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Abstract

Protocols for secure two-party computation enable a pair of mistrusting parties to compute
a joint function of their private inputs without revealing anything but the output. One of the
fundamental techniques for obtaining secure computation is that of Yao’s garbled circuits. In the
setting of malicious adversaries, where the corrupted party can follow any arbitrary (polynomial-
time) strategy in an attempt to breach security, the cut-and-choose technique is used to ensure
that the garbled circuit is constructed correctly. The cost of this technique is the construction
and transmission of multiple circuits; specifically, s garbled circuits are used in order to obtain
a maximum cheating probability of 2−s.

In this paper, we show how to reduce the amortized cost of cut-and-choose based secure

two-party computation to O
(

s
logN

)
garbled circuits when N secure computations are run. We

use this method to construct a secure protocol in the batch setting. Next, we show how the cut-
and-choose method on garbled circuits can be used in an online/offline setting in order to obtain
a very fast online phase with very few exponentiations, and we apply our amortization method
to this setting as well. Our online/offline protocols are competitive with the TinyOT and SPDZ
protocols due to the minimal interaction in the online phase (previous protocols require only
information-theoretic operations in the online phase and are therefore very efficient; however,
they also require many rounds of communication which increases latency). Although O( s

logN )
may seem to be a mild efficiency improvement asymptotically, it is a dramatic improvement
for concrete parameters since s is a statistical security parameter and so is typically small.
Specifically, instead of 40 circuits to obtain an error of 2−40, when running 210 executions we
need only 7.06 circuits on average per secure computation, and when running 220 executions
this is reduced to an average of just 4.08. In addition, in the online/offline setting, the online
phase per secure computation consists of evaluating only 6 garbled circuits for 210 executions
and 4 garbled circuits for 220 executions (plus some small additional overhead). In practice,
when using fast implementations (like the JustGarble framework of Bellare et al.), the resulting
protocol is remarkably fast.

We present a number of variants of our protocols with different assumptions and efficiency
levels. Our basic protocols rely on the DDH assumption alone, while our most efficient variants
are proven secure in the random-oracle model. Interestingly, the variant in the random-oracle
model of our protocol for the online/offline setting has online communication that is independent
of the size of the circuit in use. None of the previous protocols in the online/offline setting
achieves this property, which is very significant since communication is usually a dominant cost
in practice.
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under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 239868 (LAST), and
by the European Union’s Seventh Framework Program (FP7/2007-2013) under grant agreement n. 609611 (PRACTICE).
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1 Introduction

1.1 Background

In the setting of secure two-party computation, a pair of parties with private inputs wish to compute
a joint function of their inputs. The computation should maintain privacy (meaning that the
legitimate output but nothing else is revealed), correctness (meaning that the output is correctly
computed), and more. These properties should be maintained even if one of the parties is corrupted.
The feasibility of secure computation was demonstrated in the 1980s, where it was shown that any
probabilistic polynomial-time functionality can be securely computed [Yao86, GMW87].

The two main adversary models that have been considered in the literature are semi-honest
and malicious. A semi-honest adversary follows the protocol specification but attempts to learn
more than allowed by inspecting the transcript. In contrast, a malicious adversary can follow any
arbitrary (probabilistic polynomial-time) strategy in an attempt to break the security guarantees
of the protocol. On the one hand, the security guarantees in the semi-honest case are rather weak,
but there exist extraordinarily efficient protocols [HEKM11, BHR12b, ALSZ13]. On the other
hand, the security guarantees in the malicious case are very strong, but they come at a significant
computational cost.

The goal of constructing efficient secure two-party (2PC) computation protocols in the presence
of malicious adversaries has been an active area of research in the recent years. [JS07, NO09] con-
struct 2PC protocols with a small number of exponentiations per gate of the circuit, which is quite
inefficient in practice. [IPS08, IKO+11] construct 2PC protocols based on the MPC-in-the-head ap-
proach which (asymptotically) requires only a small number of symmetric-key operations per gate
of the circuit, though no implementation has been presented yet to clarify the concrete complexity
of this approach in practice. [NNOB12, FJN+13] construct 2PC protocols in the random-oracle
model with (amortized) O(s/ log(|C|)) symmetric-key operations per gate of the circuit, where
s is a security parameter and C(·) is a boolean circuit that computes the function of interest.
[DPSZ12, DKL+13] construct secure multi-party computation protocols with security against all-
but-one corrupted parties, and thus, could be used in the two-party setting as well. These protocols
use somewhat homomorphic encryption. The protocols of [NNOB12, DPSZ12, DKL+13] all require
a number of rounds of communication that is in the order of the depth of the circuit being com-
puted.1 Thus, their performance is limited in the case of deep circuits, and when parties are
geographically far and so communication latency is significant.

A different approach that has received a lot of attention is based on applying the cut-and-
choose technique to Yao’s garbled-circuit protocol. In this technique, one of the parties prepares
many garbled circuits, and the other asks to open a random subset of them in order to verify
that they are correct; the parties then evaluate the remaining, unchecked circuits. This forces the
party generating the garbled circuits to make most of them correct, or it will be caught cheating
(solving perhaps the biggest problem in applying Yao’s protocol to the malicious setting, which is
that an incorrect garbled circuit that computes the wrong function cannot be distinguished from
a correct garbled circuit). [MF06, LP07, LP11, SS11, Lin13, MR13, SS13] present different 2PC
protocols based on this approach, and several implementations have been presented to study the
concrete efficiency of it in practice (e.g.[PSSW09, SS11, KSS12, SS13]). In this work we focus on
the cut-and-choose approach.

1The protocol of [FJN+13] is constant round. However, its concrete efficiency has not been established.
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Is it possible to go below s garbled circuits with 2−s error? Until the recent work of
[Lin13], protocols that use the cut-and-choose technique required approximately 3s garbled circuits
to obtain a bound of 2−s on the cheating probability by the adversary. Recently, [Lin13] showed
that by executing another light 2PC, the number of garbled circuits can be reduced to s, which
seems optimal given that 2−s is the probability that a “cut” is as bad as possible (meaning that
all the check circuits are good and all the unchecked circuits are bad). The number of garbled
circuits affects both computation time and communication. In most applications, when |C| is
large, sending s garbled circuits becomes the dominant overhead. (For example, [HMSG13] showed
a prototype for garbling a circuit on GPUs, which generates more than 30 million gates per second.
The communication size of this number of gates is about 15GB, and transferring 15GB of data
most likely takes much more than a second.) Thus, further reducing the number of circuits is an
important goal. This goal is the focus of this paper.

2PC with offline and online stages. In the online/offline setting, the parties try to push as
much work as possible to an offline stage in which they do not know their inputs. Later, in the
online stage, when they have their inputs, they use the results of the offline stage to run a very
efficient online phase, possibly with much lower latency than their standard counterparts.

The protocols of [NNOB12, DPSZ12, DKL+13] are especially well suited to the online/offline
setting, and have extremely efficient online stages.2 However, these protocols require many rounds
of interaction in the online stage (i.e., O(depth(C)) rounds). They therefore become considerably
slower for deep circuits and over high-latency networks.

Previous cut-and-choose based protocols work only in the regular setting, in which both parties
run the protocol from beginning to its end. Note that cut-and-choose based 2PC protocols are
constant-round, which is another reason for trying to apply them in the online/offline setting.

1.2 Our Contributions

As we have mentioned, the goal of this paper is to reduce the number of circuits in cut-and-choose
on Yao’s garbled circuits. We achieve this goal in the multiple-execution setting, where a pair of
parties run many executions of the protocol. As we will see, this enables the parties to amortize
the cost of the check-circuits over many executions.

Amortizing checks over multiple executions. In the single-execution setting, party P1 con-
structs s circuits and party P2 asks to open a random subset of them. If P1 makes some of them
incorrect and some correct, then it can always succeed in cheating if P2 opens all of the good
circuits and the remaining are all bad. Since this bad event can happen with probability 2−s, this
approach to cut-and-choose seems to have a limitation of s circuits for 2−s error. However, consider
now the case that the parties wish to run N executions. One possibility is to simply prepare N · s
circuits and work as in the single execution case. Alternatively, P1 can prepare c ·N circuits (for
some constant c); then P1 can ask to open a subset of the circuits; finally, P2 randomly assigns the
remaining circuits to N small buckets of size B (where one bucket is used for every execution). The
protocol that we use, which is based on [Lin13], has the property that P1 can cheat only if there

2In fact, the protocols of [NNOB12, DPSZ12, DKL+13] allow the parties to choose the function also in the online
stage. In this work we assume that the function is known in the offline stage, and it is only the inputs that are
obtained later.
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is a bucket in which all of the circuits are bad. The probability of this happening when not too
many bad circuits are constructed by P1 is very small, but if P1 does construct many bad circuits
then it will be caught even if a relatively small subset of circuits is checked.

This idea is very powerful and it enables us to obtain an extraordinary speedup over the single-
execution case. Asymptotically, only O( s

logN ) garbled circuits are needed per execution (on aver-

age). Concretely, if the parties wish to run N = 1024 executions and maintain an error of 2−40,
then it suffices to construct 7229 circuits, check 15% of them, and randomly map the remaining
into buckets of size 6. The number of circuits per execution is thus reduced from 40 to 7.06, which
is a considerable improvement. As the number of executions grows, the improvement is more sig-
nificant. Specifically, for N = 1, 048, 576 and an error of 2−40, it suffices to construct 4,279,903
circuits, check 2% of them, and randomly map the remaining into buckets of size 4. The number of
circuits per execution is thus reduced to just 4.08, which is almost a tenfold improvement! Finally,
we note that improvements are obtained even for small numbers of N ; e.g., for N = 10, the number
of circuits per execution is reduced to 20, which is half the cost.

The batch setting – parallel executions. In this setting, the parties run N executions in
parallel. Formally, they compute the functionality F (~x, ~y) = (f(x1, y1), . . . , f(xN , yN )) where ~x =
(x1, . . . , xN ) and ~y = (y1, . . . , yN ). We start with the protocol of [Lin13] and apply our amortized

checking technique in order to use only O
(

s
logN

)
garbled circuits per execution. However, the

protocol of [Lin13] does not work in a setting where the circuits are constructed without knowing
which circuits will be placed together in a single bucket. In Section 2.2 we describe the problems
that arise and how we overcome them.

The online/offline setting. Next, we turn to the online/offline setting, with the aim of con-
structing an efficient 2PC protocol with a constant-round online stage and low latency. In order to
achieve this, we show how to adapt the protocol of [Lin13] to the online/offline setting, and then
use the amortized checking technique described above to significantly reduce the number of circuits
needed. There are many issues that arise when trying to run cut-and-choose based protocols in the
online/offline setting, mainly due to the fact that many of the techniques used to prevent cheating
when cut-and-choose is used assume that the parties inputs are fixed even before the cut-and-choose
takes place. In Section 2.3 we present a high-level description of our protocol, and our solutions to
the problems that arise in this setting with cut-and-choose.

Our protocol achieves very high efficiency. First, the overall time (offline and online) is much
lower than running a separate execution for every computation. Thus, we do not obtain a very fast
online time at the expense of a very slow offline time. Rather, the overall protocol is highly efficient,
and most of the work can be carried out in the offline phase. Second, our online phase requires very
little communication, the evaluation of a small number of circuits, and little overhead. Concretely,
when 1,000 executions are prepared in the offline phase, then the online phase requires evaluating
only 5 circuits; in modern implementations like [BHR12b] and [HMSG13], this is extremely fast
(with more executions, this is even further reduced).

Our basic protocol for the online/offline setting, presented in Section 7.1, is the first (efficient)
2PC protocol in that setting with a constant-round online phase and security in the standard
model (with security under the DDH assumption). In Section 7.2 we show how to further reduce
the complexity of the online stage, including a method for significantly reducing the communication
of the online stage to be independent of |C|, in the random-oracle model. We stress that the most
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efficient protocols of [NNOB12, DPSZ12, DKL+13], which also work in the random-oracle model,
require at least O(|C|) communication in the online stage, and at least depth(C) rounds.

Concurrent work. In independent concurrent work, [HKK+14] show how to amortize the num-
ber of garbled circuits for multiple-executions of secure computation in a similar fashion to ours.
However, here, we additionally focus on reducing the overhead of the cheating-recovery step (e.g.
by amortizing its number of garbled circuits as well, and by moving most of its cost to the offline
stage) and on minimizing the number of exponentiations in the online stage. We note that in the
cut-and-choose of [HKK+14], P2 always checks half of the circuits. In contrast, we show that better
results can be obtained using different parameters; we believe that our analysis can be used in their
protocol in a straightforward way.

2 High Level Description of Our Techniques

We describe the main ideas behind our protocols. For simplicity, we focus here on specific param-
eters, though in Section 4 we give a more general analysis of the possible parameters.

We begin by describing how cut-and-choose on Yao’s protocol can be made more efficient (with
low amortized cost) in batch settings where many computations take place. Then, we show how
to achieve security in the online/offline setting where parties’ inputs are fixed in the online phase.
The low amortized cost for the batch setting is relevant both to the online/offline setting and to a
setting where many computations take place in parallel.

2.1 Amortized Cut-and-Choose in Multiple Executions

We now describe how the number of circuits in cut-and-choose can be dramatically reduced in the
case that many secure computation executions are run between two parties (either in parallel or in
an online/offline setting). Assume that P1 and P2 would like to execute N protocols with maximum
error probability of 2−s, where s is a statistical security parameter. The naive approach of running
the protocol of [Lin13] N times would require them to use a total number of garbled circuits of
N·s. As discussed earlier, our main goal in this paper is to reduce the number of garbled circuits by
amortizing the overhead when many invocations of 2PC are executed.3 The ideas described here
will be used in both the batch protocol (Section 2.2) and the online/offline protocol (Section 2.3).

Recall that in cut-and-choose based two-party computation, P1 prepares s garbled circuits, P2

asks P1 to open a random subset of them which are then checked by P2, and then P2 evaluates
the remaining circuits. The main idea behind our technique is to run the cut-and-choose on many
circuits, and then randomly combine the remaining ones into N sets (or “buckets”), where each
set will be used for a single evaluation. The intuition behind this idea is as follows. The cheating
recovery method of [Lin13] (described below in Section 2.2) ensures that security is preserved unless
all evaluation circuits in a single set are incorrect. Now, by checking many circuits together and
randomly combining them, the probability that one set will have all incorrect circuits (but yet no
incorrect circuits were checked) is very small.

3We remark that it is possible to increase the number of check circuits and reduce the number of evaluated circuits in an
online/offline version of the protocol of [Lin13], in order to improve the online time. For example, in order to maintain error
of 2−40, one can construct 80 circuits overall, and can check 70 and evaluate only 10. This will reduce the online time from
approximately 20 to 10 (since in [Lin13] approximately half the circuits are evaluated). However, as we can see from this
example, the total number of circuits grows very fast, rendering this approach ineffective.
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In more detail, in our technique P1 prepares 2N · B garbled circuits and sends them to P2,
where B is a parameter we define later. For each circuit, P2 chooses with probability 1/2 whether
to check it or to use it later for evaluation. (This means that on average, P2 checks N ·B circuits.
In our actual protocol we make sure that exactly N ·B circuits remain. In addition, as we discuss
below, we will typically not check half of the circuits and lower probabilities give better results.)
Then, P2 chooses a random mapping function π : [N · B] → [N ] that maps each of the remaining
circuits in a “bucket” of B circuits, which will later be used as the evaluation-circuits of a single
two-party protocol execution. Clearly, a malicious P1 could prepare a small number of incorrect
garbled circuits (say O(β)), and not be caught in the checks with good probability (here β < s
and so 2−β probability is too high). However, since π is chosen at random by P2, we show that
unless there are many incorrect circuits, the probability that any one of the buckets contains only
incorrectly constructed garbled circuits is smaller than 2−s. We prove that when B ≥ s

1+logN + 1,
the probability that any bucket contains B incorrect circuits (and so all are incorrect) is at most
2−s. Thus, the total number of circuits is 2N · B = 2Ns

1+logN + 2N . When logN > 2s
s−2 − 1 we

have that 2N · B < N · s and so a concrete improvement is obtained from just using [Lin13] even
for just a few executions. Asymptotically, the number of circuits per execution is O( s

logN ), which
shows that when N gets larger, the amortized number of circuits becomes small. When plugging in
concrete numbers that are relevant in practice, the improvement is striking. For example, consider
s = 40 and N = 512 executions (observe that logN = 9 and 2s

s−2 − 1 = 1.10 and so the condition is
fulfilled). Now, for these parameters we have B = d s

1+logN + 1e = 5, and so only 512× 10 garbled
circuits are needed overall, with just 5 circuits evaluated in each execution. This is better by a
factor of 4 compared to the Ns option. When many executions are run, even better numbers are
obtained. For example, with N = 524288 we obtain that only 524288×6 circuits are needed overall
(better by a factor of 62

3 than the naive option).
We remark that the probability of checking or evaluating a circuit greatly influences the number

of circuits. Above, we have assumed that this probability is 1
2 . In Section 4 we analyse the above

parameters in the general case. As we will see, better parameters are often achieved with different
probabilities of checking a circuit. In addition, when working in the online/offline setting, this
flexibility actually provides a tradeoff between the number of circuits in the online and in the
offline phase. This is due to the fact that checking more circuits in the offline phase reduces the
number of circuits to be evaluated in the online phase but increases the number of circuits checked
in the offline phase.

In the protocol of [Lin13] secure computation is also used for the cheating recovery mechanism
(described below in Section 2.2). This mechanism works as long as a majority of the circuits in a
bucket are good. In the multiple-execution setting, we use a similar method for bucketizing these
circuits, while guaranteeing that a majority of the circuits in any bucket be good (rather than just
ensuring at least one good circuit). Using this method we significantly reduce the number of circuits
needed for the cheating recovery. E.g., for N = 1024 protocol executions we need only buckets of
size B = 12, and a total number of circuits of 24576 (i.e,, 24 circuits per execution). The protocol
of [Lin13] requires about 125 circuits per execution, and thus we obtain an improvement of a factor
of 5 in this part of the protocol (for these parameters).

More concrete examples. In Section 4 we provide a full analysis of the cheating probability for
different choices of parameters. We describe some concrete examples here with s = 40, in order to
provide more of an understanding of the efficiency gains obtained. In Tables 2 and 3 in Appendix A
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we show the cost for many different choice of parameters. When considering 210 and 220 executions,
the best choices and the resulting cost is summarized in the following table (the bucket size is the
number of circuits evaluated in the online phase):

Number of p Bucket Overall number of Average # circuits
executions N size(B) circuits (dB ·N/pe) per execution

210 0.1 4 40,960 40.00
210 0.65 5 7,877 7.69
210 0.85 6 7,229 7.06

220 0.65 3 4,839,582 4.62
220 0.98 4 4,279,903 4.08

Table 1: Best parameters for s = 40 (p is the probability that a circuit is not checked)

Observe that in the case of p = 0.1, the average number of circuits is the same as in a single
execution. However, it has the lowest online time. In contrast, at the price of just a single additional
circuit in the online time, the offline time is reduced by a factor of over 5. In general, the bigger
p is, the smaller the total number of balls is (up to a certain limit). However, the number of balls
in each bucket grows proportionally with p. This means that using p it is possible to obtain a
tradeoff between online and offline time. Specifically, a higher p means less circuits overall but
more circuits in the online stage (where each bucket is evaluated), thereby reducing the offline time
at the expense of increasing the online time. Conversely, a lower p means more circuits in the offline
stage and smaller bucket and so less computation in the online stage.

We remark that improvements are not only obtained for large values of N . In the case of N = 32,
with p = 0.75 we obtain buckets of size 10 (so 10 evaluations in the online phase) and an average of
13.34 circuits overall per execution. This is a considerable improvement over 40 circuits as required
in [Lin13]. Of course, as N becomes smaller, the improvement is less significant. Nevertheless,
for N = 10, with p = 0.55 we obtain an average of 20 circuits per execution, which is half the
cost of [Lin13]. Going to the other extreme, with a huge number of executions the amortized cost
becomes very small. Taking N = 230 (which isn’t practical today but may be in the future), we can
take p = 0.99 and obtain buckets of size 3 and an overall overage of just 3.03 circuits per execution.
In Appendix A we also present graphs of the dependence of B and the total number of circuits in
p, and how the average number of balls per bucket decreases as the number of buckets grows.

Regarding the number of circuits required for the cheating-recovery mechanism, for N = 210

we get that B = 12, and that the total number of circuits is 12 × 1024 × 2 = 24576 (i.e,, 24
circuits per execution). For N = 220 we get that B = 6, and that the total number of circuits is
6 × 1048576 × 2 = 12, 582, 912 (i.e,, 12 circuits per execution). This is in contrast to 125 circuits,
as required in [Lin13].

2.2 Batch Two-Party Computation

The protocol of [Lin13] requires s garbled circuits per 2PC execution for achieving soundness of
2−s. Here we would like to reduce this overhead when multiple executions of 2PC are executed in
a batch setting; i.e., run in parallel. In this section, we assume that the reader is familiar with the
protocol of [Lin13].

If we try to use the protocol of [Lin13] as-is in the batch setting, and take advantage of the
ideas presented in Section 2.1, two problematic issues arise. We now describe these issues and how
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we solve them.
First, in the cut-and-choose oblivious transfer of [Lin13], the receiver uses only one input to all

OTs, whereas in the batch setting, P2 should be able to input many different inputs, and they have
to be consistent in each bucket. This consistency of P2’s input is enforced by having P2 prove in
zero knowledge that its OT queries are for the same input in all circuits. In order to enable P2 to
use separate inputs in each bucket, we modify the protocol as follows. First, P2 privately selects
which circuits to use and how to bucket them before the OTs are executed. Then, the parties run
the cut-and-choose OT, where P2 inputs its j-th input in the circuits that it chose to be in the
j-th bucket. However, P2 does not prove consistency of its input at this point (since the buckets
are not yet known to P1), but rather postpones this proof until after it sends the cut and random
mapping to buckets to P1. After the mapping to buckets has been given to P1, it is possible for P2

to separately prove in zero knowledge for every bucket that its OT queries in the j-th bucket are
for the same input. Observe also that since this proof is given before P2 can evaluate any circuit,
no information can be gained if P2 tries to cheat.

A second issue that arises when trying to use the protocol of [Lin13] in the batch setting is
what P2 does in the case that it gets different outputs in some of the evaluated circuits. We call
this mechanism of [Lin13] cheating recovery since it enables P2 to obtain correct output when P1

has tried to cheat. In order for this mechanism to work, [Lin13] uses the same output labels in
all circuits, and in case P2 gets different labels for the same wire (meaning different outputs), the
two labels allow it to recover P1’s input. Unfortunately, this technique cannot work in the batch
setting, since there, naturally, P2 would get different outputs from different buckets, and thus will
always learn two labels of some output wire. This would enable a cheating P2 to learn P1’s input.

Our solution to this problem is as follows. For simplicity, assume that there is only one output
wire, and assume that D is a special constant that is revealed to P2 in the case that it receives
different output values on the wire in different circuits (we later describe how this “magic” happens).
Recall that in [Lin13], a second, lighter, two-party computation is executed with a boolean circuit
C ′, where P1 inputs (x,D) (with x being the value used in computing the actual circuit), P2 inputs
d, and C ′(x,D, d) = x if d = D, and 0 otherwise. Thus, if P2 obtained D due to receiving different
outputs in different circuits, then in the second two-party computation it inputs d = D and learns
x, thereby enabling it to locally compute the correct output f(x, y). Otherwise, if learns nothing
about x; in addition, P1 does not know if P2 learned x or not.

Instead of using the same output labels in all garbled circuits, P1 uses random ones (as in the
standard Yao’s circuit). After P2 announces the “cut” in the offline stage and the mapping to
the buckets, P1 opens the check circuits and P2 verifies them as described before. Then in the
online stage the parties follow the next steps. For every bucket (separately), P1 chooses a random
D. Concretely, consider the j-th bucket; then P1 chooses random values Dj and Rj . Denote the
garbled circuits in the j-th bucket by gc1, gc2, . . . gcB. Furthermore, denote the output-wire labels
of circuit gci by W 0

i ,W
1
i . P1 sends the encryptions { EncW 0

i
(Rj), EncW 1

i
(Rj⊕Dj) }i=1,...,B. P1 also

sends P2 the hash Hash(Dj). The purpose of these encryptions and hash is that in case P2 learns
two output labels that correspond to different outputs, P2 can learn both Rj and Rj ⊕Dj and can
use it to recover Dj . It then verifies that it has the right Dj using Hash(Dj). (In the case of many
output wires, each output wire in a bucket encrypts in the above way using a different Rj . Thus,
Dj can be obtained from any pair of output wire labels in the j-th bucket.)

After P2 evaluates the circuits of C, it learns a set of labels W ′ = {W ′1, . . . ,W ′B}. P2 uses
the values of W ′ to decrypt the corresponding c0

i = EncW 0
i
(Rj) or c1

i = EncW 1
i
(Rj ⊕ Dj). In
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case P2 learns both W 0
i and W 1

i , it can recover dj = DecW 0
i
(c0
i ) ⊕ DecW 1

i
(c1
i ) (which should equal

Dj = Rj ⊕ (Rj ⊕ Dj)). In case P2 gets many “potential” D’s (which can happen if P1 does not
construct the values honestly), it can identify the correct one using the value Hash(Dj). Next, the
parties execute the 2PC protocol with the circuit C ′(x,D, d), and P2 learns x in case it learned the
correct Dj earlier. Finally, P2 verifies that P1 constructed all of the values for the cheating recovery
correctly. This check is carried out after the 2PC protocol for C ′ has concluded, since at this
point revealing Dj to P2 can cause no damage. For this check, P1 reveals all of the pairs W 0

i ,W
1
i ,

allowing P2 to check that the encryptions {EncW 0
i
(Rj),EncW 1

i
(Rj ⊕Dj)}i=1,...,B and Hash(Dj) are

consistent. Since P1 can cheat regarding the output labels W 0
i ,W

1
i , we require that when it sends

a garbled circuit (before the cut is revealed), it also sends commitments on all the output wire
labels of that circuit. These commitments are checked if the circuit is chosen to be checked in the
cut-and-choose. Thus, any good circuit has the property that the output labels encrypt Rj and
Rj ⊕Dj .

Unfortunately, the above does not suffice to ensure that P2 learns Dj in the case that there
are two different outputs. This is due to the fact that it is only guaranteed that one circuit in the
bucket is good. Now, if P2 receives two different outputs in two different circuits, then the second
circuit may not be good and so P2 may obtain the correct Rj from the good circuit but some value
Sj 6= Rj ⊕Dj from the other.

Nevertheless, in the case that P2 received different outputs, but did not obtain Dj that is
consistent with the hashed value Hash(Dj) sent by P1, party P2 simply outputs the output of the
garbled circuit for which the output labels it received from the evaluation are all consistent with
the output labels that were decommitted. To see why this suffices, observe that P2 receives two
different outputs, and one of them is from a good circuit. Denote the two circuits from which
P2 receives different outputs by gc1, gc2, and denote by gc1 the circuit that was correctly garbled.
Then, there are two possibilities: (1) P2 obtained the correct Dj , and thus recovers x using the
second 2PC (and can output the correct f(x, y) by just computing the function f with P1’s input
x); (2) P2 did not recover the correct Dj , meaning that the output labels it received do not decrypt
Rj and Rj ⊕ Dj . However, since gc1 is correct, including the commitments on its output labels,
and since EncW 0

i
(Rj) and EncW 1

i
(Rj ⊕Dj) are checked, gc1 gives P2 the correct value (either Rj or

Rj ⊕Dj , depending on the output bit in question). Now, if the output label that P2 received from
gc2 also decrypts its corresponding Rj or Rj ⊕Dj , then P2 should have learnt the correct Dj . This
means that the label that P2 received in gc2 does not match the label that P1 revealed from the
decommitment on gc2’s output labels. Thus, P2 knows that gc1 is the correct circuit and not gc2,
and can take the output of the computation to be the output of gc1. (Note that by what we have
explained, if P2 does not obtain Dj and the checks on the commitments and encryptions passed,
then there is only one circuit in which the output labels obtained by P2 are consistent with the
commitments. Thus, there is no ambiguity regarding the output.)

Although the above issues are the main parts of the cheating-recovery process of our protocols,
there are other small steps that are needed in order to make sure that the protocol is secure. For
example, P2 should verify that P1 inputs the correct D to C ′. Also, efficiency-wise, recall that 3s
garbled circuits of C ′ are used in the protocol of [Lin13]; here, we amortize their cut-and-choose as
well, as described above. These issues are dealt with in the detailed description of the protocol in
Section 6.
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2.3 Two-Party Computation with Online/Offline Stages

Protocols for secure computation in the presence of malicious adversaries via cut-and-choose on
garbled circuits employ a number of methods to prevent cheating. First, many circuits are sent and
a fraction checked, in order to ensure that some of the garbled circuits are correct (this is the basic
cut-and-choose). Second, since many circuits are evaluated in the evaluation phase, it is necessary
to force P1 and P2 to use the same input in every circuit in an evaluation. Third, so-called selective
OT attacks must be thwarted (where a cheating P1 provides correct circuits but partially incorrect
values in the oblivious transfer phase where P2 receives keys to decrypt the circuits, based on its
input). Finally, the cheating recovery technique described in Section 2.2 is used to enable P2 to
complete the computation correctly in case some of the evaluation circuits are correct and some are
incorrect. In all existing protocols, some (if not all) of the aforementioned checks utilize the fact
that the parties’ inputs are given and fixed before the checks are carried out (in fact, in [Lin13] even
the basic cut-and-choose on circuits is intertwined with the selective OT attack prevention and so
requires the inputs to already be fixed). Thus, these protocols do not work in the online/offline
setting.

In this section, we describe how to deploy these methods in an online/offline setting where the
checks are carried out in the offline setting, and the online setting should be very fast.4 Ideally, the
online setting should have no exponentiations, and should involve some minimal communication
(that is independent of the circuit size) and the evaluation of the circuits in the bucket only. Our
protocol achieves this goal, with some small additional work in the online stage. We note that
in the standard model we do require some exponentiations in the online phase, but just two per
circuit which in practice is insignificant. In addition, P1 needs to transmit B garbled circuits to
P2 for evaluation in the online phase, where B is the bucket size (in practice, a small constant
of between 4 and 6). We also present a variant of our protocol in the random oracle model that
requires no exponentiations whatsoever in the online phase, and has very little communication; in
particular, the communication is independent of the circuit size. The use of a random oracle is due
to problems that arise when adaptively-secure garbled circuits [BHR12a] are needed. This issue is
discussed separately in Section 2.4.

Ensuring correctness of the garbled circuit. Intuitively, the aim of the cut-and-choose pro-
cess is to verify that the garbled circuits are correct. Thus, it is possible to run this process (send
all circuits and then open and check a fraction of them) in an offline stage even before the parties
have inputs. Then, in the online stage, when the parties have inputs and would like to compute the
output of the computation as fast as possible, they only need to evaluate the remaining “evaluation”
circuits, which results in a much lower latency.

Enforcing P1’s input consistency. We start with the approach taken in [MF06, LP11, SS11].
Let wire j be an input-wire of P1. In a standard garbling process, two random strings are chosen
as the labels of wire j. However, here, the two labels are chosen to be commitments to the actual
value they represent, e.g., the label that corresponds to the bit 0 is actually a commitment to 0
(more exactly, the label is the output of a hash function, which is also a randomness extractor, on
the appropriate commitment). In addition, the commitments used have the property that one can

4Our aim here is to reduce the work of the online stage as much as possible, in order to achieve very fast
computation in the online stage. Tradeoffs between the offline and online stages are of course possible, and we leave
this for future work.

10



prove equality of multiple committed messages with high efficiency, without revealing the actual
messages.

This solution can be used in the online/offline setting in a straightforward way. Namely, when a
circuit is checked, these commitments are checked as well. In contrast, when a set of circuits is used
for evaluation, P1 sends the commitments that correspond to its input, along with a proof that they
are all commitments to the same bit 0 or 1. However, the disadvantage of this method is that it
requires a few exponentiations per bit of P1’s input, and we would like to move all exponentiations
possible to the offline stage. In order to achieve this, instead of directly computing f(x, y), we
modify the garbled circuit to compute the function f ′

(
x(1), x(2), y

)
= f

(
x(1) ⊕ x(2), y

)
, where x(1)

and x(2) are P1’s inputs and are chosen randomly by P1 under the constraint that x(1)⊕x(2) = x. In
the garbling process, the garbled labels of the wires of x(1) are constructed using the commitment
method of [MF06, LP11, SS11], while the labels of the wires of x(2) are standard (i.e., random
strings). In addition, for each wire of x(2), P2 sends commitments on the two input-wire labels
(i.e., if the labels are W 0,W 1, P1 sends Com(0‖W 0),Com(1‖W 1)). Now, in the offline stage,
when a circuit is checked, P2 verifies that all of the above was followed correctly. Furthermore, in
the circuits that are to be evaluated, P1 chooses a random x(1) and sends the commitments that
correspond to x(1) along with the proof of message equality. This proves to P2 that P1’s input x(1)

is the same in all evaluated circuits (of course, at least in the properly constructed circuits). All
this is carried out in the offline phase.

In the online stage, when P1 knows x, it sends P2 the actual value of x(2) = x(1) ⊕ x, along
with the decommitments of the labels that correspond to x(2) (the decommitments prove that the
same x(2) is sent in all circuits). We stress that x(2) is sent in the clear, and is the same for all
evaluated circuits (this reveals nothing about x since x(1) is random and not revealed). As a result,
the same x(1) and x(2) is used in all circuits (the consistency of x(1) is enforced in the offline phase,
and the consistency of x(2) is immediate since it is sent in the clear) and so the same x is used in all
evaluated circuits. Note that no exponentiations are needed in the online stage, and only a small
number of decommitments and decryptions are computed.

In summary, online/offline consistency of P1’s input is obtained by randomly splitting P1’s input
into a secret part x(1) (which is dealt with in the offline stage), and a public part x(2) which can be
revealed in the online stage. Since x(2) can be chosen to equal x⊕ x(1) in the online phase, after x
is known, the correct result is obtained and consistency is preserved at very little online cost.

Protecting against selective-OT attacks. We use a variant of the cut-and-choose oblivi-
ous transfer protocols of [LP11, Lin13], and modify it to work in the online/offline setting. The
modification is similar to the method used for P1’s input; i.e., instead of computing the func-
tion f ′

(
x(1), x(2), y

)
= f

(
x(1) ⊕ x(2), y

)
as above, the parties compute f ′′

(
x(1), x(2), y(1), y(2)

)
=

f
(
x(1) ⊕ x(2), y(1) ⊕ y(2)

)
, where P2 uses a random value for y(1) in the offline stage, and later uses

y(2) = y(1) ⊕ y once it knows its input y in the online stage. The cut-and-choose oblivious transfer
protocol is used for protecting against selective OT attacks on the OTs that are used for P2 to
learn the garbled labels of y(1). In contrast, the labels of y(2) are obtained by having P2 send y(2)

in the clear and having P1 send the associated garbled labels (these labels are committed in the
offline phase and thus the labels are sent to P2 as decommitments, which prevents P1 from changing
them). As before, all exponentiations are carried out in the offline stage alone.

11



Cheating recovery. The protocol of [Lin13] uses a cheating recovery process for allowing P2

to learn x in case P2 obtains different outputs from the evaluated circuits. This method allows
for only s circuits to be used in order to obtain 2−s cheating probability, since an adversary can
only cheat if all checked circuits are correct and all evaluated circuits are incorrect. However, the
protocol of [Lin13] requires the parties to run the cheating recovery process before the check circuits
are opened, which obviously is unsatisfactory in the online/offline setting since now P2 does all the
expensive checking in the online stage again.

Our solution for this problem is the same solution as described above for the batch setting; see
Section 2.2. Namely, assume that D is a special constant that is revealed to P2 in the case that
it receives different output values on the wire in different circuits, and for simplicity assume that
there is only one output wire. We would like to securely compute the boolean circuit C ′

(
x(1), D, d

)
,

where (x(1), D) are P1’s input, d is P2’s input, and C ′
(
x(1), D, d

)
= x(1) if d = D, and 0 otherwise.

We note that only P2 receives output (since the method requires that P1 not know if P2 learned
D or not). Recall that x(1) is the secret part of P1’s input, and so if x(1) is obtained by P2 then it
can compute x = x(1)⊕x(2) and obtain P1’s real input. Everything else in this solution is identical
to the solution described in Section 2.2; the use of x(1) instead of x enables us to check the circuits
used in the cheating-recovery mechanism in the offline phase.

There are several other subtle issues to take care of regarding the secure computation of C ′.
First, we require P1 to use the same x(1) in C and C ′. This is solved by using commitments for
the input-wire labels for x(1) as described above. Second, we need to protect the OTs for P2 to
learn the labels of d from selective-OT attacks. This is solved using the variant of cut-and-choose
OT we use for the OTs for C. Third, in order to push all the expensive exponentiations to the
offline stage, we split the parties inputs in the cheating-recovery circuit C ′ into random inputs in
the offline stage and public inputs in the online stage as we did with the inputs of C. Note that the
above issues are only part of the cheating-recovery process of our protocols, and additional steps
are needed in order to make sure that the protocol secure.

2.4 On Adaptively Secure Garbled Circuits in the Online/Offline Setting

The standard security notion of garbled circuits considers a static adversary who chooses its input
before seeing the garbled circuit. While this notion suffices for standard 2PC protocols (e.g.,
[LP07, LP11, SS11] where the oblivious transfers that determine P2’s input can be run before the
garbled circuits are sent), it causes a problem in the online/offline setting. This is due to the fact
that we would like to send all the garbled circuits in the offline stage in order to reduce the online
stage communication. However, this means that the circuits are sent before the parties (and in
particular the adversary) have chosen their inputs.

Recently, [BHR12a, AIKW13] introduced an adaptive variant of garbled circuits, in which the
adversary is allowed to choose its input after seeing the garbled circuit. Indeed, adaptively secure
garbling scheme would allow us to send all the garbled circuits in the offline stage before the
parties have chosen their inputs. However, the only known efficient constructions of adaptively
secure garbled circuit are in the random-oracle model [BHR12a, AIKW13].5

5[BHR12a] also present a construction in the standard model which requires the online stage communication to
be the same size as the garbled circuit, but this does not help us to reduce the online communication. In addition,
[BHK13] presents a construction in the standard model based on UCE-hash functions. However, the only known
proven construction of UCE-hash is in the ROM.

12



We do not try to present new solutions to the adaptively-secure garbled-circuit problem in
this work. Rather, we present two options based on current constructions. Our first solution
is in the standard model and works by having P1 send only the checked garbled circuits in the
offline stage. In contrast, the evaluation garbled circuits are sent in the online stage. These latter
circuits are committed (using a trapdoor commitment) in the offline stage, and this enables the
simulator to actually construct the garbled circuit after the input is given, solving the adaptive
problem. The drawback of this solution is that significant communication is needed in the online
stage, incurring considerable cost. Our second solution is to use the random-oracle construction of
[PSSW09, BHR12a]. In this case, all of the garbled circuits are sent in the offline stage, and the
communication of the online stage depends only on the number of inputs and outputs of the circuits
(and the security parameters). Thus, we obtain a clear tradeoff between the security model and
efficiency. We believe that any future construction of efficient adaptively secure garbled circuits
in the standard model may be plugged into the second construction in order to maintain its low
communication and remove the random-oracle.

3 Preliminaries

3.1 Notation and Basic Primitives

We assume that all parties agree on a cyclic group G of prime order q and with generator g. Let
Hash(·) be a collision-resistant hash function, REHash(·) be a collision-resistant hash function that
is a suitable randomness extractor (e.g., see [DGH+04]), Enc(key,m) or Enckey(m) be a symmetric
encryption of message m under key key, Com(·) be a commitment, and PCommith(m, r) be a
Pedersen commitment [Ped92] on message m with generators g, h and randomness r; we denote
by PCommith(m) a Pedersen commitment as above with a uniformly chosen r. Last, let s be a
statistical security parameter and k be a computational security parameter (and so q is of length
k). We denote the concatenation of string x with string y by x|y.

Boolean Circuits. Let C be a boolean circuit, and denote by C(x) the evaluation of C on the
input x. We assume that all wires are identified by unique, incremental identifiers, and the input
wires are first. Assuming that the input is of length l, we let Inputs(C) = {1, . . . , l} be the set that
identifies the input wires, and let Outputs(C) be the set that identifies the output wires.

Garbled Circuits. Our main protocol uses the garbled circuit of Yao [Yao86] and can work with
standard garbling schemes (see [LP09, BHR12b] for examples). A garbling scheme consists of two
algorithms Garble and Evaluate. Given a circuit C and security parameter 1k, Garble(1k, C) returns
the triplet (gc, en, de), where gc is the garbled circuit, en is the set of ordered pairs of input labels{

(W 0
i ,W

1
i )
}
i∈Inputs(C)

and de is the set of ordered pairs of output labels
{

(W 0
i ,W

1
i )
}
i∈Outputs(C)

.

We also require that each wire i is associated with two labels, denoted by W 0
i ,W

1
i .

Given input x ∈ {0, 1}l, and the set of labels X =
{
W xi
i

}
i∈Inputs(C)

that correspond to x, one

can use Evaluate(gc,X) to compute the garbled output Y , and then map Y to the actual output
y = C(x) using the set de.

See [BHR12b, BHR12a] for formal definitions of security for garbling schemes. Next, we infor-
mally describe the properties needed in our protocols. For correctness, we require that the decoding
of Evaluate(gc,X) equals C(x) for every circuit C, input x ∈ {0, 1}l, security parameter k ∈ N and
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(gc, en, de) ← Garble(1k, C). Privacy with respect to static adversaries (e.g., [LP07, BHR12b]) is
defined by a game in which (1) the adversary chooses a circuit C(·) and input x; (2) the challenger
flips a coin b and sends (gc, de,X) that is the result of garbling C(·) and x if b = 1, and the result
of a simulator Sim(1k, C(x)) otherwise.6 We say that the adversary wins the game if it guesses b
correctly. We require that for every polynomial-time Adv there exists a simulator Sim such that the
probability that Adv wins is negligibly close to 1/2. Authenticity is defined by a game in which the
adversary chooses circuit C(·) and input x, and receives back (gc,X) that is the result of garbling
C(·) and x (but not de). We say that the adversary wins the game if it outputs Y such that the
decoding of Y using de results in y 6= C(x) (and, obviously, y 6= ⊥).

In this work we also need the stronger notion of adaptive security, in which the adversary picks
its input after seeing gc. That is, privacy is defined by a game in which (1) the adversary sends
C(·) and gets gc, de; (2) the challenger flips a coin b and sends (gc, de) that is the result of garbling
C(·) if b = 1, and the result of a simulator Sim(1, 1k) otherwise; (3) the adversary sends input x
and receives X, which is an garbled encoding of x if b = 1, or the output of Sim(2, C(x)) otherwise.
We say that the adversary wins the game if it guesses b correctly. Similarly, authenticity is defined
by a game in which (1) the adversary chooses circuit C(·) and receives back gc that is the result of
garbling C(·) (but without de); (2) the adversary sends input x and receives X which is the garbled
encoding of x. We say that the adversary wins the game if it outputs Y such that the decoding of
Y using de results in y 6= C(x) (and y 6= ⊥). We require that no polynomial-time adversary can
win with non-negligible probability.

[BHR12a] and [AIKW13] present adaptively secure garbling schemes in the random-oracle
model. [AIKW13] proves that a garbling scheme in which X is shorter than the output length
cannot be adaptively private in the standard model. [BHK13] shows instantiations based on UCE
hash functions (which is possibly a weaker assumption/abstraction than the ROM). If the UCE
hash function is instantiated by a random-oracle, then there is no additional overhead for trans-
forming from static to adaptive secure garbling. The problem of how to construct an adaptively
secure garbling scheme from standard and efficient primitives (say, symmetric key encryption) is
an interesting open question.

3.2 Security for Multiple Executions

In the online/offline setting, the parties run multiple executions, and inputs in later executions
may depend on outputs already received. In this section, we define security for this setting, which
differs from the ordinary stand-alone setting for secure computation. We remark that in the batch
setting, security is defined by simply considering the stand-alone notion for a functionality F (~x, ~y) =
(f(x1, y1), . . . , f(xN , yN )) that receives a vector of inputs from each party and computes the function
separately on each corresponding pair of inputs. This notion is the standard one since inputs are
not chosen adaptively. We now proceed to the definition for the online/offline setting.

In Figure 1 we define the ideal functionality for multiple adaptive secure two-party computations
(where by adaptive we mean that inputs in later executions can depend on outputs already received).

Security is defined using the ideal-real paradigm, where the execution in the real world is
compared with a simulated execution in the ideal world in which the parties compute the function
with the help of the ideal functionality, and thus, is secure by definition.

6We assume that the topology of C(·) is public.
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Functionality FfM2PC

FfM2PC parameterized by a function f(·, ·) that always receives inputs of the same length.

• Upon receiving a message start(N) from P2, continue as following for j = 1, . . . , N :

– Upon receiving a message input(j, xj) from P1, store (j, xj). Similarly, store (j, yj)
upon receiving a message input(j, yj) from P2.

– If xi = ⊥ or yi = ⊥, send ⊥ to both parties and halt.

– After receiving both inputs (j, xj) and (j, yj), compute f(xj , yj) and send
output(j, f(xj , yj)) to P2.

– If Adv controls P2 and P2 sends abort(j), then send abort(j) to P1 and halt.
Otherwise, send output(j, f(xj , yj)) to P1.

Figure 1: Ideal functionality FfM2PC .

In the standalone setting, we define security as follows. In order to allow the parties (including
honest ones) to choose their inputs adaptively, based on the outputs of previous steps, we follow
[Lin08] and define M̄ = (M1,M2) to be input-selecting machines. Machine Mi is a probabilistic
polynomial-time Turing machine that determines Pi’s inputs given an initial input, the index j
of the input to be generated (xj or yj), and outputs f(xi, yi) that were obtained from executions
that have already concluded. (The size of the initial input is not bounded. In particular, it can
consist of N inputs, where the j-th input is used in the j-th 2PC invocation, which results in a
non-adaptive set of inputs.)

We use two security parameters. The standard computational security parameter is denoted k,
and all parties run in time that is polynomial in k. In addition, we let s denote a statistical security
parameter; this is used to allow a statistical error of 2−s that is independent of the computational
cryptographic primitives.

Let realΠ,A(aux),i,M̄ (x, y, k, s) be the output vector of the honest party and the adversary
Adv controlling Pi from the real execution of Π, where aux is an auxiliary information, x is P1’s
initial input, y is P2’s initial input, M̄ = (M1,M2) are input-selecting machines, k is the com-
putational security parameter, and s is the statistical security parameter. Likewise, denote the
output vector of the honest party and the adversary Sim controlling Pi from the execution in the
ideal model where a trusted party computes the ideal functionality FfM2PC depicted in Figure 1 by
idealFfM2PC ,Sim(aux),i,M̄

(x, y, k, s).

Definition 3.1. A protocol Π securely computes f with multiple executions if for any non-uniform
probabilistic polynomial-time adversary Adv controlling Pi (for i ∈ {1, 2}) in the real model, and
for any pair of probabilistic polynomial-time input-selecting machines M̄ = (M1,M2), there exists
a non-uniform probabilistic polynomial-time adversary Sim controlling Pi in the ideal model, such
that for every non-uniform probabilistic polynomial-time distinguisher D there exists a negligible
function µ such that for all x, y, aux ∈ {0, 1}∗ and for all k, s ∈ N:∣∣∣Pr

[
D(realΠ,A(aux),i,M̄ (x, y, k, s)) = 1

]
−Pr

[
D(idealFfM2PC ,Sim(aux),i,M̄

(x, y, k, s)) = 1
]∣∣∣ ≤ µ(k) +

1

2s
.

Alternatively, security can be defined in the UC framework of [Can01], requiring that the
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protocol UC-realizes FfM2PC in the (FAUTH ,FSMT )-hybrid model (with error µ(k) + 2−s). The
downside of this alternative is that the ZKPoKs needed in our protocols become slightly less efficient.

We present our protocols with respect to the standalone definition, and briefly discuss how to
adapt them to be UC-secure in Section ??.

4 Combinatorics of Multiple Cut-and-Choose: Balls and Buckets

In this section we deal with balls and buckets. A ball can be either normal or cracked. Similarly to
cut-and-choose, we describe a game in which party P1 prepares a bunch of balls, P2 checks a subset
of them and aborts if some of them are cracked, and otherwise randomly places the remaining
ones in buckets. Our goal is to bound the probabilities that (a) one of the buckets consists of only
cracked balls (i.e., a fully-cracked bucket), and (b) there is a bucket in which the majority of the
balls are cracked (i.e., a majority-cracked bucket).7 We follow the analysis of [Nor13, Theorem 4.4]
and [Nor13, Theorem 6.2], while handling different and slightly more general parameters.

4.1 The Fully-Cracked Bucket Game

Let Game 1 be the following game. P2 chooses three parameters p,N and B, and sets M =
⌈
NB
p

⌉
and m = NB. A potentially adversarial P1 (who we will denote by Adv) prepares M balls and
sends them to P2. Then, party P2 chooses at random a subset of the balls of size M −m; these
balls are checked by P2 and if one of them is cracked then P2 aborts. Index the balls that are
not checked by 1, . . . ,m. P2 chooses a random mapping function π : [m] → [N ] that places the
unchecked balls in buckets of size B. We define that Game1(A, N,B, p) = 1 if and only if P2 does

not abort and there is a fully cracked bucket (note that M =
⌈
NB
p

⌉
and m = NB, and so M and

m are fully defined by N , B and p). We prove the following theorem:

Theorem 4.1. Let s be a statistical security parameter, and let B, N ∈ N and p ∈ (0, 1) be as
above. If N ≥ 1

1−p and

B ≥ s+ logN − log p

log(N −Np)− log p
1−p

,

then for every adversary Adv it holds that Pr [Game1(A, N,B, p) = 1 ] < 2−s.

Proof. Let t be the number of cracked balls that Adv sends. Let Ena denote the event that P2 does
not abort (given that t balls are cracked), and let Efc be the event that given m balls of which t of
them are cracked, the mapping of π results a fully-cracked bucket. We have that

Pr [Game1(A, N,B, p) = 1 ] = Pr [Ena ∧ Efc ] = Pr [Ena ] · Pr [Efc ]

since the two events are independent.

7The balls in this game represent garbled circuits, and cracked balls are incorrectly formed garbled circuits. The
first game, relating to a fully-cracked bucket, provides an analysis of how many circuits are needed for the main
computation; this is according to the methodology of [Lin13] where security holds unless all circuits are bad. The
second game, relating to a majority-cracked bucket, provides an analysis of how many circuits are needed for the
cheating recovery computation, where an adversary can only cheat if a majority of the circuits are bad.
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We start by bounding Pr [Ena ]. The probability that P2 does not check the t cracked balls is
equal to the probability that all t cracked balls are chosen to not be checked, and then m− t more
balls are chosen to not be checked (amongst the M − t remaining balls). Thus, we have:

Pr [Ena ] =

(
M−t
m−t

)(
M
m

) .
Since M ≥ m

p , we have that (
M−t
m−t

)(
M
m

) ≤ (mp −tm−t
)(m

p
m

) . (1)

In addition, (m
p − i− 1

m− i− 1

)
=
m− i
m
p − i

·
(m
p − i
m− i

)
≤ p ·

(m
p − i
m− i

)
, (2)

for i = 1, . . . , t. Thus, by Equations (1) and (2) we get that

Pr [Ena ] ≤ pt. (3)

We proceed to bound Pr [Efc ]. Fix B balls out of m balls, denoted β, and let π : [m] → [N ]
be a B-regular random mapping (i.e., each value ` ∈ N has exactly B pre images). We analyze the
probability that all β are in the same bucket:

Pr [∃` ∈ [N ] : ∀i ∈ β π[i] = ` ].

The number of functions π overall that are B-regular equals m!
(B!)N

. This is because one way to

define such a function is to take a permutation over [m] and define the first bucket to be the first
B elements and so on. Since order does not matter inside each bucket and there are N buckets, we
divide by (B!)N (B! times itself N times). Now, we count how many of these functions place all
the balls in B in the same bucket. First, the number of functions that place all the balls in β in the
`th bucket (for a fixed `) is (m−B)!

(B!)N−1 . Since there are N buckets, we have that there are N · (m−B)!
(B!)N−1

such functions overall. This means that the probability that all balls in β are in the same bucket is

N · (m−B)!
(B!)N−1

m!
(B!)N

= N · (m−B)!

(B!)N−1
· (B!)N

m!
= N · B · (B − 1) · · · 1

m · (m− 1) · · · (m−B + 1)
= N ·

(
m

B

)−1

.

Recall that t is the number of cracked balls out of the m balls overall. Since there are
(
t
B

)
subsets of size B, a union bound gives us the bound

Pr [Efc ] ≤ N ·
(
t

B

)(
m

B

)−1

. (4)

By Equations (3) and (4) we have that for any fixed t

Pr [Game1(A, N,B, p) = 1 ] ≤ pt ·N ·
(
t

B

)(
m

B

)−1

.

.
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Let α(t,N,B, p) = pt ·N ·
(
t
B

)(
m
B

)−1
and observe that

α(t+ 1, N,B, p)

α(t,N,B, p)
= p ·

(
t+1
B

)(
t
B

) = p · (t+ 1)!(t−B)!

t!(t+ 1−B)!
= p · t+ 1

t+ 1−B
,

so α(·, N,B, p) is increasing when t < B−1+p
1−p and decreasing otherwise. Thus, α(·, N,B, p) is

maximized at t′ = B−1+p
1−p . Since p < 1 we have that t′ < B

1−p . For simplicity, assume that B
1−p ∈ N;

otherwise, take
⌈

B
1−p

⌉
. Recalling that m = N ·B, we have:

(
t′

B

)(
m

B

)−1

<

( B
1−p
B

)(
N ·B
B

)−1

=
( B

1−p)( B
1−p − 1) · · · ( B

1−p −B + 1)

(N ·B)(N ·B − 1) · · · (N ·B −B + 1)

≤
( B

1−p)( B
1−p) · · · ( B

1−p)

(N ·B)(N ·B) · · · (N ·B)

= (N −Np)−B,

where the inequality from the second to third line holds because B
1−p ≤ N · B (by the assumption

in the theorem that N ≥ 1
1−p). The inequality thus follows from the fact that a−1

b−1 ≤
a
b if and only

if a ≤ b. Thus:

α(t′, N,B, p) < pt
′ ·N · (N −Np)−B

= p
B−1+p
1−p ·N · (N −Np)−B

= 2
log p·B−1+p

1−p +logN−B log(N−Np)

= 2
B log p
1−p −log p+logN−B log(N−Np)

.

If B ≥ s+logN−log p

log(N−Np)− log p
1−p

then B log(N −Np)− B log p
1−p ≥ s+ logN − log p, and so

B log p

1− p
− log p+ logN −B log(N −Np) ≤ −s.

This implies that α(t′, N,B, p) < 2−s. Since Pr [Game1(A, N,B, p) = 1 ] ≤ α(t,N,B, p) ≤ α(t′, N,B, p)
for all t, we conclude that for every Adv, Pr [Game1(A, N,B, p) = 1 ] < 2−s.

A simple asymptotic bound. The following corollary is obtained by simply plugging in p = 1
2

to Theorem 4.1 (we present this to obtain a clearer asymptotic bound, but warn that p = 1
2 is

typically not the best choice).

Corollary 4.2. Let s, B and N be as above, and consider the case that p = 1
2 . If B ≥ s

logN+1 + 1,

then for every adversary Adv it holds that Pr
[
Game1

(
A, B,N, 1

2

)
= 1

]
< 2−s.
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Directly computing the probability. In the analysis of Theorem 4.1 we prove a general upper
bound of the function (

M−t
m−t

)(
M
m

) ·N · ( t
B

)(
m

B

)−1

(5)

that bounds the probability that the adversary succeeds in cheating. However, it is possible to
directly compute the probability in Eq. (5) for concrete sets of parameters, in order to obtain
slightly better parameters. For example, Theorem 4.1 states that for s = 40, N = 1024 and
p = 0.7, B should be 6. However, by analytic calculation, for this set of parameters we actually
have that the maximal cheating probability is at most 2−51.07. If we take B = 5 we have that the
maximal cheating probability is at most 2−40.85. This means that instead of using 1024×6

0.7 = 8778
balls, we can use only 1024×5

0.7 = 7315 balls for the same p and N ! This “gap” is significant even
for smaller values of N . For parameters s = 40, N = 32 and p = 0.75, Theorem 4.1 requires B to
be 10. The maximum of Equation 5 for these parameters is at most 2−44, which, again, is much
smaller than the 2−40 bound given by Theorem 4.1. In fact, if we take N = 32, p = 0.8 and B = 10,
we get that the maximum of Equation 5 is at most 2−40.1, without increasing B as required if we
had used Theorem 4.1 with p = 0.8. This reduces the expected number of balls per bucket from
13.34 (for p = 0.75) to only 12.5 (for p = 0.8).

We leave further optimizations and analysis of the above bounds for future work, and recommend
computing analytically the exact bounds based on the above analysis whenever performance is
critical. See further examples of the parameters of Theorem 4.1 in Section 4.3.

4.2 The Majority-Cracked Bucket Game

Let Game 2 be the same game as Game 1, but where Adv wins if P2 is left with a bucket that
consists of at least B

2 cracked balls. Define that Game2(A, N,B, p) = 1 if and only if P2 does not
abort the game and there is a majority-cracked bucket; for simplicity, a bucket that is exactly half
cracked and half not is also called “majority cracked”. (Recall that Game1(A, N,B, p) = 1 only if
all of the balls in some bucket are cracked.)

We prove the following theorem:

Theorem 4.3. Let s be a security parameter, and let B, N ∈ N p ∈ (0, 1) be as above. If

B ≥ 2s+ 2 logN − log(−1.25 log p)− 1

logN + log(−1.25 log p)− 2
,

then for every adversary Adv it holds that Pr [Game2(A, N,B, p) = 1 ] < 2−s.

Proof. Let t be the number of cracked balls that Adv sends. Let Ena denote the event that P2 does
not abort (given that t balls are cracked), and let Emc be the event that given m balls of which t
of them are cracked, the mapping π results in a majority-cracked bucket. We have that

Pr [Game2(A, N,B, p) = 1 ] = Pr [Ena ∧ Emc ] = Pr [Ena ] · Pr [Emc ]

since the two events are independent.
We already know that Pr [Ena ] ≤ pt from Eq. (3), thus we only need to analyse Pr [Emc ]. Fix

a bucket. The probability that there are t ≥ t′ ≥ dB/2e cracked balls in that bucket is equal to the
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probability that t′ ≥ dB/2e cracked balls are chosen to go into the fixed bucked, and then all other
balls are chosen at random. Thus, we have that the probability equals:(

t

t′

)(
m− t
B − t′

)(
m

B

)−1

,

which for B ≥ t′ ≥ dB/2e and t′ ≤ t is equal to

t′−1∏
i=0

t− i
t′ − i

·
B−t′−1∏
i=0

m− t− i
B − t′ − i

·
B−1∏
i=0

B − i
m− i

=
t′−1∏
i=0

t− i
t′ − i

·
B−t′−1∏
i=0

m− t− i
B − t′ − i

·
B−t′−1∏
i=0

B − t′ − i
m− t′ − i

·
t′−1∏
i=0

B − i
m− i

≤
t′−1∏
i=0

t− i
t′ − i

·
t′−1∏
i=0

B − i
m− i

=
t′−1∏
i=0

B − i
t′ − i

·
t′−1∏
i=0

t− i
m− i

=

(
B

t′

)
·
t′−1∏
i=0

t− i
m− i

≤
(
B

t′

)(
t

m

)t′
where the last inequality holds since t ≤ m (otherwise, Pr [Ena ] = 0 and this part of the analysis
is not relevant). Thus, the probability that there are t′ ≥ dB/2e in the given bucket is at most

B∑
t′=dB/2e

(
B

t′

)(
t

m

)t′
≤ 2B−1

(
t

m

)dB/2e
.

By union bound, the probability that some bucket is majority-cracked is

Pr [Emc ] ≤ N · 2B−1

(
t

m

)dB/2e
.

and thus, we get that Pr [Game2(A, N,B, p) = 1 ] ≤ pt ·N · 2B−1
(
t
m

)dB/2e
.

Let α(t,N,B, p) = pt · N · 2B−1
(
t
m

)dB/2e
= 2t log p+logN+B−1−log(N)dB/2e ·

(
t
B

)dB/2e
(using the

fact that m = NB for the second equality). This function is maximized at t̃ =
dB/2e
− log p ln 2

, and

thus is at most

2−
dB/2e
ln 2

+log(N)(1−dB/2e)+B−1 ·
(

dB/2e
− log p ln(2)B

)dB/2e
< 2−B/2+log(N)(1−B/2)+B−1 ·

(
B + 1

−1.25 log(p)B

)(B+1)/2

≤ 2−B/2+log(N)(1−B/2)+B−1 ·
(

2

−1.25 log(p)

)(B+1)/2

≤ 2log(N)(1−B/2)+B/2−1 · 2(B+1)/2−log(−1.25 log(p))(B+1)/2
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for p ∈ (0, 1) and B ≥ 1.

By taking B ≥ s+ logN − log(−1.25 log p)/2− 1/2

logN/2 + log(−1.25 log p)/2− 1
we have that this probability is less than

2−s. Since Pr [Game2(A, N,B, p) = 1 ] ≤ α(t,N,B, p) ≤ α(t̃, N,B, p) for all t, we conclude that for
every Adv, Pr [Game2(A, N,B, p) = 1 ] < 2−s.

A simple asymptotic bound. As in the game for a fully-cracked bucket, a simple asymptotic
bound (that is not concretely optimal) can be obtained by plugging in p = 1

2 to Theorem 4.3:

Corollary 4.4. Let s, B and N be as above, and consider the case that p = 1
2 . If B ≥ 2s+3

logN−2 + 1,

then for every adversary Adv it holds that Pr
[
Game2

(
A, B,N, 1

2

)
= 1

]
< 2−s.

Directly computing the probability. In the analysis of Theorem 4.3 we prove a general upper
bound of the function (

M−t
m−t

)(
M
m

) ·N · 2B−1

(
t

m

)dB/2e
(6)

As shown for Theorem 4.1, by directly computing the probability of Eq. (6) for concrete values we
can obtain better parameters.

For example, Theorem 4.3 requires that for N = 1024 and p = 0.75, B should be 15. However,
by analytic calculation, for this set of parameters we actually have that the maximal cheating
probability is at most 2−60.42. If instead we take B = 12 we have that the maximal cheating
probability is at most 2−42.87. Thus, instead of using 1024×15

0.75 = 20, 480 circuits in total, only
1024×12

0.75 = 16, 384 circuits are needed.
Likewise, for parameters N = 32 and p = 0.5, Theorem 4.3 requires B to be 27. However, the

cheating probability according to Eq. (6) for these parameters is at most 2−65.22. If we take B to
be 18 we have that the maximal cheating probability is at most 2−40.32. Thus, it suffices to use
only 32×18

0.5 = 1, 152 circuits in total instead of 32×27
0.5 = 1, 728.

4.3 Concrete Examples

Games with fully-cracked buckets. See Tables 2–4 in Appendix A for several concrete exam-
ples for the numbers of Theorem 4.1 with s = 40. We can see that the bigger p is, the smaller the
total number of balls is (up to a certain limit). However, the number of balls in each bucket grows
proportionally with p. This is relevant for the online/offline setting, since by using p it is possible
to obtain a tradeoff between online and offline time. Specifically, a higher p means less circuits
overall but more circuits in the online stage (where each bucket is evaluated), thereby reducing the
offline time at the expense of increasing the online time. Conversely, a lower p means more circuits
in the offline stage and smaller bucket and so less computation in the online stage.

Note that since a ceiling is used when computing B, the dependences are not smooth, and the
parameters should be fine-tuned depending on the required s and N . Concretely, as can be seen in
Tables 2, for 210 executions, the best values to take are:

1. Bucket of size 4: take p = 0.1, yielding 40960 overall circuits (and so an average of 40 circuits
overall per execution). This is no better than a single execution regarding the number of
circuits, but has the advantage that there is a very low online time.
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2. Bucket of size 5: take p = 0.65, yielding 7877 overall circuits (and so an average of 7.69
circuits overall per execution).

3. Bucket of size 6: take p = 0.85, yielding 7229 overall circuits (and so an average of 7.06
circuits overall per execution).

It is instructive to also consider the case of 220 executions; see Table 3. In this case, we have that
the best parameters are:

1. Bucket of size 3: take p = 0.65, yielding 4839582 overall circuits (and so an average of 4.62
circuits overall per execution)

2. Bucket of size 4: take p = 0.98, yielding 4279903 overall circuits (and so an average of 4.08
circuits overall per execution

Games with majority-cracked buckets. See Tables 5–7 in Appendix A for several concrete
examples for the numbers of Theorem 4.3 with s = 40. We can see that the effect of p on B
and the total number of balls is similar to those dependences in Game 1, although the concrete
numbers are different. For N = 1024 and p = 0.7, only 20 garbled circuits are needed on average
per execution (as opposed to 125 in the cut-and-choose of [Lin13]) and only 14 circuits are used in
the online stage. For larger values of N , these numbers decrease significantly, e.g. for N = 1048576
and p = 0.9 only 8.89 circuits are needed on average per execution, where only 8 are used in the
online stage. In addition, we get a significant improvement over the cut-and-choose of [Lin13] also
for small values of N , e.g., for N = 32 and p = 0.6, only 51.69 circuits are needed on average per
execution (which is less than half than needed in [Lin13]).

5 Tweaked Batch Cut-and-Choose OT

To simplify the description of our protocols, we define an adaptation of the cut-and-choose OT
protocol of [LP11] to the multiple executions setting, where both parties have more than one input.

5.1 The Functionality Ftcot
In Figure 5.1 we define the ideal functionality for tweaked batch cut-and-choose OT that receives
inputs from sender S and receiver R and returns a message to each of them. The functionality is
parameterized by integers B,N,M and l.

Although Ftcot is a stand-alone functionality, we explain the “meaning” behind the parameters
B,N,M, l and the other elements of the functionality, in the context of Yao-based secure computa-
tion in the batch setting. Regarding the parameters: N is the number of 2PC executions the parties
would like to run, B and M are chosen according to Theorems 4.1 and 4.3, and l is the bit length
of party P2’s input to the secure computation. Recall that B is the bucket size, which translates to
the number of circuits actually evaluated for every execution, and M is the total number of circuits
sent (including check and evaluation circuits). Note that according to this, the number of circuits
checked is M−NB, and the remaining NB circuits are randomly mapped to N bins of size B each.

In the functionality description in Figure 5.1, the sender S has input pairs (µ0
j,i, µ

1
j,i), for every

j = 1, . . . ,M and i = 1, . . . , l. In the protocol for 2PC, (µ0
j,i, µ

1
j,i) is the pair of garbled values

(keys) on the ith input wire in the jth circuit (recall that M is the overall number of circuits, and
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l is the number of input bits). In addition, the sender S has a series of input strings s1, . . . , sM . In
the protocol for 2PC, sj is the “random seed” used for generating the entire jth circuit.

The receiver R inputs N strings y1, . . . , yN where yi is its input in the ith 2PC execution. In
addition, it inputs a set J ⊂ [M ] where the jth circuit is opened to be checked for every j ∈ J .
Finally, R inputs a mapping function π that maps the remaining NB circuits to N buckets of size
B. In the output, R receives the “opening” to all the circuits j ∈ J , and receives the garbled values
associated with the input yi for all the circuits (from j /∈ J) in the ith bucket. The opening of the
jth circuit for j ∈ J includes sj (the seed for generating the jth circuit) and the set {(µ0

j,i, µ
1
j,i)}li=1.

Given these values, R can verify that the jth circuit was correctly constructed and that the input
garbled values given by S to this circuit are correct.

The above description covers the case that the parties send valid inputs to the functionality.
However, a corrupted R may attempt to input a set of indices J of a different size, or otherwise
cheat. In order to make our protocol for Ftcot more efficient, we do not prevent such cheating
and only catch it at the end of the protocol. In this case, a corrupted R may learn more than
it is allowed. However, since it will be caught, this makes no difference to the security of the
2PC protocol that uses Ftcot. We capture this by enabling a corrupted R to send a special GetAll
message; if it does so then it receives all of S’s input. However, S receives ⊥ as output and thus
knows that R has cheated and so aborts the entire 2PC protocol, with no damage done.

FIGURE 5.1 (The Ftcot Functionality).

Public parameters: The values M,B,N, l are publicly known parameters.
Inputs:

• S inputs k-bit strings s1, . . . , sM , and M sets of l pairs
{

(µ0
j,i, µ

1
j,i)
}l
i=1

, for j = 1, . . . ,M .

• R inputs N strings y1, . . . , yN of length l. In addition, it inputs a set of indices J ⊂ [M ] of
size M −NB and a B-to-1 mapping function π : [NB]→ [N ].

If R inputs anything else (e.g., J of a different size) or inputs GetAll, then Ftcot sends all
of S’s input to R, sends ⊥ to S, and halts. Otherwise, Ftcot proceeds to Outputs phase.

Outputs:

• Set c = 1. For j = 1, . . . ,M :

– If j ∈ J , functionality Ftcot sends R the string sj and the entire set
{

(µ0
j,i, µ

1
j,i)
}l
i=1

.

– If j /∈ J , functionality Ftcot sets Y = yπ(c) and sends R the set
{
µYi
}l
i=1

, where Yi is
the ith bit of Y . In addition, Ftcot sets c = c+ 1.

• If R is corrupted and sends Ftcot the string abort then Ftcot sends ⊥ to S and halts.
Otherwise, if R sends continue then Ftcot proceeds to the next step.

• Functionality Ftcot sends S the set J and mapping π.

5.2 Constructing Ftcot
Let (G, g, q) be such that G is a group of order q, with generator g. We define the function
RAND(w, x, y, z) = (u, v), where u = (w)t · (y)t

′
and v = (x)t · (z)t′ , and the values t, t′ ∈R Zq are

random. In Figure 5.2 we show how to realize Ftcot. When r is used without subscript, it denotes
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an independent random value that is not referred to in other steps of the protocol. We denote the
bits of the ith input string of R by yi = yi,1, . . . , yi,l.

PROTOCOL 5.2 (Protocol for Securely Realizing Ftcot).

Initialization phase:

1. R chooses a random r ∈ Zq, sets g0 = g and g1 = gr and sends g1 to S. In addition, it proves in
zero-knowledge that it knows the discrete log of g1, relative to g0.

2. S chooses a random r ∈ Zq, sets h = gr and sends h to R. In addition, it proves in zero-knowledge that
it knows the discrete log of h, relative to g.

3. R sends PCommith(π) and proves in zero-knowledge that it knows the corresponding decommitment. (To
reduce cost, instead of using a truly random mapping π, R picks a PRF seed seedπ and uses PRFseedπ (·)
to deterministically compute a mapping function π. Then, the commitment is only to seedπ. Recall also
that PCommith is a Pedersen commitment using generators g, h.)

4. For j = 1, . . . ,M , R chooses a random tj and sets hj,0 = (g0)tj . If j ∈ J , it sets hj,1 = (g1)tj . Otherwise,
it sets hj,1 = (g1)tj+1. R sends (hj,0, hj,1) and proves in zero-knowledge that it knows tj (i.e., logg0 hj,0).
(These proofs can be batched, as described in [LP11].)

Transfer phase:

1. R sets c = 1. For j = 1, . . . ,M and i = 1, . . . , l, R chooses a random rj,i ∈ Zq and sends (Gj,i, Hj,i) =
((gyπ(c),i

)rj,i , (hj,yπ(c),i
)rj,i) if j /∈ J , and (Gj,i, Hj,i) = ((g0)rj,i , (hj,0)rj,i) otherwise.

2. The players execute M 1-out-of-2 OTs where in the jth OT, S inputs sj and a random s̃j ∈ {0, 1}k, and
R inputs 0 if j ∈ J and 1 otherwise. (Any OT can be used here, including OT extensions.)

3. For j = 1, . . . ,M and i = 1, . . . , l, the sender S operates in the following way:

(a) Sets (u0
j,i, v

0
j,i) = RAND(g0, Gj,i, hj,0, Hj,i) and (u1

j,i, v
1
j,i) = RAND(g1, Gj,i, hj,1, Hj,i).

(b) Sends (u0
j,i, w

0
j,i) and (u1

j,i, w
1
j,i), where w0

j,i = REHash(v0j,i)⊕ µ0
j,i and w1

j,i = REHash(v1j,i)⊕ µ1
j,i.

Check for malicious behavior phase:

1. R decommits the value of π and sends J . If π is not a valid mapping or J is not of size M −NB then
S outputs ⊥ and halts. Otherwise, it proceeds to the next step.

2. For j = 1, . . . ,M , R proves in zero-knowledge that (g0, g1, hj,0, hj,1) is a DDH tuple if j ∈ J , and that
(g0, g1, hj,0, hj,1/g1) is a DDH tuple otherwise. In addition, it sends the values s̃j it has learnt. S verifies
that everything is correct and consistent; in particular it checks that for every j /∈ J the correct s̃j was
sent.

3. Let φ : [M ] → [NB] be the mapping function that maps an index j /∈ J to the value of π(c) for the c
used with that j in the transfer phase. (Both parties know it given π and J .)

4. For n = 1, . . . , N ,

(a) Let En = {j | φ(j) = n}.
(b) R proves in zero-knowledge that all {(g0, Gj,i, hj,0, Hj,i)}j∈En OR all {(g1, Gj,i, hj,1, Hj,i)}j∈En

are DDH tuples, for i = 1, . . . , l.

Output computation phase:

1. For j = 1, . . . ,M and i = 1, . . . , l, R’s output is as following:

(a) If j ∈ J , R outputs the pairs
(
w0
j,i ⊕ REHash

(
(u0
j,i)

rj,i
)
, w1

j,i ⊕ REHash
(
(u1
j,i)

rj,itj
))

. In addition,
it outputs the value sj that it obtained (for every j ∈ J .

(b) If j /∈ J , R outputs the values w
yφ(j),i
j,i ⊕ REHash

(
(u
yφ(j),i
j,i )rj,i

)
.

2. S outputs π and J .
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Theorem 5.3. Assume that the Decisional Diffie-Hellman problem is hard in the group G and
that REHash(·) is collision-resistant and a suitable randomness extractor. Then, the protocol of
Figure 5.2 securely computes Ftcot.

Proof (sketch). The proof follows the proofs of [LP11, Proposition 3.9] and [Lin13, Theorem 6.4],
and thus we only give here a proof sketch.

We prove security in a hybrid model where 1-out-of-2 OT, zero-knowledge proofs and proofs
of knowledge (ZKPoK) are computed by ideal functionalities Fot,Fzkp,Fzkpok (where the prover
sends (x;w) and the functionality sends 1 to the verifier if and only if (x;w) is in the relation). We
separately prove the case that S is corrupted and the case that R is corrupted.

S is corrupted. During the setup phase, the simulator Sim extracts logg h from the zero-
knowledge proofs and commits to zero (instead of sending PCommith(π)). Then, it chooses hj,0, hj,1
so that all (g0, g1, hj,0, hj,1) are DDH tuples.

In the transfer phase, Sim uses J = [M ] and extracts all of S’s inputs to the OTs. In addition,
it extracts all of the sj and s̃j values input by S to Fot. Sim sends all these values to the ideal
functionality as the sender’s inputs.

After receiving from the ideal functionality the values of J and π, Sim decommits to π (by
utilizing the fact that it knows logg h and can decommit to anything), and cheats in the ZKPoKs
in a way that is consistent with J and π.

Note that the simulation differs from the real execution in two ways: (1) Sim commits to zero
(instead of PCommith(π)); (2) Sim picks all tuples (g0, g1, hj,0, hj,1) to be DDH tuples. However,
since PCommith(·) is perfectly-hiding commitment, the commitment is distributed identically to
the real execution. The second part is computationally-indistinguishable assuming the DDH as-
sumption holds. (Note that [PVW08] shows that once (g0, g1, hj,0, hj,1) is a DDH tuple, S’s OT
queries carry no information about its input, information-theoretically.)

R is corrupted. During the initialization phase, the simulator Sim extracts π and all tj-s from
the ZKPoK, allowing it to determine if (g0, g1, hj,0, hj,1) is a DDH tuple or not. Sim sets the set of
indexes in which these tuples are DDH tuples to be the set J .

In the transfer phase, Sim extracts R’s inputs by utilizing its knowledge of tj . In addition,
Sim extracts R’s inputs to Fot. In particular, it learns the set of indexes in which R inputs 0.
Let this set be J ′. If the inputs are not all consistent with honest behavior (with some π, J and
y1, . . . , yN ), then Sim sends GetAll to the ideal functionality and receives back all of S’s inputs.
It then completes the simulation honestly, using S’s real inputs.8 Otherwise, Sim sends π, J and
y1, . . . , yN to the ideal functionality, and receives its outputs. Sim sends to R the OT answers with
those values. Note that in the OT answers for the sj and s̃j OTs, Sim sends sj as received from
Ftcot for every j ∈ J where R input 0; if R input 1 then Sim sends a random s̃j . For j /∈ J , Sim
always sends a random s̃j ; in this case, we have that R must have used input 1 as described above.
(Note that for j /∈ J , the OT values that R choose not to learn are information-theoretically hidden
once (g0, g1, hj,0, hj,1) is not a DDH tuple.)

8The only exception is that if for some j ∈ J , R uses input 1 to the 1-out-of-2 OT and learns s̃j instead of sj then
this is ignored by Sim as cheating. We stress that the opposite case, where R uses input 0 when j /∈ J , is dealt with
by Sim sending GetAll to Ftcot.
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Last, in the outputs phase, Sim checks R’s proofs and s̃j values. If any of them fail or are
incorrect, then Sim sends abort to the ideal functionality. Otherwise, it sends continue. Then, Sim
outputs whatever Adv outputs.

Note that in case J 6= J ′, R must fail (with overwhelming probability) in some of the proofs of
the outputs phase. Also, note that R is committed to π or else (using the ZKPoK extraction), Sim
obtains two decommitments for the same commitment, which breaks the security of the Pedersen
commitment. Beside these differences, the only step in which the simulation is different from the
real execution is for the inputs Sim uses in the transfer phase. However, as shown in [PVW08], for
non DDH tuples (i.e., for j /∈ J) this difference is indistinguishable. Finally, note that if for some
j /∈ J , a corrupted R learns sj (instead of s̃j), then except with negligible probability it will not
be able to send the correct s̃j and S will abort. (Observe that the opposite case where R learns
s̃j for j ∈ J instead of sj is of no consequence, since it just means that R receives “less output”.
Formally, this is indistinguishable to R since Sim also uses random s̃j for these OT inputs, just like
a real S.)

5.3 Optimization for Our Protocols

In our protocols we need P1 (i.e. the sender in Ftcot) to send the garbled circuits before knowing π
and J . However, in order to be able to simulate the garbled circuits (in the standard model), the
OTs must be executed before the garbled circuits are sent. (This enables the simulator in the full
2PC protocol to send different circuits for those to be evaluated and those to be checked).

One solution for this issue is to ask P1 to commit on all the garbled circuits using a trapdoor
commitment (e.g., PCommith(·)) before calling Ftcot, and then send the garbled circuits only after
it (when π and J are already known to the P1/simulator).

An alternative solution is to slightly modify Ftcot so that in the transfer phase, S inputs an
additional message η (in plain) that R receives as is. Indeed, this modification seems less modular
then the first solution, but it reduces the cost of committing (and decommitting) on all garbled
circuits, and thus, in practice, is preferable. In the protocol, the sender S sends this message
between Steps 2 and 3 of the transfer phase in the protocol. Observe that at this point, S does
not yet know π and J , but the simulator (in the proof of security) has already learned R’s inputs
and also knows if R is cheating (in which case it just sends GetAll). Thus, this achieves the needed
requirements. In the simulation of the protocol, this is not a problem since if S is corrupted, then
Sim receives η from the corrupted S before it needs to provide output to S (thus it can send η to
the trusted functionality as part of S’s input). Likewise, if R is corrupted, then Sim obtains R’s
input before it has to provide η. Thus, Sim can send the corrupted R’s input before having to
provide η in the protocol simulation.

6 Secure Two-Party Computation in the Batch Setting

In this section we describe our protocols for batch execution of many 2PC computations. We start
with the main protocol, which is based on standard assumptions, and then show how to improve
its efficiency by using less standard assumptions.
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6.1 The Main Protocol

Say that P1 has inputs x1, . . . , xN and P2 has inputs y1, . . . , yN and they wish to compute the output
of f(x1, y1), . . . , f(xN , yN ). We assume that only P2 should learn the output. The techniques of
[LP07, MR13, SS13] can be used to transform our protocol into one in which both parties learn the
output (or possibly different outputs).

See Protocol 6.1 for a full description of our protocol for this setting (intuition appears in
Section 2.2). We use the two optimizations discussed in Sections 5.2 and 5.3, so that P2 generates
π using a PRF seed, and that P1 sends the garbled circuits in the transfer phase of Ftcot. When r
is used without subscript in the protocol description, it denotes an independent random value that
is not referred to in other steps of the protocol.

PROTOCOL 6.1 (Batch Two-Party Computation of ~f(~x, ~y) = (f(x1, y1), . . . , f(xN , yN ))).

Setup:

1. The parties agree on circuits C(x, y) and C′(x,D, d) as described in Section 2.2, and parameters s,N, p
and p′. Denote P1’s input in the jth execution by xj , and P2’s input by yj .

2. P1 prepares the set
{(
i, ga

0
i , ga

1
i

)}
i=1,...,|x|

(as in [Lin13]) and sends it to P2 with a random h ∈ G.

Cut-and-choose for C:

1. Let B be according to Theorem 4.1 (for parameters s,N, p) and let M = NB
p

. (Assume for simplicity
that no rounding of M is needed.)

2. P2 chooses:

(a) The cut: P2 sets J to be a random subset of [M ] that includes exactly M −NB elements.

(b) The mapping: P2 picks a PRF seed seedπ and uses PRFseedπ (·) to compute a mapping function
π : [N ·B]→ [N ] that maps exactly B elements to each bucket.

3. For j = 1, . . . ,M ,

(a) P1 picks a PRF seed seedj . All the randomness needed in the next two steps is derived from
PRFseedj (·).

(b) P1 picks rj and prepares a garbled circuit gcj for C, in which the labels of P1’s input wire i are

REHash
(
ga

0
i rj
)

and REHash
(
ga

1
i rj
)

(as in [Lin13]).

(c) P1 computes a commitment lcj on all the output wire labels of gcj .

4. P1 acts as the sender in Ftcot and P2 as the receiver.

(a) P2 inputs y1, . . . , yN , seedπ and J .

(b) P1 inputs the wire labels of P2’s input (i.e., in the jth set it inputs |y| pairs of keys) and the seeds
seed1, . . . , seedM . In addition, as described in Section 5.3, P1 also inputs to Ftcot a message η that
consists of (gr1 , gc1, lc1), . . . , (grM , gcM , lcM ) (in plain).

(c) P2 receives η. In addition, for every j ∈ J , P2 receives seedj and the entire jth set of labels; for
every j /∈ J , P2 receives the labels associated with y1, . . . , yN according to π (see Figure 5.1).

(d) P1 receives J and seedπ (and constructs π).

5. For every j ∈ J , P2 checks that the tuple (grj , gcj , lcj) is constructed properly from seedj , and consis-
tently with the outputs of Ftcot.

6. Denote the remaining garbled circuits according to their placement by π, i.e. let gcj,i be the ith circuit
of the jth bucket (for j = 1, . . . , N and i = 1, . . . , B). (From here on, j indexes the executions 1, . . . , N ,
and not J ⊂ [M ].)
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Protocol 6.1 – continued

Cheating recovery - step 1:

1. For j = 1, . . . , N , P1 picks Dj ∈R {0, 1}k and sends Hash(Dj). In addition, for v ∈ Outputs(C),

(a) P1 chooses Rj,v ∈R {0, 1}k.

(b) Let W b
j,i,v be the b-th label of wire v of gcj,i. P1 sends EncW0

j,i,v
(Rj,v) and EncW1

j,i,v
(Rj,v ⊕ Dj)

for every i ∈ π−1(j).

Evaluations of C:

1. P1 sends the garbled values that correspond to its inputs in all garbled circuits of C according to π; e.g.,

it sends the value ga
1
i ·rj if its input to wire i of the jth circuit is one.

2. For j = 1, . . . , N (can be done in parallel),

(a) P2 evaluates the garbled circuits of bucket j, and then uses the output wire labels to decrypt the
corresponding Rj,v and Rj,v ⊕ Dj values (specifically in the jth bucket). In case it learns both
Rj,v and Rj,v ⊕Dj for some output wire, it checks if the XOR of them is indeed Dj (by applying
Hash(·) and comparing with the value that P1 has sent). If so, it sets dj to Dj . Otherwise, it
chooses a random dj ∈R {0, 1}s.

(b) If all evaluations (that ended) returned the same output, set zj to be that output.

Cut-and-choose for C′: The parties run the instructions for the cut-and-choose for C above, with the
following modifications (we use prime when referring to elements of this cut-and-choose):

1. The players use s,N, p′ and set B′ according to Theorem 4.3 (instead of working with s,N, p,B).

2. The players use circuit C′ (instead of C) and P2 uses the input dj in the jth bucket (instead of yj).

3. Instead of computing commitments on the output labels (as in Step 3c of the “cut-and-choose for C”
phase), we set lc′j to be the set

{(
i,Com(W 0

j,i),Com(W 1
j,i)
)}
i∈ID

where ID is the set of wires for input

D and W b
j,i is the bth label of the ith wire of gc′j .

Cheating recovery - step 2: For j = 1, . . . , N (can be done in parallel),

1. P1 sends the garbled values that correspond to its input xj for the garbled circuits for C′ in the j-th
bucket. It also proves that its inputs are consistent, both for C′ and C, using ZK (as done in [Lin13],

including both proving that all inputs are consistent, and that they use the right values of of ga
b
i ).

2. P1 sends Dj and decommits the labels that are associated with that Dj in all the garbled circuits gc′j,i
for i = 1, . . . B′ (i.e., for the corresponding commitments of lc′j,i).

3. P1 decommits lcj,i of gcj,i for i = 1, . . . B (i.e. revealing all output wire labels of the garbled circuits of
C). P2 checks all commitments, all the encryptions EncW0

j,i,v
(Rj,v) and EncW1

j,i,v
(Rj,v ⊕Dj) , and the

hash Hash(Dj), and aborts if there is an inconsistency.

4. P2 evaluates gc′j,i, for i = 1, . . . B′, and takes the majority output to be x̂j .

P2’s outputs: For j = 1, . . . , N ,

1. If all evaluation circuits of C in bucket j returned the same output zj , then P2 leaves zj as is.

2. Else, if P2 has learned earlier dj such that Hash(dj) = Hash(Dj), then it sets zj = f(x̂j , yj).

3. Else, let gcj,i be a circuit for which all the output labels that P2 received from its evaluation were also
the labels that were decommitted earlier from lcj,i. P2 sets zj to be the output of gcj,i.

P2 outputs z1, . . . , zN .
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We prove the following theorem:

Theorem 6.2. Assume that the Decisional Diffie-Hellman problem is hard in the group G, that the
hash function is collision resistant and a suitable randomness extractor, the commitment is perfectly
binding, and the garbling circuit scheme is secure. Then, for any polynomial-time computable
functionality f , Protocol 6.1 securely computes ~f(~x, ~y) = (f(x1, y1), . . . , f(xN , yN )) in the presence
of malicious adversaries.

Proof. We prove security in a hybrid model where tweaked batch cut-and-choose OT, zero-knowledge
proofs and proofs of knowledge (ZKPoK) are computed by ideal functionalities Ftcot,Fzkp,Fzkpok.
The fact that any zero knowledge proof of knowledge securely computes this functionality has been
formally proven in [HL10].

We separately prove the case that P1 is corrupted and the case that P2 is corrupted.

P1 is corrupted. A corrupted P1 can cheat in a number of ways, though the main ones are the
following: (1) P1 can use some invalid garbled circuits; (2) It can try to learn information about P2’s
input using selective-OT attacks; (3) It can use different inputs in the evaluated garbled circuits.
The first two are taken care of using the cut-and-choose, while the third is verified using the ZK on
P1’s inputs. Modulo verifying other smaller parts, once we protect from the above three attacks,
P2’s output is guaranteed to be correct, and its input remains private. Note that if for some j, gcj
and lcj are not generated properly by seedj , then if j is chosen to be checked, P1 is always caught.
This holds also if the OT answers (for P2 to learn the labels of its input wires) of that circuit are
not consistent with the labels of gcj . Thus, if no abort happens in the cut-and-choose phase, we get
that for at least one circuit (or majority for C ′), gcj , lcj and the OT inputs are correctly generated
from seedj .

More formally, we describe a sequence of hybrid games that ends with the simulated execution.
(We mention only the differences between each consecutive hybrids.)

hybrid0: An execution of the protocol with a simulator that emulates honest P2 with inputs
y1, . . . , yN . Since we work in an hybrid model with the ideal functionality Fzkpok, the simulator can
extract P1’s witnesses, and in particular, extract the witness P1 uses for proving consistency of its
inputs, and by that, learn P1’s inputs to the correctly garbled circuits. In addition, the simulator
learns all P1’s inputs to Ftcot.

hybrid1: We say that set j is good if: (1) seedj correctly derives grj , gcj and lcj ; (2) P1’s inputs
to Ftcot for the labels of gcj are consistent with the actual labels of gcj .

The simulator aborts if there exists a bucket j such that none of its sets for C is good, or that
the majority of the sets for C ′ are not good.

By the cut-and-choose stages and Theorems 4.1 and 4.3, we know that at least one of the sets
of C, and that most of the sets of C ′ are good with probability at least 2−s, thus, hybrid1 and
hybrid0 are 2−s-indistinguishable.

hybrid2: If there is a good set that is used for evaluation in which P1 sends a decommitment to a
different value then was generated by seedj , then the simulator aborts the execution at the end of
the protocol.

Note that the simulator aborts in case P1 has successfully cheated in the commitment, thus, by
assuming that Com(·) is secure, this abort happens with only a negligible probability, and therefore
hybrid2 and hybrid1 are computationally indistinguishable.
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hybrid3: Let xj be P1’s input to the jth bucket (extracted from its witness to Fzkpok). The
simulator emulates an honest P2 with random inputs y1, . . . , yN , and if the emulated P2 does not
abort, the simulator outputs (f(x1, y1), . . . , f(xN , yN )) as P2’s output.

Recall that at this stage, P1 does not get any information about yj and dj . Therefore, the only
difference between the executions in hybrid3 and hybrid2 is in case P2’s output at the end is
different. Since we know that at least one of the sets of C, and that most of the sets of C ′ are good,
P2’s evaluations in hybrid2 of the good sets of C would output the correct output as in hybrid3.
Still, this does not suffice since P2 might get some other outputs, which leaves it with the problem
of determining which output is the right one. There are two options in this case: (1) That P2 learns
dj such that Hash(dj) = Hash(Dj), and, (2) That it does not learn such dj . In the first option, P2

would input dj to C ′ and get xj in the majority of the garbled circuits of C ′ (since most of them
are good). In the second option, P2 would use random dj for the evaluation of the garbled circuits
of C ′, but later would be able to determine the right output once P1 deocmmits the output labels.
(To see why there are no other options, let’s assume that gc1 is a good garbled circuit and gc2 is
a bad one. gc1’s output is correct. Assume that gc2’s output is different than of gci in the first
bit. If gc2’s output label is the one that is later decommitted from lc2, then it means that the xor
of this label and the one from gc1 is Dj , which would allow P2 to learn this value. If gc2’s output
label is not the one that is later revealed from lc2, then P2 would ignore the output of gc2 and use
the one of gc1, which is the correct one again.)

Summing all up, if indeed at least one garbled circuit for C and most of the garbled circuits
for C ′ are good, then P2’s output in hybrid3 is the right output, or an abort independently of
y1, . . . , yN . Thus, hybrid3 and hybrid2 distributed the same.

hybrid4: Instead of computing (and outputting) f(x1, y1), . . . , f(xN , yN ) by itself at the end, the
simulator sends x1, . . . , xN to the trusted third party and outputs whatever Adv outputs. (If Adv
or the emulated P2 abort the execution, the simulator sends abort to the trusted third party.) Since
the only difference between hybrid4 and hybrid3 is that P2’s output is computed by the trusted
third party, the two are distributed the same.

The simulator: We take the simulator to be the last simulator from above. I.e., the simulator
emulates an honest P2 for the adversary with the next modifications:

• Sets yj and dj to be random strings, for all j = 1, . . . , N .

• Extracts Adv’s inputs to Ftcot and aborts if there exists a bucket j such that none of its sets
for C is good, or that the majority of the sets for C ′ are not good.

• Extracts Adv’s input xj from Fzkpok for all j = 1, . . . , N .

• Checks Adv’s commitments as done in hybrid2 and aborts if there is a commitment that is
“opened” to two different inputs.

• Sends abort to the trusted third party if the emulated P2 aborts or if Adv does.

• Sends x1, . . . , xN to the trusted third party and outputs whatever Adv outputs.

By the above sequence of hybrid games, we conclude that the simulated execution is (µ(k) + 2−s)-
indistinguishable from the real execution.
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P2 is corrupted. A corrupted P2 can do less damage, since the only meaningful values it gets to
decide upon are its inputs y1, . . . , yN . The correctness of its OT queries is verified by Ftcot, as well
as the consistency of its input in each bucket. Besides those parts, the rest is secure following the
security the garbling scheme in use.

As before, we describe a sequence of hybrid games that ends with the simulated execution.

hybrid0: An execution of the protocol with a simulator that emulates honest P1 with inputs
x1, . . . , xN . Since we work in an hybrid model with ideal functionality Ftcot, the simulator can
extract P2’s inputs to Ftcot. In particular, it extracts: (1) P2’s OT inputs; (2) The value of J ;
(3) The value of π; (4) All these also for the cut-and-choose of C ′.

hybrid1: For all j /∈ J , the simulator generates the j-th garbled circuit set with true random-
ness (and not pseudo-random randomness). Since for such j, P2 does not get any information
about seedj anyhow (since it gets only cj from Ftcot), hybrid1 and hybrid0 are computationally-
indistinguishable by the security of the PRF in use.

hybrid2: The simulator uses random strings in the OT answers that P2 chose not to learn when
j /∈ J . Since Ftcot does not send to P2 anything about those values, hybrid2 and hybrid1 are
distributed the same.

hybrid3: Before sending the garbled circuits, the simulator computes the values zj = f(xj , yj)
for j = 1, . . . , N . Then, let i be an index such that i /∈ J and that is mapped by π to the jth
bucket. The simulator replaces the garbled circuit gci with a simulated garbled circuit that always
output zj . By the security of the garbling scheme (or the underlying encryption in use) hybrid3

and hybrid2 are computationally-indistinguishable.
(We remark that the above step cannot use the simulator from Section 5.2 as a black-box since,

here, the garbled circuits are modified in the middle of the protocol of Figure 5.2. However, this
merely means that we use that simulator in a non black-box manner, by asking it to output P2’s
inputs and only then ask P1 for its plain message.)

hybrid4: The simulator aborts if P2 uses (in the input of Ftcot for C ′) input dj such that Dj = dj
for some bucket j. We argue that this abort happens with a negligible probability (that depends
on the security parameter k).

Assume, towards contradiction, that this abort happens with a non-negligible probability. We
show that P2 can be used for breaking the encryption or the hash function in use. Let hybrid4,1

be like hybrid4, but where the simulator replaces the commitments of lcj,i with commitments to
random strings. Clearly, the executions in hybrid4 and hybrid4,1 up until the call to Ftcot for C ′

are run are indistinguishable by the security of the commitment. Let hybrid4,2 be like hybrid4,2,
but where the simulator (who knows at this point already the output labels of gcj,i-s) replaces the
“cheating-recovery” encryptions of the labels that P2 is not supposed to learn with encryptions of
random strings. Since P2 does not learn those output labels (because of the authenticity property
of the garbled scheme), its view in hybrid4,1 and hybrid4,2 are indistinguishable by the security
of the encryption (again, up until the call to Ftcot for C ′). Next, let hybrid4,3 be like hybrid4,2,
but where instead of picking Dj by itself, the simulator asks the challenger of the one-wayness of
Hash(·) for a challenge, and sends it as Hash(Dj). (Note that in the opened “cheating-recovery”
encryptions, the messages are random anyhow.) Then, the simulator checks if Hash(dj) equals
to the challenge. Obviously, if it equals, then the simulator can win the one-wayness challenge,
and thus, by the one-wayness property of the hash in use, this could happen with only a negligible
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probability. Note however that the executions in hybrid4,3 and hybrid4,2 are distributed the same
since Dj is chosen at random in both. Therefore, we get that on one side, the abort in hybrid4,3

happens with a negligible probability, and on the other side, the abort in hybrid4 happens with a
noticeable probability, while the two are indistinguishably different (up to call to Ftcot), which is a
contradiction.

The above hybrids are used only for showing that the abort in hybrid4 happens with a negligible
probability. However, the next hybrids follow hybrid4, and not hybrid4,3.

hybrid5: The simulator replaces the garbled circuits for C ′ with simulated garbled circuits that
always output 0 for all circuits not chosen to be checked, and replaces the labels that P2 chose not
to learn in the inputs to Ftcot with random strings. Also, it replaces the commitments of lc for
those circuits, that are not decommitted, with commitments to random strings. Since P2 does not
know the values of Dj-s, whatever it inputs to C ′ should return 0 with high probability. Thus, by
the security of the garbling scheme, the OTs, and the commitment in use, hybrid5 and hybrid4

are computationally-indistinguishable (following the same arguments as above).

hybrid6: The simulator uses only zeros as the P1’s inputs. The only information about xj-s that

P2 sees comes from the commitments {ga
xj,i
i rj} and their corresponding ZK proofs. The latter are

the same in hybrid6 and hybrid5 since we work with an ideal functionality for ZKPoK, while the
former are computationally-indistinguishable by the DDH assumption.

hybrid7: Instead of computing zj = f(xj , yj) by itself, the simulator sends y1, . . . , yN to the trusted
third party and receives z1, . . . , zN . (If Adv or the emulated P1 abort the execution during Part 1
of the protocol, the simulator sends ⊥ to the trusted third party. If they abort during Part 2, it
sends abort.) hybrid7 and hybrid6 are distributed the same since P2 does not see the call to the
trusted third party, and the honest P1 has no output.

The simulator: We take the simulator to be the last simulator from above. I.e., the simulator
emulates an honest P1 for the adversary with the next modifications:

• During the execution, it extracts Adv’s inputs to Ftcot, and its witnesses to Fzkpok. It uses
the latter to recover y1, . . . , yN .

• Sets x1 = x2 = · · · = xN = 0.

• For all circuits that Adv chose to check, the simulator answers properly in its response in Ftcot
(i.e., with correct garbled circuit, etc).

• If Adv or the emulated P1 abort the execution during Part 1 of the protocol, sends ⊥ to the
trusted third party.

• After Adv sends its Ftcot inputs, the simulator sends y1, . . . , yN to the trusted third party
and receives z1, . . . , zN . Then, in the evaluation circuits, it uses fake garbled circuits for C
that always output the right zj , and fake garbled circuits for C ′ that always output 0. (The
simulator knows π since it extracts seedπ.) In addition, it commits to random strings in the
commitments that are not opened for the garbled circuits of C ′.

• If Adv uses Dj in Ftcot for C ′, the simulator aborts.

• If Adv or the emulated P1 abort the execution during Part 2 of the protocol, sends abort to
the trusted third party.
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• Outputs whatever Adv outputs.

By the above sequence of hybrid games, we conclude that the simulated execution is computationally-
indistinguishable from the real execution.

Achieving UC security. Observe that the above simulators are straightline simulators that use
the adversary in a black-box fashion. If the ideal functionalities are realized by UC-secure protocols,
then our protocol can be shown to be secure under the UC-security notion. [LP11] presents such
realizations in the standard model, that result in a multiplicative overhead of O(s) per ZK proof.

6.1.1 Protocol Complexity and Comparison

We consider the following two sets of parameters (see Appendix A): (1) N = 32, s = 40, p = 0.75,
B = 10 and p′ = 0.6, B′ = 31, and (2) N = 1024, s = 40, p = 0.85, B = 6 and p′ = 0.7, B′ = 12.
We focus on the costs that are related to |C|. The protocol of [Lin13] requires 6.5sN |C| symmetric
key operations only for the garbled circuits. for N = 32, it equals 8320|C|, while in our protocol
only 2776|C| operations are needed, and for N = 1024, that protocol requires 266240|C| operations,
while our protocol requires only 46989|C|.

The protocol of [NNOB12] requires at least 300 hash invocations per gate of the circuit (when
the bucketizing of that protocol is minimal and equals 2). For 32 2PC executions they need about
9600|C| hashes, which is almost 3.5 times more than our protocol needs. For 1024 2PC executions,
they require 307200|C| hashes, which is more than 6.5 times more than required by our protocol.
Note, however, that our protocol requires a significant number of exponentiations that depend on
the number of inputs (although using methods from [MR13] it is possible to significantly reduce
the number of exponentiations). Therefore, the total cost of our protocol might be larger than of
the protocol of [NNOB12] if the circuit is not large and communication is cheap. Our protocol is
more efficient mostly when communication is the dominant cost and the circuit is large.

6.2 Reducing Exponentiations for P2’s Inputs

Protocol 6.1 requires a constant number of exponentiations per P2’s input bit, per garbled circuit
constructed, which is approximately O(M |y|+M ′k) exponentiations overall.

[LP07] shows an alternative solution for the selective-OT attack, which works with any oblivious
transfer in a black-box way, based on an encoding of P2’s input in a way that any leakage of a small
portion of the bits does not reveal significant information about P2’s input. Formally, the encoding
can be done with respect to a boolean matrix E that is s-probe-resistant, as defined below.

Definition 6.3 (Based on [LP07, SS13]). Matrix E ∈ {0, 1}l×n for some l, n ∈ N is called s-probe-
resistant for some s ∈ N if for any L ⊂ {1, 2, . . . , l}, the Hamming distance of

⊕
i∈LEi is at least

s, where Ei denotes the i-th row of E.

[LP07] show how to construct such matrix E with n = max(4l, 8s). [SS13] show an alternative
construction with n ≤ log(l) + l + s+ s ·max(log(4l), log(4s)).

Now, instead of working with the function f(x, y), the parties work with the function f ′(x, y′) =
f(x, y′E), for which P2 chooses a random y′ such that y = y′E. As long as E is s-probe-resistant,
even if P1 learns s′ < s bits of y′, it cannot learn any significant information about y. Since in order
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to learn s bits it has to selective-OT attack s wires, this means that if it tries to attack s wires, it
gets caught with probability at least 1− 2−s. In addition to working with f ′(x, y′), the parties can
use one OT invocation for many circuits, allowing P2 to input the same y′ for many circuits while
learning the corresponding labels in all of them together. Therefore, the number of OTs needed is
n for the entire set of evaluated circuits.

[SS13] shows that since E is a binary matrix, the subcircuit that computes y′E can be garbled
very efficiently using the Free-XOR technique [KS08], with only O(n) symmetric-key operations.
This modification requires assuming that the garbling scheme in use is secure with the Free-XOR
technique (see [CKKZ12]). Moreover, in the random-oracle model, many OTs can be implemented
very efficiently (i.e., with a small number of symmetric-key operations per OT) using the OT-
extension of [NNOB12], thus the above solution can be implemented by O(n) symmetric-key oper-
ations (and O(s) seed-OTs).

Adapting the main batch protocol. We adapt Protocol 6.1 to work with this method, and by
that reduce the overhead for P2 to learn the labels of its inputs from O(M |y|+M ′k) exponentiations
to O(M |y|+M ′k) symmetric-key operations.

The main idea we use for this adaptation is to split the OTs into two steps, as shown by [Bea95]
for preprocessing OTs. We describe the modifications based on the steps of the cut-and-choose
stage for C in Protocol 6.1:

• Step 3b: P1 creates the garbled circuits using the Free-XOR method, and where P2’s input
is encoded using a (publicly known) s-probe-resistant matrix. (Still, P1’s input labels are
constructed as in [Lin13].)

• Step 3c: In addition to the commitment lcj , P1 also computes the set of commitments{(
i,Com(W 0

j,i),Com(W 1
j,i)
)}

i∈I2
where I2 is the set of wires for input y and W b

j,i is the

bth label of the ith wire of gcj . Denote this set by p2lcj .

• Step 4 is replaced with following steps:

– P2 commits on seedπ and J using a trapdoor commitment (as done in Section ??).

– For j = 1, . . . , N , the players run O(|y|) OTs (according to the above parameters) in
which P1 inputs random strings of length 2k ·B and P2 inputs its input yj .

– P1 sends the sets (gr1 , gc1, lc1, p2lc1), . . . , (grM , gcM , lcM , p2lcM ).

– P2 decommit seedπ and J . P1 reveals the seed seedj of the checked circuits j ∈ J .

– For bucket j = 1, . . . , N , P1 sends corrections to the random strings it has used in
the OTs for this bucket and the input labels for the circuits of this bucket and their
decommitments. E.g., if P1 used the 2k · B bit strings a0, a1 in the first OT for bucket
j, it sends the xor of a0 with the concatenation of all the labels that correspond to 0 for
all the circuits in the bucket, and their decommitments (for the commitments in p2lcj).
It does the same with the xor of a1 and the labels that that correspond to 1.

P2 computes the corrected labels of its inputs and verifies the decommitments.

• Step 5: P2 also checks p2lcj (and ignores the OTs part).

The proof of security is similar to the proof of Theorem 6.2 and therefore omitted.
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6.3 Reducing Exponentiations for P1’s Input

The main protocol requires a constant number of exponentiations per P1’s input bit, per garble
circuit constructed. This is needed because of the solution we use for enforcing P1 to use the same
input in the different circuits of the bucket. [MR13] presents an alternative solution to this issue
that requires only a small number of symmetric-key operations per P1’s input bit. This solution
can also be plugged in into our protocol, though it requires an efficient protocol for OT-extension,
which we currently know how to instantiate only in the random-oracle model [NNOB12]. Since the
combination of our protocol with the techniques of [MR13] result is rather complicated, we omit
further details and leave the question of coming up with a simpler solution in the standard model,
as an open problem.

In the setting in which P1’s input is fixed for all computations (e.g., when P1 has a key to an AES
encryption, and P2 wants to compute the encryptions of its messages), the exponentiations needed in
our protocol for verifying the consistency of P1’s input can be removed, and the technique of [SS13]
for checking consistency can be used instead, assuming that the garbling scheme in use is secure
with the Free-XOR technique [KS08]. [SS13] uses a universal-hash function that can be computed
very efficiently, using only a linear number (in P1’s input length and s) of symmetric key operations.

7 Secure Two-Party Computation in the Online/Offline Setting

See Section 2 for a high-level description of our techniques. Instead of working directly with
a circuit that computes f(x, y), we work with the circuit C(x(1), x(2), y(1), y(2)) that computes
f(x(1)⊕ x(2), y(1)⊕ y(2)). P1’s inputs are x(1) and x(2), while P2’s inputs are y(1) and y(2). We only
require that x(1) and y(1) must remain private at the end of the protocol (i.e., x(2), y(2) can, and
will, be published).

We make use of input wires with public values, which are inputs of the circuits that both parties
know at some point of the protocol execution. We call these public-input wires. For example, the
input wires for x(2), y(2) of C are public-input wires in our protocol since the values x(2), y(2) are
known to both parties during the protocol execution.

In order to implement the cheating recovery technique, the parties also work with the modified
circuit C ′(x(1), D, d(1), d(2)) that outputs x(1) if D = d(1) ⊕ d(2) and 0 otherwise, with d(2) and D
being public-input wires. An honest P1 should use the same x(1) in all the circuits C and C ′ in a
bucket. This requirement is enforced by our protocol.

7.1 The Main Protocol

The protocol is described in Figure 7.1 and Protocols 7.2–7.3. Since similar steps are run for C and
C ′, Protocol 7.2 describes the entire offline stage which executes the protocols of Figure 7.1 twice
(i.e., once for C and once for C ′). In the protocol description, when r is used without subscript in
the protocol, it denotes an independent random value that is not referred to in other steps of the
protocol.
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FIGURE 7.1.
Creating a Garbled-Circuit Bundle

Public Parameters:

• A circuit C
(
x(1), x(2), y(1), y(2)

)
with x(2) and y(2) being public-input wires, and

∣∣∣y(1)∣∣∣ =
∣∣∣y(2)∣∣∣.

• The set
{(
i, ga

0
i , ga

1
i

)}
i=1,...,|x(1)|

(these are actually chosen by P1; see Figure 7.2).

Construct the bundle:

• Pick a seed seed ∈R {0, 1}k. All the randomness needed in the next steps is derived from PRFseed(·).
• Pick r ∈R Zq
• Construct a garbled circuit (gc, en, de) in which the input-wire labels of input i are

REHash
(
ga

0
i r
)
,REHash

(
ga

1
i r
)

for i = 1, . . . , |x(1)| (these are the labels of P1’s input x(1)), and

where the output-wire labels are the actual output bits concatenated with random labels. (E.g.,
the output label for bit zero is 0|l where l ∈R {0, 1}k).

• Commit to all public-input wires (for x(2) and y(2)) by{(
i,Com(W 0

i ),Com(W 1
i )
)}|x(1)|+|x(2)|
i=|x(1)|+1

⋃{(
i,Com(W 0

i ),Com(W 1
i )
)}|x(1)|+|x(2)|+|y(1)|+|y(2)|
i=|x(1)|+|x(2)|+|y(1)|+1

• Commit to all output-wire labels by
{

(i,Com(W 0
i ),Com(W 1

i ))
}
i∈Outputs(C)

.a

• Let lc be the union of the above sets of label commitments, and let lcd be the set of all the
corresponding decommitments.

• Output (gc, lc, gr; seed, en, de, lcd, r).

The Cut-and-Choose Mechanism
Public parameters:

• Let s,N,B ∈ N and p ∈ (0, 1) parameters. Let M = NB
p

. (Assume no rounding of M is needed.)

• A circuit C
(
x(1), x(2), y(1), y(2)

)
with x(2) and y(2) being public-input wires, and that |y(1)| = |y(2)|.

• g0, g1, h and the set
{(
i, ga

0
i , ga

1
i

)}
i=1,...,|x(1)|

(see Protocol 7.2).

Picking the cut, the buckets, and the offline inputs:

• The cut: P2 sets σ to be a random string of length M that has exactly NB ones.

• The mapping: P2 picks a PRF seed seedπ and uses PRFseedπ (·) to compute a mapping function
π : [N ·B]→ [N ] that maps exactly B elements to each bucket.

• “Offline” inputs: P2 chooses y
(1)
1 , . . . , y

(1)
N ∈R {0, 1}|y

(1)|.

The cut-and-choose:

• For j = 1, . . . ,M , (can be done in parallel)

– P1 runs the garbled-circuit bundle construction procedure above with the circuit C, and
receives (gcj , lcj , g

rj ; seedj , enj , dej , lcdj , rj).

– P1 sends PCommith(Hash(gcj |lcj)) and grj .

• P1 acts as the sender in Ftcot and P2 as the receiver. P2 inputs y
(1)
1 , . . . , y

(1)
N , seedπ and J .

Let dpci be the decommitment of PCommith(Hash(gci|lci)). P1 inputs the wire labels of P2’s input
(i.e., in the jth set it inputs |y| pairs of keys) and the strings seed1|dpc1, . . . , seedM |dpcM .

• P2 computes the set {gci, lci}j∈J using the seeds it received from Ftcot, and verifies that all decom-
mitments {dpci}j∈J are correct and that all OT answers are consistent for those garbled circuits.

aThis part is unnecessary when the circuit in use is C′, but since the additional overhead is small, we
ignore this optimization here.
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PROTOCOL 7.2 (The Offline Stage).

Setup:

• s is a statistical security parameter, N is the number of online 2PC executions that P2 wishes to run,
p, p′ are probabilities, and B,B′ are chosen according to Theorems 4.1 and 4.3.

• The parties decide on two circuits: (1) A circuit C
(
x(1), x(2), y(1), y(2)

)
that computes

f
(
x(1) ⊕ x(2), y(1) ⊕ y(2)

)
, with x(2) and y(2) being public-input wires. (2) A circuit

C′
(
x(1), D, d(1), d(2)

)
that computes

[
D = (d(1) ⊕ d(2)) ? x(1) | 0|x

(1)|
]
, with d(2) and D being public-

input wires. (Recall that |x(1)| should be the same as in C.)

• P1 chooses a01, a
1
1, . . . , a

0
|x(1)|, a

1
|x(1)| ∈R Zq, and sends the set

{(
i, ga

0
i , ga

1
i

)}
i=1,...,|x(1)|

.

• Let g0 = g. P2 chooses r ∈R Zq, sends g1 = gr and proves using a ZKPoK that it knows logg(g1).

• P2 chooses r ∈R Zq, sends h = gr for PCommith(·) and proves, using ZKPoK, that it knows logg(h).

Running the cut-and-choose for C and for C′:

• The parties run the cut-and-choose part from Figure 7.1 with the circuit C and parameters p,N and B.

• The parties run the cut-and-choose protocol from Figure 7.1 with the circuit C′ and parameters p′, N
and B′. (Note that the same N is used in both invocations of the protocol from Figure 7.1, so both
result in the same number of buckets.)

From now on, we refer to the elements of the second execution with prime. E.g. π′ is the mapping function of
the second execution from above (while π is of the first one).

Finishing bucketizing:

• For bucket j = 1, . . . , N (can be done in parallel),

– P1 picks x
(1)
j ∈R {0, 1}

|x(1)|. Let t = x
(1)
j .

– For v = 1, . . . , |x(1)|, P1 sends the commitments that correspond to tv in {gcj,i}i=1,...,B and
{gc′j,i}i=1,...,B′ , and proves using ZK proofs that they are consistent with each other, as in [Lin13].

Storing buckets for the online stage: For bucket j = 1, . . . , N :

• P1 stores x
(1)
j , the decommitment of PCommith(Hash(gcj,i|lcj,i)) and (gcj,i, enj,i, dej,i, lcj,i, lcdj,i) for

i = 1, . . . , B, and similarly for all the bundles of C′.

• P2 stores y
(1)
j . In addition, it stores PCommith(Hash(gcj,i|lcj,i)), the labels it has received for its input

y
(1)
j from the OTs, the values of {REHash

(
ga
tv
v rj,i

)
}v=1,...,|x(1)|, where t = x

(1)
j , for i = 1, . . . , B, and

similarly for all the bundles of C′.

The goal of the offline stage is to prepare small buckets of garbled circuits that will be used in
the online stage, one bucket per online 2PC invocation. Note that after the offline stage, except
with probability 2−s, we have that for each bucket :

• At least one garbled circuit of C in the bucket, and a majority of the garbled circuit for C ′ in
the bucket, are correctly garbled circuits, and consistent with the OT inputs for P2 to learn
the labels of its inputs.

• P1 is committed to the same input x(1) in all the good garbled circuits (C and C ′).

• P2’s input y(1) is the same in all of the circuits C, and the same goes for input d(1).

• No party has learned anything about the other party’s inputs (x(1) and y(1)).

Once a bucket fulfills the above conditions, executing a 2PC with that bucket in the online stage
would be secure for the reasons described earlier in Section 2.
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PROTOCOL 7.3 (The Online Stage).

We focus here on a single 2PC with a single bucket. For simplicity, we omit the bucket index j when we refer
to its garbled circuits, etc.

Private inputs: P1’s input is x. P2’s input is y.

Evaluating C:

• P2 sends y(2) = y ⊕ y(1)j .

• P1 sends x(2) = x⊕ x(1)j .

• For i = 1, . . . , B,

– P1 decommits PCommith(Hash(gci|lci)) and sends gci, lci.

– P1 sends the input-wire labels for y(2) and x(2) in gci, and the decommitments of those labels for
the corresponding commitments in lci.

• P1 picks D ∈R {0, 1}k.

• For v ∈ Outputs(C),

– P1 chooses Rv ∈R {0, 1}k.

– Let W b
i,v be the b-th label of output wire v of gci, where v ∈ Outputs(C). P1 sends

Enc(W 0
i,v, Rv),Enc(W 1

i,v, Rv ⊕D) for i = 1, . . . , B.

• P1 sends Hash(D).

• P2 evaluates gci, for i = 1, . . . , B, and then uses the output wire labels to decrypt the associated Rv and
Rv⊕D values. In case it learns both Rv and Rv⊕D for some output wire, it checks if the XOR of them
is indeed D (by applying Hash(·) and comparing with the value that P1 has sent). If so, it sets d to D.
Otherwise, it sets d ∈ {0, 1}s.

• If all evaluations (that ended) returned the same output, set z to be that output.

Evaluating C′:

• Let d(1) the input that P2 used in the OTs for circuit C′ in bucket j. P2 sets d(2) = d⊕d(1) and sends it.

• P2 sends D, and for i = 1, . . . B′,

– Decommits PCommith(Hash(gc′i|lc′i)) and sends gc′i, lc
′
i.

– Sends the labels that correspond to D and d(2) in gc′i, and decommits the corresponding commit-
ments from lc′i.

• P2 decommits the commitments on the output labels of gci, for i = 1, . . . B (i.e. revealing all output
wire labels of the garbled circuits for C).

• P2 verifies all decommitments, all the encryptions Enc(W 0
i,v, Rv),Enc(W 1

i,v, Rv⊕D), for i = 1, . . . , B and
v ∈ Outputs(C), and the hash Hash(D), and aborts if there is a problem.

• P2 evaluates gc′i, for i = 1, . . . B′, and takes the majority output to be x̂(1). (Recall that P2 already has
the labels associated with input x(1) from the offline stage.)

P2’s output:

• If all evaluation circuits of C returned the same output z, then P2 outputs z.

• Else, if P2 has learned earlier d such that Hash(d) = Hash(D), then it outputs f(x̂(1) ⊕ x(2), y).

• Else, let gci be a circuit for which all the output labels that P2 received from its evaluation were also
the labels that were decommitted earlier from lci. P2 outputs the output of gci.
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We prove the following theorem:

Theorem 7.4. Assume that the Decisional Diffie-Hellman problem is hard in the group G, and that
Com(·), Enc(·, ·), Hash(·) and REHash(·) are secure. Then, the protocol of Figure 7.1 and Proto-
cols 7.2–7.3 securely computes any polynomial-time f with multiple executions in the online/offline
setting in the presence of malicious adversaries.

Before proving the above theorem, we note that if one wants only a single invocation of 2PC in
the online/offline setting, then all that one needs to change in the above protocol is the selection of
the cut: P1 prepares s (or 3s) sets of garbled circuits for C (or C ′), and P2 picks a random subset
(or a 2/5 portion) of them for evaluation. The rest of the steps remain the same except for ignoring
the bucket related parts. As a result we get the following theorem:

Theorem 7.5 (Informal). The modified protocol described above securely computes any polynomial-
time f in the online/offline setting in the presence of malicious adversaries.

We omit the proof of Theorem 7.5 since it is a specific case of Theorem 7.4.

Proof of Theorem 7.4. We prove security in a hybrid model where tweaked batch cut-and-choose
OT, zero-knowledge proofs and proofs of knowledge (ZKPoK) are computed by ideal functionalities
Ftcot,Fzkp,Fzkpok.

We separately prove the case that P1 is corrupted and the case that P2 is corrupted.

P1 is corrupted. The intuition here is similar to the one of the proof of Theorem 6.2. We
describe a sequence of hybrid games that ends with the simulated execution. (We mention only
the differences between each consecutive hybrids.)

hybrid0: An execution of the offline stage and the online stage with a simulator that emulates
honest P2 with inputs y1, . . . , yN . Since we work in an hybrid model with the ideal functionality
Fzkpok, the simulator can extract P1’s witnesses, and in particular, extract the witness P1 uses for
proving consistency of its inputs, and by that, learn P1’s inputs to the correctly garbled circuits.
In addition, the simulator learns both P1’s inputs to Ftcot.

hybrid1: We say that set j is good if: (1) seedj correctly derives the jth bundle; (2) The OT
answers for the labels of gcj are consistent with the actual labels of gcj ; (3) The decommitment of
PCommith(Hash(gcj |lcj)) that P1 sent to Ftcot is correct and consistent with the seed seedj it sent.

The simulator aborts if there exists a bucket j such that none of its sets for C is good, or that
the majority of the sets for C ′ are not good.

By the cut-and-choose stages and Theorems 4.1 and 4.3, we know that at least one of the sets
of C, and that most of the sets of C ′ are good with probability at least 2−s, thus, hybrid1 and
hybrid0 are 2−s-indistinguishable.

hybrid2: The simulator aborts if there exists a good set j that is not checked, and that one of the
following occurs:

• The set’s commitment PCommith(Hash(gcj |lcj)) is decommitted to something different than
Hash(gcj |lcj).

• P1 sent gc′j |lc
′
j such that Hash(gcj |lcj) = Hash(gc′j |lc

′
j) but gc′j |lc

′
j is not derived from seedj .
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• P1 sent decommitments to commitments of lcj that are for different labels than the ones
generated by seedi.

Note that in all the above cases, the simulator aborts in case P1 has successfully cheated in the
commitment or the (collision resistancy of the) hash function. Thus, by assuming that the DDH
assumption holds in G and that Hash(·) and Com(·) are secure, this abort happens with only a
negligible probability.

hybrid3: Let x
(1)
j be P1’s “offline” input to the jth bucket (extracted from its witness to Fzkpok).

The simulator emulates an honest P2 with random inputs y
(2)
1 , . . . , y

(2)
N in the online stage, and if

the emulated P2 does not abort, the simulator outputs f(x
(1)
j ⊕ x

(2)
j , yj) as P2’s output.

Note that in hybrid2, y
(1)
j is uniformly random in {0, 1}|y(2)| and thus y

(2)
j is uniformly random

as well. Similarly, d
(2)
j is uniformly random in {0, 1}k. Therefore, the only difference between the

executions in hybrid3 and hybrid2 is in case P2’s output at the end is different. However, as
discussed in the proof of Theorem 6.2, if indeed at least one garbled circuit for C and most of
the garbled circuits for C ′ are good, then P2’s output in hybrid2 is the correct output, or abort
independently of y1, . . . , yN . Thus, hybrid3 and hybrid2 are distributed the same.

hybrid4: Instead of computing (and outputting) f(x
(1)
j ⊕x

(2)
j , yj) by itself at the end, the simulator

sends x
(1)
1 ⊕ x

(2)
1 , . . . , x

(1)
N ⊕ x

(2)
N to the trusted third party and outputs whatever Adv outputs. (If

Adv or the emulated P2 abort the execution, the simulator sends ⊥ to the trusted third party.)
Since the only difference between hybrid4 and hybrid3 is that P2’s output is computed by the
trusted third party, the two are distributed the same.

The simulator: We take the simulator to be the last simulator from above. I.e., the simulator
emulates an honest P2 for the adversary with the next modifications:

• Sets y
(1)
j = 0 and d

(1)
j = 0 for j = 1, . . . , N .

• Extracts Adv’s inputs x
(1)
1 , . . . , x

(1)
N from Fzkpok and its input to Ftcot, as in hybrid0.

• Extracts Adv’s inputs to Ftcot and aborts if there exists a bucket j such that none of its sets
for C is good, or that the majority of the sets for C ′ are not good.

• Sets y
(2)
j and d

(2)
j to random values.

• Checks Adv’s commitments as done in hybrid2 and aborts if there is a commitment/hash
that is “opened” to two different inputs.

• Sends abort to the trusted third party if Adv or the emulated P2 abort.

• Sends x
(1)
1 ⊕x

(2)
1 , . . . , x

(1)
N ⊕x

(2)
N to the trusted third party and outputs whatever Adv outputs.

By the above sequence of hybrid games, we conclude that the simulated execution is (µ(k) + 2−s)-
indistinguishable from the real execution.
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P2 is corrupted. As before, we describe a sequence of hybrid games that ends with the simulated
execution.

hybrid0: An execution of the offline stage and the online stage with a simulator that emulates
honest P1 with inputs x1, . . . , xN . Since we work in an hybrid model with ideal functionalities
Fzkpok and Ftcot, the simulator can extract P2’s witnesses, and its inputs to Ftcot. In particular, it
extracts: (1) P2’s OT inputs; (2) π and J ; (3) The value of logg(h) which allows the simulator to
cheat regarding PCommith(·).
hybrid1: For all j ∈ J , the simulator generates the j-th garbled circuit bundle with true random-
ness (and not a pseudo-random randomness). Since for such j, P2 does not get any information
about seedj anyhow (since it gets only cj from Ftcot), hybrid1 and hybrid0 are indistinguishable
by the security of PRF(·) in use.

hybrid2: The simulator uses random strings in the OT answers that P2 chose not to learn when
j /∈ J (still, independent of bucket j). Since Ftcot does not send to P2 anything about those
values,hybrid2 and hybrid1 are distributed the same.

hybrid3: After P2 sends y
(2)
j in the online stage, the simulator computes zj = f(xj , y

(1)
j ⊕ y

(2)
j ),

and replaces the garbled circuits for C in the jth bucket with simulated garbled circuits that always
output zj . Also, it replaces the commitments of lc of the input labels that are not decommitted,
with commitments to random strings. Note that the simulator knows logg(h) and thus can de-
commit PCommith(·) to whatever value it likes. By the security of the garbling scheme (or the
underlying encryption in use) and the hiding property of the commitments, hybrid3 and hybrid2

are computationally-indistinguishable.

hybrid4: The simulator aborts if P2 sends d
(2)
j such that Dj = d

(1)
j ⊕ d

(2)
j . This abort happens

with a negligible probability (that depends on the security parameter k), as shown in the proof in
Theorem 6.2, and therefore hybrid4 and hybrid3 are computationally-indistinguishable.

hybrid5: The simulator replaces the garbled circuits for C ′ with simulated garbled circuits that
always output 0 for all the circuits that are not chosen to be checked. Also, it replaces the com-
mitments of lc for those circuits, that are not decommitted, with commitments to random strings.
As before, since the simulator knows logg(h) it can decommit PCommith(·) to whatever value it
likes. Since P2 does not know the values of Dj-s, whatever it inputs to C ′ should return 0. Thus,
by the security of the garbling scheme and the commitment in use, hybrid5 and hybrid4 are
computationally-indistinguishable.

hybrid6: The simulator sets x
(1)
1 , . . . , x

(1)
N to be 0 in the offline stage, and picks x

(2)
j of the jth

bucket uniformly at random in the online stage. x
(2)
j is uniform both in hybrid6 and hybrid5, thus

the only difference is regarding x
(1)
1 , . . . , x

(1)
N . However, the only information about these values

comes from the input commitments and their corresponding ZK proofs. The latter are the same in
hybrid6 and hybrid5 since we work with an ideal functionality for ZKPoK, while the former are
computationally-indistinguishable by the DDH assumption.

hybrid7: Instead of computing zj = f(xj , y
(1)
j ⊕y

(2)
j ) by itself, the simulator sends y

(1)
j ⊕y

(2)
j to the

trusted third party and receives zj . (If Adv or the emulated P2 abort in the online stage of bucket
j, then Sim sends abort(j) to the trusted third party. If they abort in the offline stage, it sends ⊥.)
hybrid7 and hybrid6 are distributed the same since P2 does not see the call to the trusted third
party, and the honest P1 has no output.
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The simulator: We take the simulator to be the last simulator from above. I.e., the simulator
emulates an honest P1 for the adversary with the next modifications:

• During the execution, it extracts Adv’s inputs to FOT , and its witnesses to Fzkpok.

• Sets x
(1)
j = 0 for j = 1, . . . , N

• Sends commitments PCommith(·) to random values for all garbled circuit bundles.

• For all bundles that Adv chose to check, the simulator answers properly in its response in
Ftcot (i.e., with correct garbled circuit, etc). For the other bundles, the OT answers that P2

chose not to learn are replaced with random values.

• If Adv or the emulated P1 abort in the offline stage, sends ⊥ to the trusted third party.

• After Adv sends y
(2)
j in the online stage, sends y

(1)
j ⊕y

(2)
j to the trusted third party and receives

zj . Then, it decommits PCommith(·) to fake garbled circuits for C that always output zj , and
the ones of C ′ to to fake garbled circuits that always output 0. The simulator does this for
all the circuits of the jth bucket.

• If Adv uses d
(1)
j ⊕ d

(2)
j = Dj , the simulator aborts.

• If Adv or the emulated P1 abort in the online stage of bucket j, sends abort(j) to the trusted
third party.

• Outputs whatever Adv outputs.

By the above sequence of hybrid games, we conclude that the simulated execution is indistinguish-
able from the real execution.

As in Section 6, if the ideal functionalities are realized by UC-secure protocols, then the above
protocol can be shown to be secure under the UC-security notion.

7.2 Reducing Online Stage Latency in the ROM

As discussed in Sections 2.4 and 3, the standard security notions of garbled circuits are defined with
respect to a static adversary who chooses its input before seeing the garbled circuit. Due to this, in
the protocol from Section 7.1, P1 does not send a garbled circuit before knowing whether P2 wants
to check it, or before P2 chooses its input in case the circuit is used in the online stage. P1 only
commits on the circuit using a perfectly-hiding commitment. This allows the simulator to later
change the garbled circuit based on P2’s input, and reduce security of the simulated garbled circuit
to the security of the encryption in use. However, this technique has a significant disadvantage -
it requires sending B garbled circuits in the online stage (and, in addition, computing the hash of
them twice: once by P1 and once by P2).

In case we have an adaptively-secure garbling scheme, P1 could simply send all garbled circuits
straight away, instead of sending commitments on them. That way, all the heavy communication
is done in the offline stage, while the remaining online stage communication is independent of |C|
(and depends only on the input and output lengths, and the security parameters).
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As discussed in Section 3, the only known construction of adaptively-secure garbling scheme
(with succinct online stage) is in the random-oracle model. Once we work in the random-oracle
model, additional optimizations can be used. First, we can use the Free-XOR technique [KS08],
which is secure in the random-oracle model, to reduce the garbling of XOR gates (and the communi-
cation of sending them). Second, we can implement Com(·) very efficiently using the random-oracle.
Third, we can implement a UC-secure commitment very efficiently using the random-oracle, and
by that significantly reduce the overhead of the UC-secure variant of our protocol.

We give a brief description of an adaptively secure garbling in the random-oracle model, which
is based on the garbling scheme of [PSSW09]. Let H(·) be a hash function modelled as a random-
oracle. Garble(1k, C) consists of the following steps:

• For each wire i of the circuit, choose two random labels W 0
i ,W

1
i ∈R {0, 1}k+1 such that the

MSB of W b
i is b if i ∈ Outputs(C), and otherwise, the MSB of W 0

i ⊕W 1
i is one.

• For each gate g of the circuit, connecting wires i, j to wire n, compute the “garbled gate”{ (
c0, c1,H(W c0⊕bi

i |W c1⊕bj
j |g)⊕W bn

n

)
| c0, c1 ∈ {0, 1}, bi = MSB(W 0

i ), bj = MSB(W 0
j ),

bn = operation[g](c0 ⊕ bi, c1 ⊕ bj)
}
.

• Pick ∆ ∈R {0, 1}k+1 and set gc be the set of all garbled gates, and en and de as follows:

en = {
(
W 0
i ⊕∆,W 1

i ⊕∆
)
| i ∈ Inputs(C) }

de = { (W 0
i ,W

1
i ) | i ∈ Outputs(C) }

Define Evaluate(gc,X,∆) to be the algorithm that XORs all the labels in X with ∆, and then
evaluates gc in a topological order. Note that even given gc and X (but not ∆), the evaluator
does not posses even a single valid label of gc. Thus, in order to make use of this fact, we require
that the evaluator would learn ∆ only after it chooses its input x. ([BHR12a] presents a similar
construction assuming the hash is a UCE-hash. The construction of [BHR12a] is slightly more
complicated than the one needed in this paper, though security follows the same reasons.)

To see why this construction is secure against adaptive adversaries, consider the view of the
adversary during the game: First, it gets gc, which is just a set of random strings from its point
of view. Then, it picks the input x (possibly bit after bit), receives X and at the end receives ∆.
While it asks for the labels for x, it still has no information about any label of gc. Therefore, in the
simulation, the simulator could program the random-oracle to whatever it likes before giving the
adversary the value of ∆. Specifically, it can program it to output the fixed value C(x) (as done
with the simulated garbled circuit in the static setting).

Now, the modifications to the protocol from Section 7.1 are the following:

• Let H(·) be the random-oracle. (As usual, when the random-oracle is instantiated with a
hash function, a random string is chosen jointly by the parties and used as a key/prefix to all
calls to the hash function in use.)

• Denote ∆ of the j-th garbled circuit by ∆j . Instead of sending the commitments with
PCommit(·) of the j-th garbled circuit and its commitments, P1 simply sends gcj , lcj (where
the commitments of lcj are computed using the commitment Com(m, r) = H(m|r)). In ad-
dition, P1 commits on ∆j using H(·) as well. (Note that now all garbled circuits are sent in
the offline stage.)
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• P1 sends ∆j in two cases: (1) after gcj is selected to be checked, or, (2) After P2 has sent its
input in the online stage for gcj . Thus, in the places in which P1 decommits PCommit(·), it
instead decommits the commitment on ∆j of the relevant garbled circuit.

Note that now, P2 learns ∆j of a bundle only after the simulator already knows how it should
create the garbled circuit (i.e., whether it should be a valid garbled circuit or a simulated one).
Security follows the proof of Theorem 7.4, except that in case P2 is corrupted, the simulator sends
random strings as gcj , lcj and also a random string as the commitment on ∆j . Later, once the
simulator knows how to construct the garbled circuit, it picks a random ∆j , and programs the
random-oracle so that gcj would be a valid garbled circuit in case P2 asked to check it, or, a fake
garbled circuit that always outputs a fixed value z, in case it is used for evaluation. Similarly, the
simulator programs the random-oracle for the commitments of lcj that are revealed.

We remark that a similar construction may be based on UCE-hash functions [BHK13] instead
of on the random-oracle. But as said earlier, the only proven instantiation we currently have of
UCE-hash functions is in the random-oracle model as well.
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A Tables and Graphs

In this section, we present detailed tables and graphs describing the number of circuits needed for
different parameters (number of executions and bucket size). Recall that the bucket size affects
the online execution time, and the overall number of circuits affects both the end-to-end execution
time and the offline stage execution time. (In the batch setting, the average number of circuits per
execution is the only value of consequence.)

A.1 Examples for Game 1

Tables 2-4 present examples of concrete parameters for Game 1.

Number of p Bucket Overall number of Average # circuits
executions N size(dBe) circuits (dB ·N/pe) per execution

1024 0.05 4 81920 80.00
1024 0.1 4 40960 40.00
1024 0.15 5 34134 33.33
1024 0.2 5 25600 25.00
1024 0.25 5 20480 20.00
1024 0.3 5 17067 16.67
1024 0.35 5 14629 14.29
1024 0.4 5 12800 12.50
1024 0.45 5 11378 11.11
1024 0.5 5 10240 10.00
1024 0.55 5 9310 9.09
1024 0.6 5 8534 8.33
1024 0.65 5 7877 7.69
1024 0.7 6 8778 8.57
1024 0.75 6 8192 8.00
1024 0.8 6 7680 7.50
1024 0.85 6 7229 7.06
1024 0.9 7 7965 7.78
1024 0.95 7 7546 7.37
1024 0.96 8 8534 8.33
1024 0.97 8 8446 8.25
1024 0.98 9 9405 9.18
1024 0.99 11 11378 11.11
1024 0.999 34 34851 34.03

Table 2: Concrete parameters for Game 1 and s = 40.
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Number of p Bucket Overall number of Average # circuits
executions N size(B) circuits (dB ·N/pe) per execution

1048576 0.05 3 62914560 60.00
1048576 0.1 3 31457280 30.00
1048576 0.15 3 20971520 20.00
1048576 0.2 3 15728640 15.00
1048576 0.25 3 12582912 12.00
1048576 0.3 3 10485760 10.00
1048576 0.35 3 8987795 8.57
1048576 0.4 3 7864320 7.50
1048576 0.45 3 6990507 6.67
1048576 0.5 3 6291456 6.00
1048576 0.55 3 5719506 5.45
1048576 0.6 3 5242880 5.00
1048576 0.65 3 4839582 4.62
1048576 0.7 4 5991863 5.71
1048576 0.75 4 5592406 5.33
1048576 0.8 4 5242880 5.00
1048576 0.85 4 4934476 4.71
1048576 0.9 4 4660338 4.44
1048576 0.95 4 4415057 4.21
1048576 0.96 4 4369067 4.17
1048576 0.97 4 4324025 4.12
1048576 0.98 4 4279903 4.08
1048576 0.99 5 5295839 5.05
1048576 0.999 6 6297754 6.01

Table 3: Concrete parameters for Game 1 and s = 40.

Number of p Bucket Overall number of Average # circuits
executions N size(B) circuits (dB ·N/pe) per execution

32 0.15 6 1280 40.00
32 0.35 7 640 20.00
32 0.55 8 466 14.56
32 0.65 9 444 13.88
32 0.75 10 427 13.34
32 0.8 11 440 13.75
32 0.85 12 452 14.13

Table 4: Concrete parameters for Game 1 and s = 40; only the best p for each bucket size is
included here.
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Figures 2 and 3 show how the probability p affects the size of a bucket and the total number of
circuits. We can see from the graphs that, as expected, when p grows, B increases while the total
number of balls BN

p decreases. This highlights again the tradeoff between the total work and the
online work. Figure 4 shows how the (amortized) number of balls needed per bucket depends on
the number of buckets. The more buckets are used, the less number of balls are needed per bucket
on average.
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Figure 2: The size of a bucket and the total number of balls depending on the probability
p for s = 40 and N = 32. The orange line represents the value of B without ceiling, i.e.,
the function 40+log 32−log p

log(32(1−p))−log p/(1−p) , and the red asterisks represent values on the line after ceil-
ing. The teal line represents the total number of balls without ceiling of B, i.e., the function
32
p ·

40+log 32−log p
log(32(1−p))−log p/(1−p) and the blue asterisks represent values of the same function with ceiling,

i.e., 32
p ·
⌈

40+log 32−log p
log(32(1−p))−log p/(1−p)

⌉
. The dashed line is the number of balls required by the standard

cut-and-choose, as done in [Lin13], i.e., 32 ∗ 40.
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Figure 3: The size of a bucket and the total number of balls depending on the probability p
for s = 40 and N = 1024. The orange line represents the value of B without ceiling, i.e., the
function 40+log 1024−log p

log(1024(1−p))−log p/(1−p) , and the red asterisks represent values on the line after ceiling.

The teal line represents the total number of balls without ceiling of B, i.e., the function 1024
p ·

40+log 1024−log p
log(1024(1−p))−log p/(1−p) and the blue asterisks represent values of the same function with ceiling,

i.e., 1024
p ·
⌈

40+log 1024−log p
log(1024(1−p))−log p/(1−p)

⌉
. The dashed line is the number of balls required by the standard

cut-and-choose, as done in [Lin13], i.e., 1024 ∗ 40.
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Figure 4: The total number of balls divided by the number of buckets, depending on N . (This is
the average number of circuits needed per 2PC execution in our protocol.)
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A.2 Examples for Game 2

Tables 5-7 present examples of concrete parameters for Game 2.

Number of p Bucket Overall number of Average # circuits
executions N size(B) circuits (dB ·N/pe) per execution

1024 0.05 10 204800 200.00
1024 0.1 10 102400 100.00
1024 0.15 10 68267 66.67
1024 0.2 11 56320 55.00
1024 0.25 11 45056 44.00
1024 0.3 11 37547 36.67
1024 0.35 11 32183 31.43
1024 0.4 12 30720 30.00
1024 0.45 12 27307 26.67
1024 0.5 12 24576 24.00
1024 0.55 13 24204 23.64
1024 0.6 13 22187 21.67
1024 0.65 14 22056 21.54
1024 0.7 14 20480 20.00
1024 0.75 15 20480 20.00
1024 0.8 16 20480 20.00
1024 0.85 17 20480 20.00
1024 0.9 19 21618 21.11
1024 0.95 23 24792 24.21
1024 0.96 25 26667 26.04
1024 0.97 28 29559 28.87
1024 0.98 33 34482 33.67
1024 0.99 48 49649 48.49

Table 5: Concrete parameters for Game 2 and s = 40.
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Number of p Bucket Overall number of Average # circuits
executions N size(B) circuits (dB ·N/pe) per execution

1048576 0.05 6 125829120 120.00
1048576 0.1 6 62914560 60.00
1048576 0.15 6 41943040 40.00
1048576 0.2 7 36700160 35.00
1048576 0.25 7 29360128 28.00
1048576 0.3 7 24466774 23.33
1048576 0.35 7 20971520 20.00
1048576 0.4 7 18350080 17.50
1048576 0.45 7 16311183 15.56
1048576 0.5 7 14680064 14.00
1048576 0.55 7 13345513 12.73
1048576 0.6 7 12233387 11.67
1048576 0.65 7 11292357 10.77
1048576 0.7 7 10485760 10.00
1048576 0.75 8 11184811 10.67
1048576 0.8 8 10485760 10.00
1048576 0.85 8 9868951 9.41
1048576 0.9 8 9320676 8.89
1048576 0.95 9 9933878 9.47
1048576 0.96 9 9830400 9.38
1048576 0.97 9 9729056 9.28
1048576 0.98 10 10699756 10.20
1048576 0.99 11 11650845 11.11
1048576 0.999 15 15744385 15.02

Table 6: Concrete parameters for Game 2 and s = 40.
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Number of p Bucket Overall number of Average # circuits
executions N size(B) circuits (dB ·N/pe) per execution

32 0.05 16 10240 320.00
32 0.1 18 5760 180.00
32 0.15 19 4054 126.69
32 0.2 20 3200 100.00
32 0.25 21 2688 84.00
32 0.3 22 2347 73.34
32 0.35 23 2103 65.72
32 0.4 24 1920 60.00
32 0.45 26 1849 57.78
32 0.5 27 1728 54.00
32 0.55 29 1688 52.75
32 0.6 31 1654 51.69
32 0.65 34 1674 52.31
32 0.7 38 1738 54.31
32 0.75 44 1878 58.69
32 0.8 54 2160 67.50
32 0.85 74 2786 87.06
32 0.9 152 5405 168.91

Table 7: Concrete parameters for Game 2 and s = 40.
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