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Abstract

Graded multilinear encodings have found extensive applications in cryptography ranging
from non-interactive key exchange protocols, to broadcast and attribute-based encryption, and
even to software obfuscation. Despite seemingly unlimited applicability, essentially only two
candidate constructions are known (GGH and CLT). In this work, we describe a new graph-
induced multilinear encoding scheme from lattices. In a graph-induced multilinear encoding
scheme the arithmetic operations that are allowed are restricted through an explicitly defined
directed graph (somewhat similar to the “asymmetric variant” of previous schemes). Our
construction encodes Learning With Errors (LWE) samples in short square matrices of higher
dimensions. Addition and multiplication of the encodings corresponds naturally to addition and
multiplication of the LWE secrets.
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1 Introduction

Cryptographic multilinear maps are an amazingly powerful tool: like homomorphic encryption
schemes, they let us encode data in a manner that simultaneously hides it and permits processing
on it. But they go even further and let us recover some limited information (such as equality)
on the processed data without needing any secret key. Even in their simple bi-linear form
(that only supports quadratic processing) they already give us pairing-based cryptography
[Jou04, SOK00, BF03], enabling powerful applications such as identity- and attribute-based
encryption [BF01, Wat05, GPSW06], broadcast encryption [BGW05] and many others. In
their general form, cryptographic multilinear maps are so useful that we had a body of work
examining their applications even before we knew of any candidate constructions to realize them
[BS03, RS09, PTT10, Rot13].

Formally, a non-degenerate map between order-q algebraic groups, e : Gd → GT , is
d−multilinear if for all a1, . . . , ad ∈ Zq and g ∈ G,

e(ga1 , . . . , gad) = e(g, . . . , g)a1·...·ad .

We say that the map e is “cryptographic” if we can evaluate it efficiently and at least the discrete-
logarithm in the groups G,GT is hard.

In a recent breakthrough, Garg, Gentry and Halevi [GGH13b] gave the first candidate
construction of multilinear maps from ideal lattices, followed by a second construction by Coron,
Lepoint and Tibouchi [CLT13] over the integers. (Some optimizations to the GGH scheme were
proposed in [LSS14]). Due to certain differences between their construction and “ideal” multilinear
maps, Garg et al. (and Coron et al.) called their constructions “graded encoding schemes.” These
graded encoding schemes realize an approximate version of multilinear maps with no explicit
algebraic groups, where the transformation a 7→ ga is replaced by some (randomized) encoding
function.

Moreover, these constructions are “graded”, in the sense that they allow intermediate
computation. One way to think of these intermediate computations is as a sequence of levels
(or groups) G1, . . . , Gd and a set of maps eij such that for all gai ∈ Gi, gbj ∈ Gj (satisfying i+j ≤ d),

eij(g
a
i , g

b
j) = gabi+j . Asymmetric variant of graded multilinear maps provides additional structure on

how these encodings can be combined. Each encoding is assigned with a set of levels S ⊆ [N ].
Given two encodings gaS , g

b
S′ the map allows to compute gabS∪S′ only if S ∩ S′ = ∅.

Both [GGH13b] and [CLT13] constructions begin from some variant of homomorphic encryption
and use public-key encryption as the encoding method. The main new ingredient, however, is that
they also publish a defective version of the secret key, which cannot be used for decryption but
can be used to test if a ciphertext encrypts a zero. (This defective key is called the “zero-test
parameter”.) Over the last two years, the applications of (graded) multilinear maps have expanded
much further, supporting applications such as witness encryption, general-purpose obfuscation,
functional encryption, and many more [GGSW13, GGH+13c, GGH+13a, BGG+14, BZ14].

1.1 Our Results

We present a new “graph-induced” variant of multilinear maps. In this variant, the multilinear map
is defined with respect to a directed acyclic graph. Namely, encoded value are associated with paths
in the graph, and it is only possible to add encoding relative to the same paths, or to multiply
encodings relative to “connected paths” (i.e., one ends where the other begins) Our candidate
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construction of graph-induced multilinear maps does not rely on ideal lattices or hard-to-factor
integers. Rather, we use standard random lattices such as those used in LWE-based cryptography.
We follow a similar outline to the previous constructions, except our instance generation algorithm
takes as input a description of a graph. Furthermore, our zero-tester does not include any secrets
about the relevant lattices. Rather, in our case the zero-tester is just a random matrix, similar to
a public key in common LWE-based cryptosystems.

Giving up the algebraic structure of ideal lattices and integers could contribute to a better
understanding of the candidate itself, reducing the risk of unforeseen algebraic crypt-analytical
attacks. On the flip side, using our construction is sometimes harder than previous construction,
exactly because we give up some algebraic structure. For that same reason, we were not able so far
to reduce any of our new construction to “nice” hardness assumptions, currently they are all just
candidate constructions, that withstood our repeated cryptanalytic attempts at breaking them.
Still we believe that our new construction is a well needed addition to our cryptographic toolbox,
providing yet another avenue for implementing multilinear maps.

1.1.1 Our Techniques

Our starting point is the new homomorphic encryption (HE) scheme of Gentry, Sahai and Waters
[GSW13]. The secret key in that scheme is a vector a ∈ Zmq , and a ciphertext encrypting µ ∈ Zq is
a matrix C ∈ Zm×mq with small entries such that C · a = µ · a + e for some small error vector e. In
other words, valid ciphertexts all have the secret key a as an “approximate eigenvector”, and the
eigenvalue is the message. Given the secret eigenvector a, decoding arbitrary µ’s becomes easy.

This HE scheme supports addition and multiplication, but we also need a public equivalent
of the approximate eigenvector for zero-testing. The key idea is to replace the “approximate
eigenvector” with an “approximate eigenspace” by increasing the dimensions. Instead of having a
single approximate eigenvectors, our “approximate eigenspace” is described by n vectors A ∈ Zm×nq .
The approximate eigenvalues will not merely be elements of Zq, but rather matrices S ∈ Zn×nq with
small entries. An encoding of S is a matrix C ∈ Zm×m with small entries such that

C ·A = A · S + E

for small noise matrix E ∈ Zm×nq . In other words, C is a matrix that maps any column vector in A
to a vector that is very close to the span of A. In that sense, A is an approximate eigenspace. In
the HE scheme, a was a secret key that allowed us to easily recover µ. However, for the eigenspace
setting, assuming A is just a uniformly random matrix and S is a random small matrix, A · S + E
is an LWE instance that looks uniform even when given A.

Overview of Our Construction. Our construction is parametrized by a directed acyclic graph
G = (V,E). For each node v ∈ V , we assign a random matrix Av ∈ Zm×nq . Any path u ; v
(which can be a single edge) can be assigned with an encoding D ∈ Zm×mq of some plaintext secret
S ∈ Zn×nq satisfying

D ·Au = Av · S + E (1)

for some small error E ∈ (χ)m×n.
Adding and multiplying encodings corresponds to addition and multiplication of matrices.

Addition of encodings can only be performed relative to the same path u ; v. For example,
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given encodings D1,D2 at path u; v, we have that:

(D1 + D2) ·Au ≈ Av · S1 + Av · S2 = Av · (S1 + S2).

Multiplication of encodings can only be performed when they form a complete path. That is, given
encodings D1 and D2 relative to paths u; v and v ; w respectively, we have:

D2 ·D1 ·Au = D2 · (Av · S1 + E1)

= (Aw · S2 + E2) · S1 + D2 ·E1 = Aw · S2 · S1 + E2 · S1 + D2 ·E1︸ ︷︷ ︸
E′

(2)

where E′ is small since the errors and matrices S1,D2 have small entries. Furthermore, it is possible
to compare two encodings with the same sink node. That is, given D1 and D2 relative to paths
u ; v and w ; v, it is sufficient to check if D1 ·Au −D2 ·Aw is small since if S1 = S2, then we
have

D1 ·Au −D2 ·Aw = (Av · S1 + E1)− (Av · S2 + E2) = E1 −E2 (3)

Hence, the random matrices Au,Aw ∈ Zq, which are commonly available in the public parameters,
is sufficient for comparison and zero-testing.

As we explain in Section 3, generating the encoding matrices requires knowing a trapdoor for
the matrices Ai. But for the public-sampling setting, it is possible to generate encodings of many
random matrices during setup, and later anyone can take a random linear combinations of them to
get “fresh” random encodings.

We remark that since S needs to be small in Eqn. (2), our scheme only supports encoding
of small plaintext elements, as opposed to arbitrary plaintext elements as in previous schemes.1

Another difference is that in the basic construction our plaintext space is a non-commutative ring
(i.e. square matrices). We extend to the commutative setting in Section 3.2.

Variations and parameters. We also describe some variations of the basic scheme above,
aimed at improving the parameters or offering different trade-offs. One standard way of improving
parameters is to switch to a ring-LWE setting, where scalars are taken from a large polynomial
ring (rather than being just integers), and the dimension of vectors and matrices is reduced
proportionally. In our context, we can also use the same approach to move to a commutative
plaintext space, see Section 3.2.

1.2 Applications

Our new constructions support many of the known cryptographic uses of graded encoding. Here
we briefly sketch two of them.

1The only exception is that the leftmost plaintext matrix S in a product could encode a large element, as Eqn. (2)
is not affected by the size of S1. Similarly the rightmost encoding matrix D in a product need not be small. We do
not use these exceptions in the current paper, however.
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Non-interactive Multipartite Key-Exchange. Consider k-partite key-exchange. We design
a graph in a star topology with k-branches each of length k − 1 nodes. All branches meet at
the common sink node A0. For each branch i, we associate encodings of small LWE secrets
t1, . . . , . . . , tk in a specific order. The public parameters consists of many such plaintext values tis
and their associated encodings. Each player j takes a random linear combination of these encodings.
It stores one of the encodings along the path as the secret key and broadcasts the rest of to other
players. Assume some canonical ordering of the players. Each player computes the k−1 product of
the other players’ encodings along the path with index j and its own secret encoding. This yields
an encoding D of T∗ =

∏
i∈[k] si, satisfying

D ·Aj,1 = A0 ·
∏
i∈[k]

si + noise

And the players obtain the shared secret key by applying a randomness extractor on the most
significant bits.

Branching-program obfuscation. Perhaps the “poster application” of cryptographic graded
encodings is to obtain general-purpose obfuscation [GGH+13c, BR14a, BGK+14, PST14, GLSW14],
with the crucial step being the use of graded encoding to obfuscate branching programs. These
branching programs are represented as a sequence of pairs of encoded matrices, and the user just
picks one matrix from each pair and then multiply them all in order.

This usage pattern of graded encoding fits very well into our graph-induced scheme since these
matrices are given in a pre-arranged order. We describe a candidate obfuscation construction from
our multilinear map based on a path graph. Informally, to obfuscate a length-L matrix branching
program {Bi,b}, we first perform Kilian’s randomization and then encode values R−1

i−1Bi,0Ri and

R−1
i−1Bi,1Ri relative to the edge i. The user can then compute an encoding of a product of matrices

corresponding to its input. If the product
∏
i∈[L] Bi,xvari = I, then the user obtains an encoding D

satisfying:
D ·A0 = AL · I + noise

Given AL ·I+noise′ in the public parameters (or its encoding), the user can then learn the result of
the computation by a simple comparison. We note that our actual candidate construction is more
involved as we deploy additional safeguards from the literature (See Section 5.2).

1.3 Organization

In Section 2, we provide some background and present the syntax of graph-induced multilinear
maps. In Section 3, we describe our basic construction in the non-commutative variant. In
Subsection 3.2 we show how to extend our basic construction to commutative variant. In Section 4,
we analyze the security of our construction. In Section 5 we present applications of our construction
to key-exchange and obfuscation.

Acknowledgments. We thank Zvika Brakerski for pointing out to us vulnerabilities in earlier
versions of this work. We also thank Vinod Vaikuntanathan for insightful discussions.
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2 Preliminaries

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q and we represent
Zq as integers in (−q/2, q/2]. We let Zn×mq denote the set of n ×m matrices with entries in Zq.
We use bold capital letters (e.g. A) to denote matrices, bold lowercase letters (e.g. x) to denote
vectors.

If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1|A2] denotes the n× (m+m′)
matrix formed by concatenating A1 and A2. Similarly, if A1,A2 have dimensions n ×m and A2

is an n′ ×m, respectively, then we denote by (A1/A2) the (n+ n′)×m matrix formed by putting
A1 on top of A2. Similar notations apply to vectors. When doing matrix-vector multiplication we
usually view vectors as column vectors.

A function f(n) is negligible if it is o(n−c) for all c > 0, and we use negl(n) to denote a negligible
function of n. We say that f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n) to
denote a polynomial function of n. An event occurs with overwhelming probability if its probability
is 1−negl(n). The notation bxe denotes the nearest integer to x, rounding toward 0 for half-integers.

The `∞ norm of a vector is denoted by ‖x‖ = maxi |xi|. We identify polynomials with their
representation in some standard basis (e.g., the standard coefficient representation), and the norm
of a polynomial is the norm of the representation vector. The norm of a matrix, ‖A‖, is the norm
of its largest column.

Extractors. An efficient (n,m, `, ε)-strong extractor is a poly-time algorithm Extract : {0, 1}n →
{0, 1}` such that for any random variable W over {0, 1}n with min-entropy m, it holds that the
statistical distance between (Extractα(W ), α) and (U`, α) is at most ε. Here, α denotes the random
bits used by the extractor. Universal hash functions [CW79, WC81] can extract ` = m−2 log 1

ε + 2
nearly random bits, as given by the leftover hash lemma [HILL99]. This will be sufficient for our
applications.

2.1 Lattice Preliminaries

2.1.1 Gaussian Distributions

For a real parameter σ > 0, define the spherical Gaussian function on Rn with parameter σ
as ρσ(x) = exp(−π||x||n/σ2) for all x ∈ Rn. This generalizes to ellipsoid Gaussians, where we
replace the parameter σ ∈ R by the (square root of the) covariance matrix Σ ∈ Rn×n: For a
rank-n matrix S ∈ Rm×n, the ellipsoid Gaussian function on Rn with parameter S is defined by
ρS(x) = exp(−πxT (STS)−1x) for all x ∈ Rn. The ellipsoid discrete Gaussian distribution with
parameter S over a set L ⊂ Rn is DL,S(x) = ρS(x)/ρS(L), where ρS(L) denotes

∑
x∈L ρS(x) and

serves as just a normalization factor. The same notations also apply the to spherical case, DL,σ(·),
and in particular DZn,r denotes the n-dimensional discrete Gaussian distribution.

It follows from [MR07] that when L is a lattice and σ is large enough relative to its “smoothing
parameter” (alternatively its λn or the Gram-Schmidt norm of one of its bases), then for every
point c ∈ Rn we have

Pr
[
‖x− c‖ > σ

√
n : x

R← DL,σ,c

]
≤ negl(n).

Also under the same conditions, the probability for a random sample from DZm,σ to be 0 is
negligible.
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2.1.2 Trapdoors for Lattices

Lemma 2.1 (Lattice Trapdoors [Ajt99, GPV08, MP12]). There is an efficient randomized
algorithm TrapSamp(1n, 1m, q) that, given any integers n ≥ 1, q ≥ 2, and sufficiently large
m = Ω(n log q), outputs a parity check matrix A ∈ Zm×nq and some ‘trapdoor information’ τ that
enables sampling small solutions to rA = u (mod q).

Specifically, there is an efficient randomize algorithm PreSample such that for large enough
s = Ω(

√
n log q) and with overwhelming probability over (A, τ)← TrapSamp(1n, 1m, q), the following

two distributions are within negl(n) statistical distance:

• D1[A, τ ] chooses a uniform u ∈ Znq and uses τ to solve for rA = u (mod q),

D1[A, τ ]
def
=

{
(u, r) : u← Znq ; r← PreSample(A, τ,u, s)

}
.

• D2[A] chooses a Gaussian r← DZm,s and sets u := rA mod q,

D2[A]
def
= {(u, r) : r← DZm,s; u := rA mod q} .

We can extend PreSample from vectors to matrices by running it k times on k different vectors
u and concatenating the results, hence we write R← PreSample(A, τ,U, s).

We also note that any small-enough full rank matrix T (over the integers) such that TA = 0
(mod q) can be used as the trapdoor τ above. This is relevant to our scheme because in many cases
an “encoding of zero” can be turned into such a trapdoor (see Section 4).

2.1.3 Leftover Hash Lemma Over Gaussians

Recent works [AGHS13, AR13] considered the setting where the columns of a matrix X ∈ Zt×k are
drawn independently from a “wide enough” Gaussian distribution over a lattice L ⊂ Zt, xi ← DL,S .
Once these columns are fixed, we consider the distribution DX,σ, induced by choosing an integer
vector r from a discrete spherical Gaussian over Zt with parameter σ and outputting y = XT r,
DX,σ := {XT r : r ← DZt,σ}. It turns out that with high probability over the choice of X,
the distribution DX,σ is statistically close to ellipsoid Gaussian DL,σX (and moreover the singular
values of X are of size roughly σ

√
t).

Theorem 2.2 ([AGHS13, AR13]). For integers k ≥ 1, t = poly(k), σ = Ω(
√

log(k/ε)) and σ′ =

Ω̃(kσ
√

log(1/ε)), we have that with probability 1 − 2−k over the choice X ← (DZk,σ)t that the
statistical distance between DX,σ′ and DZk,σ′XT is smaller than ε.

2.2 Graded Multilinear Encodings

The notion of graded encoding scheme that we relaize is similar (but not exactly identical) to the
GGH notion from [GGH13b]. Very roughly, a graded encoding scheme for an algebraic “plaintext
ring R” provides methods for encoding ring elements and manipulating these encodings. Namely
we can sample random plaintext elements together with their encoding, can add and multiply
encoded elements, can test if a given encoding encodes zero, and can also extract a “canonical
representation” of a plaintext element from an encoding of that element.
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2.2.1 Syntax of Graph-Induced Graded Encoding Schemes

There are several variations of graded-encoding systems in the literature, such as public/secret
encoding, with/without re-randomization, symmetric/asymmetric, etc. Below we define the syntax
for our scheme, which is still somewhat different than all of the above. The main differences are that
our encodings are defined relative to edges of a directed graph (as opposed to levels/sets/vectors as
in previous schemes), and that we only encode “small elements” from the plaintext space. Below
we provide the relevant definitions, modifying the ones from [GGH13b].

Definition 2.1 (Graph-Induced Encoding Scheme). A graph-based graded encoding scheme with se-
cret sampling consists of the following (polynomial-time) procedures, Ges = (PrmGen, InstGen,Sample,
Enc, add, neg,mult,ZeroTest,Extract):

• PrmGen(1λ, G, C): The parameter-generation procedure takes the security parameter λ, under-
lying directed graph G = (V,E), and the class C of supported circuits. It outputs some global
parameters of the system gp, which includes in particular the graph G, a specification of the
plaintext ring R and also a distribution χ over R.

For example, in our case the global parameters consists of the dimension n of matrices, the
modulus q and the Gaussian parameter σ.

• InstGen(gp): The randomized instance-generation procedure takes the global parameters gp, and
outputs the public and secret parameters sp, pp.

• Sample(pp): The sampling procedure samples an element in the the plaintext space, according
to the distribution χ.

• Enc(sp, p, α): The encoding procedure takes the secret parameters pp, a path p = u ; v in the
graph, and an element α ∈ R from the support of the Sample procedure, and outputs an encoding
up of α relative to p. 2

• neg(pp, u), add(pp, u, u′), mult(pp, u, u′). The arithmetic procedures are deterministic, and they
all take as input the public parameters and use them to manipulate encodings.

Negation takes an encoding of α ∈ R relative to some path p = u ; v and outputs encoding of
−α relative to the same path. Addition takes u, u′ that encode α, α′ ∈ R relative to the same
path p, and outputs an encoding of α + α relative to p. Multiplication takes u, u′ that encode
α, α′ ∈ R relative to consecutive paths p = u ; v and p′ = v ; w, respectively. It outputs an
encoding of α · α′ relative to the combined path u; w.

• ZeroTest(pp, u): Zero testing is a deterministic procedure that takes the public parameters pp
and an encoding u that is tagged by its path p. It outputs 1 if u is an encoding of zero and 0 if
it is an of a non-zero element.

• Extract(pp, u): The extraction procedure takes as input the public parameters pp and an encoding
u that is tagged by its path p. It outputs a λ-bit string that serves as a “random canonical
representation” of the underlying plaintext element α (see below).

2See the description below for the meaning of “up is an encoding of α relative to p”, formally up is just a bit
string, which is tagged with its path p.
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2.2.2 Correctness

The graph G, in conjunction with the procedures for sampling, encoding, and arithmetic operations,
and the class of supported circuits, implicitly define the set SG of “valid encodings” and its partition

into sets S
(α)
G of “valid encoding of α”.

Namely, we consider arithmetic circuits whose wires are labeled by paths in G in a way that
respects the permitted operations of the scheme (i.e., negation and addition have all the same labels,
and multiplication has consecutive input paths and the output is labeled by their concatenation).
Then SG consists of all the encoding that can be generated by using the sampling/encoding
procedures to sample plaintext elements and compute their encoding, then compute the operations
of the scheme according to Π, and collect the encoding at the output of Π. An encoding u ∈ SG
belongs to S

(α)
G is there exists such circuit Π and inputs for which Π outputs α when evaluated on

plaintext elements. Of course, to be useful we require that the sets S
(α)
G form a partition of SG.

We can also sub-divide each S
(α)
G into S

(α)
p for different paths p in the graph, depending on the

label of the output wire of Π (but here it is not important that these sets are disjoint), and define

Sp =
⋃
α∈R S

(α)
p .

Note that the sets S
(α)
p can be empty, for example in our construction the sampling procedure

only outputs “small” plaintext values α, so a “large” β would have S
(β)
p = ∅. Below we denote the

set of α’s with non-empty encoding sets (relative to path p) by SMALLp
def
= {α ∈ R : S

(α)
p 6= ∅},

and similarly SMALLG
def
= {α ∈ R : S

(α)
G 6= ∅}.

We assume for simplicity that the sets SMALL depend only on the global parameters gp and not
the specific parameters sp, pp. (This assumption holds for our construction and it simplifies the
syntax below.)

We can now state the correctness conditions for zero-testing and extraction. For zero-testing
we require that ZeroTest(pp, u) = 1 for every u ∈ S(0) (with probability one), and for every
α ∈ SMALLG, α 6= 0 it holds with overwhelming probability over instance-generation that

ZeroTest(pp, u) = 0 for every encoding u ∈ S(α)
G .

For extraction,we roughly require that Extract outputs the same string on all the encodings
of the same α, different strings on encodings of different α’s, and random strings on encodings of
“random α’s.” Formally, we require the following for any global parameters gp output by PrmGen:

• For any plaintext element α ∈ SMALLG and path p in G, with overwhelming probability
over the parameters (sp, pp) ← InstGen(gp), there exists a single value x ∈ {0, 1}λ such that

Extract(pp, u) = x holds for all u ∈ S(α)
p .

• For any α 6= α′ ∈ SMALLG and path p in G, it holds with overwhelming probability over

the parameters (sp, pp) ← InstGen(gp) that for any u ∈ S(α)
p and u′ ∈ S(α′)

p , Extract(pp, u) 6=
Extract(pp, u′).

• For any path p in G and distribution D over SMALLp with min-entropy 3λ or more, it holds
with overwhelming probability over the parameters (sp, pp) ← InstGen(gp) that the induced

distribution {Extract(pp, u) : α← D, u ∈ S(α)
d } is nearly uniform over {0, 1}λ.

In some applications these conditions can be weakened. For example we often only need them to
hold for some paths in G rather than all of them (e.g., we only care about source-to-sink paths).
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2.2.3 Variations

Public sampling of encoded elements. One useful variation allows a public sampling
procedure that takes as input pp rather than sp and outputs both a plaintext α and its encoding
up relative to some path p. In many cases it is easy to go from secret-encoding to public sampling.
Specifically, given a scheme that supports secret encoding we can augment the instance-generation
procedure by sampling many tuples (αi, ui) relative to relevant paths (e.g., the edges in G) and
adding them to the public parameters. Then a public sampling procedure can just use a subset
sum of these tuples as a new sample, which would have some other distribution χ′.

If the distribution χ of the secret sampling procedure was uniform over R, then by the leftover
hash lemma so is the distribution χ′ of the public sampling procedure. Similarly, if χ was a Gaussian
then using the Gaussian leftover-lemma Theorem 2.2 also χ′ is a Gaussian (with somewhat different
parameters).

In our construction we have a Gaussian distribution χ, so we can use this method to transform
our scheme to one with a public sampling procedure.

Re-randomization. In some cases one may want to re-randomize a given encoding with changing
the encoded value or the path in G, or to compute given a plaintext element the corresponding
encoding relative to come path. Our construction does not support re-randomization (see
Section 4).

3 Our Graph-Induced Multilinear Maps

The plaintext space in our basic scheme is the non-commutative ring of matrices R = Zn×nq , later
in Section 3.2 we describe a commutative variant. In this section we only deal with correctness of
these schemes, their security is discussed in Section 4.

As sketched in the introduction, for the basic scheme we have an underlying directed acyclic
graph G = (V,E), we identify a random matrix Av ∈ Zm×nq with each node v ∈ V , and
encodings in the scheme are defined relative to paths. A small plaintext matrix S ∈ R is encoded
wrt to the path u ; v via another small matrix D ∈ Zm×mq such that D · Au ≈ Av · S.
In more detail, we have the following graded encoding scheme Ges = (PrmGen, InstGen,Sample,
Enc, add, neg,mult,ZeroTest,Extract):

• PrmGen(1λ, G, C): On input the security parameter λ, an underlying DAG G = (V,E), and
class C of supported circuits, we compute:

1. LWE parameters n,m, q and error distribution χ = DZ,s.

2. A Gaussian parameters σ for PreSample.

3. Another parameter t for the number of most significant bits used for zero-test and extraction.

The constraints that dictate these parameters are described in Appendix A. The resulting
parameters for a DAG of diameter d are n = Θ(dλ log(dλ)), q = (dλ)Θ(d), m = Θ(nd log q),
s =
√
n, σ =

√
n(d+ 1) log q, and t = b(log q)/4c − 1. These global parameters gp (including

the graph G) are given to all the procedures below.

• InstGen(gp): Given the global parameters, instance-generation proceeds as follows:

9



1. Use trapdoor-sampling to generate |V | matrices with trapdoors, one for each node.

∀v ∈ V,
(
Av, τv

)
← TrapSamp(1n, 1m, q)

2. Choose the randomness-extractor seed β from a pairwise-independent function family, and
a uniform “shift matrix” ∆ ∈ Zm×nq .

The public parameters are pp :=
(
{Av : v ∈ V }, β,∆

)
and the secret parameters include also

the trapdoors {τv : v ∈ V }.

• Sample(pp): This procedure just samples an LWE secret S← (χ)n×n as the plaintext.

• Enc(sp, p,S): On input the matrices Au,Av, the trapdoor τu, and the small matrix S, sample
an LWE error matrix Ei ← (χ)m×n, set V = Av ·S + E ∈ Zm×nq , and then use the trapdoor τu
to compute the encoding Dp s.t. Dp ·Au = V, Dp ← PreSample(Au, τu,V, σ). The output is
the plaintext S and encoding Dp.

• The arithmetic operations are just matrix operations in Zm×mq :

neg(pp,D) := −D, add(pp,D,D′) := D + D′, and mult(pp,D,D′) := D ·D′.

To see that negation and addition maintain the right structure, let D,D′ ∈ Zm×mq be two
encodings reltive to the same path u; v. Namely D·Au = Av ·S+E and D′ ·Au = Av ·S′+E′,
with the matrices D,D′,E,E′,S,S′ all small. Then we have

−D ·Au = Av · (−S) + (−E),

and (D + D′) ·Au = (Av · S + E) + (Av · S′ + E′) = Av · (S + S′) + (E + E′),

and all the matrices −D,−S,−E, D + D′, S + S′, E + E′ are still small. For multiplication,
consider encodings D,D′ relative to paths v ; w and u; v, respectively, then we have

(D ·D′) ·Au = D ·
(
Av · S′ + E′

)
=

(
Aw · S + E

)
· S′ + D ·E′ = Aw · (S · S′) + (E · S′ + D ·E′)︸ ︷︷ ︸

E′′

,

and the matrices D ·D′, S · S′, and E′′ are still small.

Of course, the matrices D,S,E all grow with arithmetic operations, but our parameter-choice
enures that for any encoding relative to any path in the graph u ; v (of length ≤ d) we have
D ·Au = Av · S + E where E is still small, specifically ‖E‖ < q3/4 ≤ q/2t+1.

• ZeroTest(pp,D). Given an encoding D relative to path u; v and the matrix Au, our zero-test
procedure outputs 1 if and only if ‖D ·Au‖ < q/2t+1.

• Extract(pp,D): Given an encoding D relative to path u ; v, the matrix Au and shift-matrix
∆, and the extrator seed β, we compute D ·A0 +∆, collect the t most-significant bits from each
entry (when mapped to the interval [0, q− 1]), and apply the randomness extractor, outputting

w := RandExtβ
(
msbt(D ·Au + ∆)

)
10



3.1 Correctness

Correctness of the scheme follows from our invariant, which says that encoding of some plaintext
matrix S relative to any path u; v of legnth ≤ d satisfies D ·Au = Av · S + E for ‖E‖ < q/2t+1.

Correctness of Zero-Test. An encoding of zero satisfies D ·Au = E, hence ‖D ·Au‖ < q/2t+1.
On the other hand, since Av is uniform then for any nonzero S we only get ‖Av · S‖ ≤ q/2t with
exponentially small probability, and since ‖E‖ < q/2t+1 then

‖D ·Au‖ ≥ ‖Av · S‖ − ‖E‖ > q/2t − q/2t+1 ≥ q/2t+1.

Hence with overwhelming probability over the choise of Av, our zero-test will output 0 on all the
encoding of S.

Correctness of Extraction. We begin by proving that for any plaintext matrix S and any
encoding D of S (relative to u ; v), with overwhelming probability over the parameters we have
that msbt(D ·Au + ∆) = msbt(Av · S + ∆).

Since the two matrices M = Av · S + ∆ and M′ = D ·Au + ∆ differ in each entry by at most
q/2t+1 modulo q, they can only differ in their top t bits due to the mod-q reduction, i.e., if for
some entry we have [M]k,` ≈ 0 but [M′]k,` ≈ q or the other way around. (Recall that here we
reduce mod-q into the interval [0, q − 1].) Clearly, this only happens when M ≈M′ ≈ 0 (mod q),
in particular we need

− < q/2t+1 < [AvS + ∆]k,` < q/2t+1.

For any S and Av, the last condition occurs only with exponentially small probability over the
choise of ∆. We conclude that if all the entries of |Av · S + ∆| are larger than q/2t+1 (modulo q),
which happens with overwhelming probability, then for all level-i encodings D of S, the top t bits
of D ·Au agree with the top t bits of Av · S. We call a plaintext matrix S “v-good” if the above
happens, and denote their set by GOODv. With this notation, the arguments above say that for
any fixed S, v, we have S ∈ GOODv with overwhelming probability over the instance-generation
randomness.

Same input implies same extracted value. For any plaintext matrix S ∈ GOODv, clearly all
its encodings relative to u ; v agree on the top t bits of D · Au (since they all agree with
Av · S). Hence they all have the same extracted value.

Different inputs imply different extracted values. If D,D′ encode different plaintext matri-
ces then D−D′ is an encoding of non-zero, hence ‖(D−D′) ·Au‖ � q/2t except with negligible
probability, D ·Au + ∆ and D′ ·Au + ∆ must differ somewhere in their top t bits. Since we
use universal hashing for our randomness extractor, then with high probability (over the hash
function β) we get RandExtβ

(
msbt(D ·Au + ∆)

)
6= RandExtβ

(
msbt(D

′ ·Au + ∆)
)
.

Random input implies random extracted value. Fix some high-entropy distribution D over
inputs S. Since for every S we have Pr[S ∈ GOODv] = 1− negl(λ) then also with overwheling
probability over the parameters we have PrS←D[S ∈ GOODv] = 1 − negl(λ). It is therefore
enough to show that RandExtβ(msbt(Av · S + ∆)) is nearly uniform on S← D.
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We observe that the function H(S) = Av ·S + ∆ is itself pairwise independent on each column
of the output separately, and therefore so is the function H ′(S) = msbt(H(S)). 3 We note that
H ′ has very low collision probability, its range has many more than 6λ bits in every column, so
for every S 6= S′ we get PrH′ [H

′(S) = H ′(S′)] � 2−6λ. Therefore H ′ is a good condenser, i.e.,
if the min-entropy of D is above 3λ, then with overwhelming probability over the choise of H,
the min-entropy of H ′(D) is above 3λ− 1 (say). By the extraction properties of RandExt, this
implies that RandExtβ(H ′(D)) is close to uniform (whp over β).

3.2 A Commutative Variant

In some applications it may be convenient or even necessary to work with a commutative plaintext
space. Of course, simply switching to a commutative sub-ring of the ring of matrices (such as s · I
for a scalar s and the identity I) would be insecure, but we can make it work by moving to a larger
ring.

Cyclotomic rings. We switch from working over the ring of integers to working over polynomial
rings, R = Z[x]/(F (X)) and Rq = R/qR for some degree n irreducible integer polynomial F (X) ∈
Z[X] and an integer q ∈ Z. Elements of this ring correspond to degree-(n − 1) polynomials, and
hence they can be represented by n-vectors of integers in some convenient basis. The norm of a ring
element is the norm of its coefficient vector, and this can be extended as usual for norm of vectors
and matrices over R. Addition and multiplication are just polynomial addition and multiplication
modulo F (X) (and also modulo q when talking about Rq).

As usual, we need a ring where the norm of a product is not much larger than the product
of the norms, and this can be achieved for example by using F = ΦM (X), the M ’th cyclotomic
polynomial (of degree n = φ(M)). All the required operations and lemmas that we need (such as
trapdoor and pre-image sampling etc.) can be extended also to this setting, see e.g. [LPR13].

The construction remains nearly identical, except all operations are now performed over the
rings R and Rq and the dimensions are changed to match. We now have the “matrices” Av ∈ Rm×1

q

with only one column (and similarly the error matrices are E ∈ Rm×1
q ), and the plaintext space

is Rq itself. An encoding of plaintext element s ∈ Rq relative to path u ; v is a small matrix
D ∈ Rm×mq such that

D ·Au = Av · s+ E

where E′ is some small error term. As before, we only encode small plaintext elements, i.e., the
sampling procedure draws s from a Gaussian distribution with small parameter. The operations
all remain the same as in the basic scheme.

We emphasize that it is the plaintext space that is commutative, not the space of encoding.
Indeed, if we have D,D′ that encode s, s′ relative to paths v ; w and u; v, respectively, we can
only multiply them in the order D · D′. Multiplying in the other order is inconsistent with the
graph G and hence is unlikely to yield a meaningful result. What makes the symmetric scheme
useful is the ability to multiply the plaintext elements in arbitrary order. For example for D,D′

that encode s, s′ relative to paths u; w and v ; w, we can compute either D ·Au · s′ or D′ ·Av · s
and the results will both be close Av · ss′ (and hence also close to each other).

3If q is not a power of two then H ′ does not produce uniformly random t-bit strings. But still its outputs on any
two S′ 6= S are independent, and each has almost full (min-)entropy, which sufficies for our purposes.
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3.3 Public Sampling and Some Other Variations

As mentioned in Appendix 2.2.1, we can provide a public sampling procedure relative to any desired
path p = u ; v by publishing with the public parameters a collection of pairs generated by the
secret sampling procedure above, {(Sk,Dk) : k = 1, . . . , `} (for some large enough `). The public
sampling procedure then takes a random linear combination of these pairs as a new sample, namely
it chooses r← DZ`,σ′ and compute the encoding pair as:

(S,D) :=

(∑
i∈[`]

riSi ,
∑
i∈[`]

riDi

)
.

It is easy to see that the resulting D encodes S relative to the edge e. Also by Theorem 2.2, the
plaintext matrix S is distributed according to a Gaussian distribution whp.

We note that in most applications it is not necessary to include in the public parameters the
matrices for all the nodes in the graph. Indeed we typically only need the matrices for the source
nodes in the DAG in order to preform zero-testing or extraction.

Some Safeguards. Since our schemes are graph-based, and hence the order of products is known
in advance, we can often provide additional safeguards using Kilian-type randomization [Kil88] “on
the encoding side”. Namely, for each internal node v in the graph we choose a random invertible
m ×m matrix modulo q Rv, and for the sinks and sources we set Rv = I. Then we replace each
encoding C relative to the path u; v by the masked encoding C′ := R−1

v ·C ·Ru.
Clearly, this randomization step does not affect the product on any source-to-sink path in the

graph, but the masked encodings relative to any other path no longer consist of small entries, and
this makes it harder to mount the attacks from Section 4. On the down side, it now takes more
bits to represent these encodings.

Other safeguards of this type includes the observations that encoding matrices relative to paths
that end at a sink node need not have small entries since the size of the last matrix on a path does
not contribute to the size of the final error matrix. Similarly the plaintext elements that re encoded
on paths that begin at source nodes need not be small, for the same reason.

We remark that applying the safeguards from above comes with a price tag: namely the encoding
matrices no longer consist of small entries, hence it takes more bits to represent them.

Finally, we observe that sometimes we do not need to give explicitly the matrices Au

corresponding to source nodes, and can instead “fold them” into the encoding matrices. That
is, instead of providing both A and C such that B = D · A ≈ A′ · S, we can publish only the
matrix B and keep A,D hidden. This essentially amounts to shortening the path by one, starting
it at the matrix B. (Of course, trying to repeat this process and further process the path will lead
to exponential growth in the number of matrices that we need to publish.)

4 Cryptanalysis

Below we describe several attacks and “near attacks” on some variations of our scheme, these
attacks guided our choices in designing these scheme.
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4.1 Encoding of Zero is a Weak Trapdoor

The main observation in this section is that an encoding of zero relative to a path u ; v can
sometimes be used as a weak form of trapdoor for the matrix Au. Recall from [GPV08] that a
full-rank m×m matrix T with small entries satisfying TA = 0 (mod q) can be used as a trapdoor
for the matrix A as per Lemma 2.1. An encoding of zero relative the path u ; v is a matrix C
such that CAu = E (mod q) for a small matrix E. This is not quite a trapdoor, but it appears
close and indeed we show that if can often be used as if it was a real trapdoor.

Let us denote by A′u = (Au/I) the (m+ n)× n matrix whose first m rows are those of Au and
whose last n rows are the n × n identity matrix. Given the matrices Au and C as above, we can
compute the small matrix E = CAu mod q, then set C′ = [C|(−E)] to be the m× (m+ n) matrix
whose first m columns are the columns of C and whose last n columns are the negation of the
columns of E. Clearly C′ is a small matrix satisfying C′A′u = 0 (mod q), but it is not a trapdoor
yet because it has rank m rather than m+ n.

However, assume that we have two encodings of zero, relative to two (possibly different) paths
that begin at the same node u. Then we can apply the procedure above to get two such matrices
C′1 and C′2, and now we have 2m rows that are all orthogonal to A′u mod q, and it is very likely that
we can find m + n among them that are linearly independent. This gives a full working trapdoor
T′u for the matrix A′u, what can we do with this trapdoor?

Assume now that the application gives us, in addition to the zero encodings for path that begin
with u, also an encoding of a plaintext elements S 6= 0 relative to some path that ends at u, say
w ; u. This is a matrix D such that DAw = AuS + E, namely B = DAw mod q is an LWE
instance relative to public matrix Au, secret S, and error term E. Recalling that the plaintext
S in our scheme must be small, it is easy to convert B into an LWE instance relative to matrix
A′u = (Au/I), for which we have a trapdoor: Simply add n zero rows at the bottom, thus getting
B′ = (B/0), and we have B′ = A′uS + E′, with E′ = (E/(−S)) a small matrix.4 Given B′ and A′u,
in conjunction with the trapdoor T′u, we can now recover the plaintext S.

We note that a consequence of this attack is that in our scheme it is unsafe for the application
to allow computation of zero-encoding, except perhaps relative to source-nodes in the graph. As
we show in Section 5, it is possible to design applications that get around this problem.

Extensions. The attacks from above can be extended even to some cases where we are not given
encodings of zero. Suppose that instead we are given pairs {(Ci,C

′
i)}i, where the two encodings

in each pair encode the same plaintext Si relative to two paths with a common end point, u ; v
and u′ ; v. In this case we can use the same techniques to find a “weak trapdoor” for the
concatenated matrix A′ = (Au/Au′) of dimension 2m × n, using the fact that [Ci|(−C′i)] ·A′ =
(AvSi + Ei)− (AvSi + E′i) = Ei −E′i.

If we are also given a pair (D,D′) that encodes the same element S relative to two paths that
end at u, u′, respectively, then we can use these approximate trapdoors to find S, since (D,D′)
(together with the start points of these paths) yield an LWE instance relative to public matrix A′

and the secret S.

Corollary 1: No Re-randomization. A consequence of the attacks above is that in our scheme
we usually cannot provide encoding-of-zero in the public parameters. Hence the re-randomization

4B′ does not have the right distribution for an LWE instance, but using the trapdoor we can solve the worst-case
BDD, not just the average-case LWE, so the attack still stands.
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technique by adding encodings of zero usually cannot be used in our case.

Corollary 2: No Symmetric plaintext/encoding pairs. Another consequence of the attacks
above is that at least in the symmetric case it is not safe to provide many pairs (si, Ci) s.t. Ci
is an encoding of the scalar si along a path u ; v. The reason is that given two such pairs
(s1, C1), (s2, C2) we can compute an encoding of zero along the path u; v as s1C2 − s2C1.

4.2 Recovering Hidden Av’s.

As we noted earlier, in many applications we only need to know the matrices Au for source nodes u
and there is no need to publish the matrices Av for internal nodes. This raises the possibility that
we might get better security by withholding the Av’s of internal nodes.

Trying to investigate this possibility, we show below two “near attacks” for recovering the public
matrices of internal nodes from those of source nodes in the graph. The first attack applies to the
commutative setting, and is able to recover an approximate version of the internal matrices (with
the approximation deteriorating as we move deeper into the graph). The second attack can recover
the internal matrices exactly, but it requires a full trapdoor for the matrices of the source nodes
(and we were not able to extend it to work with the “approximate trapdoors” that one gets from
an encoding of zero).

The conclusion from these “near attacks” is uncertain. Although is still possible that
withholding the internal-node matrices helps security, it seems prudent to examine the security
of candidate applications that use our scheme in a setting where the Av’s are all public.

Recovering the Av’s in the symmetric setting. For this attack we are given a matrix Au,
and many encodings relative to the path u; v, together with the corresponding plaintext elements
(e.g., as needed for the public-encoding variant). Namely, we have Au, small matrices C1, . . . ,Ct

(for t > 1) and small ring elements s1, . . . , st such that Cj ·Au = Av · sj + Ej holds for all j, with
small Ej ’s. Our goal is to find Av.

We note that the matrix Av and the error vectors Ej are only defined upto small additive factors,
since adding 1 to any entry in Av can be offset by subtracting the sj ’s from the corresponding entry
in the Ej ’s. Hence the best we can hope for is to solve for Av upto a small additive factor (resp.
for the Ej ’s upto a small additive multiple of the sj ’s). Denoting Bj := Cj ·Au = Av · sj + Ej , we
compute for j = 1, . . . , t− 1,

Fj := Bj · sj+1 −Bj+1 · sj
= (Av · sj + Ej) · sj+1 − (Av · sj+1 + Ej+1) · sj = Ej · sj+1 −Ej+1 · sj .

This gives us a non-homogeneous linear system of equations (with the sj ’s and Fj ’s as coefficients),
which we want to solve for the small solution Ej ’s. Writing this system explicitly we have


[s2] [−s1]

[s3] [−s2]
. . .

. . .

[st] [−st−1]




X1

X2
...

Xt−1

Xt

 =


F1

F2
...

Ft−1

 ,
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where [s] denotes the m×m matrix Im×m ·s. Clearly this system is partitioned into m independent
systems, each of the form


s2 −s1

s3 −s2

. . .
. . .

st −st−1




x1,`

x2,`
...

xt−1,`

xt,`

 =


f1,`

f2,`
...
ft,`

 ,

with xj,`, fj,` being the `’th entries of the vectors Xj ,Fj , respectively. These systems are under-
defined, and to get the Ei’s we need to find small solutions for them. Suppressing the index `, we
denote these systems in matrix form by M~x = ~f , and show how to find small solutions for them.

At first glance this seems like a SIS problem so one might expect it to be hard, but here we
already know a small solution for the corresponding homogeneous system, namely the solution
xj = sj for all j. Below we assume that the sj do not all share a prime factor (i.e., that
GCD(s1, s2, . . . , st) = 1), and also that at least one of them has a small inverse in the field of
fractions of R. (These two conditions hold with good probability, see discussion in [GGH13b,
Sec 4.1].)

To find a small solution for the inhomogeneous system, we begin by computing an arbitrary
solution for it over the ring R (not modulo q). We note that a solution exists (in particular the
Ej ’s solve this system over R without mod-q reduction), and we can use Gaussian elimination in
the field of fractions of R to find it. Denote that solution that was found by ~g ∈ R, namely we
have M~g = ~f . 5 Since over R this is a (t− 1)× t system then its solution space is one-dimensional.
Hence every solution to this system (and in particular the small solution that we seek) is of the
form ~e = ~g + ~s · k for some k ∈ R. 6

Choosing one index j such that the element 1/sj in the field of fractions is small, we compute a
candidate for the scalar k simply by rounding, k′ := −bgj/sje, where division happens in the field

of fractions. We next prove that indeed the vector ~e′ = ~g + ~s · k′ is a small vector over R. Clearly
~e′ ∈ Rt since k′ ∈ R and ~g,~s ∈ Rt, we next prove that it must be small by showing that “the right
scalar k” must be close to the scalar k′ that we computed. First, observe that e′j = gj + sj · k′ must
be small, since

e′j = gj + sj · k′ = gj − bgj/sje · sj = gj − (gj/sj + εj) · sj = −εj · sj ,

with εj the rounding error. Since both εj and sj are small, then so is e′j .
Now consider the “real value” ej , it too is small and is obtained as gj + sj ·k for some k ∈ R. It

follows that ej − e′j = sj · (k− k′) is small, and since we know that 1/sj is also small then it follows

that so is k− k′ = (ej − e′j)/sj . We thus conclude that ~e′ = ~g+ k′ ·~s = ~e+ (k− k′) ·~e is also small.
Repeating the same procedure for all the m independent systems, we get a small solution

{E′j , j = 1, . . . , t} to the system Bj = Av ·sj +E′j . Subtracting the E′j ’s from the Bj ’s and dividing
by the sj ’s give us (an approximation of) Av.

5Using Gaussian elimination may yield a fractional solution ~g′, but we can “round it” to an integral solution by
solving for k′ the equation ~g′ + ~s · k′ = 0 (mod 1), then setting ~g = ~g′ + ~s · k′.

6In general the scalar k may be fractional, but if GCD(s1, s2, . . . , st) = 1 then k must be integral.
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Recovering the Av’s using trapdoors. Suppose that we are given Au, encodings Cj and the
corresponding plaintext matrices Sj , s.t. Bj := Cj ·Au = Av ·Sj +Ej (mod q) for small errors Ej .
Suppose that in addition we are also given a full working trapdoor for the matrix Av, say, in the
form of a small full-rank matrix T over R s.t. T ·Av = 0 (mod q). We can then use T to recover
the errors Ej from the LWE instances Bj , which can be done without knowing Av: Let T−1 be the
inverse of T over R, we compute Ej ← T−1 · (T ·Bj mod q). Once we have the error matrices Ej

we can subtract them and get the set of equations Bj − Ej = Av · Sj (mod q), where the entries
of Av are the unknowns. With sufficiently many of these equations, we can then solve for Av.

We note that so far we were unable to extend this attack to using the “weak trapdoor” that one
gets from an encoding of zero wrt paths of the form v ; w. Indeed the procedure from Section 4.1
for recovering a stronger trapdoor from the weak one relies on knowing Av.

5 Applications

5.1 Multipartite Key-Agreement

For our first application, we describe a candidate construction for a non-interactive multipartite key-
agreement protocol using the commutative variant of our graph-based encoding scheme. As is usual
with multipartite key-agreement from multilinear maps, each party i is contributing an encoding
of some secret si and the shared secret is derived from an encoding of the product s =

∏
i si.

However in our case we need to use extra caution to protect against the “weak trapdoor attacks”
from Section 4.1.

To that end, we design our graph to ensure that the adversary is never given encodings of
the same element on two paths with a common end-point, and also is not given an encoding and
the corresponding plaintext on any edge. For an k-partite protocol we use a graph topology of k
directed chains that meet at a common point, where the contribution of any given party appears
at different edges on different chains (i.e. the first edge on one chain, the second edge on another,
the third edge on a third chain, etc.)

That is, each player i has a directed path of matrices, Ai,1, . . . ,Ai,k+1, all sharing the same end-
point, i.e., Ai,k+1 = A0 for all i. Note that every chain has k edges, and for the chain “belonging”
to party i we will broadcast on its edges encodings of all the secrets sj , j 6= i, but not an encoding
of si, that last encoding will only be known to party i. Party i will multiply these encodings (the
one that only it knows, and all the ones that are publicly available) to get an encoding of

∏
i sj

relative to the path Ai,1 ; A0. Namely, a matrix Di such that Di ·Ai,1 ≈ A0 ·
∏
i sj . The shared

secret is then obtained by applying the extraction procedure to this Di.
The assignment of which secret is encoded on what edge of what chain is done in a “round

robin” fashion. Specifically, the i’th secret si is encoded on the j’th edge of the chain belonging to
party i′ = j − i + 1. In other words, the secret that we encode on the edge Ai,j → Ai,j+1 in the
graph is sj−i+1, with index arithmetic modulo k. An example of the assignment of secrets to edges
for a 4-partite protocol is depicted in Figure 1.

Of course, we must publish encodings that would allow the parties to choose their secrets
and provide encodings for them. This means that together with the public parameters we also
publish encodings of many plaintext elements {ti,` : i = 1, . . . , k, ` = 1, . . . , N} (for a sufficiently
large N), for each ti,` we publish encoding of it relative to all the edges Ai′,i+i′−1 → Ai′,i+i′

for all i, i′ (index arithmetic modulo k + 1). Party i then chooses random small coefficients ri,`
and computes its encoding relative to each edge Ai′,i+i′−1 → Ai′,i+i′ as the linear combination
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Figure 1: Graph for a 4-partite key-agreement protocol.

of the encodings on that edge with the coefficient ri,`. We are now ready to describe our scheme
NMKE = (KE.Setup,KE.Publish,KE.Keygen).

• KE.Setup(1λ, k): The setup algorithm takes as input the security parameter 1λ and the total
number of players k.

1. Run the parameter-generation and instance-generation of our graph-based encoding scheme
for the graph consisting of k chains with a common end-point, each of length k edges. Let
ei,j denote the j’th edge on the i’th chain.

2. Using the secret parameters, run the sampling procedure of the encoding scheme to choose
random plaintext elements ti,` for i = 1, . . . , k and ` = 1, . . . , N , and for each ti,` compute
also an encoding of it relative to all the edges ei′,j for j = i + i′ (mod k). Denote the
encoding of ti,` on chain i′ (relative to edge ei′,i+i′ mod k) by Ci,`,i′ .

The public parameters of the key-agreement protocol include the public parameters of the
encoding scheme (i.e., the matrices for all the source nodes Ai,1), and also the encoding matrices{
Ci,`,i′ : i, i′ = 1, . . . , k, ` = 1, . . . , N

}
.

• KE.Publish(pp, i) : The i’th party chooses random small plaintext elements ri,` ← χ for ` =
1, . . . , N and then sets Di,i′ ←

∑
` Ci,`,i′ · ri,` for all i′. It keeps Di,i as its secret and broadcast

all the other Di,i′ ’s.

• KE.Keygen(pp, i, ski, {pubj}j 6=i) : Party i collects all the matrices Di′,i (encoding the secrets
si′ relative to “its chain” i) and orders them according to j = i + i′. Namely, it sets Fj,i =

Di+j mod k,i for j = 1, . . . k, then computes the product F∗i = (
∏k
j=1 Fj,i) ·Ai,1. Finally, party i

applies the extraction procedure of the encoding scheme to obtain the secret key, setting ssk =
Extract

(
F∗i
)
.

Security. Unfortunately, we were not able to reduce the security of this candidate scheme to any
“nicer” assumption. As such, at present the only evidence of security that we can offer is the failure
of our attempts to cryptanalyze it.

The basic attack from Section 4.1 does not seem to apply here since the public parameters do
not provide any encoding of zero (not even relative to A0). Similarly, the extended attacks do not
seem to apply since the only common end-point in the graph is A0, and no two paths that end at
A0 include an encoding of the same element.

We note that the attacker can use the public parameters to compute an approximate trapdoors
for concatenated matrices of the form (A0 · ti,`,i′/(−A0)) (or similar), but the broadcast messages
of the parties do not provide LWE instances relative to these matrices.
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Finally, we note that as for any other application of this encoding scheme, it seems that security
would be enhanced by applying the additional safeguards that were discussed at the end of Section 3.
That is, we can use Kilian-style randomization on the encoding side, by choosing k invertible
matrices for each chain, Ri,1, . . . ,Ri,k, where the first and last are set to the identity and the others
are chosen at random. Then we can replacing each encoding matrix C in the public parameters by
C′ := R−1 ·C ·R′ using the randomizer matrices R,R′ belonging to the two adjacent nodes. We
can also choose the first encoding matrix in each chain to have large entries.

This has no effect on the product of all the encoding matrices along the i′-th chain, but the
new matrices C′ no longer have small entries, which seems to aid security. On the down side, this
increases the size of the encodings roughly by a log q/ log n factor.

5.2 Candidate Branching-Program Obfuscation

We next describe how to adapt the branching-program obfuscation constructions from previous
work [GGH+13a, BR14b, BGK+14, PST14] to use our encoding schemes. We remark that on some
level this is the simplest type of constructions to adapt to our setting, since we essentially need
only a single chain and there almost no issues of providing zero-encoding in the public parameters
(or encodings of the same plaintext relative to different nodes in the graph).

Roughly speaking, previous works all followed a similar strategy for obfuscating branching
programs. Starting from a given oblivious branching program, encoded as permutation matrices,
they all applied Kilian’s randomization strategy to randomized these matrices, then added some
extra randomization steps (mostly multiplication by random scalars) to protect against partial-
evaluation and mixed-input attacks, and finally encoded the resulting matrices relative to specially-
designed sets/levels. The specific details of the extra randomization steps are somewhat different
between the previous schemes, but all these techniques have their counterparts in our setting. Below
we explain how to adapt the randomization techniques from previous work to our setting, and then
describe one specific BP-obfuscation candidate.

Matrices vs. individual elements. Our scheme natively encodes matrices, rather than
individual elements. This has some advantages, for example we need not worry about attacks
that mix and match encoded elements from different matrices. At the same time it also poses some
challenges, in particular some of the prior schemes worked by comparing to zero one element of the
resulting matrix at the end of evaluation, an operation which is not available in our case.

To be able to examine sub-matrices (or single elements), we adopt the “bookend encoding”
trick from [GGH+13a]. That is, we add to our chain a new source u∗ and a new sink v∗, with edges
from u∗ to the old source and from the old sink to v∗. On the edge from u∗ we encode a matrix T
which is only nonzero in the columns that we want to examine, and on the edge to v∗ we encode
a matrix S which is only nonzero in the rows that we wish to examine. This way, we should have
the matrix T ·U · S encoded relative to a path u∗ ; v∗, and that matrix is only nonzero in the
sub-matrix of interest. In the candidate below we somewhat improve on this by folding the source
matrix Au∗ into the encoding of T, publishing instead the matrix Au∗ ·T (and in fact making T
a single column vector).

Only small plaintexts. In our scheme we can only encode “small plaintext elements”, not every
plaintext element. This is particularly relevant for Kilian randomization technique, since it requires
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that we multiply by both R and R−1 for each randomizer matrix R. One way to get randomizer
matrices with both R and R−1 small is using the facts that(

I 0

R I

)−1

=

(
I 0

−R I

)
,

(
I R

0 I

)−1

=

(
I −R

0 I

)
(

0 I

I R

)−1

=

(
0 I

I −R

)
,

(
R I

I 0

)−1

=

(
−R I

I 0

)
.

Multiplying a sequence of these types of matrices above yields a high-entropy distribution of
randomizer matrices with the desired property, and seemingly without obvious algebraic structure.
Another family of matrices where both the matrix and its inverse are small are permutation matrices
(and of course we can mix and match these families). Concretely, we speculate that a randomizer
of the form

R = Π1 ·
(

0 I
I R1

)
·Π2 ·

(
I 0
R2 I

)
·Π3 ·

(
R3 I
I 0

)
·Π4 ·

(
I R4

0 I

)
·Π5 (4)

(with the Πi’s random permutations and the Ri’s random small matrices) has sufficient entropy
and lack of algebraic structure to server as randomizers for our scheme.

We note that although these randomizers are far from uniform, there may still be hope of using
some of the tools developed in [BR14b, BGK+14, PST14] (where the analysis includes a reduction
to Kilian’s information-theoretic argument). This is because the matrices before randomization are
permutation matrices, and hence the random permutations Πi can be used to perfectly randomize
them. In this way, one can view the Ri’s are merely “safeguards” to protect against possible
weaknesses in the encoding scheme, and the Πi’s are “ideal model randomizers” than can be used
in an ideal-model analysis. So far we did not attempt such analysis, however.

Another way to introduce Kilian-type rerandomization in our setting is the aforementioned
option of applying it “on the encoding side,” i.e., choosing random m ×m invertible matrices P
modulo q and set C′ ← P−1 ·C ·P′.

Multiplicative binding and sraddling sets. Another difference between our setting and that
of GGH or CLT is that the previous schemes support encoding relative to arbitrary subsets of a
universe set, so there are exponentially many potential sets to use. In our scheme the encoding is
relative to edges of a given graph, and there can be only polynomial many of them. This difference
seems particularly critical in the design of sraddling sets [BGK+14, PST14].

On a second look, however, this issue is more a question of modeling, rather than a real
difference. The different encoding sets in the “asymmetric variants” of [GGH13b, CLT13] are
obtained just by multiplying by different random secret constants (e.g., the zi’s from GGH), and
we can similarly multiply our encoding matrices by such random constants mod q (especially when
working over a large polynomial ring). We use that option in the candidate scheme that we describe
below.

We note that similar effects can be obtained by the multiplicative binding technique of
[GGH+13a]. Roughly speaking, the main difference between multiplicative binding and sraddling
sets is that the former multiplies by constants “on the plaintext side” while the latter multiplies
“on the encoding side.” In our setting we can do both, and indeed it seems prudent to do so.
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5.2.1 A Concrete BP-Obfuscation Candidate

For our concrete candidate below we work over a large polynomial ring of dimension k, and we will
use small-dimension matrices over this ring (roughly as high as the dimension of the underlying
branching program).

Let Sym(w) be the set of w×w permutation matrices and consider a length-n branching program
over ` bit inputs:

BP = {(ind(i),Bi,0,Bi,1 : i ∈ [n], ind(i) ∈ [`],Bi,b ∈ Sym(w)}

For a bit position j ∈ [`], let Ij be the steps in the branching program that examines j’th input
bit: Ij = {i ∈ [n] : ind(i) = j}. We obfuscate BP as follows:

• Following the original construction of [GGH+13c] we embed the Bi,σ’s inside higher-dimension
matrices with random elements on the diagonal, but in our case it is sufficient to have only
two such random entries (so the dimension only grows form w to w + 2). Denote the higher-
dimension matrices by B′i,σ.

We also follow the original construction of [GGH+13c] by applying the same transformation to
a “dummy program” DP of the same length that consists of only the identity matrices, let D′i,σ
be the higher-dimension dummy matrices.

• We proceed to randomize these branching programs a-la-Kilian “on the plaintext side,” by
choosing randomizing matrices Ri’s as per the form of Eqn. (4) such that both Ri and R−1

i are
small, and setting B′′i,σ = Ri−1B

′
i,σR

−1
i . The dummy program is randomized similarly.

• We then prepare (w + 2) × (w + 2) “bookend matrices” S,S′, and “bookend column vectors”
t, t′. S is random and small except the first row which is zero, t is random and small except
the second entry which is zero, and similarly for S′ and t′, subject to S′ · t′ = S · t. Then we
set S̃ = SR−1

0 and t̃ = Rnt, and similarly S̃′ = S′R−1
0 and t̃′ = Rnt

′.

• We also sample random small scalars {αi,0, αi,1, α′i,0, α′i,1 : i ∈ [n]}, subject to constraint:∏
i∈Ij αi,0 =

∏
i∈Ij α

′
i,0 and

∏
i∈Ij αi,1 =

∏
i∈Ij α

′
i,1. These are used for the “plaintext-side”

multiplicative bundling.

We set B∗i,σ = B′′i,σ · αi,σ for the main program and similarly D∗i,σ = D′′i,σ · α′i,σ for the dummy
program.

• Next we use our encoding scheme to encode these matrices relative to a graph with two chains
with a common end-point, each of length n + 2. Namely we have A1 → . . . → An+2 and
A′1 → . . .→ A′n+1 → An+2.

For each i ∈ [n], we encode the two matrices B∗n−i+1,b relative to the edge Ai → Ai+1, i.e., we
have

Cn−i+1,b ·Ai = Ai+1 ·B∗n−i+1,b + Ei,b

for some small error Ei,b. Similarly we encode the dummy program with the two matrices
D∗n−i+1,b encoded relative to the edge A′i → A′i+1, i.e.,

C′n−i+1,b ·A′i = A′i+1 ·D∗n−i+1,b + E′i,b
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• Encode S̃, S̃′ relative to the edges leading to the common sink, i.e. compute the encoding
matrices CS ,C

′
S′ such that

CS ·An+1 = An+2 · S̃ + ES and C′S′ ·A′n+1 = An+2 · S̃′ + E′S′

• Compute the encoded bookend vectors, folded into the two sources A1 and A′1, namely a =
A1 · t̃ + et and a′ = A′1 · t̃′ + e′t.

• We next apply both the multiplicative bundling and the the Kilian-style randomization also on
the encoding side. Namely we sample random full-rank matrices P0, . . . ,Pn and P′0, . . . ,P

′
n, and

also random scalars modulo q {βi,0, βi,1, β′i,0, β′i,1 : i ∈ [n]}, subject to constraints
∏
i∈Ij βi,0 =∏

i∈Ij β
′
i,0 =

∏
i∈Ij βi,1 =

∏
i∈Ij β

′
i,1 = 1.

We then set Ĉi,σ = P−1
i−1 ·Ci,σ ·Pi ·βi,σ and Ĉ′i,σ = P′−1

i−1 ·C′i,σ ·P′i ·β′i,σ, and also ĈS = CS ·P0

and Ĉ′S′ = C′S′ ·P′0 and â = P−1
n a and â′ = P′−1

n a′.

• The obfuscation consists of all the matrices and vectors above, namely

O(BP) =

({
ĈS ,

{
Ĉi,σ : i ∈ [n], σ ∈ {0, 1}

}
, â

}
,

{
Ĉ′S′ ,

{
Ĉ′i,σ : i ∈ [n], σ ∈ {0, 1}

}
, â′
})

Evaluation. On input x ∈ {0, 1}` the user choose the appropriate encoding matrices Ĉi,0 or Ĉi,1

depending on the relevant input bit (and the same for Ĉ′i,0 or Ĉ′i,1) and then multiply in order
setting

y = ĈS · (
n∏
i=1

Ĉi,x[ind(i)]) · a = An+2 ·
(
S · (

n∏
i=1

B′′i,x[ind(i)]) · t
)

+ e

and

y′ = Ĉ′S′ · (
n∏
i=1

Ĉ′i,x[ind(i)]) · a′ = An+2 ·
(
S′ · (

n∏
i=1

D′′i,x[ind(i)]) · t
′)+ e′,

The output is 1 if ‖y − y′‖ < q3/4 and 0 otherwise. Note that indeed if
∏n
i=1 Di,x[ind(i)] = I then

both y and y′ are roughly equal to An+2 · S · t · (
∏n
i=1 αi,x[ind(i)]), as needed.

Security. As before, this is merely a candidate and we do not know how to reduce its security
to any “nice” assumption. However the type of attacks that we know against these scheme do not
seem to apply to this candidate.
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A Parameter Selection

We now describe the parameter-generation procedure PrmGen, showing how to choose the
parameters for our scheme. The procedure takes as input the security parameter λ, a DAG G with
diameter d, and the class C of supported circuits. It outputs n,m, q and the Gaussian parameters
s, σ. The constraints that these parameters need to satisfy are the following:

• It should be possible to efficiently sample from the input/error distribution χ = DZ,s, and
the LWE problem with parameters n,m, q, χ should be hard. This means that we need (say)
s =
√
n and q/s < 2n/λ.

• It should possible to generate trapdoor for the Av’s, that enables sampling from PreSample with
parameter σ. By Lemma 2.1, this means that we need m = Ω(n log q) and σ = Ω(

√
n log q).

• For any supported circuit, the size of the error E at the output of the circuit must remain
below q3/4. Namely if the output is an encoding D of the plaintext matrix S relative to path
u; v, then we need ‖[DAu −AbS]q‖ < q3/4.

Let us now analyze the error size in the system. We assume here that we use truncated Gaussian

distributions, i.e. we condition DZ,s on the output being smaller than b
def
= s
√
λ (which only affect

the distribution negligibly.) We similarly condition PreSample on the output being shorter than

B
def
= σ

√
λ. With our settings, we get b ≤ n and B ≤ n

√
log q. Hence the sample procedure

always outputs (S,C,D) with the plaintext satisfying ‖S‖ < b and the encoding matrices satisfying
‖C‖, ‖D‖ < B.

To analyze the noise development, recall that when multiplying A ∈ Zu×v by B ∈ Zv×w we
have ‖AB‖ ≤ ‖A‖ · ‖B‖ · v. This means in particular that multiplying i encoding matrices we get
an encoding matrix D ∈ Zm×mq with ‖D‖ < Bimi−1 and similarly multiplying i plaintext matrices
we get a plaintext matrix S ∈ Zn×nq with ‖S‖ < bini−1. Regarding the error, one can show by
induction that the product of i encoding matrices has an error E ∈ Zm×nq with

‖E‖ < b ·
i−1∑
j=0

Bjmjbd−1−jnd−1−j < b · i ·Bi−1mi−1.

Given a class C of permitted circuits, we consider the canonical representation of the polynomials
in this class as sums of monomials. Let D be a bound on the degree of these polynomials, R be a
bound on the size of the coefficients, and N be a bound on the number of monomials. Note that
in our setting, the degree-bound D cannot be larger than the diameter of the graph G (since G
is acyclic and hence cannot have directed paths longer than d). The size of the error in this case
could grow as much as N · R · b ·D · BD−1mD−1. With b ≤ n and B ≤ n

√
log q, we thus have the

constraint

q3/4 > N ·R · n ·D ·
(
n
√

log q
)D−1

mD−1

= N ·R · nD ·mD−1 ·D ·
(

log q
)(D−1)/2

. (5)

Substituting m = Θ(n log q), and q = 2n/λ, we can use Eqn. (5) to solve for n in terms of λ,N,R
and D. With D ≤ d and assuming the (typical) case of R = poly(λ) and N < dd, it can be verified
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that this bound is satisfied using n = Θ(dλ log(dλ)). This setting yields q = 2n/λ = 2Θ(d log(dλ)) =
(dλ)Θ(d) and m = Θ(n log q) = Θ(d2λ2 log2(dλ)).

Note that with this setting, each matrix Av ∈ Zm×nq is of size mn log q = Θ(d4λ2 log4(dλ)) bits.
The public parameters typically contain just one or a handful of such matrices (corresponding to
the source nodes in G), but the secret parameters contain all of them. Hence the secret parameters
are of size Θ(|V | × d4λ2 log4(dλ)) = Ω(d5λ2 log4(dλ)) bits. (We have |V | > d since the diameter of
G is d.) The encoding matrices are of dimension m×m, but their entries are small, so they can be
represented by roughly m2 log n = Θ(d4λ2 log5(dλ)) bits.

Working over a larger ring. As usual, we can get better parameters by working over larger
rings, and let n denote the extension degree of the ring. In this case the matrices A are m×1 column
vectors over the larger ring, and we can find trapdoors for these matrices already for m = Θ(log q),
and also the plaintext elements are now scalars (or constant-degree matrices).

This only affects Eqn. (5) or the solution n = Θ(dλ log(dλ)) by a constant factor, and hence
shaves only a constant factor from the number of bits in q = 2Θ(d log(dλ)), but now we have m =
Θ(log q) = Θ(d log(dλ)). With each scalar in Rq represented by n log q bits, it takes mn log q =
Θ(d3λ log3(dλ)) bits to represent each matrix Av ∈ Rm×1

q , and Θ(m2 log n) = Θ(d3λ log4(dλ)) bits
to represent each encoding matrix with small entries.

27


	Introduction
	Our Results
	Our Techniques

	Applications
	Organization

	Preliminaries
	Lattice Preliminaries
	Gaussian Distributions
	Trapdoors for Lattices
	Leftover Hash Lemma Over Gaussians

	Graded Multilinear Encodings
	Syntax of Graph-Induced Graded Encoding Schemes
	Correctness
	Variations


	Our Graph-Induced Multilinear Maps
	Correctness
	A Commutative Variant
	Public Sampling and Some Other Variations

	Cryptanalysis
	Encoding of Zero is a Weak Trapdoor
	Recovering Hidden Av's.

	Applications
	Multipartite Key-Agreement
	Candidate Branching-Program Obfuscation
	A Concrete BP-Obfuscation Candidate


	Bibliography
	Parameter Selection

