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Abstract

Koblitz curves have been a nice subject of consideration for both theoretical and

practical interests. The window τ -adic algorithm of Solinas (window τNAF) is the

most powerful method for computing point multiplication for Koblitz curves. Pre-

computation plays an important role in improving the performance of point multi-

plication. In this paper, the concept of optimal pre-computation for window τNAF

is formulated. In this setting, an optimal pre-computation has some mathematically

natural and clean forms, and requires 2w−2 − 1 point additions and two evaluations

of the Frobenius map τ , where w is the window width. One of the main results of

this paper is to construct an optimal pre-computation scheme for each window width

w from 4 to 15 (more than practical needs). These pre-computations can be easily

incorporated into implementations of window τNAF. The ideas in the paper can also

be used to construct other suitable pre-computations. This paper also includes a

discussion of coefficient sets for window τNAF and the divisibility by powers of τ

through different approaches.

Keywords: Elliptic curve cryptography, window τ-non adjacent form, pre-

computation

1 Introduction

One of the most important families of elliptic curves in elliptic curve cryptography (ECC)

is the Koblitz curves [10]. A Koblitz curve over F2m is defined by

Ea : y2 + xy = x3 + ax2 + 1,
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where the parameter a is from {0, 1}. On Ea/F2m , the Frobenius map is defined as: for

point (x, y) that is different from the point at infinity

τ(x, y) = (x2, y2),

and for the point at infinity O, τ(O) = O.

Let µ = (−1)1−a. Since τ 2(P ) + 2P = µτ(P ) for all P ∈ Ea(F2m), τ can be interpreted

as a complex number defined by τ 2 − µτ + 2 = 0. One can choose

τ =
µ+
√
−7

2
.

Therefore the Euclidean domain Z[τ ] = Z+Zτ can be identified as a set of automorphisms

of Ea in the sense that

(g + hτ)P = gP + hτ(P ).

for every P ∈ Ea(F2m).

In ECC, one considers the situation where |Ea(F2m)| is very nearly prime, that is,

|Ea(F2m)| = |Ea(F2)| · p for some prime p > 2. The main subgroup M of Ea(F2m) is the

subgroup of order p. For δ =
τm − 1

τ − 1
, we have the norm Na(δ) = p1 and δ(P ) = O for

P ∈ M . The latter yields a useful fact which asserts that for elements ρ and γ in Z[τ ], if

ρ ≡ γ( mod δ), then for every P ∈M ,

ρP = γP. (1.1)

The Frobenius map τ is an inexpensive operation as squaring in F2m can be done

efficiently. Based on this, Koblitz [10] proposed a method of computing the point multipli-

cation nP by representing n =
∑k

i=0 ciτ
i with ci ∈ {0, 1} and evaluating

∑k
i=0 ciτ

i(P ).

In [13], Solinas developed a width-w window τ -adic method for the efficient computation

of nP . The procedure can be briefly described as

1. Reduction. Find some suitable ρ = r1 + r2τ ∈ Z[τ ] with |r1|, |r2| being roughly
√
n,

such that

ρ ≡ n (mod δ).

Then by (1.1), computing nP is equivalent to computing ρP .

2. Window τ-NAF. Fix a positive integer w. Denote the coefficient set

Cmin = {c1, c3, · · · , c2w−1−1} (1.2)

1For an element r0 + r1τ ∈ Z[τ ], its norm is Na(r0 + r1τ) = (r0 + r1τ)(r0 + r1τ̄) = r20 + µr0r1 + 2r21.

This norm is dependent of the parameter a.
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where cj is an element with the least norm from the odd congruence class j = {c ∈
Z[τ ] : c ≡ j (mod τw)}, (j = 1, 3, · · · , 2w−1 − 1). The width-w τ non-adjacent form

of ρ is

ρ =
l−1∑
i=0

εiuiτ
i,

where εi ∈ {−1, 1} and ui ∈ Cmin ∪ {0} with the properties that in any segment

{uk, uk+1, · · · , uk+w−1} of length w , there is at most one nonzero ui. We denote the

above expression of ρ by τNAFw(n).

3. Pre-Computation: Compute Qj = cjP for each j = 1, 3, · · · , 2w−1 − 1. Note that

c1 = 1, so Q1 = P needs no calculation.

4. Computing nP : Evaluate ρP by Horner’s rule, using τNAFw(n) and precomputed

Q1, Q3, · · · , Q2w−1 . Discarding the zero coefficients, the τNAFw(n) of ρ can be written

as

ρ = ε0ck0τ
k0 + ε1ck1︸ ︷︷ ︸

k1−k0≥w

τ k1 + ε2ck2︸ ︷︷ ︸
k2−k1≥w

τ k2 + · · ·+ εs−1cks−1 τ
ks−1 + εscks︸ ︷︷ ︸
ks−ks−1≥w

τ ks

with εj ∈ {−1, 1} and ckj ∈ Cmin. So nP = ρP can be computed through

nP = τ k0(τ k1−k0(· · · (τ ks−ks−1εsQjks
+ εs−1Qjks−1

) + · · ·+ ε1Qjki1
) + ε0Qjk0

).

As indicated in [13], for practical values of w, pre-computation requires 2w−2 − 1 point

additions. The example (Table 1) given in [13] shows how to construct the pre-computation

for the case of w = 5, a = 1, i.e.,

Table 1: Pre-computation from [13]

Q3 = τ 2P − P Q5 = τ 2P + P Q7 = −τ 3P − P Q9 = −τ 3Q5 + P

Q11 = −τ 2Q5 − P Q13 = −τ 2Q5 + P Q15 = τ 4P − P

It can be seen that, in addition to 2w−2− 1 = 7 point additions, 7 evaluations of τ are also

needed, i.e., we need to compute τP, τ 2P, τ 3P, τ 4P and τQ5, τ
2Q5, τ

3Q5.

Some improved pre-computations are discussed in [7] where eight cases (i.e., 3 ≤ w ≤
6, a = 0, 1) of pre-computation schemes are described. For the case of w = 5, a = 1, the

following pre-computation given in [7] uses 6 evaluations of τ :
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Table 2: Pre-computation from [7]

Q3 = τ 2P − P Q5 = τ 2P + P Q7 = −τ 3P − P Q9 = −τ 3Q5 + P

Q11 = −τ 2Q5 − P Q13 = −τ 2Q5 + P Q15 = τ 2Q5 −Q5

Such pre-computation have been used in the discussion of [1].

In [3], Blake, Murty and Xu extended Solinas’s method by allowing a general coefficient

set of the form

Cnm = {c1, c3, · · · , c2w−1−1} (1.3)

where c1 = 1 and cj is an element from the odd congruence class j that satisfies N(cj) < 2w,

for j = 3, · · · , 2w−1 − 1. It is easy to see that Cmin is a special case of Cnm. It has been

proved in [3] that the algorithm for computing τNAFw(ρ) (Algorithm 4 of [13]) is correct

for the general coefficient sets. In particular, [3] provided a termination proof of τNAFw(ρ)

for the original setting of Cmin. See also [4].

Examples of efficient pre-computation were given in [3]. For the case w = 5, a = 1,

example 3 of [3] greatly improved that of [13] by requiring only two evaluations of τ . The

pre-computation is

Table 3: Pre-computation from [3]

Q3 = τ 2P − P Q5 = τP − P Q7 = τP + P Q9 = τP +Q3

Q11 = τP +Q5 Q13 = τP +Q7 Q15 = τP +Q9

This pre-computation is actually an optimal one (as explained later).

The purpose of this paper is to systematically study pre-computation for window τNAF

for Koblitz curves. As we shall see later, for each w > 2, a pre-computation requires at least

2w−2 − 1 point additions and two evaluations of τ ( except for the simple case of w = 3

where one application of τ is sufficient). We shall call a pre-computation that involves

2w−2− 1 point additions and two evaluations of τ an optimal pre-computation. One of the

main results of this paper is to show that for each of the cases 4 ≤ w ≤ 15, a = 0, 1, an

optimal pre-computation exists. These cover all of practical interesting cases2.

A computationally efficient criterion for divisibility of an element g + hτ ∈ Z[τ ] by

a power of τ is needed in determining a residue modulo τw. This is a useful step for

2As indicated in [13], w > 8 is no longer practical, due to the fact that the total cost of using window

τNAF is roughly m
w+1 + 2w−2 − 1 point additions
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forming the coefficient set Cnm for the window τNAF, hence for the pre-computation. Such

criterion was described by Solinas [13] in terms of Lucas sequences. In this paper, we

present a different approach by refining the p-adic argument of Blake, Murty and Xu [4].

This also provides an explanation of the divisibility by a power of τ in the ring Z[τ ] from

another view point. The generality of the computational procedure for divisibility is also

useful in our construction of optimal pre-computations.

The rest of the paper is organized into three sections. The next section discusses the

algebraic setup of pre-computations. Section 3 will be devoted to a detailed formulation

and description of optimal pre-computations. The last section is the conclusion.

2 The Coefficient Sets for Window τNAF

In our discussion in the previous section, for Koblitz curves, the point multiplication nP

can be turned into a complex multiplication (r1 + r2τ)P for r1, r2 ∈ Z. Efficiency can be

archived by using the window τNAF of r1 + r2τ . In this section, we shall consider the

construction of the coefficient sets for window τNAF. To this end, we need to work with

the (algebraic) integer ring Z[τ ] = {g + hτ : g, h ∈ Z}.
Given a positive integer w, the coefficient set Cnm for window τNAF is the key ingredient

for the pre-computation. Recall that Cnm is constructed by taking one element from each

odd congruence class j modulo τw whose norm is less than 2w, for j = 1, 3, · · · , 2w−1 − 1.

For each j = 3, · · · , 2w−1 − 1, define

Rj = {g + hτ : g + hτ ≡ j (mod τw), Na(g + hτ) < 2w}.

Assume that an explicit coefficient set is

Cnm = {c1, c3, · · · , c2w−1−1}

where c1 = 1 and cj ∈ Rj for j = 3, · · · , 2w−1− 1. We can see that in the setting of [3], the

coefficient sets for a window τNAF (or pre-computations) are quite flexible. There are

2w−2−1∏
k=1

∣∣R2k+1

∣∣
choices of Cnm.

In order to determine the set Rj, we need to find suitable g+hτ such that τw|g−j+hτ .

The problem of divisibility by a power of τ was studied in [13]. Using the Lucas sequence,

Solinas proved that there is an integer tw such that

τw|g + hτ ⇐⇒ 2w|g + htw. (2.1)
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In [4], a p-adic approximation approach was proposed for the problem of divisibility by a

power of a zero of a quadratic polynomial of the form X2 + kX + p with |k| < p. Here we

give an intuitive and a computational refinement of the argument for the case p = 2 and

polynomial f(X) = X2 − µX + 2. Using Hensel’s lifting algorithm [8, 12], starting from

s1 = 0, we can get the nth 2-adic approximation

sn = b12 + b22
2 + · · ·+ bn−12

n−1

of the 2-adic zero α =
∞∑
k=1

bk2k of f(X) by the following procedure:

Procedure 2.1: The nth 2-adic Approximation

s1 ← 0;

for ( i from 1 to n− 1 ) do

bi ← f(si)
2i
µ (mod 2) ; //f(si) is divisible by 2i.

si+1 ← si + bi2
i;

By this procedure, we can easily get:

s2 s3 s4 s5 s6 s7 s8 s9 · · ·
2µ 6µ 6µ 6µ 38µ 38µ 166µ 422µ · · ·

In general, we can get a positive integer qn such that

sn = qnµ. (2.2)

Note that 2|α and 2n|α− sn, so we have

αn|g + hα ⇐⇒ 2n|g + hsn.

This naturally leads to the following argument

τw|g + hτ ⇐⇒ 2w|g + hsw. (2.3)

We will not explain the proof of (2.3) here, as a rigorous proof of the general p-adic case

has already been given in [4].

Note that

Na(g + hτ) = g2 + µgh+ 2h2 =
3g2

4
+
(g

2
+ µh

)2
+ h2,

so the requirement Na(g + hτ) < 2w forces |g| ≤ b2
w+2
2√
3
c and |h| ≤ b2w

2 c. With these, we

are able to describe a method for generating Rj (j = 3, · · · , 2w−1 − 1):
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Procedure 2.2: Generation of Rj

Rj ← ∅;
for ( h from −b2w

2 c to b2w
2 c ) do

for ( g from −b2
w+2
2√
3
c to b2

w+2
2√
3
c ) do

if ( (2w|g − j + hsw) and (g2 + µgh+ 2h2 < 2w ) )

append (g + hτ) to Rj;

3 Optimal Pre-computations

Once a coefficient set Cnm = {c1, c3, · · · , c2w−1−1} is specified, the pre-computation can be

performed. Given the base point P , this is the task for computing and storing the 2w−2−1

points

Q3 = c3P, Q5 = c5P, · · · , Q2w−1−1 = c2w−1−1P.

For the sake of convenience, in the rest discussion, we set c1 = 1 and Q1 = P . We also

remark that the pre-computations for the case of w = 3 is very simple and only Q3 needs

to be computed:

Pre-computation for w = 3

a = 0 Q3 = P + τ(P ) a = 1 Q3 = P − τ(P )

So we shall be interested in the cases of w > 3 in the rest of the section. Another remark we

would like to make is that an efficient pre-computation may be achieved with rearranging

the order of Q1, Q3, Q5, · · · , Q2w−1−1. In the actual computation, we may need to compute

some Qj before Qk, even though j > k.

Now we begin the setup of optimal pre-computation.

We first observe that there are only two elliptic curve operations involved in the pre-

computation, the point addition (include point doubling) and evaluation of τ . As pointed

out in [13], for w in the practical range (for w from 3 to 8), each Qj (j ≥ 3) can be done

by using one point addition operation, plus some evaluations of τ . The cost of the latter is

comparatively less.

Next we argue that, in terms of point addition operation, one operation for each Qj

(j = 3, 5, · · · , 2w−1 − 1) is necessary. If not, suppose that some Qj0 is obtained by only

using τ to some previous computed Qk (this should include Q1 = P ). This means that

cj0 = τ eck. Note that j0 is an odd number, so j0 ≡ 1 (mod τ) (since 2 = τ(µ − τ)).

Therefore

τ eck = cj0 ≡ j0 (mod τw)

≡ 1 (mod τ).
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This implies that there is a u ∈ Z[τ ] such that

τu = 1.

This is absurd as Na(τu) = Na(τ)Na(u) = 2Na(u) > 1. Thus point addition operation

must be used in computing Qj ( j ≥ 3).

Finally, we turn to the other operation, the Frobenius map τ . Concerning the efficiency

of using τ in pre-computation, there has not been a clean argument yet. As mentioned

earlier, the example in [13] discussed the case w = 5, a = 1, and 7 evaluations of τ were

needed. An improvement for this case was suggested in [7] with 6 evaluations of τ . The

other cases discussed in [7] include w = 4 ( with 3 evaluations of τ ) and w = 6 ( with 12

evaluations of τ ). For the case w = 5, a = 1, a more efficient pre-computation scheme was

proposed in [3]. This scheme uses only two evaluations of τ , namely τ(P ) and τ(τ(P )).

The interesting fact is that this is the best one can do. In general, we can argue that

under the assumption that 4 ≤ w ≤ 15, and only one point addition is allowed for each

Qj (j = 3, 5, · · · , 2w−1 − 1), then we need at least two evaluations of τ to finish the pre-

computation. In fact, suppose we have a pre-computation

Qj1 = P, Qj3 , Qj5 , · · · , Qj2w−1−1
.

SinceQj3 is the first term that needs to be computed, it must be of the form of ε1P+ε2τ
e(P ),

where ε1, ε2 ∈ {−1, 1} and e ≥ 1. Assume that we could get the pre-computation done by

using only one evaluation of τ , then this evaluation must be τ(P ). So e = 1 and for each

k > 3, we have

Qjk = ε1Qjl + ε2τ(P ),

for some l < k and ε1, ε2 ∈ {−1, 1}. In terms of the elements in the coefficient set Cnm,

this means that for each k > 3, there is an l < k and ε1, ε2 ∈ {−1, 1}, such that

cjk = ε1cjl + ε2τ. (3.1)

This has been proved to be impossible by checking all possible sets of Cnm.

Based on these discussions, we define an optimal pre-computation forQ1, Q3, Q5, · · · , Q2w−1−1

to be a pre-computation satisfying

1. Computation of each of Q3, Q5, · · · , Q2w−1−1 uses only one point addition;

2. The entire pre-computation uses only two special evaluations of τ , namely τ(P ) and

τ(τ(P )).

We would like to point out that this formulation of optimal pre-computation is mathe-

matically natural and clean. In particular, if an optimal pre-computation for the curve

y2 +xy = x3 + 1/F2m (ie., the parameter a = 0) is found, then an optimal pre-computation

for the curve y2 + xy = x3 + x2 + 1/F2m (ie., the parameter a = 1) can be constructed

immediately, and vice versa. These are proven in the following proposition.
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Proposition 3.1 Assume that an optimal pre-computation with Qj’s are computed in the

following order

Qj1 = P, Qj3 , Qj5 , · · · , Qj2w−1−1
.

Then

1. For each k ≥ 3, there is an l < k and ε1, ε2 ∈ {−1, 1} such that

Qjk = ε1Qjl + ε2τ
e(P ), (3.2)

with e = 1 or 2.

2. If an optimal pre-computation of the form (3.2) is found for a = 0 (a = 1), then we

have an optimal pre-computation Qj1 = P, Qj3 , Qj5 , · · · , Qj2w−1−1
for a =

1 (a = 0) with the following form

Qjk = ε1Qjl + ε2(−1)eτ e(P ),

Proof.

1. Since Qjk is formed using one addition, it can be either

Qjk = ε1Qjl + ε2Qjd ,

for l, d < k, or

Qjk = ε1Qjl + ε2τ
e(P ),

for l < k and e = 1 or 2.

Thus we only need to prove the first case is false. Indeed, as cjl and cjd are chosen

from odd congruence classes, and both have smaller norms, representing the relation

Qjk = ε1Qjl + ε2Qjd as

cjkP = (ε1cjl + ε2cjd)P,

we get cjk = (ε1cjl + ε2cjd). This implies that cjk is in an even congruence class.

However, the coefficients must be from odd classes, so this is a contradiction.

2. Let a = 0 and an optimal pre-computation is of the form (3.2). This means that Qj3

must be of the form ε1P + ε2τ
e(P ), and each following Qjk is obtained by adding

ε3τ
e′(P ) to some previous one. So Qjk can be written as

Qjk = εP + z1τ(P ) + z2τ
2(P ), for ε ∈ {−1, 1} and some z1, z2 ∈ Z. (3.3)

This, together with the fact that τ 2 = µτ − 2, mean that,

cjk = ε+ z1τ + z2τ
2 = (ε− 2z2) + (z1 + µz2)τ.
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Since cjk ≡ jk (mod τw), by (2.3) and (2.2), we have

2w|(ε− 2z2 − jk) + (z1 + µz2)qwµ.

Note that in this case, µ = (−1)1−a = −1, so we have

2w|(ε− 2z2 − jk) + (z2 − z1)qw. (3.4)

Now consider the case of a = 1. In this case, µ = (−1)1−a = 1. So (3.4) can be

reorganized as

2w|(ε− 2z2 − jk) + (−z1 + µz2)qwµ.

Using (2.3) again, we see that τw|(ε− 2z2 − jk) + (−z1 + µz2)τ , i.e.,

ε− z1τ + z2τ
2 ≡ jk (mod τw).

Denote c′jk = ε− z1τ + z2τ
2, since N1(c

′
jk

) = N0(cjk), so

{1, c′j3 , c
′
j5
, · · · , c′j2w−1−1

}

is a coefficient set of window τNAF for the case of a = 1. For the corresponding

pre-computation, we let Qjk = c′jkP = εP − z1τ(P ) + z2τ
2(P ). Observe that we only

change the sign of the confident of τ in the expression (3.3), so this pre-computation

must satisfy

Qjk = ε1Qjl + ε2(−1)eτ e(P ).

The proof of constructing an optimal pre-computation for the case a = 0, from the

case a = 1, is analogous.

The main result in this section is to show that for w from 4 to 15, there is always an

optimal pre-computation for the window τNAF.

Theorem 3.1 For each w from 4 to 15, there exists a coefficient Cnm whose corresponding

pre-computation can be arranged as

Qj1 = P, Qj3 , Qj5 , · · · , Qj2w−1−1
.

such that for each k > 3, there is an l < k and ε1, ε2 ∈ {−1, 1}, one has either

Qjk = ε1Qjl + ε2τ(P ),

or

Qjk = ε1Qjl + ε2τ
2(P ).
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The proof of this result is done by simply displaying all of these optimal pre-computations.

We remark that these pre-computations can be easily used in the implementation of window

τNAF.

We will list the pre-computations for the cases of 4 ≤ w ≤ 8. The cases of 9 ≤ w ≤ 15

can be found at http://www.cs.uwm.edu/faculty/gxu4uwm/OptPreComp .

By proposition 3.1, we only need to consider the case of a = 0. The case of a = 1 can

be obtained by changing the sign of the coefficient of τ in each Qj from the case of a = 0

(note that the sign of coefficient for τ 2 remains unchanged) .

Table 4: Pre-Computations for 4 ≤ w ≤ 8 and a = 0

w Pre-computation

4 Q3 = −P + τ 2P Q5 = −P − τP Q7 = P − τP
5 Q3 = −P + τ 2P Q5 = −P − τP Q7 = P − τP

Q9 = Q3 − τP Q11 = Q5 − τP Q13 = Q7 − τP
Q15 = −Q11 + τP

6 Q29 = P − τ 2P Q3 = Q29 − τP Q31 = Q3 − τ 2P
Q5 = Q31 − τP Q7 = −Q31 − τP Q9 = −Q29 − τP
Q27 = P + τP Q11 = −Q27 − τP Q25 = −P + τP

Q13 = −Q25 − τP Q15 = −Q11 + τP Q17 = −Q9 + τP

Q19 = −Q7 + τP Q21 = −Q17 − τP Q23 = −Q3 + τP

7 Q35 = −P + τ 2P Q3 = −Q35 − τP Q33 = −Q3 + τ 2P

Q5 = −Q33 − τP Q31 = −Q5 + τ 2P Q7 = −Q31 − τP
Q43 = Q5 − τP Q47 = −Q43 + τP Q9 = Q47 + τP

Q41 = Q3 − τP Q49 = −Q41 + τP Q11 = Q49 + τP

Q39 = P − τP Q51 = −Q39 + τP Q13 = Q51 + τP

Q37 = −P − τP Q53 = −Q37 + τP Q15 = Q53 + τP

Q55 = −Q35 + τP Q17 = Q55 + τP Q57 = −Q33 + τP

Q19 = Q57 + τP Q21 = −Q17 − τP Q23 = −Q15 − τP
Q25 = −Q13 − τP Q27 = −Q11 − τP Q61 = Q23 − τP
Q29 = −Q61 + τP Q45 = Q7 − τP Q59 = −Q31 + τP

Q63 = Q25 − τP
8 Q93 = P − τ 2P Q3 = Q93 − τP Q95 = Q3 − τ 2P

Q5 = Q95 − τP Q97 = Q5 − τ 2P Q7 = Q97 − τP
Q85 = −Q5 + τP Q81 = −Q85 − τP Q9 = −Q81 + τP

Q87 = −Q3 + τP Q79 = −Q87 − τP Q11 = −Q79 + τP

Continued on next page
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Table 4 – Continued from previous page

w Pre-computation

Q89 = −P + τP Q77 = −Q89 − τP Q13 = −Q77 + τP

Q91 = P + τP Q75 = −Q91 − τP Q15 = −Q75 + τP

Q73 = −Q93 − τP Q17 = −Q73 + τP Q71 = −Q95 − τP
Q19 = −Q71 + τP Q69 = −Q97 − τP Q21 = −Q69 + τP

Q99 = Q7 − τ 2P Q67 = −Q99 − τP Q23 = −Q67 + τP

Q101 = Q11 + τP Q65 = −Q101 − τP Q25 = −Q65 + τP

Q103 = Q13 + τP Q63 = −Q101 − τP Q27 = −Q63 + τP

Q105 = Q15 + τP Q61 = −Q105 − τP Q29 = −Q61 + τP

Q107 = Q17 + τP Q59 = −Q107 − τP Q31 = −Q59 + τP

Q109 = Q19 + τP Q57 = −Q109 − τP Q33 = −Q57 + τP

Q111 = Q21 + τP Q55 = −Q111 − τP Q35 = −Q55 + τP

Q113 = Q23 + τP Q53 = −Q113 − τP Q37 = −Q53 + τP

Q115 = Q23 − τ 2P Q51 = −Q115 − τP Q39 = −Q51 + τP

Q125 = Q35 + τP Q41 = −Q125 − τP Q123 = Q33 + τP

Q43 = −Q123 − τP Q121 = Q31 + τP Q45 = −Q121 − τP
Q119 = Q29 + τP Q47 = −Q119 − τP Q117 = Q27 + τP

Q49 = −Q117 − τP Q83 = −Q7 + τP Q127 = Q37 + τP

Finally, we list an optimal pre-computation for w = 6, a = 1 based on proposition 3.1.

Table 5: Pre-Computations for w = 6 and a = 1

w Pre-computation

6 Q29 = P − τ 2P Q3 = Q29 + τP Q31 = Q3 − τ 2P
Q5 = Q31 + τP Q7 = −Q31 + τP Q9 = −Q29 + τP

Q27 = P − τP Q11 = −Q27 + τP Q25 = −P − τP
Q13 = −Q25 + τP Q15 = −Q11 − τP Q17 = −Q9 − τP
Q19 = −Q7 − τP Q21 = −Q17 + τP Q23 = −Q3 − τP

We would like to conclude this section by the following remark.

Remark 3.1 We remark that in some situations, only one evaluation of τ is needed in an

optimal pre-computation. Suppose we are choosing the point P = (xP , yP ) on the elliptic

curve E1/F2m, then in the process of generation or validation, the equation y2P + xPyP =

x3P + x2P + 1 needs to be involved, so we can save x2P and y2P for later use in the stage
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of pre-computation. In this case, as τ(P ) = (X2
P , y

2
P ) is already available, an optimal

pre-computation only requires one evaluation of τ , i.e., τ 2P = τ(τ(P )).

4 Conclusion

Koblitz curves are a family of curves with complex multiplication. The complex multiplica-

tion fields for curves E1 : y2+xy = x3+x2+1/F2m and their “twist” E0 : y2+xy = x3+1/F2m

is Q(
√
−7). The window τNAF algorithm of Solinas is a successful example of exploring

the rich mathematical content to design an extremely efficient point multiplication method.

This paper presents a systematic study of the pre-computation schemes for τNAF. We de-

fine an optimal pre-computation to be a scheme that allows 2w−2 − 1 point additions and

two evaluations of τ , for any given window width w ≥ 4 (the case of w = 3 is simple

and only one evaluation of τ is needed). This is a mathematically natural setup in that

once an optimal pre-computation for Ea is produced, an optimal pre-computation for its

twist E1−a can be obtained without any nontrivial computation. We have constructed op-

timal pre-computations of w from 4 to 15. These pre-computations can be incorporated

into implementations of window τNAF. The ideas in the paper can be used to construct

other suitable pre-computations. In this paper, we also give a criterion for the divisibility

by powers of τ in terms of 2-adic approximation. This is useful in our discussion of the

coefficient sets of window τNAF and optimal pre-computation, it might also be of some

independent interest.
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