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Abstract. The lightweight block cipher PRIDE designed by Albrecht
et al., appears in CRYPTO 2014. The designers claim that their method
of constructing linear layer is good both in security and efficiency. In this
paper, we find 16 different 2-round iterative characteristics utilizing the
weaknesses of S-box and linear layer, construct several 15-round differ-
entials. Based on one of the differentials, we launch differential attack on
18-round PRIDE. The data, time and memory complexity are 260, 266

and 264, respectively.
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1 Introduction

Lightweight cryptography has become an attractive and active field nowadays,
and a lot of lightweight block ciphers are published during the last decade, such
as PRESENT[1], LED[2], PRINCE[3], NSA standard SIMON and SPECK[4]
etc.

PRIDE[5] is designed by Albrecht et al. in CRYPTO 2014, and they aim to
design a software-friendly and hardware-friendly lightweight block cipher which
is comparable to SIMON and SPECK both in speed and memory size, so far as
to outperform all the other existing block ciphers of similar key-sizes.

Differential analysis[6] proposed by Biham and Shamir is a basic and effective
attack on block cipher. This method focuses on differences of plaintext pairs
and their difference evolution during the encryption process. Analysts usually
start from finding difference propagation of one round and extending it for more
rounds, then the sequence of intermediate differences for all rounds and their
associated probabilities is called differential characteristic. By adding several
rounds before and after the differential characteristic, guessing subkeys used
in these rounds, encrypting and decrypting plaintexts and ciphertexts, we can
determine the right key by the advantage of the probability.

Our Contribution. In this paper, we concern the new lightweight block
cipher PRIDE and study its security. We find that there are several weaknesses
on PRIDE

– There are 3 fixed points in S-box, they are S(0x5) = 0x5, S(0xa) = 0xa,
S(0xd) = 0xd.

– Difference propagations of S-box from 1-bit to 1-bit exist.



– For difference propagation of 1-bit to 1-bit cases in S-box, the diffusion of P
can offset diffusion effort of P−1.

Based on the these weaknesses, we find 16 different 2-round iterative characteris-
tics and construct several 15-round differentials. Finally, we attack 18 rounds of
PRIDE with 260 chosen plaintexts, 266 encryptions and 264 bytes, respectively.

The rest of this paper is organized as follows. We introduce the notations in
Section 2, and give a brief description of PRIDE in Section 3. Section 4 shows
the differential characteristics of PRIDE and we describe differential attack on
18-round PRIDE in Section 5. Section 6 concludes this paper.

2 Notations

The following notations are used in this paper:
Ir the input of the r-th round
Xr the state after the key addition layer of the r-th round
Yr the state after the S-box layer of the r-th round input
Zr the state after the P permutation layer of the r-th round
Wr the state after the matrix layer of the r-th round
Or the output of the r-th round
C the ciphertext of block cipher PRIDE
∆X the XOR difference of X and X ′

⊕ bitwise exclusive OR (XOR)
x||y bit string concatenation of x and y
X[n1, n2, ...] the n1, n2,...-th nibbles of state X, 1 ≤ n1 < n2 < ... ≤ 16
X{b1, b2, ...} the b1, b2,...-th bits of state X, 1 ≤ b1 < b2 < ... ≤ 64,

numbered from the left to right

3 Description of PRIDE

PRIDE designed by Albrecht et al. is a SPN structure block cipher with 64-bit
block and 128-bit key. The 64-bit input of the round function is splitted into 16
4-bit nibbles, XORed with the round key, and fed into 16 parallel 4-bit Sboxes
and then permuted and processed by the linear layer, see Fig. 3. The cipher has
20 rounds, the first 19 rounds of which are identical, and the linear layer of the
last round is omitted, see Fig. 2.

3.1 S-box of Block Cipher PRIDE

The PRIDE S-box is given in Table 1:

3.2 The Linear Layer of Block Cipher PRIDE

The linear layer L of block cipher PRIDE can be divided into three sub-layers,
a permutation layer P, a matrix layer M and another permutation layer P−1
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Fig. 1. The Round Function R of PRIDE

Fig. 2. Overall Structure of the PRIDE

which is the inverse of P:

M : L0 × L1 × L2 × L3

L : P−1 ◦M ◦ P
The detailed definitions of P, P−1, Li(i = 0, 1, 2, 3) are in Appendix.

3.3 Key Schedule of Block Cipher PRIDE

The 128-bit master key for block cipher PRIDE is (k0||k1), the sizes of ki(i = 0, 1)
are 64. k0 is used for pre-whitening and post-whitening, while k1 is used to
produce the subkey fr(k1) for round r.

fr(k1) = k1,1||g(1)r (k1,2)||k1,3||g(2)r (k1,4)||k1,5||g(3)r (k1,6)||k1,7||g(4)r (k1,8)

As the subkey derivation function with four byte-local modifiers of the key as

g(1)r (x) = (x+ 193r) mod 256

g(2)r (x) = (x+ 165r) mod 256

g(3)r (x) = (x+ 81r) mod 256

g(4)r (x) = (x+ 197r) mod 256

which simply add one of four constants to every other byte of k1.
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Table 1. S-box of Block Cipher PRIDE

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

S(x) 0x0 0x4 0x8 0xf 0x1 0x5 0xe 0x9 0x2 0x7 0xa 0xc 0xb 0xd 0x6 0x3

3.4 Discussion on PRIDE

Since pre-whitening and post-whitening only use 64 bits key and the other 64
bits are used as round keys. Without security claim as PRINCE, we can attack
20 rounds of PRIDE by Meet-in-the-Middle method with 232 known plaintexts,
296 table look-up and 241 bytes, respectively.

The Meet-in-the-Middle attack presented by Diffie and Hellman[7] have been
successfully used against several block ciphers. It devotes to splitting the whole
cipher Ek into Ek=E2

k2 · E1
k1

, and guessing k1 and k2 respectively to compute

and check whether E1
k1

(m) equal to E2−1
k2 (c) or not. If E1

k1
(m)=E2−1

k2 (c), the key
guessed is the right one. Meet-in-the-Middle attack is also very effective when
applied to PRIDE.

Fig. 3. Abstract Structure of PRIDE

1. Collect 232 pairs of (m, c)
2. For each of 264 possible values of k1:

(a) Randomly choose 232 values of x, calculate the corresponding F(x), store
(x,F(x), x⊕F(x)) in a hash table H indexed by x⊕F(x),

(b) For each (m, c) pair, calculate P−1(m ⊕ c) and choose the item in H
where x⊕F(x) = P−1(m⊕ c), calculate k0 = P−1(m)⊕ x,

(c) Encrypt a plaintext m using (k0, k1). If we get the right ciphertext c,
(k0, k1) is the right key.

The data complexity of this process is 232, the time complexity is 296 table look-
up, and the memory complexity is 241 bytes. Since the size of key is 128 bits, and
this structure can not reach the security level expected. We propose the designer
use k0 and k1 as round keys iteratively.

4 Differential Characteristic of Block Cipher PRIDE

In this section, we first present the XOR difference distribution of S-box in Table
2, from which we can see that there are several difference propagations from 1-
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bit to 1-bit. Mounting 2-round iterative differential characteristics in Table 3,
we find the 15-round differential characteristic in Table 5.

Table 2. XOR Difference Distribution Table for PRIDE S-box

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0

0x2 0 0 0 0 0 0 0 0 4 0 0 4 2 2 2 2

0x3 0 0 0 0 0 0 0 0 4 0 0 4 2 2 2 2

0x4 0 4 0 0 0 0 4 0 0 2 2 0 2 0 0 2

0x5 0 4 0 0 0 4 0 0 0 2 2 0 2 0 0 2

0x6 0 4 0 0 4 0 0 0 0 2 2 0 0 2 2 0

0x7 0 4 0 0 0 0 0 4 0 2 2 0 0 2 2 0

0x8 0 0 4 4 0 0 0 0 4 0 4 0 0 0 0 0

0x9 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2

0xa 0 0 0 0 2 2 2 2 4 0 4 0 0 0 0 0

0xb 0 0 4 4 0 0 0 0 0 0 0 0 2 2 2 2

0xc 0 0 2 2 2 2 0 0 0 2 0 2 2 0 2 0

0xd 0 0 2 2 0 0 2 2 0 2 0 2 0 2 0 2

0xe 0 0 2 2 0 0 2 2 0 2 0 2 2 0 2 0

0xf 0 0 2 2 2 2 0 0 0 2 0 2 0 2 0 2

Observation 1 If the input difference of S-box is 0x8, the output difference is
0x8 with probability 1

4 . We can obtain 2-round iterative differential characteristic
holding with probability 2−8 as in Table 3:

Table 3. 2-Round Differential Characteristic for PRIDE

∆Ir 0x0 0x8 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

∆Xr 0x0 0x8 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

∆Yr 0x0 0x8 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

∆Zr 0x4 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

∆Wr 0x0 0x4 0x4 0x4 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

∆Ir+1 0x0 0x0 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0

∆Xr+1 0x0 0x0 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0

∆Yr+1 0x0 0x0 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0

∆Zr+1 0x0 0x4 0x4 0x4 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

∆Wr+1 0x4 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

∆Ir+2 0x0 0x8 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

There are totally 16 2-round iterative differential characteristics listed in Table
4:
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Table 4. 16 2-Round Differential Characteristics

(8000000000000000)
1r

GGGGGGA(0000800080008000)
1r

GGGGGGA(8000000000000000)

(0800000000000000)
1r

GGGGGGA(0000080008000800)
1r

GGGGGGA(0800000000000000)

(0080000000000000)
1r

GGGGGGA(0000800000800080)
1r

GGGGGGA(0080000000000000)

...

(0000000000000800)
1r

GGGGGGA(0800080008000000)
1r

GGGGGGA(0000000000000800)

(0000000000000080)
1r

GGGGGGA(0080008000800000)
1r

GGGGGGA(8000000000000080)

(0000000000000008)
1r

GGGGGGA(0008000800080000)
1r

GGGGGGA(0000000000000008)

Based on Observation 1, we iterative the 2-Round differential characteristic
in Table 3 for 7 times and then attach anther one round behind them, we can
obtain 15 rounds differential characteristic with probability p = 1

258 . The starting
and the ending points are listed in Table 5.

Table 5. 15-Round Differential Characteristic for PRIDE

∆Ir 0x0 0x8 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

∆Xr+15 0x0 0x0 0x0 0x0 0x0 0x8 0x0 0x0 0x0 0x8 0x0 0x0 0x8 0x0 0x0 0x0

Observation 2 If the input difference of L−10 is ∆Wr[1, 2,. . . , 16]=(0?00 0?00
0?00 0?00), the output difference is ∆Zr[1, 2,. . . , 16]=(0000 0?00 0?00 0?00)
with probability 1

2 ; If the input difference of L−13 is ∆Wr[49, 50,. . . , 64]=(0?00
0?00 0?00 0?00), the output difference is ∆Zr[49, 50,. . . , 64]=(0000 0?00 0?00
0?00) with probability 1

2 . (“?” is the undermined value)

Since ∆Zr[1, 2,. . . , 16]=L−10 × ∆Wr[1, 2,. . . , 16]=L−10 × (0?00 0?00 0?00
0?00)=(0?00 0?00 0?00 0?00), and (0?00 0?00 0?00 0?00)=(0000 0?00 0?00 0?00)
with probability 1

2 ; L−13 situation is the same as L−10 .

Observation 3 If the input difference of L−11 is ∆Wr[17, 18,. . . , 32]=(00?0
???0 0??0 0??0), the output difference is ∆Zr[17, 18,. . . , 32]=(0000 0?00 0?00
0?00) with probability 1

25 ; If the input difference of L−12 is ∆Wr[33, 34,. . . ,
48]=(???0 00?0 0??0 0??0), the output difference is ∆Zr[33, 34,. . . , 48]=(0000
0?00 0?00 0?00) with probability 1

25 .

Proof. Since ∆Zr[17, 18, . . . , 32]T=L−11 ×∆Wr[17, 18, . . . , 32]T , the input differ-
ence (00?0 ???0 0??0 0??0) and the output difference (???0 00?0 0??0 0??0)
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Table 6. Differential Analysis on 18-round PRIDE

∆I1 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000
∆X1 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000
∆Y1 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000
∆Z1 0000 0100 0100 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆W1 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
∆I2 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆X17 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000
∆Y17 0000 0000 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000
∆Z17 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00 0000 0?00 0?00 0?00
∆W17 0?00 0?00 0?00 0?00 00?0 ???0 0??0 0??0 ???0 00?0 0??0 0??0 0?00 0?00 0?00 0?00
∆I18 00?0 ?0?? 0??0 0000 0?00 ??0? 0??0 0000 0000 ???? 0??? 0000 0000 ???? 0?00 0000
∆X18 00?0 ?0?? 0??0 0000 0?00 ??0? 0??0 0000 0000 ???? 0??? 0000 0000 ???? 0?00 0000
∆Y18 ???? ???? ???? 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000
∆O18 ???? ???? ???? 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000

construct a linear equation set as follows:

∆Wr[23]⊕∆Wr[31] = 0
∆Wr[19]⊕∆Wr[26] = 0
∆Wr[19]⊕∆Wr[27] = 0
∆Wr[21]⊕∆Wr[22] = 0
∆Wr[22]⊕∆Wr[23]⊕∆Wr[30] = 0
∆Wr[22]⊕∆Wr[30]⊕∆Wr[31] = 0
∆Wr[23]⊕∆Wr[31] = 0
∆Wr[26]⊕∆Wr[27] = 0
∆Wr[19]⊕∆Wr[27] = 0

Considering the rank this equation set can be simplified as follows:
∆Wr[19]⊕∆Wr[26] = 0
∆Wr[21]⊕∆Wr[22] = 0
∆Wr[22]⊕∆Wr[23]⊕∆Wr[30] = 0
∆Wr[22]⊕∆Wr[30]⊕∆Wr[31] = 0
∆Wr[19]⊕∆Wr[27] = 0

We can get the output difference ∆Zr[17, 18,. . . , 32]=(0000 0?00 0?00 0?00) if
the 5 equations are satisfied. The probability is 2−5.

Since the proof of L−12 is similar, we omitted it here. ut

5 Differential Attack on 18-Round PRIDE

In this section, we put our 15-round differential characteristic from the second
round to the 16 round, extending 1 round backward and 2 rounds forward, and
analyze 18-th block cipher PRIDE.

– Data Collection Phase. Choose 2n structures, in each of which, plaintexts
fix in nibbles 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16 and traverse in nibbles 6,
10, 14. There are 212 plaintexts and their corresponding ciphertexts which
consist of 223 pairs. After 18-round encryption, the ciphertext difference
should satisfy ∆C[4, 8, 9, 12, 13, 16] = 0, which makes only 2−1 pairs left.
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– Key Recovery Phase. 264 key bits corresponding to (k0⊕P−1(f1(k1)))[6],
(k0 ⊕ P−1(f1(k1)))[10], (k0 ⊕ P−1(f1(k1)))[14] in the 1st round, k0[1, 2, 3],
k0[5, 6, 7], k0[10, 11] and k0[14, 15] of the post-whitening, and 12 bits equiva-
lent key (M◦P)−1(fr(k1))[6], (M◦P)−1(fr(k1))[10], (M◦P)−1(fr(k1))[14]
are guessed in this phase, we build 264 counters for each of them.
• Step 1. Guess (k0⊕P−1(f1(k1)))[6], encrypt the 6-th nibble of plaintexts

partially, and sieve 24 pairs whose S-box output difference ∆Y1[6] = 0x8,
which makes 2−5 pairs remain.

• Step 2. Guess (k0 ⊕P−1(f1(k1)))[10], encrypt the 10-th nibble of plain-
texts partially, and sieve 24 pairs whose S-box output difference∆Y1[10] =
0x8, and 2−9 pairs left.

• Step 3. Guess (k0 ⊕ P−1(f1(k1)))[14] encrypt the 14th nibble of plain-
texts partially, and sieve anther 24 pairs whose S-box output difference
∆Y1[14] = 0x8, 2−13 pairs fulfil our condition.

• Step 4. Guess k0[i](i = 1, 2, 3, 5, 6, 7, 15, 11, 10, 14) one by one, decrypt
the corresponding nibbles of ciphertexts partially, and sieve pairs by
factors 2−3, 2−1, 2−2, 2−3, 2−1, 2−2, 2−1, 2−3, 1 and 1, respectively,
2−29 pairs left.

• Step 5. According to Observation 2 and 3, decrypt the remaining pairs
and sieve them by 212 factor without guessing any key bits and 2−41

pairs left after this process.
• Step 6. For each pairs left, guess (M◦P)−1(fr(k1))[6], decrypt the 6-

th nibble of ∆Y17[6] partially, and sieve pairs by factor 24 whose S-box
input difference ∆X17[6] = 0x8, on average 2−45 right pairs remain.

• Step 7. For each pairs left, guess (M◦P)−1(fr(k1))[10], decrypt the 10-
th nibble of ∆Y17[10] partially, and sieve pairs by factor 24 whose S-box
input difference ∆X17[10] = 0x8, on average 2−49 right pairs remain.

• Step 8. For each pairs left, guess (M◦P)−1(fr(k1))[6], decrypt the 14-
th nibble of ∆Y17[14] partially, and sieve pairs by factor 24 whose S-box
input difference ∆X17[14] = 0x8, on average 2−53 right pairs remain. If
any pairs left for some key value, increment the corresponding counter.

In order to distinguish the right key from the wrong ones, we expect
two pairs satisfy our differential path which require n to be 48 since the
probability of our differential path is 2−58. In this way, about 2−5 pairs
expected to left for the wrong keys.

• Step 9. Exhaustively search the rest 64 bits key which are not guessed
in the former process.

– Data/Time/Memory Complexity
• Data Complexity: 260 chosen plaintexts.
• Time Complexity: Data collection phase: 260 encryptions/Key recovery

phase: 266 encryptions.
∗ Step 1. For 24 possible key values, encrypt the 6-th nibble for each

plaintexts of the left pairs, when considering our 18-round PRIDE,
the time complexity is 2× 247 × 24 × 1

16 ×
1
18 ≈ 243 encryptions .
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∗ Step 2. The time complexity of this step is similar with that of Step
1. 2× 243 × 24 × 24 × 1

16 ×
1
18 ≈ 243 encryptions.

∗ Step 3. Similar with Step 1. the time complexity is about 2× 239 ×
28 × 24 × 1

16 ×
1
18 ≈ 243 encryptions.

∗ Step 4. The dominant time complexity of this step is the last nibble
operation, since the sieved pairs is less than key bits guessed for the
former nibbles operations, it is about 2×219×248×24× 1

16×
1
18 ≈ 262

encryptions.
∗ Step 5. For each key guessed in former steps decrypt each middle

state of the left pairs from O17 to Y17, the time complexity is about
2× 219 × 252 × 1

4 ×
1
18 ≈ 266 encryptions.

∗ Step 6. Similar with Step 1. the time complexity is about 2 × 27 ×
252 × 24 × 1

16 ×
1
18 ≈ 255 encryptions.

∗ Step 7. Similar with Step 1. the time complexity is about 2 × 23 ×
256 × 24 × 1

16 ×
1
18 ≈ 255 encryptions.

∗ Step 8. Similar with Step 1. the time complexity is about 2× 2−1 ×
260 × 24 × 1

16 ×
1
18 ≈ 255 encryptions.

∗ Step 9. 264 encryptions.
• Memory Complexity: 264 bytes.

– Success Probability According to [8], the success probability for differen-
tial analysis is

Ps =

∫ ∞
−
√
µS/N−φ−1(1−2−a)√

S/N+1

φ(x)dx ≈ 0.61

where a is the number of key bits guessed and µ is the number of right pairs.

6 Conclusion

By observing properties of S-box and linear layer of PRIDE, we find 16 differ-
ent 2-round iterative characteristics and construct several 15-round differentials
for block cipher PRIDE. Based on one of the differentials, we attack 18-round
PRIDE using 260 chosen plaintexts 266 encryptions and 264 bytes. This is the
first analysis result on PRIDE.

References

1. A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw, Y.
Seurin, C. Vikkelsoe: Present: An ultra-lightweight block cipher. In Proc. CHES
2007, LNCS 4727, pp. 450-466, Springer, 2007.

2. J. Guo, T. Peyrin, A. Poschmann, M. Robshaw: The LED Block Cipher. In Proc.
CHES 2011, LNCS 6917, pp. 326-341, Springer, 2011.
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Appendix

L0 = L−10 =



0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0



L1 =



1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0


10



L2 =



0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1



L3 = L−13 =



1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1



L−11 =



0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0



L−12 =



0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1


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Table 7. Permutation P(x) of Block Cipher PRIDE

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P(x) 1 17 33 49 2 18 34 50 3 19 35 51 4 20 36 52

x 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P(x) 5 21 37 53 6 22 38 54 7 23 39 55 8 24 40 56

x 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

P(x) 9 25 41 57 10 26 42 58 11 27 43 59 12 28 44 60

x 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

P(x) 13 29 45 61 14 30 46 62 15 31 47 63 16 32 48 64

Table 8. Permutation P−1 of Block Cipher PRIDE

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P−1(x) 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

x 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P−1(x) 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

x 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

P−1(x) 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

x 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

P−1(x) 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
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