π, x). Alternatively, keep the
program π′ unchanged, and then add to the obfuscation another program ν, which is the result of applying
an indistinguishability obfuscator to the circuit that has the same ACE key as π′, and on input x generates
the initial encapsulated memory map µ that corresponds to x. Here care should be taken to prevent “mix
and match” attacks that combine memory maps from different executions.

Obfuscating general RAM programs. Our final step addresses RAM programs that have arbitrary
memory access patterns. Here we employ an Oblivious RAM (ORAM) mechanism [?] for hiding the memory
access pattern of the plaintext program, as well as a “freshness guarntor (FG) mechanism” that keeps track
of the last time that a memory cell was written to. We employ both mechanisms directly to the plaintext
program π. The randomness for the ORAM is obtained by applying a puncturable PRF to the actual
memory contents read or written. Next, we apply the single-input mechanism from the previous step.

For our scheme to work, we need ORAM and FG mechanisms with special properties. For efficiency,
we need that the computational overhead of both mechanism will be only polylogarithmic per read or write
operation in the worst case (as opposed to amortized). For security, we need the following strong security
property from the ORAM: For any i, the sequence of actual memory accesses that correspond to the ith
virtual memory access is indistingushable from an actual access pattern that comes from some predetermined
distribution. Furthermore, this is so even given all the actual access patterns in the execution prior to the ith
virtual memory access. For the FG mechanism we need the inductive property stating essentially that the
correctness of the result of the mechanism for a given memory cell depends only on the past write accesses
to that very cell.

We then demonstrate that existing ORAM and FG mechanisms satisfy the desired properties. Specifically,
we use the ORAM mechanism of Chung and Pass [CP13] and the FG mechanism of [GHRW14].

We note that the proof of security of this scheme is delicate and requires much care. Again, the main
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source of difficulty results from the fact that one cannot directly argue that the random choices of the
ORAM are hidden from the adversary. Rather, the hiding and validity properties need to be argued via a
long sequence of hybrids - even for moving between two consecutive computational steps in the underlying
program. Indeed, the number of hybrids (hence the security loss) is polynomial in t.

Organization. Section 2 recalls indistinguishability obfuscation and other basic definitions. Section 3
presents and constructs Asymmetrically Constrained Encapsulation (ACE). Section 4 presents our succinct
obfuscation mechanism for iterated circuits. We note that this mechanism is not directly used in the con-
struction of RAM obfuscation; rather, it is a separate result which is of interest on its own. Section 5
presents two general structural theorems regarding the application of ACE schemes to circuits of a spe-
cial form. These theorems simplify and clarify the analysis of the scheme for obfuscating RAM programs,
presented in Section 6.

2 Preliminaries

We will use λ to denote the security parameter. Two distribution ensembles A = {Aλ}λ>0 and B = {Bλ}λ>0

are computationally indistinguishable if for every probabilistic polynomial time (PPT) distinguisher D, there
is a negligible function µ(·) such that for every λ,

∣∣Pr[x← Aλ : D(x) = 1]−Pr[x← Bλ : D(x) = 1]
∣∣ ≤ µ(λ).

In this case, we say that A ≈c B. Throughout the paper, we will use OWF to denote an injective one-way
function.

2.1 Injective Pseudorandom Generators

A pseudorandom generator (PRG) is a polynomial-time algorithm G that maps n-bit strings into m-bit
strings where m > n, and G(Un) ≈c Um. We will make use of pseudorandom generators that are injective
functions from {0, 1}n → {0, 1}m. Such PRGs can be based on injective one-way functions.

2.2 Puncturable Pseudorandom Functions

A puncturable family of PRFs are a special case of constrained PRFs [BW13, BGI14, KPTZ13], where the
PRF is defined on all input strings except for a set of size polynomial in the security parameter. Below we
recall their definition, as given by [SW14].

Syntax A puncturable family of PRFs is defined by a tuple of algorithms (GenPRF,PuncturePRF,EvalPRF)
and a pair of polynomials n(·) and m(·) :

• Key Generation GenPRF is a PPT algorithm that takes as input the security parameter λ and outputs
a PRF key K

• Punctured Key Generation PuncturePRF(K,S) is a PPT algorithm that takes as input a PRF key
K, a set S ⊂ {0, 1}n(λ) and outputs a punctured key K{S}

• Evaluation EvalPRF(K,x) is a deterministic algorithm that takes as input a (punctured or regular)
key K, a string x ∈ {0, 1}n(λ) and outputs y ∈ {0, 1}m(λ)

Definition 1. A family of PRFs (GenPRF,PuncturePRF,EvalPRF) is puncturable if it satisfies the following
properties :

• Functionality preserved under puncturing. Let K ← GenPRF, K{S} ← PuncturePRF(K,S).
Then, for all x /∈ S, EvalPRF(K,x) = Eval(K{S}, x).
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• Pseudorandom at punctured points. For every PPT adversary (A1, A2) such that A1(1λ) out-
puts a set S ⊂ {0, 1}n(λ) and x ∈ S, consider an experiment where K ← GenPRF and K{S} ←
PuncturePRF(K,S). Then∣∣Pr[A2(K{S}, x,EvalPRF(K,x)) = 1]− Pr[A2(K{S}, x, Um(λ)) = 1]

∣∣ ≤ negl(λ)

where U` denotes the uniform distribution over ` bits.

As observed by [BW13, BGI14, KPTZ13], the GGM construction [GGM86] of PRFs from one-way func-
tions yields puncturable PRFs.

Theorem 1 ([GGM86, BW13, BGI14, KPTZ13]). If one-way functions exist, then for all polynomials n(λ)
and m(λ), there exists a puncturable PRF family that maps n(λ) bits to m(λ) bits.

Remark 1. In the above construction, the size of the punctured key KS grows linearly with the size of the
puncture set S.

Remark 2. We will also be using injective puncturable PRFs in our constructions. Such PRFs can be based
on injective one-way functions.

2.3 Indistinguishability Obfuscation for Circuits

Here we recall the notion of indistinguishability obfuscation that was defined by Barak et al. [BGI+01].
Intuitively speaking, we require that for any two circuits C1 and C2 that are “functionally equivalent” (i.e., for
all inputs x in the domain, C1(x) = C2(x)), the obfuscation of C1 must be computationally indistinguishable
from the obfuscation of C2. Below we present the formal definition following the syntax of [GGH+13].

Definition 2 (Indistinguishability Obfuscation for Circuits). A uniform PPT machine iO is called an in-
distinguishability obfuscator for a circuit class {Cλ} if the following holds:

• Correctness: For every λ ∈ N, for every C ∈ Cλ, for every input x in the domain of C, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1.

• Efficiency: There exists a polynomial P such that for every λ ∈ N, for every C ∈ Cλ, |iO(C)| ≤
P (λ, |C|).

• Indistinguishability: For every λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, if C0(x) = C1(x) for all
inputs x, then for all PPT adversaries A, we have:

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(λ).

3 Asymmetrically Constrained Encapsulation

We define and construct a new primitive that we call Asymmetrically Constrained Encapsulation (ACE).
Essentially, an ACE scheme is a deterministic authenticated secret key encryption scheme, with the following
additional properties:

1. For each message and each key, there is at most a single string that correctly decapsulates to m under
key k.

2. The full decapsulation algorithm is indistinguishable from a constrained version of this algorithm, where
the key is punctured at a possibly large set of points (namely at some S ⊂M which is decidable by a
small circuit). Furthermore, this is so even when given the corresponding unpunctured encapsulation
algorithm, as long as no message that corresponds to an encoding c ∈ S is known.

This property will be central in our analysis of iterated circuit obfuscation.
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3.1 Definition

Let M = {0, 1}n denote the message space, where n = poly(λ). We will have two parameters for a ACE
scheme: a ciphertext security parameter ` and a set description size parameter s that will be described later.

An (`, s)-asymmetrically constrained encapsulation scheme consists of five (deterministic or randomized)
algorithms (Setup,GenEK,GenDK,Enc,Dec) described as follows:

• Setup: Setup(1λ) is a randomized algorithm that takes as input the security parameter λ and outputs
a secret key SK.

• (Constrained) Key Generation: Let S ⊂M be any set whose membership is decidable by a circuit
CS . We say that S is admissible if |CS | ≤ s. Intuitively, the set size parameter s denotes the upper
bound on the size of circuit description CS for any set S ⊂ M that is input to the encapsulation and
decapsulation key generation algorithms described below.

– GenEK(SK,CS) takes as input the secret key SK of the scheme and the description of circuit
CS for an admissible set S. It outputs an encapsulation key EK{S}. We write EK to denote
EK{∅}.

– GenDK(SK,CS) also takes as input the secret key SK of the scheme and the description of circuit
CS for an admissible set S. It outputs a decapsulation key DK{S}. We write DK to denote
DK{∅}.

Unless mentioned otherwise, we will only consider admissible sets S ⊂M.

• Encapsulation: Enc(EK ′,m) is a deterministic algorithm that takes as input an encapsulation key
EK ′ (that may be constrained) and a message m ∈M and outputs a ciphertext c or the reject symbol
⊥.

• Decapsulation: Dec(DK ′, c) is a deterministic algorithm that takes as input a decapsulation key
DK ′ (that may be constrained) and a ciphertext c and outputs a message m ∈M or the reject symbol
⊥.

(`, s)-Efficiency. We require that the algorithm Setup is polynomial-time in the security parameter. Fur-
thermore, we require that the size of any encapsulation key EK ′ and decapsulation key DK ′ (either of which
may be constrained) is bounded by some polynomial in λ, `, and s. Similarly, the running time of each of
the algorithms GenEK, GenDK, Enc, and Dec is bounded by some polynomial in λ, `, and s.

Correctness. An ACE scheme is correct if the following properties hold:

1. Correctness of Decapsulation: For all sets S, S′ ⊂M all m /∈ S ∩ S′,

Pr[SK ← Setup(1λ),Dec(GenDK(SK,CS),Enc(GenEK(SK,CS′),m)) = m] = 1.

Informally this says that Dec ◦ Enc is the identity on messages which are in neither of the punctured
sets.

2. Equivalence of Constrained Encapsulation: For all S ⊂M and all m /∈ S,

Pr[SK ← Setup(1λ),Enc(GenEK(SK,CS),m) = Enc(GenEK(SK, ∅),m)] = 1.

This says that the only functional difference between a punctured EK{S} and an unpunctured EK is
on the punctured set S.

3. Safety of Constrained Decapsulation: For all S ⊂M and all encapsulations c,

Pr[SK ← Setup(1λ), DK ← GenDK(SK,CS),m← Dec(DK, c);m ∈ S] = 0

This says that a punctured DK{S} will never decapsulate to a message in S.
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4. Equivalence of Constrained Decapsulation: For all S ⊂M and all encapsulations c,

Pr

[
SK ← Setup(1λ), DK ← GenDK(SK, ∅), DK{S} ← GenDK(SK,CS),
m← Dec(DK, c),m′ ← Dec(DK{S}, c); either m ∈ S or m′ = m

]
= 1,

This says that the only functional difference between a punctured DK{S} and an unpunctured DK
is on encapsulations of the punctured set S.

Unique Encapsulations. Let SK ← Setup(1λ). For any message m ∈ M, there exists an encapsulation
cm such that

Pr[Dec(GenDK(SK, ∅), cm) = m] = 1

and
c 6= cm =⇒ Pr[Dec(GenDK(SK, ∅), c) = m] = 0

Security of Constrained Decapsulation. We describe security of constrained decapsulation as a multi-
stage game between an adversary A and a challenger.

• Setup: A choose sets S0, S1, U s.t. S0 ⊆ S1 ⊆ U ⊆ M and sends their circuit descriptions
(CS0

, CS1
, CU ) to the challenger. A also sends arbitrary polynomially many messages m1, . . . ,ml

such that mi /∈ S1 \ S0.

The challenger computes SK ← Setup(1λ) and EK{U} ← GenEK(SK,CU ). Further, it chooses a bit
b ∈ {0, 1} and computes DK{Sb} ← GenDK(SK,CSb). It sends EK{U}, DK{Sb} to the challenger,
along with Enc(EK,mi) for each i ∈ {1, . . . , l}.

• Guess: A outputs a bit b′ ∈ {0, 1}.

The advantage of A in this game is defined as advA = Pr[b′ = b]− 1
2 . We require that there exists a function

εS,S′(·) s.t. advA = εS,S′(λ).

Remark 3. In the above definition, we do not necessarily require εS0,S1 to be negligible. Looking ahead, in
our construction of ACE, for any S0, S1, we have εS0,S1(λ) = poly(|S1 \ S0|, λ) · (advOWF (λ) + adviO(λ)).
When |S1 \S0| is super-polynomial, this is negligible assuming subexponential hardness of one-way functions
as well as iO. As we will see later, this weaker definition suffices for the applications of ACE in this paper.

(Selective) `-Indistinguishability of Ciphertexts. We describe (selective) security of ciphertexts of
a asymmetrically constrained encapsulation scheme as a multi-stage game between an adversary A and a
challenger.

• Setup: A chooses sets S,U ⊂ M and ` challenge message pairs (m0
1,m

1
1), . . . , (m0

` ,m
1
`), where every

mb
i ∈ S ∩ U . A sends the message pairs along with circuits (CS , CU ) to the challenger.

The challenger chooses a bit b ∈ {0, 1} and computes the following: (a) SK ← Setup(1λ), (b) EK ←
GenEK(SK, ∅), (c) cbi ← Enc(EK,mb

i ), c
1−b
i ← Enc(EK,m1−b

i ) for every i ∈ [`], and (d) EK{U} ←
GenEK(SK,CU ), DK{S} ← GenDK(SK,CS). Finally, it sends the following tuple to A:(

EK{S}, DK{U}, cb1, . . . , cb`
)
.

• Guess: A outputs a bit b′ ∈ {0, 1}.

The advantage of A in this game is defined as advA = Pr[b′ = b]− 1
2 .

We require that for all PPT adversaries A, there exists a negligible function negl(·) s.t. advA = negl(λ).

Definition 3. A (`, s)-ACE scheme is `-secure if it satisfies the properties of correctness, unique ciphertexts,
security of constrained decapsulation and selective `-indistinguishability of ciphertexts.
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3.2 Construction of ACE

We now present a construction of an asymmetrically constrainable encapsulation scheme. Our scheme is
based on the “hidden triggers” mechanism in the deniable encryption scheme of [SW14], and additionally
makes use of indistinguishability obfuscation.

Notation. Let F1 = {F1,k}k∈{0,1}λ be a puncturable injective pseudorandom function family, where F1,k :
{0, 1}n → {0, 1}2n. Let F2 = {F2,k}k∈{0,1}λ be another puncturable pseudorandom function family, where
F2,k : {0, 1}2n → {0, 1}n. Let iO be an indistinguishability obfuscator for all circuits.

Let ` be the ciphertext security parameter and s denote the set size parameter for ACE. Let p =
poly(λ, `, s) be a parameter to be determined later.

Construction. We now proceed to describe our scheme ACE = (Setup,GenEK,GenDK,Enc,Dec).

Setup(1λ): The setup algorithm first samples fresh keys K1 ← GenPRF(1λ) and K2 ← GenPRF(1λ) for the
puncturable PRF families F1 and F2 respectively.

Abusing notation, we will sometimes use Fi to refer to Fi,Ki .

GenEK((K1,K2), CS): The encapsulation key generation algorithm takes as input keys K1,K2 and the circuit
description CS of an admissible set S. It prepares a circuit representation of Genc (Algorithm 1), padded to
be of size p. Next, it computes the encapsulation key EK{S} ← iO(Genc) and outputs the result.

Algorithm 1: (Constrained) Encapsulation Genc

Data: K1, K2, circuit CS
Input: message m

1 if CS(m) then return ⊥;
2 else
3 α← F1(m);
4 β ← F2(α)⊕m;
5 return α‖β
6 end

GenDK((K1,K2), CS): The decapsulation key generation algorithm takes as input keys K1,K2 and the
circuit description CS of an admissible set S. It prepares a circuit representation of Gdec (Algorithm 2),
padded to be of size p. It then computes the decapsulation key DK{S} ← iO(Gdec) and outputs the result.

Algorithm 2: (Constrained) Decapsulation Gdec

Data: K1, K2, circuit CS
Input: encapsulation c

1 parse c as α‖β;
2 m← F2(α)⊕ β;
3 if CS(m) then return ⊥;
4 else if α 6= F1(m) then return ⊥;
5 else return m;

Enc(EK ′,m): The encapsulation algorithm simply runs the encapsulation key program EK ′ on message m
to compute the ciphertext c← EK ′(m).

Dec(DK ′, c): The decapsulation algorithm simply runs the decapsulation key program DK ′ on the input
ciphertext c and returns the output DK ′(c).

This completes the description of our construction of ACE .

8



(`, s)-Efficiency. It follows from the description that Setup runs in time poly(λ). Now, note that both
Genc and Gdec are of size p = poly(λ, `, s). From the efficiency property of iO, it follows any (constrained)
encapsulation key EK ′ and any (constrained) decapsulation key DK ′ is of size poly(λ, `, s). It then follows
from the description of the scheme that GenEK, GenDK, Enc, and Dec run in time poly(λ, `, s).

Theorem 2. Assuming indistinguishability obfuscation for all circuits and one-way functions, for all `, s ∈
poly(λ), the proposed scheme ACE = (Setup,GenEK,GenDK,Enc,Dec) is `,s-efficient.

3.3 Proof of Security

Correctness. We now argue correctness:

1. Correctness of Decapsulation Now, let S, S′ ∈M and let m /∈ S′ ∩ S be an input to the encapsulation
key program. Then because of line 1 in Genc and line 3 in Gdec, and the correctness of iO, the correctness
of decapsulation is inherited from the correctness of the unpunctured, unobfuscated scheme, which is
easy to check.

2. Equivalence of Constrained Encapsulation: This follows from the fact that the only difference between
a constrained and an unconstrained encapsulation key is in line 1 of Algorithm 1.

3. Safety of Constrained Decapsulation: This follows from line 3 of Algorithm 2.

4. Equivalence of Constrained Decapsulation: This follows from the fact that the only difference between
a constrained and an unconstrained decapsulation key is in lines 4-5 of Algorithm 2.

Uniqueness of Encapsulations. The unique encapsulation property follows from the injectivity of F1.

Security of Constrained Decapsulation. We now prove that ACE satisfies security of constrained
decapsulation.

Lemma 1. The proposed scheme ACE satisfies security of constrained decapsulation.

Proof. Let S0, S1, U be arbitrary subsets of M s.t. S0 ⊆ S1 ⊆ U ⊆ M and let CS0
, CS1

, CU be their circuit
descriptions. Let SK ← Setup(1λ) and EK{U} ← GenEK(SK,CU ). Further, for b ∈ {0, 1}, let DK{Sb} ←
GenDK(SK,CSb). We now argue that no PPT distinguisher can distinguish between EK{U}, DK{S0} and
EK{U}, DK{S1} with advantage more than εS0,S1

= |S1 \ S0| · (advOWF (λ) + adviO(λ)).
We will prove this via a sequence of |S1 \ S0| main hybrid experiments Hi where in experiment H0, the

decapsulation key is DK{S0} whereas in experiment H|S1\S0|, the decapsulation key is DK{S1}. For every
i, we will prove that Hi and Hi+1 are indistinguishable.

We now proceed to give details. Let ui denote the lexicographically ith element of S1 \ S0. Throughout
the experiments, we will refer to the encapsulation key and decapsulation key programs given to the distin-
guisher as EK ′ and DK ′ respectively. Similarly, (unless stated otherwise) we will refer to the unobfuscated
algorithms underlying EK ′ and DK ′ as G′enc and G′dec, respectively.

Hybrid Hi: In the ith hybrid, the decapsulation key program DK ′ first checks whether m ∈ S1 and
m ≤ ui. If this is the case, then it simply outputs ⊥. Otherwise, it behaves in the same manner as DK{S0}.
The underlying unobfuscated program G′dec is described in Algorithm 3.

By convention, u0 = −∞. Therefore, in experiment H0, DK ′ has the same functionality as DK{S0},
and in H|S1\S0|, DK

′ has the same functionality as DK{S1}.
We now construct a series of intermediate hybrid experiments Hi,0, . . . ,Hi,7 where Hi,0 is the same as

Hi and Hi,7 is the same as Hi+1. For every j, we will prove that Hi,j is computationally indistinguishable
from Hi,j+1, which will establish that Hi and Hi+1 are computationally indistinguishable.

Hybrid Hi,0: This is the same as experiment Hi.
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Algorithm 3: (Constrained) Decapsulation G′dec in Hybrid i

Input: ciphertext c
Data: K1, K2

1 parse c as α‖β;
2 m← F2(α)⊕ β;
3 if m < ui and m ∈ S1 then return ⊥ ;
4 else if m ∈ S0 then return ⊥;
5 else if α 6= F1(m) then return ⊥;
6 else return m;

Hybrid Hi,1: This is the same as experiment Hi,0 except that we modify G′dec as follows. If the decapsulated
message m = ui, then instead of checking whether α 6= F1(m) in line 5, G′dec now checks whether PRG(α) 6=
PRG(F1(ui)), where PRG is an injective pseudo random generator.

Hybrid Hi,2: This is the same as experiment Hi,1 except that we modify G′dec as follows:

• Hardwire the value z = PRG(F1(ui)) in G′dec. Now, when the decapsulated message m = ui, then G′dec

simply checks whether PRG(α) 6= z.

• The PRF key K1 in G′dec is punctured at ui, i.e., K1 is replaced with K1{ui} ← PuncturePRF(K1, ui).

Hybrid Hi,3: This is the same as experiment Hi,2 except that we modify the (unobfuscated) program G′enc

underlying EK ′ such that the PRF key K1 hardwired in Genc is replaced with punctured key K1{ui} ←
PuncturePRF(K1, ui).

Hybrid Hi,4: This is the same as experiment Hi,3 except that the hardwired value z in G′dec is now computed
as PRG(r) where r is a randomly chosen string.

Hybrid Hi,5: This is the same as experiment Hi,4 except that the hardwired value z in G′dec is now set to
be a randomly chosen string r′.

Hybrid Hi,6: This is the same as experiment Hi,5 except that we now modify G′dec such that it outputs ⊥
when the decapsulated message m = ui. An equivalent description of G′dec is that in line 3, it now checks
whether m < ui+1 instead of m < ui.

Hybrid Hi,7: This is the same as experiment Hi,6 except that the PRF key corresponding to F1 is un-
punctured in both G′enc and G′dec. That is, we replace K1{ui}) with K1 in both G′enc and G′dec. Note that
experiment Hi,7 is the same as experiment Hi+1.

This completes the description of the hybrid experiments. We now argue their indistinguishability.

Indistinguishability of Hi,0 and Hi,1. Since PRG is injective, we have that the following two checks are
equivalent: α 6= F1(m) and PRG(α) 6= PRG(F1(m)). Then, we have that the algorithms G′dec in Hi,0 and
Hi,1 are functionally equivalent. Therefore, the indistinguishability of Hi,0 and Hi,1 follows from the security
of the indistinguishability obfuscator iO.

Indistinguishability of Hi,1 and Hi,2. Let G′dec (resp., G′′dec) denote the unobfuscated algorithms underlying
the decapsulation key program DK ′ in experiments Hi,1 (resp., Hi,2). We will argue that G′dec and G′′dec are
functionally equivalent. The indistinguishability of Hi,0 and Hi,1 then follows from the security of the
indistinguishability obfuscator iO.

Let ci denote the unique ciphertext such that Dec(DK, ci) = ui (where DK denotes the unconstrained
decapsulation key program). First note that on any input c 6= ci, both G′dec and G′′dec have identical behavior,
except that G′dec uses the PRF key K1 while G′′dec uses the punctured PRF key K1{ui}. Since the punctured
PRF scheme preserves functionality under puncturing, we have that G′dec(c) = G′′dec(c). Now, on input
ci, after decapsulating ci to obtain ui, G′dec computes PRG(F1(ui)) and then checks whether PRG(αi) 6=
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PRG(F1(ui)) whereas G′′dec simply checks whether PRG(αi) 6= z. But since the value z hardwired in G′′dec is
equal to PRG(F1(ui)), we have that G′dec(ci) = G′′dec(ci).

Thus we have that G′dec and G′′dec are functionally equivalent.

Indistinguishability of Hi,2 and Hi,3. Let G′enc (resp., G′′enc) denote the unobfuscated algorithms underlying
the encapsulation key program EK ′ in experiments Hi,1 and Hi,2. Note that the only difference between
G′enc and G′′enc is that the former contains the PRF key K1 while the latter contains the punctured PRF
key K1{ui}. However, note that on input ui, both G′enc and G′′enc output ⊥. Then, since the punctured
PRF preserves functionality under puncturing, we have that G′enc and G′′enc are functionally equivalent. The
indistinguishability of Hi,2 and Hi,3 follows from the security of the indistinguishability obfuscator iO.

Indistinguishability of Hi,3 and Hi,4. From the security of the punctured PRF, it follows immediately
that Hi,3 and Hi,4 are computationally indistinguishable.

Indistinguishability of Hi,4 and Hi,5. From the security of PRG, it follows immediately that Hi,4 and
Hi,5 are computationally indistinguishable.

Indistinguishability of Hi,5 and Hi,6. Let G′dec (resp., G′′dec) denote the unobfuscated algorithms underlying
the decapsulation key program DK ′ in experiments Hi,5 and Hi,6. We will argue that with all but negligible
probability, G′dec and G′′dec are functionally equivalent. The indistinguishability of Hi,5 and Hi,6 then follows
from the security of the indistinguishability obfuscator iO.

Let ci denote the unique ciphertext corresponding to the message ui. We note that with overwhelming
probability, the random string z (hardwired in both Hi,5 and Hi,6) is not in the image of the PRG. Thus,
except with negligible probability, there does not exist an αi such that PRG(αi) = z. This implies that
except with negligible probability, G′dec(ci) = ⊥. Since G′′dec also outputs ⊥ on input ci and G′dec,G′′dec behave
identically on all other input ciphertexts, we have that G′dec and G′′dec are functionally equivalent.

Indistinguishability of Hi,6 and Hi,7. This follows in the same manner as the indistinguishability of
experiments Hi,2 and Hi,3. We omit the details.

Completing the proof. Note that throughout the hybrids, we use the security of three cryptographic
primitives: injective PRG, (injective) puncturable PRFs, and indistinguishability obfuscation. In total,
(ignoring constant multiplicative factors) we have |S1 \ S0| hybrids. Thus, overall, we get that no adversary
can distinguish between EK{U}, DK{S0} and EK{U}, DK{S1} with advantage more than εS0,S1 = |S1 \
S0| · (advPRG(λ) + advPRF (λ) + adviO(λ)). Replacing advPRG(λ) + advPRF (λ) with advOWF , where OWF is
the one-way function used to construct the PRG ad puncturable PRF, we get εS0,S1

= |S1\S0|·(advOWF (λ)+
adviO(λ)) as required.

Selective `-Indistinguishability of Ciphertexts. We now prove that ACE satisfies indistinguishability
of ciphertexts.

Lemma 2. The proposed scheme ACE satisfies `-indistinguishability of ciphertexts.

Proof. The proof of the lemma proceeds in a sequence of hybrid experiments where we make indistinguishable
changes to EK{U}, DK{S}, and the ciphertexts (cbi , c

1−b
i ).

Hybrid H0. This is the real world experiment. For completeness (and to ease the presentation of the subse-
quent hybrid experiments), we describe the actions of the challenger here. Let S,U ⊂M be the sets chosen
by the adversary and CS , CU be their corresponding circuit descriptions. Further, let (m0

1,m
1
1), . . . , (m0

` ,m
1
`)

be the ` challenge message pairs chosen by the adversary. Then the challenger performs the following steps:

1. Sample PRF keys K1 ← GenPRF(1λ), K2 ← GenPRF(1λ).

2. For every i ∈ [`], t ∈ {0, 1}, compute αti ← F1(mt
i), γ

t
i ← F2(αti) and βti = γti ⊕mt

i. Let cti = (αti, β
t
i ).

3. Compute EK{U} ← iO(G′enc) where G′enc is described in Algorithm 4.
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4. Compute DK{S} ← iO(G′dec) where G′dec is described in Algorithm 5.

5. Choose a random bit b and send the following tuple to the adversary:(
EK{S}, DK{U}, cb1, . . . , cb`

)
.

Algorithm 4: G′enc in Hybrid H0

Data: K1, K2, circuit CU
Input: message m

1 if CU (m) then return ⊥;
2 else
3 α← F1(m);
4 β ← F2(α)⊕m;
5 return α‖β
6 end

Algorithm 5: G′dec in Hybrid H0

Data: K1, K2, circuit CS
Input: ciphertext c

1 parse c as α‖β;
2 m← F2(α)⊕ β;
3 if CS(m) then return ⊥;
4 else if α 6= F1(m) then return ⊥;
5 else return m;

Hybrid H1. Modify G′enc: the hardwired PRF key K1 is replaced with a punctured key K1{Σ1} ←
PuncturePRF(K1,Σ1), where Σ1 is the list of messages (m0

1,m
1
1), . . . , (m0

` ,m
1
`) sorted lexicographically.

Hybrid H2. Modify G′dec: the hardwired PRF key K1 is replaced with a punctured key K1{Σ1} ←
PuncturePRF(K1,Σ1), where Σ1 is the list of messages (m0

1,m
1
1), . . . , (m0

` ,m
1
`) sorted lexicographically.

Hybrid H3. Modify G′dec: Perform the following check in the beginning. If input ciphertext c = cti for any
i ∈ [`], t ∈ {0, 1} then output ⊥. The modified G′dec is described in Algorithm 6

Algorithm 6: G′dec in Hybrid 3

Data: K1, K2, circuit CS , {(c01, c11), . . . , (c0` , c
1
`)}

Input: ciphertext c
1 if c = cti for any i ∈ [`], t ∈ {0, 1} then return ⊥;

2 parse c as α‖β;
3 m← F2(α)⊕ β;
4 if CS(m) then return ⊥;
5 else if α 6= F1(m) then return ⊥;
6 else return m;

Hybrid H4. Modify challenge ciphertexts cti = (αti, β
t
i ): For every i ∈ [`], t ∈ {0, 1}, replace αti with a truly

random string α̃ti.
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Hybrid H5. Modify G′enc: the hardwired PRF key K2 is replaced with a punctured key K2{Σ2} ←
PuncturePRF(K2,Σ2), where Σ2 is the list of strings (α̃0

1, α̃
1
1), . . . , (α̃0

` , α̃
1
` ) sorted lexicographically.

Hybrid H6. Modify G′dec: we change the check performed in line 1 of Algorithm 6. For any input ciphertext
c = (α, β), if α = αti for any i ∈ [`], t ∈ {0, 1} (where cti = (αti, β

t
i )), then output ⊥. Note that G′dec only has

α̃ti hardwired as opposed to cti. The modified G′dec is described in Algorithm 7.

Algorithm 7: G′dec in Hybrid 6

Data: K1, K2, circuit CS , {(α̃0
1, α̃

1
1), . . . , (α̃0

` , α̃
1
` )}

Input: ciphertext c
1 parse c as α‖β;
2 if α = α̃ti for any i ∈ [`], t ∈ {0, 1} then return ⊥;

3 m← F2(α)⊕ β;
4 if CS(m) then return ⊥;
5 else if α 6= F1(m) then return ⊥;
6 else return m;

Hybrid H7. Modify G′dec: the hardwired PRF key K2 is replaced with a punctured key K2{Σ2} ←
PuncturePRF(K2,Σ2), where Σ2 is the list of strings (α̃0

1, α̃
1
1), . . . , (α̃0

` , α̃
1
` ) sorted lexicographically.

Hybrid H8. Modify challenge ciphertexts cti = (α̃ti, β
t
i ): For every i ∈ [`], t ∈ {0, 1}, set βti = γ̃ti ⊕mt

i, where
γ̃ti is a random string.

This completes the description of the hybrid experiments. We will now first prove indistinguishability
of experiments Hi and Hi+1 for every i. We will then prove that the adversary can guess bit b in the final
hybrid H8 with probability at most 1

2 . This suffices to prove the claim.

Indistinguishability of H0 and H1. Let G′enc and G′′enc denote the algorithms underlying the encapsulation
key program EK{U} in H0 and H1 respectively. Note that due to the check performed in line 1, both G′enc

and G′′enc output ⊥ on each challenge message mt
i. In particular, line 4 is not executed in both G′enc and

G′′enc for every input message mt
i. (In fact, line 4 is only executed when the input message m /∈ S.) Then,

since the punctured PRF scheme preserves functionality under puncturing, we have that G′enc (using K1)
and G′′enc (using K1{Σ1}) are functionally equivalent. The indistinguishability of H0 and H1 follows from the
indistinguishability of the indistinguishability obfuscator iO.

Indistinguishability of H1 and H2. Let G′dec and G′′dec denote the algorithms underlying the decapsulation
key program DK{S} in H1 and H2 respectively. Note that due to the check performed in line 3, both G′dec

and G′′dec output ⊥ on every challenge ciphertext cti. In particular, line 4 is is not executed in both G′dec

and G′′dec for every mt
i. Then, since the punctured PRF scheme preserves functionality under puncturing,

we have that G′dec (using K1) and G′′dec (using K1{Σ1}) are functionally equivalent. As a consequence, the
indistinguishability of H0 and H1 follows from the indistinguishability of the indistinguishability obfuscator
iO.

Indistinguishability of H2 and H3. Let G′dec and G′′dec denote the algorithms underlying the decapsulation
key program DK{S} in H2 and H3 respectively. Note that the only difference between G′dec and G′′dec is that
G′′dec performs an additional check whether the input ciphertext c is equal to any challenge ciphertext cti.
However, note that due to line 3, G′dec also outputs ⊥ on such input ciphertexts. Thus, G′dec and G′′dec are
functionally equivalent and the indistinguishability of H2 and H3 follows from the indistinguishability of the
indistinguishability obfuscator iO.

Indistinguishability of H3 and H4. This follows immediately from the security of the punctured PRF
family F1.

Indistinguishability of H4 and H5. Note that with overwhelming probability, each of the random string
α̃ti is not in the range of the F1. Therefore, except with negligible probability, there does not exist a message
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m such that F1(m) = αti, for any i ∈ [`], t ∈ {0, 1}. Since the punctured PRF scheme preserves functionality
under puncturing, G′enc (using K2) and G′′enc (using K2{Σ2}) behave identically on all input messages, except
with negligible probability. The indistinguishability of H2 and H3 follows from the indistinguishability of
the indistinguishability obfuscator iO.

Indistinguishability of H5 and H6. Let G′dec and G′′dec denote the algorithms underlying the decapsulation
key program DK{S} in H5 and H6 respectively. Note that the only difference between G′dec and G′′dec is
their description in line 1: G′′dec outputs ⊥ on every ciphertext c = (α̃ti, β) (for arbitrary β) while G′dec only
outputs G′dec only outputs ⊥ on every cti = (α̃ti, β

t
i ). In particular, the execution of G′dec continues onward

from line 2 for every c = (α̃ti, β) such that β 6= βti for every i ∈ [`], t ∈ {0, 1}. However, note that with
overwhelming probability, each of the random string α̃ti is not in the range of the F1. Thus in line 5, G′dec

will also output ⊥ on every c = (α̃ti, β), except with negligible probability. As a consequence, we have that
except with negligible probability, G′dec and G′′dec have identical input/output behavior, and therefore, the
indistinguishability of H5 and H6 follows from the indistinguishability of the indistinguishability obfuscator
iO.

Indistinguishability of H6 and H7. Let G′dec and G′′dec denote the algorithms underlying the decapsulation
key program DK{S} in H6 and H7 respectively. Note that due to the check performed in line 2 (see
Algorithm 7), line 3 is not executed in both G′dec and G′′dec whenever the input ciphertext c is of the form
(αti, β). Then, since the the punctured PRF scheme preserves functionality under puncturing, G′dec (using
K2) and G′′dec (using K2{Σ2}) are functionally equivalent and the indistinguishability of H2 and H3 follows
from the indistinguishability of the indistinguishability obfuscator iO.

Indistinguishability of H7 and H8. This follows immediately from the security of the punctured PRF
family F1.

Finishing the proof. Observe that in experiment H8, every challenge ciphertext cti consists of random
strings (α̃ti, β̃

t
i ) that information theoretically hide the bit b. Further, EK{U} and DK{S} are also inde-

pendent of bit b. Therefore, the adversary cannot guess bit b with probability better than 1
2 .

4 Indistinguishability Obfuscation of Iterated Circuits

In this section we define and construct an indistinguishability obfuscator for iterated circuits. Note that,
while this construction serves as a good “warmup” for the construction of garbled RAMs in later sections,
it is not formally used there. Still we believe it is of independent interest.

Consider two iterated circuits of the form CT0 , CT1 for some circuits C0, C1 and polynomial T such that CT0
and CT1 are functionally equivalent1 Roughly speaking an indistinguishability obfuscator iOIC for iterated
functions guarantees that for any such pair of iterated circuits (CT0 , C

T
1 ), iOIC(C0, T ) is computationally

indistinguishable from iOIC(C1, T ).
Note that one could achieve this effect by simply using a standard indistinguishabilty obfuscator for

circuits to obfuscate CT0 and CT1 . However, this may incur a blowup of size poly(T ·|C0|) (resp., poly(T ·|C1|)).
The crucial requirement from an indistinguishability obfuscator for iterated circuits is that it that the size
of the obfuscated circuit should be only poly(|C|, log(T )) for iterated circuit CT .

Syntax. An indistinguishability obfuscator for iterated circuits consists of a pair of algorithms (iOIC,EvalIC).
The obfuscation algorithm iOIC takes as input the security parameter λ, a circuit C and an iteration bound
T and outputs another circuit C̃. The evaluation algorithm EvalIC is a stateful algorithm that takes as input
the obfuscated program C̃, the iteration bound T and an input x and returns an output y.

Definition 4. A pair of algorithms (iOIC,EvalIC) is called an indistinguishability obfuscator for iterated
circuits for a circuit class {Cλ} if the following holds:

1Note that CT
0 and CT

1 could be functionally equivalent even if Ci
0 and Ci

1 are not, for some i < T .
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• Correctness: For every λ ∈ N, every C ∈ Cλ, every T ∈ poly(λ), and every input x, we have that:

Pr[EvalIC(C̃, T, x) = CT (x) : C̃ ← iOIC(1λ, C, T )] = 0.

• Efficiency: For every λ ∈ N, every C ∈ Cλ, every T ∈ poly(λ), and every input x, EvalIC(C̃, T, x) runs
in time O(|C̃| · T ), where C̃ ← iOIC(1λ, C, T ).

• Succinctness: For every λ ∈ N, every C ∈ Cλ, every T ∈ poly(λ), the size of obfuscated program
|iOIC(1λ, C, T )| = poly(λ, |C|, log(T )).

• ε-Indistinguishability: For every λ ∈ N, every C0, C1 ∈ Cλ, every T ∈ poly(λ), if CT0 (x) = CT1 (x)
for all inputs x and |C0| = |C1|, then for all PPT adversaries A, we have:∣∣Pr[A(iOIC(1λ, C0, T ) = 1]− Pr[A(iOIC(1λ, C1, T ) = 1]

∣∣ ≤ ε(λ)

Remark 4. Similar to the definition of security of constrained decapsulation (see Section 3), here we do
not necessarily require ε to be negligible. Looking ahead, our construction in Section 4.1 will achieve ε-
indistinguishability for ε = |I|2 · (advOWF (λ) + adviO(λ)), where I is the input and output space of the
circuit being obfuscated. When |I| is super-polynomial, this is negligible assuming sub exponential hardness
of one-way functions as well as iO.

The rest of this section is organized as follows. We present a construction of iterated function obfuscation
using ACE in Section 4.1. In Section 4.2, we prove the security of our construction.

4.1 Our Construction

Here we provide a construction of an indistinguishability obfuscator for iterated circuits. Our scheme is based
on standard indistinguishability obfuscation for circuits and asymmetrically constrained encapsulation.

Notation. Let {Cλ} be a family of polynomial-sized circuits. Let I ∈ {0, 1}n denote the input and output
space of C ∈ Cλ for some n = poly(λ). Let T denote the iteration bound. Let iO be a standard indistin-
guishability obfuscator for {Cλ}. Finally, let ACE = (Setup,GenEK,GenDK,Enc,Dec) be an asymmetrically
constrainable encapsulation scheme for message spaceM consisting of messages of the formm = (m1,m2,m3)
where m1 and m3 are n-bit strings, and m2 is a non-negative integer which is at most T .

Construction. We now proceed to describe our iterated circuits indistinguishability obfuscator O =
(iOIC,EvalIC).

iOIC(1λ, C, T ): Sample SK ← Setup(1λ). Let Z = {?, 0, ?} denote the set of all messages m = (m1,m2,m3)
in M where m2 = 0, and let CZ be the circuit description of Z. Compute EK{Z} ← GenEK(SK,CZ) and
DK{Z} ← GenDK(SK,CZ). Compute C̃ ← iO(GIC) where GIC is described in Algorithm 8. Here, GIC is
padded with sufficient zeros so that |GIC| = |Gi,jIC |, where Gi,jIC is described in Algorithm 10 in the security
proof.
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The output is C̃.

Algorithm 8: Algorithm GIC

Input: ciphertext ct OR plain input x
Data: EK{Z}, DK{Z}, T , C

1 if given a plain input x then
2 t← 0;
3 q ← x;

4 else
5 m← Dec(DK, ct);
6 if m = ⊥ then return ⊥;
7 else parse m as (x, t, q) ;

8 if t > T then return ⊥;
9 if t = T then return q;

10 return Enc(EK, (x, t+ 1, C(q)))

EvalIC(C̃, T, x): Let y0 = x. For every i ∈ [T ], compute yi ← C̃(yi−1). The output is yT .
This completes the description of O = (iOIC,EvalIC). Correctness and efficiency of O follows from the de-

scription of the algorithms iOIC and EvalIC together with the correctness of iO. We will argue the succinctness
property in Section 4.3. In the next subsection, we argue ε-indistinguishability.

4.2 Proof of Security

Let C0, C1 ∈ Cλ and T ∈ poly(λ) be such that:(a) CT0 and CT1 are functionally equivalent, and (b) |C0| = |C1|.
We will argue that iOIC(C0) and iOIC(C1) are ε = |I|2 · (advOWF (λ) + adviO(λ))-indistingushable through a
sequence of |I| ·O(T ) experiments Hi,j , where i ∈ I and j ∈ {0, . . . , 2T}.

Below, we first describe the experiments Hi,0, where H0,0 will correspond to iOIC(C0) and HI,0 will
correspond to iOIC(C1). Next, to transition from Hi,0 to Hi+1,0, we describe the experiments Hi,j such
that Hi,2T is the same as Hi+1,0. For convenience, when presenting a hybrid experiment, we underline the
difference between it and the previous hybrid.

Hybrid Hi,0: In this experiment, the adversary is given iOIC(Gi,0IC ), where Gi,0IC is described in Algorithm 9.

Algorithm 9: Gi,0IC

Input: ciphertext ct OR plain input x
Data: EK{Z}, DK{Z}, T , C0, C1

1 if given a plain input x then
2 t← 0;
3 q ← x;

4 else
5 m← Dec(DK{Z}, ct);
6 if m = ⊥ then return ⊥;
7 else parse m as (x, t, q) ;

8 if t > T then return ⊥;
9 if t = T then return q;

10 if x < i then return Enc(EK{Z}, (x, t+ 1, C1(q)));;

11 else return Enc(EK{Z}, (x, t+ 1, C0(q)));
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Hybrid Hi,j: In this experiment, the adversary is given iOIC(Gi,jIC ), where Gi,jIC is described in Algorithm 10 .

Algorithm 10: Gi,jIC

Input: ciphertext ct OR plain input x
Data: ct∗j , EK{Sj}, DK{Sj}, T , C0, C1, where Sj = Z ∪ {(x, t, q) | x = i and t < j and q 6= ⊥} and

ct∗j = Enc(EK{Sj}, (i, j, Cj0(i)))

1 if given a plain input x then
2 t← 0;
3 q ← x;

4 else
5 m← Dec(DK{Sj}, ct);
6 if m = ⊥ then return ⊥;
7 else parse m as (x, t, q) ;

8 if t > T then return ⊥ ;
9 if t = T then return q ;

10 if x < i then return Enc(EK{Sj}, (x, t+ 1, C1(q))) ;
11 if x = i then
12 if t < j − 1 then return Enc(EK{Sj}, (x, t+ 1,⊥) ;

13 else if t = j − 1 then return ct∗j ;

14 else return Enc(EK{Sj}, (x, t+ 1, C0(q)));

15 return Enc(EK{Sj}, (x, t+ 1, C0(q)))

Lemma 3. Experiments Hi,j and Hi,j+1 are |I| · (advOWF (λ) + adviO(λ))-distinguishable.

Proof. This is the core of our security proof. In order to prove Lemma 3, we will describe a series of 9
intermediate hybrids Hi,j:0, . . . ,Hi,j:8, where Hi,j:0 is the same as Hi,j and Hi,j:8 is the same as Hi,j+1. For

clarity, in each hybrid Hi,j:k, the (unobfuscated) function GIC is denoted by Gi,j:kIC .

Hybrid Hi,j:0: Same as Hi,j .

Hybrid Hi,j:1: Same as Hi,j:0 except that we modify Gi,jIC in the following manner: let S denote the subset

of all messages in M of the form (i, j, ?). The encapsulation key EK{Sj} hardwired in Gi,jIC is replaced with
EK{Sj ∪ S} that is constrained at the set Sj ∪ S.

17



The modified function Gi,j:1IC is described in algorithm 11.

Algorithm 11: Gi,j:1IC

Input: ciphertext ct OR plain input x
Data: ct∗j , EK{Sj ∪ S}, DK{Sj}, T , C0, C1, where Sj = Z ∪ {(x, t, q) | x = i and t < j and q 6= ⊥},

S = {i, j, ?} and ct∗j = Enc(EK{Sj}, (i, j, Cj0(i)))

1 if given a plain input x then
2 t← 0;
3 q ← x;

4 else
5 m← Dec(DK{Sj}, ct);
6 if m = ⊥ then return ⊥;
7 else parse m as (x, t, q) ;

8 if t > T then return ⊥ ;
9 if t = T then return q ;

10 if x < i then return Enc(EK{Sj ∪ S}, (x, t+ 1, C1(q))) ;
11 if x = i then
12 if t < j − 1 then return Enc(EK{Sj ∪ S}, (x, t+ 1,⊥) ;
13 else if t = j − 1 then return ct∗j ;

14 else return Enc(EK{Sj}, (x, t+ 1, C0(q)));

15 return Enc(EK{Sj ∪ S}, (x, t+ 1, C0(q)))

Hybrid Hi,j:2: Same as Hi,j:1 except that we modify Gi,j:1IC as follows:

• Let ct∗j+1 = Enc(EK{Sj}, (i, j + 1, Cj+1
0 (i))). Hardwire ct∗j+1 in Gi,j:1IC and whenever the input is ct∗j ,

then directly output ct∗j+1.

• Constrain the decapsulation key further to include the point (i, j, Cj0(i)) as well. That is, replace

DK{Sj} with the constrained key DK{Sj ∪ (i, j, Cj0(i))}.
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The modified function Gi,j:2IC is described in Algorithm 12.

Algorithm 12: Gi,j:2IC

Input: ciphertext ct OR plain input x
Data: ct∗j , EK{Sj ∪ S}, DK{Sj ∪ (i, j, Cj0(i))}, T , C0, C1, where

Sj = Z ∪ {(x, t, q) | x = i and t < j and q 6= ⊥}, S = {i, j, ?}, ct∗j = Enc(EK{Sj}, (i, j, Cj0(i))),

and ct∗j+1 = Enc(EK{Sj}, (i, j + 1, Cj+1
0 (i)))

1 if given a plain input x then
2 t← 0;
3 q ← x;

4 if ct = ct∗j then return ct∗j+1;

5 else

6 m← Dec(DK{Sj ∪ (i, j, Cj0(i))}, ct);
7 if m = ⊥ then return ⊥;
8 else parse m as (x, t, q) ;

9 if t > T then return ⊥ ;
10 if t = T then return q ;
11 if x < i then return Enc(EK{Sj ∪ S}, (x, t+ 1, C1(q))) ;
12 if x = i then
13 if t < j − 1 then return Enc(EK{Sj ∪ S}, (x, t+ 1,⊥) ;
14 else if t = j − 1 then return ct∗j ;

15 else return Enc(EK{Sj ∪ S}, (x, t+ 1, C0(q)));

16 return Enc(EK{Sj ∪ S}, (x, t+ 1, C0(q)))

Hybrid Hi,j:3: Same as Hi,j:2 except that we constrain the decapsulation key further to include all the

messages S = {i, j, ?}. That is, replace DK{Sj ∪ (i, j, Cj0(i))} with DK{Sj ∪ S}.
Hybrid Hi,j:4: Same asHi,j:3 except that the hardwired ciphertext ct∗j is now set to the value Enc(EK{Sj}, (i, j,⊥)).

Hybrid Hi,j:5: Same as Hi,j:4 except that the decapsulation key is now only constrained at the set Sj+1.
That is, replace DK{Sj ∪ S} with DK{Sj+1}.

Hybrid Hi,j:6: Same as Hi,j:5 except that we modify Gi,j:5IC as follows: instead of directly returning ct∗j+1

when the input is ct∗j , we now first decapsulate the ciphertext (as every other input) and if x = i, t = j, then
output ct∗j+1.
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The modified function Gi,j:6IC is described in Algorithm 13.

Algorithm 13: Gi,j:6IC

Input: ciphertext ct OR plain input x
Data: ct∗j , EK{Sj ∪ S}, DK{Sj+1}, T , C0, C1, where

Sj = Z ∪ {(x, t, q) | x = i and t < j and q 6= ⊥}, S = {i, j, ?}, ct∗j = Enc(EK{Sj}, (i, j,⊥)), and

ct∗j+1 = Enc(EK{Sj}, (i, j + 1, Cj+1
0 (i)))

1 if given a plain input x then
2 t← 0;
3 q ← x;

4 else
5 m← Dec(DK{Sj+1}, ct);
6 if m = ⊥ then return ⊥;
7 else parse m as (x, t, q) ;

8 if t > T then return ⊥ ;
9 if t = T then return q ;

10 if x < i then return Enc(EK{Sj ∪ S}, (x, t+ 1, C1(q))) ;
11 if x = i then
12 if t < j − 1 then return Enc(EK{Sj ∪ S}, (x, t+ 1,⊥) ;
13 else if t = j − 1 then return ct∗j ;

14 else if t = j then return ct∗j+1;

15 else return Enc(EK{Sj ∪ S}, (x, t+ 1, C0(q)));

16 return Enc(EK{Sj ∪ S}, (x, t+ 1, C0(q)))

Hybrid Hi,j:7: Same as Hi,j:6 except that the encapsulation key is now only constrained at the set Sj+1.
That is, replace EK{Sj ∪ S} with EK{Sj+1}.

Hybrid Hi,j:8: Same as Hi,j:7 except that we modify Gi,j:7IC as follows: instead of directly outputting the
hardwired value ct∗j in line 14, we now return Enc(EK{Sj+1}, (i, j,⊥)).
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The modified function Gi,j:8IC is described in Algorithm 14. Note that is is the same as experiment Hi,j+1.

Algorithm 14: Gi,j:8IC

Input: ciphertext ct OR plain input x
Data: ct∗j , EK{Sj+1}, DK{Sj+1}, T , C0, C1, where Sj = Z ∪ {(x, t, q) | x = i and t < j and q 6= ⊥},

ct∗j = Enc(EK{Sj+1}, (i, j,⊥)), and ct∗j+1 = Enc(EK{Sj+1}, (i, j + 1, Cj+1
0 (i)))

1 if given a plain input x then
2 t← 0;
3 q ← x;

4 else
5 m← Dec(DK{Sj+1}, ct);
6 if m = ⊥ then return ⊥;
7 else parse m as (x, t, q) ;

8 if t > T then return ⊥ ;
9 if t = T then return q ;

10 if x < i then return Enc(EK{Sj+1}, (x, t+ 1, C1(q))) ;
11 if x = i then
12 if t < j + 1 then return Enc(EK{Sj+1}, (x, t+ 1,⊥);

13 else if t = j then return ct∗j+1;

14 else return Enc(EK{Sj+1}, (x, t+ 1, C0(q)));

15 return Enc(EK{Sj+1}, (x, t+ 1, C0(q)))

This completes the description of the hybrid experiments.

Indistinguishability of Hi,j:0 and Hi,j:1: We note that in both Gi,j:0IC and Gi,j:1IC , the encapsulation key is never
evaluated on messages of the form (i, j, ?). In particular, on any input ciphertext ct that decapsulates to m
of the form (i, j−1, ?), both return the same hardwired value ct∗j . Thus, replacing EK{Sj} with EK{Sj∪S}
does not change the functionality of Gi,j:0IC and we have that Gi,j:0IC and Gi,j:1IC are functionally equivalent. The
indistinguishability of Hi,j:0 and Hi,j:1 follows from the security of the indistinguishability obfuscator iO.

Indistinguishability of Hi,j:1 and Hi,j:2: We consider the input/output behavior of Gi,j:1IC and Gi,j:2IC in the
following two cases:

• On input ct∗j , G
i,j:1
IC decapsulates it using DK{Sj} and returns Enc(EK{Sj∪S}, (i, j+1, C0(q))) where

q = Cj0(i). In contrast, Gi,j:2IC directly returns ct∗j+1 (without using the decapsulation key). However,

we have that ct∗j+1 = Enc(EK{Sj ∪ S}, (i, j + 1, Cj+1
0 (i))). Thus, Gi,j:1IC (ct∗j ) = Gi,j:2IC (ct∗j ).

• It is easy to see that Gi,j:1IC and Gi,j:2IC behave identically on any plain input x. Further, it follows from
the correctness of constrained decapsulation property of ACE that on any input ciphertext ct 6= ct∗j ,

Gi,j:1IC (using DK{Sj}) and Gi,j:2IC (using DK{Sj ∪ (i, j, Cj0(i))}) have the same functionality.

Combining the above two cases, we have that Gi,j:1IC and Gi,j:2IC are functionally equivalent. Then, the indis-
tinguishability of Hi,j:1 and Hi,j:2 follows from the security of the indistinguishability obfuscator iO.

ε-Indistinguishability of Hi,j:2 and Hi,j:3: Let U = Sj ∪ S, S∗0 = Sj ∪ (i, j, Cj0(i) and S∗1 = Sj ∪ S. Thus,
we have that S∗0 ⊂ S∗1 ⊆ U ⊂ M . In Hi,j:2, the encapsulation and decapsulation key pair hardwired in

Gi,j:2IC is EK{U}, DK{S∗0} while in Hi,j:3, the encapsulation and decapsulation key pair hardwired in Gi,j:3IC

is EK{U}, DK{S∗1}. Then, from the security of constrained decapsulation of ACE, we have that Hi,j:2 and
Hi,j:3 are at most |S∗1 \ S∗0 | · negl(λ)-distinguishable. Since S∗1 \ S∗0 = S and |S| = |I|, we have that Hi,j:2

and Hi,j:3 are at most |I| · (advOWF (λ) + adviO(λ))-distinguishable.

Indistinguishability of Hi,j:3 and Hi,j:4: Note that both the encapsulation and decapsulation keys hardwired

in Gi,j:3IC and Gi,j:4IC are constrained at the set Sj∪S where S includes both m∗0 = (i, j, Cj0(i)) and m∗1 = (i, j,⊥).
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The only difference between Hi,j:3 and Hi,j:4 is that in the former, Gi,j:3IC contains ct∗j = Enc(EK{Sj},m0)

while in the latter, Gi,j:4IC contains ct∗j = Enc(EK{Sj},m1). Then, the indistinguishability of Hi,j:3 and Hi,j:4

follows from the selective indistinguishability of ciphertexts of ACE.

Indistinguishability of Hi,j:4 and Hi,j:5: This follows in the same manner as the ε-distinguishability of Hi,j:2

and Hi,j:3. Specifically, let U = Sj ∪ S, S∗0 = Sj ∪ S and S∗1 = Sj+1. Thus, we have that S1 ⊂ S0 ⊆ U ⊂M .

In Hi,j:4, the encapsulation and decapsulation key pair hardwired in Gi,j:4IC is EK{U}, DK{S∗0} while in

Hi,j:5, the encapsulation and decapsulation key pair hardwired in Gi,j:5IC is EK{U}, DK{S∗1}. Then, from
the security of constrained decapsulation of ACE, we have that Hi,j:4 and Hi,j:5 are at most |S∗0 \ S∗1 | ·
negl(λ)-distinguishable. Since |S∗0 \ S∗1 | = 1 (namely, the point (i, j,⊥)), we have that Hi,j:4 and Hi,j:5 are
(advOWF (λ) + adviO(λ))-distinguishable.

Indistinguishability of Hi,j:5 and Hi,j:6: The input/output behavior of Gi,j:5IC and Gi,j:6IC is identical on every

input ct 6= ct∗j . When the input is ct∗j , then Gi,j:5IC directly outputs the hardwired value ct∗j+1 while Gi,j:6IC

first decapsulates ct∗j and if the decapsulateed message m∗ is of the form (i, j, ·), then it outputs ct∗j+1. From
the correctness of (constrained) decapsulation property of ACE, we have that the m∗ is indeed of the form
(i, j, ·), and therefore, we have that Gi,j:5IC (ct∗j ) = Gi,j:6IC (ct∗j ). Summing up, we have that Gi,j:5IC and Gi,j:6IC

are functionally equivalent and the indistinguishability of Hi,j:5 and Hi,j:6 follows from the security of the
indistinguishability obfuscator iO.

Indistinguishability of Hi,j:6 and Hi,j:7: We note that in both Gi,j:6IC and Gi,j:7IC , the encapsulation key is never
evaluated on messages of the form (i, j + 1, ?). In particular, on any input ciphertext ct that decapsulates
to m of the form (i, j, ?), both return the same hardwired value ct∗j+1. Thus, replacing EK{Sj ∪ S} with

EK{Sj+1} does not change the functionality of Gi,j:6IC and we have that Gi,j:6IC and Gi,j:7IC are functionally
equivalent. The indistinguishability of Hi,j:6 and Hi,j:7 follows from the security of the indistinguishability
obfuscator iO.

Indistinguishability of Hi,j:7 and Hi,j:8: The input/output behavior of Gi,j:7IC and Gi,j:8IC is identical on every
input ct that decapsulates to a message m not of the form (i, j − 1, ·). Let ct′ be an input ciphertext such
that it decapsulates to a message of the form (i, j − 1, ·). Note that on input ct′, Gi,j:7IC decapsulates ct′ and

then outputs ct∗j as per line 13, while Gi,j:8IC decapsulates ct′ and then outputs Enc(EK{Sj+1}, (i, j,⊥)) as

per line 12. However, ct∗j = Enc(EK{Sj+1}, (i, j,⊥)). Thus, we have that Gi,j:7IC (ct′) = Gi,j:8IC (ct′). Summing

up, we have that Gi,j:7IC and Gi,j:8IC are functionally equivalent and the indistinguishability of Hi,j:7 and Hi,j:8

follows from the security of the indistinguishability obfuscator iO.

Completing the proof of Lemma 3. Combining the above indistinguishability claims, we have that
Hi,j and Hi,j+1 are |I| · (advOWF (λ) + adviO(λ))-distinguishable.

Completing the proof of ε-indistinguishability of O. We now observe that when j = T , then on
input i, C0 is not evaluated at all. Then, since CT0 (i) = CT1 (i), we can replay the same hybrids in reverse
order to replace C0 by C1. Thus, effectively, we have O(2T ) hybrids between hybrid Hi,0 and Hi+1,0. Since
T = poly(λ), from Lemma 3, we have that Hi,0 and Hi+1,0 are |I| · (advOWF (λ) + adviO(λ))-distinguishable.
Since i ranges over all the values in I, we have that H0,0 and HI,0 are ε = |I|2 · (advOWF (λ) + adviO(λ))-
distinguishable, as required.

4.3 Succinctness of O
We now argue that O satisfies the succinctness property. From the efficiency property of iO, we have that
|iOIC(C, T )| = P (λ, |GIC|) for some polynomial P , where |GIC| = poly(λ, |EK{Z}|, |DK{Z}|, log(T ), |C|).
From the (`, s)-efficiency property of ACE, we have that |EK{Z}| and |DK{Z}| are bounded by poly(λ, `, s),
where ` is the ciphertext security parameter and s is the set description size parameter. We first note that
it suffices to set ` = 1 since in our security proof in Section 4.2, we only require indistinguishability of
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one ACE ciphertext at any time. Further, at any point, the encapsulation and decapsulation key programs
constrained at set Sj = Z ∪ {(x, t, q) | x = i and t < j and q 6= ⊥} that can be described by a circuit of size
log(|I|, T ) for any i ∈ I, j ∈ T , where |I| is at most 2n.2 Thus, putting everything together, we have that
|GIC| = poly(λ, |C|, log(T )), and therefore |iOIC(C, T )| = poly(λ, |C|, log(T )).

5 Inductive Properties

When we move to RAM machines, the main abstraction in our proof of security will be inductive properties
of programs. These are properties about the encapsulated inputs of a program which are proven by induction
on the number of times the program is called. Just as in usual induction, the inductive hypothesis may be
stronger than the property being proven. In our case, we call the inductive hypothesis an invariant. We
care about invariants because we can indistinguishably puncture ACE keys so that plaintexts satisfy the
invariant. Here, the size s of the circuit deciding the invariant is a key parameter because it determines the
size of the punctured ACE keys. Although the puncturing of keys happens only in the hybrids, it happens
inside of an iO-obfuscated program. Because iO only implies indistinguishability of ciruits of equal size, the
magnitude of s increases the size even of the real-world program.

In this section, we accomplish two things. We first give a number of basic claims which form a calculus
for showing inductive properties with an invariant of small size s. For example, we have a notion of one
predicate “inductively implying” another predicate, and a corresponding claim which is analogous to modus
ponens. We also have a composition property which allows us to prove inductive properties of a large circuit
from inductive properties of a smaller subcircuit.

Next, we consider a generalization of the context in which we will apply ACE. Namely, we are given
a circuit C and some inputs m1, . . . ,mn, and we transform it into a circuit C̃ which takes encapsulated
inputs and produces encapsulated outputs. We will want to show that iO(C̃‖0p),Enc(m1), . . . ,Enc(mn) is
indistinguishable from some other iO(C̃ ′‖0p),Enc(m′1), . . . ,Enc(m′n). We show that this is the case (with
only a small amount of padding p) in three different cases: (a) C and C ′ are “inductively equivalent” and
mi = m′i (b) C and C ′ “inductively differ only by a diamond” or (c) C(mi) = C ′(mi) and C(x) = C ′(x)
everywhere else.

In the above discussion, we implicitly assumed that a circuit C takes only a single encapsulated input m.
In order to go beyond this, we introduce some notation to give a special structure to the domain and range
of C - in other words, describing how C parses its input and structures its output. We consider a collection
F of parametrized domains3, and say that C maps from F (M) to G(M) for some F,G ∈ F . In our case we
will take F to be disjoint unions of products of sets, which are either M or some other “base” set.

As an example, suppose A is some set (for instance Zp). Then one instance of an F ∈ F is (·×A)t(·×·).
Then F (M) would be (M ×A)t (M ×M). Elements of F are useful for describing the transformation of a
circuit C whose inputs and outputs are plaintexts into a circuit whose inputs and outputs are ciphertexts.
(For general F , C̃ would map from F (X) → G(X), where X is the set of ciphertexts). It will also be
important for us to refer to the different parts of x ∈ F (M) which parse as elements of M . We call these
M -components of x.

Definition 5. We define the M -components of an element of disjoint unions or products of sets as follows:

• The M -components of x ∈ S are defined as {x} if S = M , and ∅ if S is another base set (that is, not
expressed as a product or disjoint union of smaller sets).

• The M -components of

x = (x1, . . . , xn) ∈
n∏
i=1

Si

are defined as the union of the M -components of each xi ∈ Si.
2Actually in our proof, we also constrain the encapsulation and decapsulation key programs at sets Sj ∪S that contains one

extra point than Sj+1. But the circuit description of this set has the same size as that of Sj .
3For the category-theoretically informed, F is a functor in Set
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• The M -components of

x = (i, x′) ∈
n⊔
i=1

Si

are defined as the M -components of x′ ∈ Si.

Remark 5. The notion of M -components allows us to handle things like RAM programs, which take one or
two encapsulated inputs, and output one or zero encapsulated inputs, together with something unencapsulated.

Definition 6 (Extension of predicates). Given a predicate φ on M , we define φ̄ on F (M) as:

φ̄(x) = every M -component of x satisfies φ

Definition 7 (Invariants). We say that a predicate φ on M is an invariant of f : F (M)→ G(M) if whenever
all M -components of x ∈ F (M) satisfy φ, then all M -components of f(x) satisfy φ. In other words,

φ̄(x) =⇒ φ̄(f(x))

where φ̄ is the extension of φ which acts on F (M).

Definition 8 (Inductive predicates). We say that a predicate φ on M is s-inductive with respect to a function
f : F (M)→ G(M) given S0 ∈M∗ if there is an invariant φ′ of f such that:

• ∀m ∈M,φ′(m) =⇒ φ(m).

• ∀m ∈ S0, φ
′(m)

• There is a circuit Cφ′ deciding φ′ with |Cφ′ | ≤ s

Claim 1 (Modus ponens). If φ and ψ are predicates on M such that φ =⇒ ψ and φ is s-inductive, then
ψ is s-inductive.

Proof. The invariant for φ can be used to prove inductiveness of ψ.

Claim 2 (Conjunction). If φ and ψ are predicates on M such that φ is s-inductive and ψ is s′-inductive
w.r.t. f given S0, then (φ ∧ ψ) is (s+ s′ + 1)-inductive w.r.t. f given S0 ∈M∗

Proof. The conjunction of the invariants φ′ and ψ′ suffices to prove the s+ s′+ 1-inductiveness of φ∧ψ.

Definition 9 (Inductive implication). We say that a predicate φ on F (M) inductively implies a predicate
ψ on M with respect to f : F (M)→ G(M) given S0 ∈M∗ if there is an invariant ψ′ of f such that:

• ∀m ∈M,ψ′(m) =⇒ ψ(m)

• ∀m ∈ S0, ψ
′(m)

• ∀x ∈ F (M), φ(x) ∧ ψ̄′(x) =⇒ ψ̄′(f(x))

• there is a circuit Cψ′ deciding ψ′ with |C ′ψ| ≤ s

Claim 3 (Inductive modus ponens). If φ and ψ are predicates on M such that φ is s-inductive w.r.t. f
given S0, and φ̄ s′-inductively implies ψ w.r.t. f given S0, then ψ is (s+ s′+ 1)-inductive w.r.t. f given S0.

Proof. The conjunction of the invariants φ′ and ψ′ again suffices to show inductiveness.

Definition 10 (Black Box Attributes). Given πQ : M → Q and C : F (M) → G(M), and D : F ′(Q) →
G′(Q), we say that Q is a black box attribute of M in C with respect to D if:

• For all inputs x ∈ F (M), and all M -components m′ of C(x), there exists some xm′ such that πQ(m′) =
D(xm′), where every Q-component qi of xm′ is equal to πQ(mi) where mi is an M -component of x.
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The collection of all xm′s above are called the inputs to D in C on x.

Claim 4 (Inductive properties of black-box attributes). Suppose that φ is an s-inductive predicate of D :
F ′(Q) → G′(Q) with respect to πQ(S0), and Q is a black box attribute of M in C : F (M) → G(M) with
respect to D. Then φ ◦ πQ is an s+ |πQ|-inductive property of C with respect to S0.

Proof. If φ′ is an invariant of D which implies φ, then φ′ ◦ πQ is an invariant which implies φ ◦ πQ.

Claim 5 (Inductive implication of black-box predicates). Suppose that Q is a black-box attribute of M , C is
a circuit mapping F (M)→ G(M), D is a circuit mapping F ′(Q)→ G′(Q), χ is an s-inductive property on
M with respect to C, φ is a predicate on F ′(Q) and ψ is a predicate on Q such that φ s′-inductively implies
ψ.

If χ(x) implies that all inputs to D on x satisfy φ then ψ ◦πQ is s+ s′+ |πQ|-inductive with respect to C.

Proof. χ′∧(ψ′◦πQ) is the required invariant, where χ′ and ψ′ are the invariants for χ and ψ respectively.

Definition 11 (Graded Posets). A poset M is graded if there is a function ρ : M → N such that for
x, y ∈M , x ≺ y ⇐⇒ ρ(x) < ρ(y). ρ(x) is called the grade of x.

Definition 12 (Strictly Ascending Functions). If M is a poset, we say that a function f : F (M)→ G(M)
is strictly ascending in M if for all x ∈ F (M), all M -components m of x, and all M -components m′ of f(x),
we have m′ � m

The next three theorems are the raison d’être of inductive properties:

Theorem 3 (Indistinguishability of Inductively Equivalent Programs). Suppose that M is a graded poset,
S0 ∈M∗, and C0 and C1 are circuits mapping F (M)→ G(M) such that:

• C0 and C1 are strictly ascending in M

• φ is s-inductive w.r.t. both C0 and C1 given S0 ∈M∗

• |C0| = |C1|

• C0(x) = C1(x) whenever either the M -components of x all satisfy φ or some M -component of x has
rank at least T .

Then (iO(AddACE(C0)‖0p),Enc(S0)) ≈ (iO(AddACE(C1)‖0p,Enc(S0)), where the amount of padding p is
poly(log T, s, λ) and Enc(S0) denotes the element-wise encapsulation of S0 using the same ACE encapsulation
key as is used in C̃b.

Remark 6. We will consider C0 and C1 which are designed to be run T times, and in particular expect
never to receive an input with timestamp T or greater. If they do, they output ⊥, which means that indeed
if the rank of an M -component of x is at least T , then C0(x) = C1(x).

Proof. We show a sequence of indistinguishable hybrids H0, . . . ,H2T+1 such that H0 = iO(C̃0), and H2T+1 =
iO(C̃1).

For i ≤ T , the ith hybrid Hi is C̃0,i, where C̃0,i is defined identically to C̃0, but with ACE encapsulation
key and decapsulation key punctured at

Ai = {m ∈M : rank(m) < i ∧ ¬φ′(m)}

were φ′ is the invariant for φ. Note that A0 = ∅, so indeed H0 is the same as C̃0.
For i > T , the ith hybrid Hi is iO(C̃1,i), where C̃1,i is defined identically to C̃ but with the ACE

encapsulation and decapsulation key punctured at A2T+1−i. When i = 2T + 1, the punctured set is again ∅,
so hybrid H2T+1 is the same as iO(C̃1). We now just need to show that Hi is indistinguishable from Hi+1.

First, let us show that HT ≈ HT+1. The decapsulation keys for both HT and HT+1 are punctured on the
same set (AT ). So if any X-component of an input x to HT fails to decapsulate, then HT (x) = ⊥ = HT+1(x).
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On the other hand, if all the X-components of input x to HT decapsulate properly to a message m, then
there are two possibilities. Either rank(m) ≥ T for some M -component m of the decapsulated input, or all
of the M -components of the decapsulated input satisfy φ. In either case, we are guaranteed that the output
of C0 is the same as the output of C1 on the decapsulated input. By the security of iO, HT ≈ HT+1.

We now show that for 0 ≤ i < T , Hi ≈ Hi+1. We use an intermediate hybrid Hi.A = iO(C̃0,i.A), in
which the decapsulation key is punctured at Ai, but the encapsulation key is punctured at Ai+1.

Hi is indistinguishable from Hi.A by iO. Because Ai ⊂ Ai+1, C̃0,i and C̃0,i.A differ in functionality only

if the copy of C0 embedded in C̃0,i outputs m ∈ Ai+1 \Ai, i.e. rank(m) = i∧¬φ′(m). But this can’t happen,
because if the rank of an output of C0 is i, then the rank of all inputs to C0 must be less than i. And by
the puncturing of the decapsulation key, if all inputs decapsulate correctly and have rank less than i, then
all the decapsulations satisfy φ′. But because φ′ is an invariant of C0, the outputs of C0 must satisfy φ′ as
well.

Hi.A is indistinguishable from Hi+1 by the constrainability of decapsulation keys (note that S0 is disjoint
from Ai+1 because every element of S0 satisfies φ), so we have shown that Hi ≈ Hi+1.

The case for i > T is proved identically, which concludes the proof of the theorem..

We give one more theorem which allows us to switch from encapsulating S0 to encapsulating a different
S′0.

Theorem 4. Let S0 = (s1, . . . , sn), and S′0 = (s′1, . . . , s
′
n) such that none of these elements is ever an

M -output of C (C is a circuit mapping F (M)→ G(M)). If changing an M -input of C from si to s′i never
changes the output of C, then (iO(C̃‖0p),Enc(S0)) ≈ (iO(C̃‖0p),Enc(S′0)), where p, the amount of padding
is poly(|si|) but is independent of n.

Proof. The proof will proceed in n+ 1 indistinguishable hybrids H0, . . . ,Hn.
Hi = (iO(C̃‖0p),Enc(s′1, . . . , s

′
i, si+1, . . . , sn)). We show that Hi is indistinguishable from Hi+1 in a few

steps.

1. First, we puncture EK at si+1 and at s′i+1, which is indistinguishable by iO because each of them have
rank 0 and thus are never an output of C.

2. Next, we puncture DK at si+1 and s′i+1, hard-coding the decapsulations. This is indistinguishable by
iO.

3. Next, we swap the hard-coded values ci+1 and c′i+1 wherever they appear. Note that this includes
changing Enc(S0) from having an encapsulation of si+1 to having an encapsulation of s′i+1. This
change is indistinguishable by the indistinguishability of ciphertexts given a punctured key.

4. Now we “fix” the hard-coded decapsulation, so that ci+1 and c′i+1 map to si+1 and s′i+1 respectively.
This change is indistinguishable by iO because C produces the same output whenever an input of si+1

is replaced with an input of s′i+1.

5. We can now remove the hard-coding and unpuncture the encapsulation and decapsulation keys by iO,
which results in Hybrid Hi+1.

The padding p we need to use is just the size cost of puncturing a decapsulation key at two points plus the
cost of hard-coding two decapsulations. This padding is poly(|si|).

The following theorem is similar in spirit to Theorem 4, but applies to changing functionality purely
inside the obfuscated program, and not changing the encapsulated inputs.

Theorem 5 (Diamond). Suppose M is a graded poset, C0, C1 : F (M) → G(M) with |C0| = |C1|, C0 and
C1 are strictly ascending in M , S0 ∈M∗, m0,m1 ∈M , and suppose there is some predicate φ on M which
is s-inductive with respect to both C0 and C1 given S0, and suppose that there exists x∗ ∈ F (M) such that
for all x ∈ F (M) satisfying φ̄:
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• m1 is not an M -component of C0(x)

• m0 is not an M -component of C1(x)

• The following three propositions are equivalent:

– m0 is an M -component of C0(x)

– m1 is an M -component of C1(x)

– x = x∗

• If m0 is an M -component of x, then

C0(x) = C1(x[m0 7→ m1])

Here, x[m0 7→ m1] denotes x where m0 is replaced by m1.

• If x 6= x∗ and neither m0 nor m1 are M -components of x, then C0(x) = C1(x)

Then (iO(AddACE(C0)‖0p),Enc(S0)) ≈ (iO(AddACE(C1)‖0p),Enc(S0)), where p is an amount of padding which
is poly(s).

Remark 7. There is a simple special case, illustrated by Figure 1 which is when F (M) = M and G(M) =
M ∪ {⊥}. C0 and C1 each induce a directed graph on M . Then Theorem 5 is applicable when the graphs of
C0 and C1 differ “only by a diamond”:

m0

x∗ y∗

m1

C0C0

C1 C1

Figure 1: The namesake of the diamond theorem

We now prove Theorem 5.

Proof. We make a sequence of indistinguishable changes which transform iO(AddACE(C0)) into iO(AddACE(C1)).
All of our changes happen before the obfuscation.

1. First, using Theorem 3, we can add an assertion to the inputs of C0 that the inputs satisfy the invariant
φ′ for φ (recall φ′ =⇒ φ).

2. We hard-code the output of AddACE(C0) so that on input x∗, it outputs c∗ = Enc(m0). This change
is indistinguishable by the security of iO because the functionality is the same. Indeed, C0(x∗) = m0,
and so AddACE(C0)(x∗) = c∗.

3. We puncture EK to EK{m0,m1}. This is indistinguishable by iO because the functionality is the
same: Because of our assertion that the input always satisfies φ, C0 never outputs m1, and x∗ is the
only input on which m0 would be output. So because of our hard-coding, we never need to encapsulate
either m0 or m1.

4. We hard-code the decapsulation of c∗ as m0 and puncture DK to DK{m0}. This is again indis-
tinguishable by iO because our hard-coding implies that we never need to use DK to decapsulate
m0.
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5. We puncture DK{m0} to DK{m0,m1}. This is indistinguishable by the constrainability of decap-
sulation keys, since EK is already punctured at {m0,m1}, and our only auxiliary ciphertext is an
encapsulation of m0.

6. We replace c∗ by Enc(m1) (indistinguishability of ciphertexts)

7. We unpuncture DK{m0,m1} to DK{m0}, remove the hard-coded decapsulation of c∗, and replace C0

by C1. This is indistinguishable by iO because functionality is preserved. To see this, consider three
types of inputs x̃:

• If x̃ has a component which is an encapsulation of m0, then decapsulation fails and thus ⊥ is
output, with or without this change.

• Otherwise, if x̃ has a component which is an encapsulation of m1 (that is, c∗), then this change
says that instead of computing C0(x[m1 7→ m0]), we compute C1(x), which produces the same
result.

• If x̃ contains neither an encapsulation of m0 nor an encapsulation of m1, then C0(x) = C1(x).

8. We can now unpuncture DK{m0} to DK by the constrainability of decapsulation keys.

9. We unpuncture EK{m0,m1} to EK and un-hardcode c∗ as the output on input x∗ by iO.

10. Finally, we remove the assertion that we inserted in step 1 by applying Theorem 3 again.

6 Obfuscating Bounded-Space RAM Programs

Now given a RAM program M , we apply some of the same techniques to garble and obfuscate M more
efficiently than converting M into a circuit, or even an iterated circuit.

6.1 RAM Programs

We now formally define RAM programs. We assume that for each RAM program M we are given a bound
SM on the amount of space used by M , as well as a smaller bound nM on the length of the inputs to M .
We also assume we are given a worst-case bound TM on the running time of M .

Definition 13. A M is a tuple (Q,Σ,Γ, δ, q0, qaccept, qreject), where Q, Σ, and Γ are finite sets encoded by
binary strings of lengths lQ, lΣ, and lΓ respectively.

• Q is the set of states

• Γ is the memory alphabet, including the blank symbol .

• Σ ⊂ Γ is the input alphabet, with /∈ Σ.

• δ is a circuit mapping Q × R → (Q × A) ∪ {⊥}, where R = Γ t {⊥} is the set of read and write
responses, while A = [s]t ([s]× Γ) is the set of read and write accesses. When we say that δ inputs or
outputs elements of Q or Γ, we assume it uses the encodings in {0, 1}lQ or {0, 1}lΓ .

• q0 ∈ Q is the initial state.

• qaccept and qreject are designated states in Q for accepting and rejecting an input, respectively, where
qaccept 6= qreject.

• nM is the length of inputs. Inputs take the form ΣnM .
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• SM ≥ nM is a bound on the space used by M - that is, its memory is represented as an element of
ΓSM .

A bounded RAM program M is encoded by the tuple (δ, q0, qaccept, qreject, nM , SM ), and we say that the
size |M | is the size of the encoding of this tuple. In particular, we don’t need to give a (giant) encoding of
the sets Q, Σ, or Γ.

Definition 13 will be useful for us as a canonical form for RAM programs, but we will not directly specify
RAM programs using Definition 13. Instead, we will specify them with imperative code which uses Get(i)
and Put(i, x) to denote outputting an access. Whenever we consider a RAM program M , we assume the
space bound is known and is denoted SM . The compilation from imperative code is straight-forward and is
deferred to Appendix ??. One key property is that the size of the circuit δ depends only polynomially on
the length of the program, unlike the running time of the program.

6.1.1 Interactive RAM Machines

Our construction will involve layering an ORAM and a “predictably timed writes” data structure on top of the
original machine M , and then obfuscating that composite machine. In order to formally define composition,
we introduce the notion of interactive RAM machines. More generally, we can consider interactive RAM
machines (which can receive many inputs, invoke subroutines, and return many values, all while keeping
state around) by partitioning the set of states into three disjoint types.

Definition 14. An interactive machine M is a tuple (QI , I, QV , V,QW ,W,A, q0, δI , δV , δW , α, ν), where QI ,
I, QV , V , QW , W , and A are finite sets which are all encoded by disjoint subsets of {0, 1}l.

• QI is the set of states which are “ready for input”

• I is the set of inputs

• QV is the set of states which “have completed with a return value”

• V is the set of return values V .

• ν : QV → V is a function which extracts the return value from a state .

• QW is the set of states which are “waiting for a subroutine to return”

• W is the set of return values a subroutine is allowed to return.

• A is the set of arguments which can be passed to a subroutine.

• q0 ∈ QI is the starting state of M

• α is a function from QW to A which extracts the argument intended for a subroutine from the state.

• δI , δV , and δW are all transition functions whose type signatures reflect that different information is
needed to proceed in different types of states. δI : QI×I → QW ∪{⊥}, δW : QW×W → QW ∪QV ∪{⊥},
and δV : QV → QI ∪ {⊥}.

Note that a non-interactive s-bounded RAM machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject) is just a special
case of s-bounded interactive RAM machines. Gets and Puts are regarded as a single subroutine whose
argument set A is tuples of the form (READ, i) and (WRITE, i, x), and whose W is {⊥} ∪ Γ. Formally:

• QI is the singleton set {q0}. I is just {⊥}.

• QV = {qaccept, qreject}, V = {“accept”, “reject”}

• ν : QV → V is defined in the obvious way.
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• QW = (Q \ {qaccept, qreject, q0})×A, where A = {(READ, i) : i ∈ [s]}∪ {(WRITE, i, x) : i ∈ [s]∧x ∈ Γ}.
W = Γ ∪ {⊥}.

• The function α : QW → A is just projection onto the second component.

• δI(q0,⊥) = δ(q0,⊥).

• δW ((q, a), w) = δ(q, w).

• δV (qaccept) = δV (qreject) = ⊥.

6.1.2 Composition

Suppose that M and N are interactive machines such that M.A = N.I and M.W = N.V . We define their
composition M ◦N by defining:

• QI = M.QI ×N.QI

• I = M.I

• QV = M.QV ×N.QI

• V = M.V

• QW = M.QW ×N.QW

• W = N.W

• A = N.A

• q0 = M.Q0 ×N.Q0

• α((qM , qN )) = α(qN )

• ν((qM , qN )) = ν(qM )

• δI((qM , qN ), w) = (δI(qM , w), δI(qN , α(δI(qM , w))))

• δV ((qM , qN )) = (δV (qM ), qN )

• δW is defined in Algorithm 15:

Essentially we are just letting M use N as a subroutine whose argument is in A and whose return value
is in W .

6.2 ORAM

Our construction of a succinct one-time Garbled RAM will rely heavily on Oblivious Random-Access Memory
(ORAM) schemes, which we now define. Informally, an ORAM is a way of hiding the pattern of memory
locations accessed by a RAM machine. We formalize the security property we need in Section 6.2.3. We note
that the property that we need is stronger than the standard one; still, known schemes have this property.
See Sections 6.2.3 and 6.2.4 for more details.

6.2.1 Syntax

An ORAM is a data structure parameterized by an underlying word set W , and a memory size s. Given
these parameters, the ORAM will have a private state set Q, a word set W̃ and memory size s̃. Syntactically,
an ORAM has two operations: Init and OAccess, both of which are probabilistic.
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Algorithm 15: δW : QW ×W → QW tQV t {⊥} for the composition M ◦N
Input: State (qM , qN ), word w
Output: State q′

1 q′N := N.δW (qN , w);
2 if q′N ∈ QW then return (qM , q

′
N );

3 else if q′N = ⊥ then return ⊥;
// else q′N ∈ QV

4 v := ν(q′N );
5 q′N := δV (q′N );
6 q′M := δW (qM , v);
7 if q′M ∈ QV then return (q′M , q

′
N );

8 else if q′M = ⊥ then return ⊥;
// else q′M ∈ QW

9 q′N := δI(q
′
N , α(q′M ));

10 return (q′M , q
′
N );

Init. Init(D0, 1
λ) → (q0, D̃0) initializes an ORAM given an input D0 — a sequence of words w1, . . . , ws

which describes the underlying initial memory contents — and a security parameter λ. Init outputs q0 ∈ Q
where q0 is an initial private state, as well as D̃0, a sequence of ORAM words w̃1, . . . , w̃s̃ describing the
initial physical memory of the data structure.

OAccess. We think of OAccess as an interactive machine. Its input consists of an underlying access in-
struction a ∈ {READ,WRITE}, an underlying memory location ji to be accessed, and if a = WRITE then it
also has a value xi to be written. OAccess also outputs physical accesses as subroutine calls, and receives
responses. OAccess outputs a response to its input access. If the input was a READ, then the output is the
retrieved value. Otherwise, the output is ⊥. To avoid confusion, we refer to the memory read and write
operations performed by OAccess as Get(i) and Put(i, x).

The underlying memory access pattern in a given execution (i.e., sequence of activations) of an ORAM
scheme is the sequence of reads READ(i) and writes WRITE(i, x) which are given to OAccess as input. In
other words, these are the locations in the underlying memory that the RAM machine accesses. The physical
memory access pattern of an execution of OAccess is the sequence of Get(i) and Put(i, x) instructions which
are generated by OAccess.

6.2.2 Correctness

An ORAM is correct with high probability if there is a negligible function ε(·) such that for all underlying
memory access patterns a0, . . . , at (t = poly(λ)), all initial underlying memory contents D0, and all j ∈ [s],

Pr[(q0, D̃0)←Init(D0, 1
λ), (qi+1, D̃i+1)← OAccess(qi, ai; D̃i),

x← OAccess(qt+1,READ(j); D̃t+1);x 6= xj ] ≤ ε(λ)

Here xj is the content of memory location j in the underlying machine, and is defined in the natural way:
If tj is the largest i ≤ t such that ai is of the form WRITE(j, ∗), and in particular if atj is of the form
WRITE(j, x∗), then xj is x∗. If there is no such at, then xj is D0[j].

6.2.3 Security

The standard notion of security for an ORAM says that the physical accesses produced by any two sequences
of underlying memory accesses are indistinguishable. However, this definition is only useful when we have
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the luxury of a black-box CPU so that we can hide the secrets and state that were used in the generation
of the physical access pattern. Since we want to use indistinguishability obfuscation, we require a stonger
notion of security. We require the existence of a dummy physical access sequence distribution, as well as the
ability to simulate a tuple of a final state together with a final set of memory contents (qfinal, D̃final) consistent
with given physical and virtual access sequences.

For all t, all D0, and all virtual access sequences a1, . . . , at, let sj,t be the largest s ≤ t such that as is an
access (READ or WRITE) to location j. In words, sj,t is the last time that location j was accessed. Let âj,t
be the tuple (sj,t, D̃sj,t [j]).

Strong Simulation. We say that an ORAM is strongly simulatable if there exist probabilistic algorithms
OSample and Sim satisfying the following property:

For all physical access patterns (excluding the values written) I1, . . . , It−1 with Ii ∈ Range(OSample(i; ·)),
the following two distributions of (It, qt+1, D̃t+1) are indistinguishable.

1. Sample qt, D̃t ← Sim(â1,t−1, . . . , âs,t−1, I1, . . . , It−1). Then It, qt+1, D̃t+1 ← OAccess(at, qt; D̃t)

2. Sample It ← OSample(t). Then qt+1, D̃t+1 ← Sim(â1,t, . . . , âs,t, I1, . . . It).

This property says that making t− 1 fake accesses and one real access is indistinguishable from making
t fake accesses, even if the adversary sees all the state (qt+1 and D̃t+1) afterwards. Obviously the state
(qt+1, D̃t+1) reveals the virtual memory contents at time t + 1, but the fact that Sim only depends on the
most recent access to a virtual location is as close as we can come to saying that this is all that is revealed.

6.2.4 ORAM Construction

We show that a slight modification of the ORAM scheme constructed by Shi, Chen, Stefanov and Li [SCSL11],
and simplified by Chung and Pass [CP13] satisfies our correctness and strong simulation security properties.
We first review the construction of [CP13] and then argue why it satisfies the strong simulation definition.

The CP/SCSL Construction. Starting with a RAM machine Π that uses N memory words, the con-
struction transforms it into a machine Π′ that uses N ′ = N ·poly(logN,λ) memory words. While the eventual
goal is to store poly(logN) words in the local state of Π′, Chung and Pass start with a “basic” construction
wherein the local state of Π′ consists of a “position map” pos : [N/α]→ [N/α] for some α = polylog(N).

The N underlying memory locations are divided into N/α “blocks” each storing α underlying memory
words. The external memory is organized as a complete binary tree of N/α leaves. The semantics of the
position map is that the ith block of memory maps to the leaf labeled pos(i). Let d = log(N/α). The
CP/SCSL invariant is that:

“Block i is stored in some node on the path from the root to the leaf labeled with pos(i).”

Each internal node of the tree stores a few memory blocks. In particular, each internal node, labeled by
a string γ ∈ {0, 1}≤d is associated with a “bucket” of β blocks for some β = polylog(N).

The reads and writes to a location r ∈ [N ] in the CP/SCSL ORAM proceed as follows:

• Fetch: Let b = br/αc be the block containing the memory location r, and let i = r mod α be the
component within block b containing the location r. We first look up the leaf corresponding to block
b using the (locally stored) position map. Let p = Pos(b).

Next, we traverse the tree from the roof to the leaf p, reading and writing the bucket associated to each
internal node exactly once. In particular, we read the content once, and then we either write it back
permuting the blocks in each bucket, or we erase a block once it is found, and write it back permuting
the blocks.

• Update Position Map: Pick a uniformly random leaf p′ ← [N/α] and set (in the local memory) Pos(b) =
p′.
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• Write Back: In the case of a READ, add the tuple (b, p′, v) to the root of the tree. In the case of
a WRITE, add the tuple (b, p′, v′) where v′ is the new value to be written. If there is not enough
space in the bucket associated with the root, output overflow and abort. (Jumping ahead, we note
that [CP13, SCSL11] show that, setting the parameters appropriately, the probability that the overflow
event happens is negligible).

• Flush the Block: Pick a uniformly random leaf p∗ ← [N/α] and traverse the tree from the roof to the
leaf p∗ making exactly one read and one write operation for every memory cell associated with the
nodes along the path so as to implement the following task: “push down” each tuple (b̃, p̃, ṽ) read in
the nodes traversed as far as possible along the path to p∗ while ensuring that the tuple is still on the
path to its associated leaf p̃ (i.e., maintaining the CP/SCSL invariant). In other words, the tuple ends
up in the node γ = the longest common prefix of p∗ and p̃. If at any point some bucket is about to
overflow, abort outputting overflow.

The following observation is central to the correctness and security of the CP/SCSL ORAM:

Each oblivious READ and WRITE operation traverses the the tree along two randomly chosen
paths, independent of the history of operations so far.

The key observation follows from the facts that (1) Each position in the position map is used exactly once in
a traversal (and before this traversal, no information about the position is used in determining what nodes
to traverse), and (2) the flushing, by definition, traverses a random path, independent of the history.

This basic ORAM construction has the drawback that the local state of Π′ stores O(N) memory words
for the position map. However, we can outsource the storage of the position map to the memory, recursively.
Recall that each invocation of an oblivious READ and WRITE requires reading just one position in the
position map and updating its value to a random leaf; that is, we need to perform a single recursive oblivious
READ or WRITE call to emulate the position map. At the base case of the recursion, when position map is
of constant size, we use the basic ORAM construction which simply stores the position map in the registers.

Strong Simulation of the CP/SCSL Construction. Informally, the first property holds because the
state is just the assigned location for each block, as well as the physical location of that block. The assigned
location of each block is uniformly random and independent of everything. The physical location of the
block depends only on when that block was last written, as well as all the accesses which come after, which
are again independently uniformly random.

So the simulator can just randomly assign locations to each block, randomly choose an access pattern,
and then compute the physical locations of each block.

We first show the strong simulation security of the basic construction (with a local memory of size O(N)).
We will then extend this to the recursive construction (with a constant-size local memory). In more detail,
we construct the simulator algorithms OSample and Sim as follows.

OSample samples and outputs two uniformly random paths in the tree.

Sim takes as input a tuple (â1,t, . . . , âN,t) and sequences of memory accesses (I1, . . . , It) and does the follow-
ing. For every memory block b ∈ [N/α], let τb ≤ t be the last time when block b was read or written to. Let
Ij = (I read

j , Iflsh
j ) be the pair of paths that comprise each Ij .

• For each block b, pick a uniformly random leaf p = pb ← bN/αc. Compute the unique internal node
γb such that γb is the largest common prefix between p and each of Iflsh

τb
, . . . , Iflsh

t .

• Construct the state qt+1 consisting of the position map by letting Pos(b) = pb.

• Construct the final memory D̃t by writing each memory block b together with its value to the internal
node γb.
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Finally, the simulator for the recursive construction simply runs the level-1 simulator described above to
get qt, the memory content for the second level ORAM. It then runs the level-1 simulator with qt as input
to get the state for the second level of the recursion, and so on.

We show that (OSample,Sim) satisfies strong simulation security. We start by observing that whenever
we READ or WRITE a block b, we remove all trace of it from the memory, eventually rewriting it to the
root. The block then gets flushed down in subsequent accesses to blocks b′ 6= b.

To show security, fix any sequence of physical access patterns (I1, . . . , It−1), last-access-time pairs â1,t−1, . . . , âs,t−1,

and an access at. We would like to show that the following two distributions of (It, qt+1, D̃t+1) are indistin-
guishable.

1. Sample qt, D̃t ← Sim(â1,t−1, . . . , âs,t−1, I1, . . . , It−1). Then It, qt+1, D̃t+1 ← OAccess(at, qt; D̃t)

2. Sample It ← OSample(t). Then qt+1, D̃t+1 ← Sim(â1,t, . . . , âs,t, I1, . . . It).

The second distribution differs from the first in the atht location of the state qt+1, the location of the
atht block in the memory D̃t+1 as well as It. In both cases, It is a pair of uniformly random paths, and the
atht location of the state qt+1 is a third uniform and independent path. Finally, in both cases, the block at
gets written to the root of the tree and gets flushed down to the longest common prefix of Pos(at) and Iflsh

t .
Thus, the two distribution are identical.

6.3 Freshness Guarantor

Recall that in our iOIC scheme, we used ACE to ensure that if an evaluator tries to give the wrong values to
the garbled RAM circuit, the circuit will just output ⊥. In particular, each value that our program writes to
memory is written in a tuple with the location and time it is being written. In order to ensure stale values or
values from the future are not accepted, our program must ensure that on every read of a location it knows
what time that location was last written.

We achieve this with a data structure that we call a freshness guarantor, described in [GHRW14] but
reproduced here for completeness. This data structure will have as parameters an index set I0 which is the
set of locations in memory whose “last-written” times are being tracked, as well as T , the maximum time
we are interested in. The data structure itself will be stored in a separate area of memory whose locations
are indexed by a set IFG.

The data structure consists of a balanced binary tree with one leaf per two elements of I0. We will index
the nodes of this tree by binary strings with length up to d, where d = log |I0|. The root node is denoted by
nε, where ε is the empty string. The left child of a node ni is ni‖0 , while the right child is ni‖1. Each node
ni has fields t, t0, and t1, where tb ∈ [T ] is supposed to store ni‖b.t.

The freshness guarantor has three operations: Init, PreRead, and PreWrite.

Init. Init sets every field of every node to 0.

PreRead. PreRead is described in Algorithm 16. It takes as arguments an element of I0, represented as a
binary string i = i0‖ · · · ‖id, and a time t. It accesses each node npj , where pj = i0‖ · · · ‖ij−1, checking that
nε.t = t− 1 and npj .tij = npj+1

.t. If each of these checks passes, then PreRead updates nε.t0 to be t outputs
npj .tij . Otherwise, PreRead outputs ⊥.

PreWrite. PreWrite is described in Algorithm 17. It takes as arguments an element of I0, represented
as a binary string i = i0‖ · · · ‖id, and a time t. It accesses each node npj , where pj = i0‖ · · · ‖ij−1, checking
that npj .tij = npj+1

.t. It also writes back each node npj , updating npj .tij and npj .t to be t. PreWrite does
not have a return value.

It is easy to see that each operation on a freshness guarantor preserves the following invariants:

• Each node’s expected timestamp for its child matches that child’s timestamp. That is, for each node
ns, ns.tb = ns‖b.t.
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Algorithm 16: PreRead

Input: i = i0‖ · · · ‖id ∈ I0, t ∈ [T ]
1 texp := t− 1;
2 for j := 0 to d do
3 n := Get(i0‖ · · · ‖ij−1) ; // Here, i0 · · · i−1 means the empty string ε
4 assert texp = n.t ;
5 texp := n.tij ;

// Now write back the root with an updated timestamp.

6 root := Get(ε);
7 root.t := t ;
8 Put(ε, root);
9 return tn

Algorithm 17: PreWrite

Input: i = i0‖ · · · ‖id ∈ I0, t ∈ [T ]
1 texp := t− 1 ;
2 for j := 0 to d do
3 n := Get(i0‖ · · · ‖ij−1) ; // Here, i0 · · · i−1 means the empty string

4 assert texp = n.t ;
5 texp := n.tij ;
6 n.t := t // Write back with updated timestamp and expectation for child

7 n.tij := t;
8 Put(i0‖ · · · ‖ij−1, n);

• For each i0‖ · · · ‖id ∈ I0, ni0‖···‖id−1
.tid is the largest t such that PreWrite(i0 · · · id, t) was executed.

Just like for an ORAM, we will think of a freshness guarantor as an interactive machine. Again, it takes
READs and WRITEs as inputs and produces READs and WRITEs to be passed to a subroutine.

6.3.1 Freshness Guarantor Inductive Properties

Let FG be a freshness guarantor on S words with timestamps bounded by T . Define φt∗,f as a predicate on
(q, w) ∈ FG.QI × FG.W :

q.t ≤ t∗ =⇒ w = f(q.t)

In words, this says that the first t∗ inputs to FG are given by f(1), . . . , f(t∗). Let S0 denote the initial

memory, and let q
(0)
FG denote the initial state of FG.

Claim 6. Suppose that t ≤ t∗ and f(t) is an access of location i, and before time t, location i was most
recently written at time t′.

If f(t) is a WRITE, then φt∗,f poly(log T, logS)-inductively implies the following predicate on q ∈ FG.QV :

q.t > t and f(q.t) = READ(i) =⇒ ν(q) ≥ t (1)

If f(t) is a READ, then φt∗,f poly(log T, logS)-inductively implies the following predicates on q ∈ FG.QV :

q.t = t =⇒ ν(q) = t′ (2)

Proof. We separately prove the inductiveness of each predicate. Recall the notation where i is written as a
binary string i0‖ · · · ‖id, and pj denotes i0‖ · · · ‖ij−1.
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Predicate 1 Recall that for each physical access that FG makes, its state has a variable texp which stores
the expected timestamp for the current access. If this doesn’t match, then the PreRead or PreWrite aborts
and outputs ⊥. Recall also that the value ν(q) comes directly from an access of a FG tree leaf on the
previous state, so a property about the FG leaf corresponding to i 0-inductively implies a property about
ν(q).

We claim that if npj has timestamp at least t, then npj .tij is also at least t. In order to make this
actually an invariant, we need something a bit stronger. We need to add that if qFG.i = i and qFG.t > t,
then qFG.texp ≥ t. The conjunction of these two properties is in fact an invariant and is decidable by a
circuit of size poly(|qTT |) = poly(log T, logS), and therefore Predicate 1 is poly(log T, logS)-inductive.

Predicate 2 We use Predicate 1 to establish a lower bound: ν(q) ≥ t′. We must also establish a matching
upper bound (and then we will use the fact that conjunctions of inductive predicates are inductive). It is
trivial to establish a loose upper bound of ν(q) ≤ t, because PreRead and PreWrite return a prediction
smaller than the current time. We know that for all times t′ + 1, . . . , t − 1, the leaf for i is not accessed
(technically this property is O(log T )-inductively implied by φt∗,f ). Hence the leaf node of the FG tree
never predicts that location i’s last-written timestamp is between t′ + 1 and t − 1. Therefore ν(q) = t′ is
the only remaining possibility. We used invariants whose total size is poly(log T, logS), so Predicate 2 is
poly(log T, logS)-inductive.

6.4 Space-Efficient One-time RAM Garbling

We now define and construct a space-efficient one-time RAM garbling scheme.

6.4.1 Definition

A garbling scheme for a family M of RAM machines consists of two algorithms, Garble and Eval.

Garble(M,x, SM , 1
λ) takes as input M ∈ M and an input x, as well as the space SM used by M , and

the security parameter 1λ. It outputs a garbling ỹ.

Eval(M̃, x̃) takes a garbling ỹ and produces an output value y.

Correctness. A garbling scheme is correct if for all M ∈M and all correctly-sized inputs x and all λ,

Pr[ỹ ← Garble(M,x, SM , 1
λ), y ← Eval(ỹ); y = M(x)] = 1

Space Efficiency A garbling scheme is space efficient if Garble runs in time poly(|M |, Sm, λ), where Sm
is the space usage of M .

One-time Simulation Security. A garbling scheme is simulation secure if there is a simulator Sim such
that for all M ∈M, all correctly-sized inputs x, and all λ:

Sim(M(x), SM , TM , 1
λ) ≈C Garble(M,x, SM , 1

λ)

Here, ≈C denotes computational indistinguishability.

6.4.2 Construction

First, assume that the machine M erases memory before terminating, and assume that M ’s terminal states
contain only the result. As long as M reads its entire input, then this assumption incurs no additional
asymptotic overhead on the running time of M , because the size of memory is at most the running time of
M . Of course, there is also no additional space overhead.
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Next, we introduce interactive RAM machine of our ORAM and freshness guarantor data structures,
and call them ORAMK and FG. K denotes a puncturable pseudorandom function key, since OAccess

needs randomness but interactive RAM machines are deterministic. The freshness guarantor’s PreRead and
PreWrite are deterministic, so FG does not require a pseudorandom function key.

We now describe Garble in Algorithm 18. Garble is not constrained to be deterministic, so it makes
sense for it to randomly sample parameters using GenPRF, GenEK, GenDK. Garble then runs InitORAM and
InitFG to get an interactive machine ORAM , an interactive machine FG, and initial memory contents
D̃0. Garble then obfuscates the composition of M , ORAM , and FG to produce M̃ . It also outputs the
encapsulation of a starting state q̃ and a word-by-word encapsulated initial memory x̃. Eval is described in
Algorithm 19.

Algorithm 18: Garble

Input: M , input x, security parameter 1λ

1 K ← GenPRFPPRF (1λ);

2 SK ← SetupACE(1λ);
3 EK ← GenEKACE(SK, ∅);
4 DK ← GenDKACE(SK, ∅);
5 D0 ← x padded on the right with to be SM words long ;

6 (q
(0)
ORAM , D0)← InitORAM (D0, 1

λ);

7 (q
(0)
FG, D0)← InitFG(D0);

8 M̃ ← iO(AddACE(M ◦ORAMK ◦ FG));
9 for i ∈ |D0| do

10 x̃[i] := Enc(EK,D0[i]);

11 q̃ ← Enc(EK, (q
(0)
M , q

(0)
ORAM , q

(0)
FG));

12 return (M̃, q̃, x̃);

Algorithm 19: Eval

Input: (M̃, q̃, x̃). We treat x̃ as a mutable array of ciphertexts
Output: y

1 p := M̃(q̃,⊥);
2 while p is not a return value do
3 Parse p as (cq, a) where cq is an encapsulated state and a is an access;
4 if a is of the form (READ, i) then

5 p := M̃(cq, x̃[i]);
6 else
7 Parse a as (WRITE, i, cv);
8 x̃[i] := cv;

9 p := M̃(cq,⊥);

10 return p;

6.5 Proof of Security

Claim 7. (Garble,Eval) satisfies correctness and space efficiency.

Proof. This is easy to see directly.
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The more difficult property to show is the one-time simulation security. For this we must show that
Garble(M,x) and Sim(M(x)) produce indistinguishable distributions of M̃, x̃. At a high-level, our hybrids
progressively make M̃ do more dummy steps and fewer computation steps, while x̃ encapsulates a hard-coded
state from progressively higher times. The final state is a function only of M(x).

There are a couple of difficulties in achieving this compared to the iterated functions case. One is that a
transition function for a RAM machine inherently takes two different inputs - its state and the contents of
memory it just accessed. This means that a malicious evaluator could supply inputs that are individually
valid, but are combined in the wrong way. For example, a malicious evaluator could supply the memory
contents at location i′ when the machine requested location i. More deviously, the evaluator could supply
memory contents from location i which are not the most recently written one. To solve this problem, we
use a consistency checking transformation which ensures that each state will only be accepted with a single
corresponding input word.

Another difficulty is that our circuit must output the locations it wishes to access in the clear, which
could reveal something about the underlying machine. An ORAM would solve this problem if we had a
black-box CPU, but the security of an ORAM typically relies on the ability to generate secret randomness
and have secret state. Indistinguishability obfuscation guarantees neither of these things. We introduce a
stronger notion of security for ORAMs, and show that existing constructions satisfy this property. This
stronger notion of security reduces the requirements on the secrecy of randomness and the secrecy of state in
a sort of “worst-case forward security” way. Once we have this security notion, puncturable pseudorandom
functions inside of iO provide sufficient randomness-hiding.

Theorem 6. (Garble,Eval) satisfies one-time simulation security.

Proof. To prove one-time simulation security of our garbling scheme, we use a hybrid argument to show
that the real distribution ỹ ← Garble(M,x, 1λ) is indistinguishable from a simulated ỹ ← Sim(M(x), 1λ) by
presenting a sequence of hybrid distributions H0, . . . ,HTM , where H0 is the same as the real distribution,
HTM is the same as the simulated distribution, and Hi is indistinguishable from Hi+1.

In Hi, ỹ is the output of Garblei, described in Algorithm 20. Note that in the final hybrid, ỹ depends
only on M(x), because of two assumptions about the structure of M which we can make without loss of
generality:

• M erases its memory in sequential order at the end of its execution

• The end state of M
(
q

(TM )
M

)
is a function only of M(x)

It is therefore easy to define Sim in terms of GarbleTM : Sim produces the same output distribution as
GarbleTM , but takes as input M(x) instead of (M,x).

In order to show that Hi = Garblei(M,x) is indistinguishable from Hi+1 = Garblei+1(M,x), we give two
intermediate hybrids Hi,1 and Hi,2 such that

Hi ≈ Hi,1 ≈ Hi,2 ≈ Hi+1

In Hybrid Hi,1, q̃ and x̃ are the same as in Hi, but M̃ is defined differently as iO(AddACE(Ni,1 ◦ FG)),
where Ni,1 is described in Algorithm 22. Essentially Ni,1 hard-codes its behavior for the i + 1th access of
M . This hard-coded behavior consists of reading ι1, . . . , ιη, (η is the overhead of the ORAM), checking that
the responses are (w1, . . . , wη) (outputting ⊥ otherwise), and then writing back (w′1, . . . , w

′
η) to the same

locations. Here ιl, wl, and w′l are all hard-coded constants.

In Hybrid Hi,2, we change each of M̃ , q̃, and x̃ compared to their values in Hi,1.

• M̃ is iO(AddACE(Ni,2 ◦ FG)), where Ni,2 is described in Algorithm 23. The code for Ni,2 still has
ι1, . . . , ιη hard-coded, but instead of having hard-coded input and output words and states, Ni,2 just
writes back the same value, just as a dummy access would do.

• x̃ is defined so that for each l ∈ {1, . . . , η}, x̃[ιl] is an encapsulation of (0, ιl, w
′
l) instead of an encapsu-

lation of (0, ιl, wl).
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Algorithm 20: Garblei

Input: RAM Program M , input x, security parameter 1λ

1 Let D
(0)
M denote x padded on the right with until it is SM words long;

2 Let D
(i)
M denote the memory contents if M is executed for i steps starting on D0;

3 Let q
(i)
M denote the state of M after running for i steps starting on D0;

4 Let a1, . . . , aT denote the underlying access pattern induced by M with starting memory D0;
5 Let si,t denote the largest s with s ≤ t such that as accesses location i, or 0 if there is no such access;

6 Let âi,t denote (si,t, D
(si,t)
M [i]);

7 K ← GenPRF(1λ);
8 Let Ij = OSample(j,EvalPRF(K, j));

9 (q
(i)
ORAM , D

(i)
ORAM )← SimORAM (â1,i, . . . , âs,i, I1, . . . , Ii, 1

λ);

10 (q
(0)
FG, D

(0)
FG)← InitFG(D

(i)
ORAM );

11 SK ← SetupACE(1λ);
12 EK ← GenEKACE(SK, ∅);
13 DK ← GenDKACE(SK, ∅);
14 M̃ ← iO(AddACE(Ni ◦ FG)) where Ni in Algorithm 21 has ORAMK , K, and M as constants;
15 for j ∈ {1, . . . , |DFG|} do

16 x̃[j] := Enc(EK,D
(0)
FG[j]));

17 q̃ ← Enc(EK, (q
(i)
M [t 7→ 0], q

(i)
ORAM [t 7→ 0], q

(0)
FG));

18 return (M̃, q̃, x̃);

Algorithm 21: δW for Interactive Machine Ni
Data: M , ORAMK , K
Input: State q, word w
Output: State q′

1 Parse q as (qM , qORAM );
2 if q.t < (i, 0) then
3 q′ := q[t 7→ t+ 1] ;
4 ι := OSample(PRFK(qM .t)) [bqORAM .t/2c];
5 if qORAM .t is even then return (q′,READ(ι));
6 else return (q′,WRITE(ι, w)) ;

7 else return (M ◦ORAM).δW (q, w) ;
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• q̃ is also changed to be q2η[t 7→ 0] instead of q0[t 7→ 0].

Algorithm 22: δW for Interactive Machine Ni,1

Data: M , ORAMK , K, and locations ι0, . . . , ιη−1, input words w0, . . . , wη−1, output words
w′0, . . . , w

′
η−1, states q0, . . . , q2η which correspond to qM .t = i if running Ni honestly

Input: State q, word w
Output: State q′

1 if q = q2k for k ∈ {0, . . . , η − 1} then return (q2k+1,READ(ιk)) ;

2 else if q = q2k+1 for k ∈ {0, . . . , η − 1} then
3 assert w = wk} ;

4 return (q2k+2,WRITE(ιk, w
′
k));

5 Parse q as (qM , qORAM );
6 if q.t < (i, 0) then
7 q′ := q[t 7→ t+ 1];
8 ι := OSample(PRFK(qM .t)) [bqORAM .t/2c];
9 if qORAM .t is even then return (q′,READ(ι));

10 else return (q′,WRITE(ι, w)) ;

11 else if q.t ≥ (i+ 1, 0) then

12 return (M ◦ORAM).δW (q, w);

Algorithm 23: δW for Interactive Machine Ni,2

Data: M , ORAMK , K, locations ι1, . . . , ιη
Input: State q, word w
Output: State q′

1 Parse q as (qM , qORAM );
2 q′ := q[t 7→ t+ 1];
3 if q.t < (i, 0) then
4 ι := OSample(PRFK(qM .t)) [bqORAM .t/2c];
5 if t2 is even then return (q′,READ(ι));
6 else return (q′,WRITE(ι, w)) ;

7 else if q.t = (i, j) for some j then

8 if qORAM .t is even then return (q′,READ(ιqORAM .t/2)) ;

9 else return (q′,WRITE(ιbqORAM .t/2c, w)) ;

10 else if q.t ≥ (i+ 1, 0) then
11 return (M ◦ORAM).δW (q, w);

Timestamps Our indistinguishably arguments will use Theorems 3, 4, and 5. As such, we need to define a
graded poset structure on our message space M (which is (QM×QORAM )tW ). Towards this goal, we assign
a timestamp to every element of this set. Recall that QM and QORAM both have a timestamp component,
which ranges from 0 to T for QM and 0 to η − 1 for QORAM (recall η is the multiplicative time-overhead of
our ORAM). Given q = (qM , qORAM ), we will say that q’s timestamp q.t is ηqM .t + qORAM .t. Elements w
of W are also tagged with a timestamp w.t which is equal to that of the state at which they were written.
Sometimes we will write a timestamp t as (t1, t2), where t = ηt1 + t2, and 0 ≤ t2 < η. (t1, t2) is uniquely
defined by division with remainder by η.
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One final note about our graded poset is that it does not suffice to let the rank ρ of an element m ∈M
be given by m.t. This would allow some q ∈ QM ×QORAM to have the same rank as some w ∈W . Instead
we will disambiguate by saying (somewhat arbitrarily) that if w.t = q.t, then w � q. In terms of ranks, this
can be achieved by defining

ρ(m) =

{
2(m.t) + 1 if m ∈W
2(m.t) if m ∈ QM ×QORAM

Indistinguishability of Hi and Hi,1 We now show that Hi is indistinguishable from Hi,1 via intermediate

hybrids: Hi ≈ Hi,0,0 ≈ · · · ≈ Hi,0,η ≈ Hi,1. In Hi,0,j , q̃ and x̃ are the same as they are in Hi, but M̃ is
iO(AddACE(Ni,0,j ◦FG)), where Ni,0,j hard-codes its first j accesses (to locations ι1, . . . , ιj) and is described
in Algorithm 24.

We will show indistinguishability of Hi,0,j from Hi,0,j+1 by using Theorem 3. Let S0 ∈ (Q tW )∗ be the
sequence of plaintexts which are encapsulated by (q̃, x̃). We give a predicate φj which is poly(logS, log T )-
inductive with respect to both Ni,0,j ◦ FG and Ni,0,j+1 ◦ FG given S0 such that Ni,0,j ◦ FG is functionally
the same as Ni,0,j+1 ◦ TT when restricted to inputs satisfying φ̄j . Once we show this, Theorem 3 implies
that

(iO(AddACE(Ni,0,j)), q̃, x̃) ≈ (iO(AddACE(Ni,0,j+1)), q̃, x̃)

which is a restatement of the claim that Hi,0,j ≈ Hi,0,j+1.

Algorithm 24: δW for Interactive Machine Ni,0,j

Data: M , ORAMK , K, and locations ι0, . . . , ιj−1, input words w0, . . . , wj−1, output words
w′0, . . . , w

′
j−1, states q0, . . . , q2j .

Input: State q, word w
Output: State q′

1 if q = q2k for k ∈ {0, . . . , j − 1} then return (q2k+1,READ(ιk)) ;

2 else if q = q2k+1 for k ∈ {0, . . . , j − 1} then
3 assert w = wk ;
4 return (q2k+2,WRITE(ιk, w

′
k));

5 Parse q as (qM , qORAM );
6 if q.t < (i, 0) then
7 q′ := q[t 7→ t+ 1];
8 ι := OSample(PRFK(qM .t)) [bqORAM .t/2c];
9 if t2 is even then return (q′,READ(ι));

10 else return (q′,WRITE(ι, w)) ;

11 else
12 return (M ◦ORAM).δW (q, w);

We define φj as the conjunction of several predicates, which are themselves proven to be poly(logS, log T )-
inductive in Claims 8, 9, and 10.

Let qj denote the unique state (qM , qORAM ) of Ni.j such that qM .t = i and qORAM .t = j, and qj occurs
in an honest execution of Ni. Let wj denote the word (if non-⊥) that qj is paired with as an input.

Claim 8. The following predicate on w ∈ W is poly(logS, log T )-inductive with respect to both Ni,0,j ◦ FG
and Ni,0,j+1 ◦ FG.

w.t = tj ∧ w.i = ιj =⇒ w = wj (3)
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Proof. If tj ≥ (i, 0) (that is, location ιj was most-recently written by a hard-coded access), then the predicate
is immediately poly(logS, log T )-inductive (as it is itself an invariant). This is because regardless of input,
only one word with timestamp tj is ever output, and that word is hard-coded as wj .

If tj < (i, 0), an invariant which implies this property is

w.t < (i, 0) ∧ w.i = ιj =⇒ w.x = xιj

This holds for S0 because S0∩W is exactly the values which are encapsulated in x̃. Of these values, only
one takes the form (?, ιj , ?), and that word is (0, ιj , xιj ).

This is invariant because if t < (i, 0), a word with timestamp t of the form (t, ι, x) is output only if the a
word of the form (t′, ι, x) with t′ < t is input. Finally, this implies the desired predicate (3) because a word
(just a tuple) is fully determined by its values of t, i, and x.

Claim 9. The following predicate on (qM , qORAM , qFG) ∈ Q is poly(logS, log T )-inductive with respect to
both Ni,0,j ◦ FG and Ni,0,j+1 ◦ FG.

qM .t = i ∧ qORAM .t = j ∧ qFG.t = logS =⇒ qFG.texp = tj ∧ qFG.i = ιj (4)

Recall that qFG.t = logS only when FG is accessing underlying memory, and then qFG.texp and qTT .i are
the expected timestamp and location tags on the next word read from memory and passed to Ni.

Proof. We will prove the claim by applying Claim 5 and Claim 6. Claim 6 tells us that if the first t∗ inputs
to FG are given by a function f , then for any t ∈ {1, . . . , t∗}, we have an inductive property that FG will
expect the correct timestamp and location on the t-th access. FG is a sub-circuit in Ni.j ◦ TT , so we first
show an inductive property claiming that indeed the first t∗ inputs given to TT in Ni.j ◦TT are given by f .
Claim 5 then allows us to put these two properties together. A more formal proof follows.

First, QFG is a black-box component of QM ×QORAM ×QFG in Ni.j ◦ FG, where the projection πQ is
defined as πQ(qM , qORAM , qTT ) = qTT .

Recall that Claim 6 says that φt∗,f poly(logS, log T )-inductively implies ψt∗ with respect to FG, where
φt∗,f is a predicate on (q, w) ∈ FG.QI × FG.W :

q.t ≤ t∗ =⇒ w = f(q.t)

and ψt∗ is a predicate on QFG which says that FG expects the correct timestamp on the t∗-th access.
Now we claim χ is poly(logS, log T )-inductive, where

χ(x) = all inputs to D in C on x satisfy φ2ηi+j,f

and

f(2ηi′ + j′) =

{
OSample(EvalPRF(K, i′))[j′] if i′ < i

ιj otherwise

because χ is its own invariant, and its size is poly(logS, log T ) because η is poly(logS, log T ).
The claim now follows from Claim 5.

Claim 10. The following predicate on (qM , qORAM , qFG) ∈ Q is poly(logS, log T )-inductive with respect to
both Ni,0,j ◦ FG and Ni,0,j+1 ◦ FG.

qM .t = i ∧ qORAM .t = j =⇒ (qM , qORAM ) = qj (5)

Proof. We prove that (3) and (4) inductively imply (5) with respect to both Ni.j ◦FG and Ni.(j + 1) ◦FG.
This is almost trivial for the latter case. (5) is an invariant of Ni,0,j+1 ◦ FG because Ni only ever outputs
one state satisfying (qM .t = i∧ qORAM .t = j), and this state is hard-coded as qj . Composition with TT does
not cause any different states of Ni to be output.
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For Ni,0,j ◦ FG, first suppose j > 0. Then we notice that a state with timestamp (i, j) is only output
when the input state has timestamp (i, j− 1) But such a state can only be qj−1. By (3) and (4), wj−1 is the
only word w for which (qj−1, w) as input will not induce ⊥ as output. We know the output state will then
be qj by definition.

If j = 0, parse q0 as (q
(0)
M , q

(0)
ORAM ). Then we use a different invariant to show that there is only one

possible state with time timestamp (i, 0):

(qM .t, qORAM .t) ≤ (i, 0) =⇒ qM = q
(0)
M [t 7→ qM .t] ∧ qORAM = q

(0)
ORAM [t 7→ qORAM .t])

This is an invariant because states with timestamp at most (i, 0) are produced by incrementing the timestamp
of the input state.

This says that the only difference between q0 and all states preceding it is the timestamps. The conjunc-
tion of (3), (4), and (5) imply that Ni ◦ FG and N ′i ◦ FG are functionally equivalent. So Theorem 3 shows
that Hi and Hi.A are indistinguishable.

Indistinguishability of Hi,1 and Hi,2 We now show that Hi,1 is indistinguishable from Hi,2. Here we
will repeatedly apply the Diamond Theorem (5) to progress through hybrids:

Hi,1 ≈ Hi,1,0 ≈ · · · ≈ Hi,1,ηi ≈ Hi,2

Hi,1,j is defined such that q̃ and x̃ are the same as in Hi,1, but M̃ is iO(AddACE(Ni,1,j ◦ FG)), where Ni,1,j
is given in Algorithm 25. Ni,1,j differs from Ni,1 in that it has a different set of hard-coded constants. In
particular, we define (q`, w`) as the inputs which induce the first access to location ι` that (in an honest
execution of Ni,1) happens at time at least 2(ηi− j). w′` is defined the same way in Hi,1,j as it is in Hi,1. It
is easy to verify that Hi,1,0 = Hi,1 by iO.

It is also easy to show that Hi,1,2ηi ≈ Hi,2 by using Theorem 4, which we now do.

Claim 11. Hi,1,2ηi ≈ Hi,2

Proof. In Hybrid Hi,1,2ηi, the hard-coded inputs are all values which appear in S0. Theorem 3 implies that
we might as well let Ni,1,2ηi do the same thing on S′0 as it does on S0, and then we can use Theorem 4 η

times to allow us to replace S0 by S′0, while also changing it in M̃ . Finally, we can use Theorem 3 to change
M̃ so that our hybrid is identical to Hi,2.

What remains is to show that Hi,1,j ≈ Hi,1,j+1, and we show this by using our Diamond Theorem (5).
Note that Ni,1,j and Ni,1,j+1 compute different states on only one value of `: call this value `j . Call the
changed values in Ni,1,j+1 q̃ιj and w̃ιj . In order to apply the Diamond Theorem to change qιj into q̃ιj , we
need to show a property φ which is poly(logS, log T )-inductive with respect to both Hi,1,j and Hi,1,j+1 such
that for all x satisfying φ̄:

1. There is only one input x∗ which causes either Ni,1,j to output qιj or causes Ni,1,j+1 to output q̃ιj , and
this x∗ causes both to happen. For this to be true, it suffices for φ needs to imply that there is only
one possible state with the (shared) preceding timestamp, and only one word which will be accepted
together with this state. We already know that this property is poly(logS, log T )-inductive.

2. Ni,1,j never outputs q̃ιj and Ni,1,j+1 never outputs qιj . The same inductive property as above implies
this.

3. Ni,1,j(qιj , ·) is equivalent toNi,1,j+1(q̃ιj , ·). It suffices for φ to imply thatHi,1,j(qιj , wιj ) = Hi,1,j+1(q̃ιj , w̃ιj )
and for all w 6= wιj , Hi,1,j(qιj , w) = ⊥ and for all w 6= w̃ιj , Hi,1,j+1(q̃ιj , w) = ⊥. This is again easy
to show poly(logS, log T )-inductively (the property that words at a specific location after a bunch of
dummy accesses retains its value is invariant).
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Algorithm 25: δW for Interactive Machine Ni,1,j

Data: M , ORAMK , K, and locations ι0, . . . , ιη−1, input words w0, . . . , wη−1, output words
w′0, . . . , w

′
η−1, states q0, . . . , q2η−1, q∗in, q∗out. Here q2` denotes the first state (in an honest

execution of Ni,1) with timestamp at least 2ηi− j which also outputs a read of location ι`
Input: State q, word w
Output: State q′

1 if q = q∗in then q′ := q∗out ;

2 else q′ := q[t 7→ t+ 1] ;

3 if q = q2k with k ∈ {0, . . . , η − 1} then return (q′,READ(ιk)) ;

4 else if q = q2k+1 with k ∈ {0, . . . , η − 1} then
5 assert w = wk ;
6 return (q′,WRITE(ιk, w

′
k));

7 else if q.t ≥ 2(ηi− j) then
8 q′ := q[t 7→ t+ 1];

9 if q.t = (i, 2k) with k ∈ {0, . . . , η − 1} then return (q′,READ(ιk)) ;

10 else if q.t = (i, 2k + 1) with k ∈ {0, . . . , η − 1} then return (q′,WRITE(ιk, w)) ;

11 else return (M ◦ORAM).δW (q, w) ;

12 else return Ni,1(q, w) ;

4. For q /∈ {qιj , q̃ιj}, Hi,1,j(q, ·) ≡ Hi,1,j+1(q, ·). This is clear because Hi,1,j and Hi,1,j+1 are defined to
only differ when q ∈ {qιj , q̃ιj}.

Changing wj to w̃j is similar, but showing (3) uses the second property of the freshness guarantor. In
particular, in order to show that Hi,1,j(·, wj) is the same as Hi,1,j+1(·, w̃j), we will show that there is only
one state which will be accepted with wj or w̃j , which reduces our task to looking at the function on specific
inputs. This is because the freshness guarantor tells us that there is only one value for q.t (call this t∗)
at which a word whose timestamp and location are wj .t and wj .i respectively will be accepted. Another
inductive property says that there is only state with timestamp t∗, since all the accesses before t∗ only
increment the timestamp of q.

Applying ORAM security property We now show that Hi,1 is indistinguishable from Hi+1. This
follows directly from the simulability of our ORAM. The difference between Hi,1 and Hi+1 is in the starting

ORAM memory D
(i+1)
ORAM , the starting ORAM state q

(i+1)
ORAM , and the hard-coded locations Ii+1 = ι1, . . . , ιη.

The distributions of these values in Hi,1 and Hi+1 are exactly the two distributions which are indistinguish-
able by the simulability property. Once the hard-coded locations are the same as would be generated by
OSample, we can use iO to replace them with a normal dummy access.

6.6 Obfuscation

Finally, we turn our (one-time) succinct RAM garbling scheme into an indistinguishability obfuscation scheme
for RAM machines, proving our main theorem:

Theorem 7. Let S = S(n) be any polynomial space bound function. Assuming sub-exponentially secure
indistinguishability obfuscation for circuits, there is an indistinguishability obfuscator for RAM machines
that run in space bound S, where

• The size of the obfuscated RAM machine M is S · poly(λ, n) + poly(|M |, λ, n); and
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• The running time of the obfuscated RAM machine M is S · poly(λ, n) + T · poly(|M |, logS, log T, λ, n),
where T is the running time bound of the machine M .

Proof. The idea for the RAM obfuscation is simple. Consider a (deterministic) circuit CK,M where M is a
RAM machine and K is a key for a puncturable PRF, that takes as input x, and does the following.

• Compute ρ← PRFK(M,x, 1|S|); and

• Outputs (M̃, q̃, x̃)← Garble(M,x, 1S ; ρ).

Since Garble is a circuit of size poly(|M |, S, λ), we know that CK,M is also of size poly(|M |, S, λ). The RAM

obfuscation C̃M is simply an IO obfuscation of the circuit CK,M for a uniformly random K ← {0, 1}λ.

This gives a succinct way to obfuscate RAM programs. The evaluation procedure EvalObf (C̃M , x) just

evalutes C̃M with input x to obtain (M̃, q̃, x̃). Then it executes EvalGarble(M̃, q̃, x̃) to obtain M(x).
To show indistinguishability of obfuscations of machines M0 and M1, we proceed through a sequence of

2|x| + 1 hybrids H0, . . . ,H2|x| . Hi is the obfuscation of the circuit that

• On input x ≤ i, the circuit works exactly as CK,M0 would.

• On input x > i, the circuit works exactly as CK,M1
would.

We show indistinguishability between hybrids Hi and Hi+1 by invoking the security of the punctured PRF
in a by-now standard way (see, [SW14], for example). Since there are 2|x|+ 1 ≤ 2n+1 hybrids, by a standard
complexity leveraging argument, we set the size of the obfuscation and the size of the key of the puncturable
PRF to be a sufficiently large polynomial in S, and obtain security under subexponential IO for circuits and
subexponentially hard OWF. We note that a hybrid argument with exponentially many such hybrids has
been used recently in several works on obfuscation, including [PST14, GLSW14].
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