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Abstract

Computing aggregate statistics about user data is of vital importance for a
variety of services and systems, but this practice has been shown to seriously un-
dermine the privacy of users. Differential privacy has proved to be an effective tool
to sanitize queries over a database, and various cryptographic protocols have been
recently proposed to enforce differential privacy in a distributed setting, e.g., stati-
cal queries on sensitive data stored on the user’s side. The widespread deployment
of differential privacy techniques in real-life settings is, however, undermined by
several limitations that existing constructions suffer from: they support only a lim-
ited class of queries, they pose a trade-off between privacy and utility of the query
result, they are affected by the answer pollution problem, or they are inefficient.

This paper presents PrivaDA, a novel design architecture for distributed dif-
ferential privacy that leverages recent advances in SMPCs on fixed and floating
point arithmetics to overcome the previously mentioned limitations. In particu-
lar, PrivaDA supports a variety of perturbation mechanisms (e.g., the Laplace,
discrete Laplace, and exponential mechanisms) and it constitutes the first generic
technique to generate noise in a fully distributed manner while maintaining the
optimal utility. Furthermore, PrivaDA does not suffer from the answer pollution
problem. We demonstrate the efficiency of PrivaDA with a performance evalua-
tion, and its expressiveness and flexibility by illustrating a variety of application
scenarios such as privacy-preserving web analytics.

1 Introduction

Statistics about user data play a significant role in the digital society: they are used
daily for improving services, analyzing trends, performing marketing studies, conduct-
ing research, and so on. For instance, website owners rely on third-party analytics
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services to learn statistical information (e.g., gender, age, nationality) about their vis-
itors; electricity suppliers introduced smart meters in order to constantly monitor the
user’s electricity consumption, which allows them to compute prices based on energy
usage trends, to optimize energy distribution, and so on; lastly, service providers often
ask their users to evaluate the quality of their services with the goal of publishing the
aggregate results.

The acquisition and processing of sensitive information poses serious concerns about
the privacy of users. The first problem is how and where user data are aggregated: com-
panies prefer to directly collect and process user data, but this gives them access to a
wealth of sensitive information. For instance, web analytics rely on user tracking, al-
lowing aggregators to reconstruct a detailed and precise profile of each individual. The
second problem is how to publish aggregate data or statistics in a privacy-preserving
manner. For example, researchers demonstrated how precise information about con-
sumer habits can be reconstructed from the electricity consumption information col-
lected by smart meters [47] and how an individual’s identity and state of health can be
derived from genome wide association studies [52].

Differential Privacy (DP). Differential privacy [26] is a popular architecture to
define and enforce privacy for statistics on sensitive data. The fundamental idea is
that a query on a database is differentially private if the contribution of an individual
in the database can only marginally influence the query result. More precisely, the
contribution of each single entry to the query result is bounded by a small constant
factor, even if all remaining entries are known. A deterministic query can be made
differentially private by perturbing the result with a certain amount of noise. The
amount of noise depends on the query itself and a variety of perturbation algorithms [28,
44] have been proposed for different queries and datatypes (e.g., numerical and non-
numerical data, buckets, histograms, graphs).

Distributed Differential Privacy (DDP). While the original definition of DP fo-
cused on a centralized setting, in which a database is queried by a curious entity, sub-
sequent work has extended the definition to a distributed setting (e.g., [27, 46]), in
which mutually distrustful, and potentially compromised, parties collaborate to com-
pute statistics about distributed data. In particular, Dwork et al. [27] were the first to
suggest the idea of employing secure multiparty computation (SMPC) to aggregate and
perturb data in a privacy-preserving distributed manner. In general, in a distributed
setting, which will be the focus of this paper, the problem to solve is two-fold: (i) how
to aggregate data and compute statistics without parties learning each other’s data and
(ii) how to perturb the result to obtain DP even in the presence of malicious parties
deviating from the protocol.

State-of-the-Art. Several specialized ad-hoc cryptographic protocols have been pro-
posed recently to solve the problem of data aggregation in a distributed, privacy-
preserving manner, which has enabled the enforcement of DDP in some challenging
scenarios, such as smart metering [13,24] and web analytics [7, 20,21].

These works can be grouped into two categories: server-based and fully dis-
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tributed approaches. The former rely on trusted or honest-but-curious (HbC)1

servers [7, 20, 21, 41] to compute noise perturbation. These servers are assumed not
to collude with each other. The latter [6, 19,49,51] (see [36] for a comparative survey)
propose fully distributed systems to distributively aggregate time-series data, which
are directly perturbed by users and then encrypted in such a way that the aggregator
is only able to decrypt their noisy sum. Despite the significant progress in this field,
the deployment of DDP techniques in real-life systems has so far been undermined by
some open challenges, which we discuss below.

Tradeoff between privacy and utility. The existing fully distributed approaches [6, 19,
49,51] exploit the divisibility properties of certain noise mechanisms and let each party
produce a little amount of noise, whose sum yields the noise required to achieve DDP.
This solution is affected by a trade-off between privacy and utility, since the amount of
noise each user has to add is proportional to the number of tolerated malicious or failing
parties: the more malicious parties, the more the noise to be added and, therefore, the
less accurate the result. Hence, in order to obtain strong privacy guarantees, each
party should assume all others to be malicious, but this leads to an intolerable error
(O(N2), where N is the number of users) as we show in § B. Relying on a lower honesty
threshold, however, not only gives lower privacy guarantees but also leads parties to
the paradox of having to agree on how many of them are dishonest!

Lack of generality and scalability. Existing solutions are tailored to individual datatypes
and perturbation mechanisms [6–8, 19, 21, 36, 41, 49, 51]. Computing different kinds of
queries or employing different perturbation mechanisms requires the usage of different
protocols, which rely on different cryptographic schemes, communication patterns, and
assumptions. The engineering effort and usability penalty are significant and discourage
system administrators from deploying such technologies. Furthermore, existing SMPC-
based schemes [8] for two parties cannot simply be extended to a multiparty setting.

Inefficiency. Many schemes [6, 19, 49, 51] involve a significant computational effort on
the user’s side, making them impractical in several scenarios, e.g., for aggregating data
stored on mobile devices with limited computation power.

Answer pollution. Fully distributed schemes [6,19,49,51] in particular, suffer from the
answer pollution problem: a single party can substantially pollute the aggregate result
by adding excessive noise.

Collusion. Server-based systems [7,21,41] rely on strong non-collusion assumptions. In
case of collusion, both the noise and the individual user’s data are disclosed.

For a detailed comparison of the presented works w.r.t. utility, supported queries and
perturbation mechanisms, and non-collusion assumptions we refer to § B.

Our Contributions. In this work we present PrivaDA, the first generic architec-
ture for computing differentially private statistics about distributed data. We show
how to achieve provable DDP guarantees, while overcoming the previously discussed

1An honest-but-curious party follows the protocol, but tries to learn additional information about
the private data.
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limitations, by leveraging recently proposed SMPC protocols for floating point num-
bers [9], fixed point numbers [18], and integers [31]. Our construction refines these
schemes, originally designed for the HbC setting, so as to make them secure even in
the malicious setting.

The overall differentially private data aggregation computation is organized in two
phases: the aggregation phase, in which the clients securely compute the aggregate
result, and the perturbation phase, in which this result is perturbed so as to achieve
DDP. To improve the performance, the SMPC is actually conducted by computation
parties, which collect input shares from each client and perform the required computa-
tions. For the perturbation phase, the fundamental idea is to let computation parties
jointly compute a random seed (i.e., a random variable in (0, 1)), which is then used to
produce the required noise.

The distinctive features of our approach are:

Generality. PrivaDA supports a variety of perturbation mechanisms, such as noise
drawn from the Laplace and the discrete Laplace (symmetric geometric) distribution
as well as the exponential mechanism. Consequently, it is well-suited for a variety of
application scenarios. We illustrate generality of our architecture by proposing privacy-
preserving designs for web analytics, statistics gathering for anonymity networks, and
anonymous surveys.

Strong privacy. As long as at least one of the computation parties is honest, malicious
parties can only recover the aggregate result. This is a fundamental difference from
other approaches (e.g., [7, 20, 21], where colluding parties can immediately read the
individual’s user data. Furthermore, as long as the majority of the computation parties
is not colluding, none learns the seed or the noise (i.e., DDP is achieved).

Optimal utility and resistance to pollution attacks. The result is perturbed with the
minimal amount of noise required to achieve DDP, irrespectively of the expected number
of dishonest users and computation parties. Hence, our protocol provides optimal
utility and resistance to answer pollution. We also provide mechanisms to tackle the
orthogonal problem of ensuring that the protocol only accepts client inputs that are
contained in a set of valid answers.

Efficiency. We implemented the system and conducted a performance evaluation,
demonstrating the practicality of our approach. We find the overheads introduced by
our privacy-preserving mechanisms to be acceptable for the data aggregation scenarios.
Importantly, the client does not have to perform any expensive computation: she just
has to provide each computation party with a share of her data and can then go offline,
which makes this approach suitable even for mobile devices. Furthermore, PrivaDA
supports a large number of clients without any significant performance penalty. Our
implementations provide a clear interface for developers to easily integrate PrivaDA in
a privacy-preserving data aggregation scenario.

Outline. The paper is organized as follows: § 2 gives some necessary background
information on DP and on SMPCs for arithmetic operations; § 3 presents our archi-
tecture and our algorithms for three query sanitization mechanisms; § 4 provides an
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instantiation of the differentially private algorithms with efficient SMPCs; § 5 analyzes
the security of these protocols and § 6 investigates their performance; § 7 illustrates
the flexibility of our architecture by showing three use cases for PrivaDA; § 8 concludes
and gives directions for future research. More details, additional information on the
related work, and proofs are provided in the appendix.

2 Background

We now present the concept of differential privacy and the cryptographic building
blocks that PrivaDA builds on.

Differential Privacy (DP). Intuitively, a query is differentially private if it behaves
statistically similarly on all databases D,D′ differing in one entry, written D ∼ D′.
This means that the presence or absence of each individual database entry does not
significantly alter the result of the query. The definition of DP is parameterized by a
number ε, which measures the strength of the privacy guarantee: the smaller ε, the
smaller the risk to join the database.

Definition 1 (Differential Privacy [26]) A randomized function f : D → R is ε-
differentially private iff for all databases D,D′ such that D ∼ D′ and every set S ⊆ R,
it holds that Pr [f(D) ∈ S] ≤ eε · Pr [f(D′) ∈ S].

A deterministic query can be made differentially private by perturbing its result with
noise. We describe three popular perturbation mechanisms below. An important in-
sight is that the required amount of noise depends on the query: the more a single
entry affects the query result, the stronger the perturbation has to be. This can be
expressed using the notion of sensitivity of queries, which measures how much a query
amplifies the distance between two inputs.

Definition 2 (Sensitivity [28]) The sensitivity ∆f of a query f : D → R is defined
as ∆f = max∀D,D′.D∼D′ |f(D)− f(D′)|.

Intuitively, queries of low sensitivity map nearby inputs to nearby outputs. For
instance, the query “how many students like the ’Security’ lecture?” has sensitivity 1,
since adding or removing one entry affects the result by at most 1.

Laplace noise. The most commonly used sanitization mechanism for queries returning a
numerical result is the Laplace mechanism [28], i.e., the addition of random noise drawn
according to a Laplace distribution Lap(λ) to the correct query result. As shown by
Dwork et al. [28], this mechanism provides ε-DP, if the parameter λ is set to ∆f

ε . The
distribution is both parameterized by the sensitivity of the query and the privacy value
ε.

Discrete Laplace noise. In some scenarios, it is necessary for a query and its sanitization
to return an integer result, e.g., to enable future cryptographic operations based on
discrete groups on the result. To this end, Ghosh et al. [35] proposed the discrete
Laplace mechanism (also called geometric mechanism). It is defined by adding a random
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integer drawn according to the discrete Laplace distribution DLap(λ) [35], also known
as the symmetric geometric distribution, to the correct query result. The discrete
Laplace mechanism provides ε-DP if the parameter λ is set to e

− ε
∆f [19]. Again, the

distribution is both parameterized by the sensitivity of the query and the privacy value
ε.

Exponential mechanism. There exist many scenarios in which queries return non-
numerical results (e.g., strings or trees). For instance, consider the query “what is
your favorite lecture?”. For such queries, the addition of noise either leads to nonsen-
sical results or is not well-defined. To address this issue, McSherry and Talwar [44]
proposed the so-called exponential mechanism, which considers queries on databases D
that are expected to return a query result a of an arbitrary type R. For our purpose
we consider the range R to be finite, e.g., the set of lectures offered by a university. We
refer to each a ∈ R as a candidate. The mechanism assumes the existence of a utility
function q : (D×R)→ R that assigns a real valued score to each possible input-output
pair (D, a), which measures the quality of the result a w.r.t. input D. The higher
such a score, the better (i.e., more exact) the result. The mechanism εεq(D) aims at
providing the “best” possible result a ∈ R, while enforcing DP.

Definition 3 (Exponential Mechanism [44]) For all q : (D × R) → R the
randomized exponential mechanism εεq(D) for D ∈ D is defined as εεq(D) :=

return a ∈ R with probability proportional to eεq(D,a).

We now formally state the privacy guarantees of the above mechanisms.

Theorem 1 (DP of Mechanisms [19,28,44]) For all queries f : D → R, g : D →
Z, and q : (D×R)→ R it holds that the queries f(x)+Lap(∆f

ε ) and g(x)+DLap(e
− ε

∆f )

and the mechanism ε
ε

2∆q
q (D) are ε-differentially private.

Alternative approaches to privacy. In this work we focus on the notion of differential
privacy, but for completeness, we refer to some recent papers that investigate limitations
of this notion [37,43] and propose alternative definitions of privacy for statistical queries
[15,33,42].

Secure Multiparty Computation (SMPC). SMPC enables a set of parties P =
{P1, P2, . . . , Pβ} to jointly compute a function on their private inputs in a privacy-
preserving manner [53]. More formally, every party Pi ∈ P holds a secret input value xi,
and P1, . . . , Pβ agree on some function f that takes β inputs. Their goal is to compute
and provide y = f(x1, . . . , xβ) to a recipient while making sure that the following two
conditions are satisfied: (i) Correctness: the correct value of y is computed; (ii) Secrecy:
the output y is the only new information that is released to the recipient (see § 5 for a
formal definition).

Although the feasibility of SMPC in the computational setting as well as in the
information theoretic one is known for more than 25 years, dedicated work to optimize
secure realizations of commonly used arithmetic operations has started only in the
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last few years [9, 14, 18, 23, 31]. However, most of these realizations perform limited
SMPC arithmetic operations over input elements belonging only to finite fields [23]
or integers [31], and they are thus not well-suited or sufficient for DDP mechanisms.
In contrast, we build on SMPCs for algorithms on fixed point numbers [18] and a
recent work by Aliasgari et al. [9], who presented SMPC arithmetic algorithms over
real numbers represented in floating point form. They also went ahead to propose
SMPC protocols for complex tasks such as logarithm and exponentiation computations,
and conversion of numbers from floating point form to fixed point or integer form and
vice-versa.

Our work starts by observing that their logarithm and exponentiation computations
SMPC protocols, combined with the SMPC schemes for the basic integer, fixed point,
and floating point number operations, pave the way for a practical design of various
perturbation mechanisms for DDP in a completely distributed manner. Nevertheless,
to be suitable for our design, we have to enhance and implement this large array of
protocols to work against a malicious adversary.

Notations. We assume that secret sharing and the basic SMPC operations take place
over a field Fq. Let [x] denotes that the value x ∈ Fq is secret-shared among P1, . . . , Pβ
such that any d(β + 1)/2e of those can compute x using the reconstruction Rec protocol.
In some steps of our protocols, we employ the sharing [x]β, which requires participation
from all β parties to reconstruct x. The former is called (β, d(β + 1)/2e) secret sharing,
while the latter is called (β, β) secret sharing. Note that [x] + [y], [x] + c, and c[x] can
be computed by each Pi locally using her shares of x and y, while the computation of
[x][y] is interactive for (β, d(β + 1)/2e) and impossible for (β, β) secret sharing.

Basic SMPC protocols. The following SMPC protocols [9, 18, 23, 31] are used for our
DDP mechanisms.

1. The protocol [r]← RandInt(k) allows the parties to generate shares [r] of a random
k-bit value r (i.e., r ∈[0, 2k)) without interactive operations [23].

2. The protocols [a] ← IntAdd([a1], [a2]) and [a] ← IntScMul([a1], α) allow for the
addition of two shared integers and the multiplication of a shared integer with a
scalar respectively, returning a shared integer.

3. The protocols [b] ← FPAdd([b1], [b2]) and [b] ← FPScMul([b1], α) allow for the
addition of two shared fixed point numbers and the multiplication of a shared
fixed point number with a scalar respectively, returning a shared fixed point
number.

4. The protocols FLMul, FLDiv, and FLAdd can be used to multiply, divide, or add
two shared floating point numbers respectively. The output is a shared floating
point number.

5. The conversion protocols FL2Int (float-to-int), Int2FL (int-to-float), FL2FP (float-
to-fixed-point), and FP2FL (fixed-point-to-float) allow us to convert numbers rep-
resented as integers, floating point, or fixed point to another one of these repre-
sentations.
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6. The exponentiation protocol FLExp2 takes a shared floating point number [r] as
input and returns the shared floating point number corresponding to [2r].

7. The logarithm computation FLLog2 takes a shared floating point number [r] and
either returns the shared floating point number corresponding to [log2 r] or an
error (for r ≤ 0).

8. The protocol FLRound takes a shared floating point value [r] as input and operates
on two modes (given as an additional argument). If mode = 0 then the protocol
outputs the floor [brc], otherwise, if mode = 1 then the protocol outputs the ceil
[dre]. The output is a shared floating point number.

9. The protocol FLLT allows us to compare two shared floating point numbers and
returns [1] if the first operand is less than the second, [0] otherwise.

For the exact complexities of the above SMPC protocols, we refer to § A, Table 6.
Intuitively, additions and scalar multiplications for both integers and fixed point values
are non-interactive and consequently very fast, while for floating point values, the algo-
rithms require communication complexity linear in the size of floating point significant.
Floating point additions are more costly than even their multiplication counterparts.
As expected, the exponentiation and logarithm algorithms are also the most costly and
require communication quadratic in the size of significants. Note that these complexi-
ties can be significantly reduced using pre-computation and batched processing [9].The
relative efficiency of these SMPC schemes plays a fundamental role in our design.

3 The PrivaDA Architecture

In this section we present the PrivaDA architecture. We first give a general overview
of the setup and then present three mechanisms for achieving DP.

The fundamental challenge we had to overcome in order to provide SMPCs for the
three noise mechanisms lies in providing SMPC support for drawing random numbers
according to various probability distributions. Standard arithmetic SMPC suites we
considered only offer support for drawing uniformly random integers. As we will show
in § 4, a SMPC for drawing a uniformly random integer can be used to encode the
drawing of a uniformly random number between 0 and 1 (U(0,1]). We thus focussed our
efforts on finding an encoding that reduces the problem of generating noise according
to the distributions employed in three popular sanitization mechanisms to the drawing
of a seed from U(0,1].

Setting. We consider a scenario with n users, β computation parties (typically β = 3,
but it can be greater), and an aggregator. Each user Pi has a private input Di from
some domain D. The aggregator would like to compute some aggregate statistics about
the users’ private inputs, represented by the function f : Dn → R. The range R of
f may be a set of numerical values, but not necessarily. The computation parties
are responsible for computing and perturbing the aggregate result, which is eventually
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P1

Pn

C1

Cβ

Aggregator

...

[D1]β

[D1]1

[Dn]1

[Dn]β

[≈f(D1,...Dn)]1

[≈f(D1,...Dn)]β

≈f(D1,...Dn)

Figure 1: Protocol Flow

returned to the data aggregator. System assumptions.The users communicate with

the computation parties through secure and authenticated channels. Furthermore, the
computation parties are pair-wise connected by secure authenticated channels. The
users provide the computation parties with shares of their data and can then go offline.
The computation parties instead engage in an interactive protocol. The communication
among them can be made asynchronous using a bulletin board, which can be securely
and efficiently implemented using standard techniques such as [10,50].

Privacy goals. The aggregate result should be differentially private and neither the
aggregator, nor the computation parties, nor the users should learn any further infor-
mation about the individual users’ data.

Attacker model. The data aggregator as well as the users may be corrupted and collude.
The SMPC protocols we adopt for the realization of our approach are based on secret
sharing: such SMPCs are secure in the malicious setting (i.e., the computation parties
may try to deviate from the protocol) but, for certain arithmetic operations, they
assume the majority of the computation parties not to collude. We could in principle
adopt other kinds of SMPC protocols that do not require this assumption [14, 40, 54],
but they are currently less efficient.

Protocol Overview. The protocol proceeds in three steps: (i) The users provide the
computation parties with shares of their inputs.2 (ii) The computation parties run the
SMPC protocol to compute the aggregate statistics and perturb the result. (iii) Each
computation party gives the aggregator its share of the result, which is reconstructed
by the aggregator.

The protocol flow is depicted in Figure 1. In the following we describe three dif-
ferent algorithms to compute queries sanitized with the Laplace, discrete Laplace, and
exponential mechanism respectively. For easing the presentation, we consider a class of
queries for which f(D1, . . . , Dn) = f(D1) + . . .+ f(Dn). Other arithmetic queries can

2Our work focusses on guaranteeing the privacy of the user data. To solve the orthogonal problem
of pollution attacks and to prevent malicious users from entering wildly incorrect input shares, we can
use ZK range proofs [16] (cf. § 4).
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In: d1, . . . , dn; λ = ∆f
ε

Out: (
n∑
i=1

di) + Lap(λ)

1: d =
n∑
i=1

di

2: rx ← U(0,1]; ry ← U(0,1]

3: rz = λ(ln rx − ln ry)
4: w = d+ rz
5: return w

(a) LM

In: d1, . . . , dn; λ = e−
ε

∆f

Out: (
n∑
i=1

di) + DLap(λ)

1: d =
n∑
i=1

di

2: rx ← U(0,1]; ry ← U(0,1]

3: α = 1
ln λ = −∆f

ε
4: rz = bα(ln rx)c −
bα(ln ry)c

5: w = d+ rz
6: return w

(b) DLM

In: d1, . . . , dn; a1, . . . , am;
λ = ε

2
Out: winning ak
1: I0 = 0
2: for j = 1 to m do

3: zj =
n∑
i=1

di(j)

4: δj = eλzj

5: Ij = δj + Ij−1

6: r ← U(0,1]; r′ = rIm
7: k = binary search(r′,≤
, I0, . . . , Im)

8: return ak

(c) EM

Table 1: Algorithms: Sanitization Mechanisms

be implemented in a very similar manner using minor modifications of the presented
algorithms, since modern SMPC schemes provide direct support for a large class of
arithmetic operations. The algorithms described below do not rely on specific SMPCs:
we give one possible efficient instantiation in § 6.

Laplace Mechanism. We now describe an algorithm for calculating the Laplace
mechanism (LM) for n inputs. We use the following mathematical results [5, 25] that
allow us to reduce the problem of drawing a random number according to the Laplace
distribution (Lap) to the problem of drawing a uniformly random number between 0
and 1 (U(0,1]) using the exponential distribution (Exp). It holds that Lap(λ) = Exp( 1

λ)−
Exp( 1

λ), where Exp(λ′) =
− ln U(0,1]

λ′ . Thus,

Lap(λ) = λ(ln U(0,1])− λ(ln U(0,1]). (1)

In particular, we know that λ = ∆f
ε guarantees DP. We thus define our algorithm

for the addition of Laplace noise on n inputs as shown in Table 1a. It takes as input
(i) the n real numbers d1, . . . , dn owned by P1, . . . , Pn respectively, which correspond
to locally executing the query f on each Pi’s database Di (di = f(Di)) and (ii) the
privacy budget parameter λ, set to ∆f

ε to guarantee ε-DP. The algorithm returns the
real w = (

∑n
i=1 di) + Lap(λ) that is computed by summing up all di (line 1), drawing a

random number according to the distribution Lap(λ) (line 2 - 3) using (1), and adding
the sum of the results and the noise (line 4).

Privacy of LM. Since the LM algorithm implements
∑n

i=1 di + λ(ln U(0,1]) −
λ(ln U(0,1]) =

∑n
i=1 di + Lap(λ), by Theorem 1 it follows that LM(d1, . . . , dn, λ) is

ε-differentially private for λ = ∆f
ε , where di = f(Di).

Discrete Laplace Mechanism. We now give an algorithm to compute the dis-
crete Laplace mechanism (DLM) on n inputs. The construction follows similar princi-
ples as the one for the Laplace mechanism that we presented in the previous section.
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Additionally, we rely on the following mathematical results [25, 39] to compute the
discrete Laplace distribution (DLap) by using the link between DLap, the geometric
distribution (Geo), and the exponential distribution (Exp), which can be reduced to
the uniform distribution on the interval (0, 1] (U(0,1]) as shown before. It holds that
DLap(λ) = Geo(1− λ)− Geo(1− λ), where Geo(λ′) = bExp(− ln (1− λ′))c. Thus,

DLap(λ) =

⌊
1

ln λ
ln U(0,1]

⌋
−
⌊

1

ln λ
ln U(0,1]

⌋
. (2)

In particular, for λ = e
− ε

∆f , ε-DP is guaranteed. The algorithm to add discrete Laplace
noise to n inputs is shown in Table 1b. It takes as input (i) the n integer numbers
d1, . . . , dn owned by P1, . . . , Pn respectively, which correspond to locally executing the
query f on each Pi’s database Di (di = f(Di)) and (ii) the privacy budget parameter λ,

which will be set to e
− ε

∆f to guarantee ε-DP. The algorithm returns the integer w =
(
∑n

i=1 di) + DLap(λ), which is computed analogously to the Laplace mechanism, using
(2).

Privacy of DLM. The DLM algorithm implements
∑n

i=1 di +
⌊

1
ln λ ln U(0,1]

⌋
−⌊

1
ln λ ln U(0,1]

⌋
=
∑n

i=1 di+ DLap(λ). By Theorem 1, DLM(d1, . . . , dn, λ) is ε-

differentially private for λ = e
− ε

∆f , where di = f(Di).

Exponential Mechanism. Our algorithm to compute the exponential mechanism [44]
(EM) for n inputs, is inspired by [8], which is however an ad-hoc protocol that is
constrained to a 2-party setting. Here, the challenge lies in computing the exponential
mechanism in an n-party setting and make it work in the adversarial setting we consider.

Inputs and outputs. The algorithm to compute the EM on the join of n databases is
presented in Table 1c. It outputs the candidate a ∈ R (where |R| = m ∈ N), which
is the result of locally executing the desired query f on the databases D1, . . . , Dn that
are under the control of the participants P1, . . . , Pn respectively and sanitizing the joint
result using the exponential mechanism. The algorithm takes the following inputs: (i)
the data sets d1, . . . , dn belonging to the participants P1, . . . , Pn respectively, (ii) the
list of candidates a1, . . . , am, and (iii) the privacy parameter λ, which will be set to ε

2∆q
in order to guarantee ε-DP. For the sake of simplicity, we assume each data set di ∈ D
to be a histogram that is the result of locally executing f(Di). Each histogram is a
sequence of m natural numbers z1, . . . , zm that correspond to the frequency of candi-
dates a1, . . . , am ∈ R. For instance, for the query f := ”What is your favorite lecture?”
the sequence of candidates a1, . . . , a5 might be Algebra, Logic, Security, Cryptography,
Java and the individual data set d2 of student P2 who prefers the lecture Security is
a histogram of the form 0, 0, 1, 0, 0. The algorithm outputs the winning candidate ak
drawn according to εεq(d1, . . . , dm).

Utility function. Our approach is general and can support any arithmetic utility
function. For the sake of presentation, we focus on the following utility function
q((z1, . . . , zm), ai) = zi for all histograms d = (z1, . . . , zm) and candidates a1, . . . , am,
returning the frequency zi of candidate ai stored in d. For instance, in the above ex-
ample q(d2,Security) = 1 and q(d2, ai) = 0 for all candidates ai, where i ∈ {1, 2, 4, 5}.
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Since ∆q = 1 it can be omitted from the algorithm. The privacy parameter λ is thus
set to ε

2 .

Random variable. Our goal is to compute the exponential mechanism εεq(D) for a
discrete range R, where |R| = m. The probability mass [8, 44] for the exponential

mechanism is defined as Pr
[
εεq(D) = a

]
= eεq(D,a)∑m

j=1 e
εq(D,aj) . As pointed out by Alhadidi et

al. [8], drawing a random value according to this distribution corresponds to mapping
the above defined probability mass onto the interval (0, 1] and drawing a random num-
ber r in (0, 1] to select the interval of the winning candidate. Formally, r ← U(0,1] and

r ∈ (
∑j−1

k=1 Pr
[
εεq(D) = ak

]
,
∑j

k=1 Pr
[
εεq(D) = ak

]
] corresponds to aj ← εεq(D). For

instance, assume Pr
[
εεq(D) = a1

]
= 0.3 and Pr

[
εεq(D) = a2

]
= 0.7. We draw a random

number r from (0, 1] and check whether r is in interval (0, 0.3] or in interval (0.3, 1]. In
this example, the drawing of 0.86← U(0,1] corresponds to a2 ← εεq(D).

It is easy to see that by multiplying with S :=
∑m

j=1 e
εq(D,aj) the check

r ∈ (
∑j−1

k=1 Pr
[
εεq(D) = ak

]
,
∑j

k=1 Pr
[
εεq(D) = ak

]
] is equivalent to r · S ∈

(
∑j−1

k=1 e
εq(D,ak),

∑j
k=1 e

εq(D,ak)], since Pr
[
εεq(D) = a

]
· S = eεq(D,a). To optimize com-

plexity, our algorithm will compute the exponential mechanism using the latter ver-
sion, i.e., by drawing a random number r ← U(0,1] and then checking r · S ∈
(
∑j−1

k=1 e
εq(D,ak),

∑j
k=1 e

εq(D,ak)] and returning the candidate ak for which this checks
succeeds. Thus, our main effort lies in computing the necessary interval borders
(
∑j−1

k=1 e
εq(D,ak),

∑j
k=1 e

εq(D,ak)].

Algorithm. Our algorithm consists of the following steps3: (i) Initialize the interval
border I0 (line 1). (ii) Compute the joint histogram d = d1 + . . . + dn (line 3) by
adding the frequencies for each individual candidate. (iii) Compute interval borders
for candidates (line 4 - 5). (iv) Draw a random value r in (0, 1] (line 6) and multiply
this value by In =

∑m
j=1 e

εq(D,aj), resulting in the scaled random value r′. (v) Check
into which of the intervals (Ij−1, Ij ] the random value r′ falls (line 7) by using binary
search that returns k such that Ik−1 < r′ ≤ Ik. (vi) Return the winning candidate ak
(line 8).

Privacy of EM. The EM algorithm implements the join of the individual n his-
tograms, the utility function q as defined above, and the drawing of a random value
according to ελq (d1 + . . . + dn), which is soundly encoded as explained above. Thus,

EM(d1, . . . , dn, a1, . . . , am, λ) computes ελq (d1 + . . .+ dn), where q has sensitivity 1 and
by Theorem 1 it follows that EM(d1, . . . , dn, a1, . . . , am, λ) is ε-differentially private for
λ = ε

2 , where di = f(Di).

3Depending on the instantiation of the SMPCs, the steps might be slightly modified, or type con-
versions added, to provide the best efficiency. The steps presented in this work are designed so as to
get the best efficiency based on SMPC schemes employed in PrivaDA.
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4 Instantiation

In this section, we instantiate the three mechanisms described in the previous section.
A technical challenge we had to face was to identify, among all possible instantiations
(based, e.g., on different type conversions), the most efficient one based on the currently
available SMPC schemes (cf. § 2). The protocols we propose to compute the distributed
Laplace, the distributed discrete Laplace, and the distributed exponential mechanism
are given in Tables 2, 3, and 4 respectively, and are explained below.

Number Representation. For floating point form, each real value u is represented
as a quadruple (v, p, z, s), where v is an `-bit significand, p is a k-bit exponent, z is a
bit which is set to 1 when the value u = 0, s is a sign bit, and u = (1−2s) ·(1−z) ·v ·2p.
Here, the most significant bit of v is always set to 1 and thus v ∈ [2`−1, 2`). The k-bit
signed exponent p is from the range Z〈k〉 = (−2k−1, 2k+1). We use γ to denote the
bit-length of values in either integer or fixed point representation, and f to denote the
bitlength of the fractional part in fixed point values. Every integer value x belongs
to Z〈γ〉 = (−2γ−1, 2γ+1), while a fixed point number x is represented as x̄ such that

x̄ ∈ Z〈γ〉 and x = x̄2−f . Finally, it is required that k > max(dlog(`+ f)e , dlog(γ)e)
and q > max(22`, 2γ , 2k). For ease of exposition, we assume that γ = 2` for integers
and fixed point numbers, and that f = γ

2 for fixed point numbers.

Input Distribution and Output Reconstruction. We assume that prior to the
computation the users P1, . . . , Pn create β shares of their respective integer or fixed
point inputs d1, . . . , dn in the (β, β)-sharing form and distribute them amongst the β
computation parties C1, . . . Cβ, so that each party Ck holds a share of each input value
[di], for k ∈ {1, . . . , β} and i ∈ {1, . . . , n}.

Notice that the input values are either integers or fixed point numbers and they
are only subject to addition operations. Therefore, for security against β − 1 (instead
of bβ−1

2 c) compromised parties, we perform (β, β) sharing for input values to obtain
[·]β. For DP noise generation, we still rely on the honest majority assumption and

correspondingly use the usual (β, dβ+1
2 e) sharing. After the parties C1, . . . , Cβ jointly

computed the shared result [w]β of the sanitization mechanism, the parties collaborate
to reconstruct the result w as w = Rec([w]β).

General Overview. Intuitively, the instantiation for the most part unfolds the math-
ematical operations used in the algorithms presented in § 3 and replaces them by the
corresponding SMPCs for arithmetic operations listed in § 2.

Additions for both integers and fixed point numbers are very fast, while for float-
ing point values, the protocol is costly. We thus choose the n shared data inputs
[d1], . . . , [dn] to the mechanisms to be fixed point or integer numbers respectively to
lower the cost of adding them together to yield the joint unperturbed query result
[d1] + . . .+ [dn]. 4 We compute the noise values in floating point form as the required
logarithm and exponentiation operations are only available for distributed floating point
arithmetic. We use the conversion operations FP2FL, FL2Int, Int2FL whenever neces-

4As we pointed out before, this also allows us to rely on (β, β) sharing for input values.
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In: Shared fixed point form (γ, f) inputs [d1]β , . . . , [dn]β ; λ = ∆f
ε

Out: w = (
n∑
i=1

di) + Lap(λ) in the fixed point form

1: [d]β = [d1]β
2: for i = 2 to n do
3: [d]β = FPAdd([d]β , [di]β)
4: [rx] = RandInt(γ + 1); [ry] = RandInt(γ + 1)
5: 〈[vx], [px], 0, 0〉 = FP2FL([rx], γ, f = γ, `, k)
6: 〈[vy], [py], 0, 0〉 = FP2FL([ry], γ, f = γ, `, k)
7: 〈[vx/y], [px/y], 0, 0〉 = FLDiv(〈[vx], [px], 0, 0〉, 〈[vy], [py], 0, 0〉)
8: 〈[vln], [pln], [zln], [sln]〉 = FLLog2(〈[vx/y], [px/y], 0, 0〉)
9: 〈[vz], [pz], [zz], [sz]〉 = FLMul( λ

log2 e
, 〈[vln], [pln], [zln], [sln]〉)

10: [z] = FL2FP(〈[vz1 ], [pz1 ], [zz1 ], [sz1 ]〉, `, k, γ)
11: [w]β = FPAdd([d]β , [z])
12: return w = Rec([w]β)

Table 2: Protocol: Distributed LM

In: Shared integer number (γ) inputs [d1]β , . . . , [dn]β ; λ = e−
ε

∆f ; α = 1
lnλ·log2 e

Out: integer w = (
n∑
i=1

di) + DLap(λ)

1: [d]β = [d1]β
2: for i = 2 to n do
3: [d]β = IntAdd([d]β , [di]β)
4: [rx] = RandInt(γ + 1); [ry] = RandInt(γ + 1)
5: 〈[vx], [px], 0, 0〉 = FP2FL([rx], γ, f = γ, `, k)
6: 〈[vy], [py], 0, 0〉 = FP2FL([ry], γ, f = γ, `, k)
7: 〈[vlnx], [plnx], [zlnx], [slnx]〉 = FLLog2(〈[vx], [px], 0, 0〉)
8: 〈[vlny], [plny], [zlny], [slny]〉 = FLLog2(〈[vy], [py], 0, 0〉)
9: 〈[vαlnx], [pαlnx], [zαlnx], [sαlnx]〉 =

FLMul(α, 〈[vlnx], [plnx], [zlnx], [slnx]〉)
10: 〈[vαlny], [pαlny], [zαlny], [sαlny]〉 =

FLMul(α, 〈[vlny], [plny], [zlny], [slny]〉)
11: 〈[vz1 ], [pz1 ], [zz1 ], [sz1 ]〉 =

FLRound(〈[vαlnx], [pαlnx], [zαlnx], [sαlnx]〉, 0)
12: 〈[vz2 ], [pz2 ], [zz2 ], [sz2 ]〉 =

FLRound(〈[vαlny], [pαlny], [zαlny], [sαlny]〉, 0)
13: [z1] = FL2Int(〈[vz1 ], [pz1 ], [zz1 ], [sz1 ]〉, `, k, γ)
14: [z2] = FL2Int(〈[vz2 ], [pz2 ], [zz2 ], [sz2 ]〉, `, k, γ)
15: [w]β = IntAdd([d]β , IntAdd([z1],−[z2]))
16: return w = Rec([w]β)

Table 3: Protocol: Distributed DLM

sary.
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In: [d1], . . . , [dn]; the number m of candidates; λ = ε
2

Out: m-bit w, s.t. smallest i for which w(i) = 1 denotes winning candidate ai
1: I0 = 〈0, 0, 1, 0〉
2: for j = 1 to m do
3: [zj ]β = 0
4: for i = 1 to n do
5: [zj ]β = IntAdd([zj ]β , [di(j)]β)
6: 〈[vzj ], [pzj ], [zzj ], [szj ]〉 = Int2FL([zj ]β , γ, `)
7: 〈[vz′j ], [pz′j ], [zz′j ], [sz′j ]〉 =

FLMul(λ · log2 e, 〈[vzj ], [pzj ], [zzj ], [szj ]〉)
8: 〈[vδj ], [pδj ], [zδj ], [sδj ]〉 =

FLExp2(〈[vz′j ], [pz′j ], [zz′j ], [sz′j ]〉)
9: 〈[vIj ], [pIj ], [zIj ], [sIj ]〉 = FLAdd(〈[vIj−1

], [pIj−1
],

[zIj−1 ], [sIj−1 ]〉, 〈[vδj ], [pδj ], [zδj ], [sδj ]〉)
10: [r] = RandInt(γ + 1)
11: 〈[vr], [pr], 0, 0〉 = FP2FL([r], γ, f = γ, `, k)
12: 〈[v′r], [p′r], [z′r], [s′r]〉 =

FLMul(〈[vr], [pr], 0, 0〉, 〈[vIm ], [pIm ], [zIm ], [sIm ]〉)
13: jmin = 1; jmax = m
14: while jmin < jmax do
15: jM = b jmin+jmax

2 c
16: if FLLT(〈[vIjM ], [pIjM ], [zIjM ], [sIjM ]〉, 〈[v′r], [p′r], [z′r], [s′r]〉) then
17: jmin = jM + 1 else jmax = jM
18: return wjmin

Table 4: Protocol: Distributed EM

Random Number Generation. As we have seen in the previous section, our algo-
rithms rely heavily on the generation of a random number in the interval (0, 1] drawn
according to the uniform distribution U(0,1]. Unfortunately, the SMPC suite we consider
does not include such a function. Hence we devised an SMPC protocol that is based on
the idea of encoding such a random number generation using the primitive RandInt for
the generation of a random integer (e.g., cf. steps 4 and 5 in Table 2. We first generate
a shared (γ + 1)-bit integer [rx] using the SMPC primitive RandInt. We then consider
this integer to be the fractional part of fixed point number, whose integer part is 0 (by
choosing f = γ). Afterwards, the fixed point number is converted to floating point
by using the function FP2FL and disregarding the shared sign bit. Notice that strictly
speaking, this generates a random number in [0, 1). We can achieve a transition to the
expected interval (0, 1] by slightly modifying the conversion primitive FP2FL such that
the shared [0] is replaced by the sharing of [1] in step 3 [9, § 5]. We could avoid the
modification of FP2FL and instead transition into the desired interval by subtracting
the random number from 1, but this requires an additional costly addition step.

Exponentiation and Logarithm. The work by Aliasgari et al. [9] provides SMPCs
for computing exponentiation with base 2 (FLExp2) and logarithm to base 2 (FLLog2).
Since we often require exponentiation and logarithm to a base b 6= 2, we use the
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following mathematical properties ba = 2a(log2 b) and logb x = log2 x
log2 b

to compute expo-
nentiation and logarithm for any base b. For instance, steps 8 - 9 in Table 2 and steps
7 - 8 in Table 4 use the above equations to compute logarithm and exponentiation to
base e respectively.

Distributed (Discrete) Laplace Mechanism. The protocols to compute the dis-
tributed Laplace and distributed discrete Laplace mechanism are shown in Tables 2
and 3 respectively. While the former expects fixed point numbers as inputs, the latter
expects integers. Both protocols follow along the same lines, but while the Laplace
mechanism can use the simplification ln rx − ln ry = ln rx

ry
and thus reduce the number

of necessary logarithm operations FLLog2 as well as the number of follow-up operations,
this is not possible for its discrete counterpart due to the floor operations FLRound.

Distributed Exponential Mechanism. The protocol to compute the distributed
exponential mechanism using SMPCs is presented in Table 4. Each shared input [di]
consists of an integer array of size m, representing the histogram of participant Pi. The
instantiation follows the steps of the algorithm presented in Table 1c in § 3 by using the
insights and techniques we presented in this section. We straightforwardly implement
the binary search to find the winning interval/candidate in steps 13-17. Note that
we need a slightly simplified version of the FLLT protocol that outputs a value {0, 1}
that does not need to be shared, thus allowing us to output wjmin immediately with-
out reconstruction, which would require additional interactions. We can also improve
performance by running m instances of steps 3-8 in parallel.

Mechanisms in the Malicious Setting. In order to achieve DP against malicious
computation parties, we had to strengthen the SMPC protocols so as to make them
resistant to computation parties deviating from the protocol [16, 34]. Intuitively, to
maintain security, one has to enforce the following TWO additional properties: (i) The
protocol-instance observations of honest parties are consistent with each other; (ii)
Every party proves that each step of its computation was performed correctly.

Given the real-world impracticality of information-theoretically secure channels and
subsequently information-theoretically secure SMPC protocols, in the malicious setting
we shift to the computational setting. In particular, we employ a computational verifi-
able secret sharing scheme (VSS) [12,22,48] instead of the basic secret sharing scheme
to achieve the first property. For the second property, we introduce zero-knowledge
(ZK) proofs such that a party can prove that a correct secret value is shared among
the parties [34] and that shared secret values satisfy some mathematical conditions
(e.g., they are in a pre-defined range) [16]. We note that these two changes are not suf-
ficient to maintain liveness: compromised parties may crash to stop the computation.
Although a stronger resiliency condition of β ≥ 3t+1 (instead of β ≥ 2t+1) can ensure
the protocol completion, the honest parties can always determine which parties crashed
during a computation and replace those before restarting the protocol. Therefore, for
our implementation, we stick to β ≥ 2t+ 1 parties.

Limitations of Finite-Precision Instantiations. While the theoretical definition of
sanitization mechanisms for DP operates on reals r ∈ R (or integers z ∈ Z), the imple-
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mentations of such mechanisms have to approximate these mathematical abstractions
by finite-precision representations due to the physical limitations of actual machines.
This mismatch has been shown to give rise to several attacks, as shown by Mironov [45]
and Gazeau et al. [32] (cf. Appendix C for more details). The techniques proposed in
these works to prevent such attacks rely on arithmetic operations that can be imple-
mented using our arithmetic SMPCs. This allows us to make PrivaDA immune to these
attacks. For the sake of simplicity, we omitted this extension from our presentation.

5 Security Analysis

In this section we state the security model, conduct a security analysis in the HbC
setting, and discuss how to extend this result to a malicious setting.

We first recall the standard notion of t-secrecy for SMPC, which is formulated
as in [9] except for a small modification to accommodate the computation parties.
The following definitions refer to computation parties C = {C1, . . . , Cβ} engaging in a
protocol Π that computes function y = f(D), where D = D1, . . . , Dn and Di denotes
the input of party Pi and y ∈ R is the output.

Definition 4 (View) Ci’s view consists of its shares {[D]}Ci and its internal ran-
dom coin tosses ri, as well as the messages M exchanged with the other parties dur-
ing the protocol execution induced by the other parties’ random coin tosses h: i.e.,
VIEWΠ(D,h)(Ci) = ({[D]}Ci , ri,M). VIEWΠ(D)(Ci) denotes the corresponding random
function conditioned to the other parties’ coin tosses.

Definition 5 (t-Secrecy) A protocol Π is t-private in the presence of HbC adver-
saries if for each coalition I = {Ci1 , Ci2 , . . . , Cit} ⊂ C of HbC computation parties
of size t < β/2, there exists a probabilistic polynomial time simulator SI such that
{SI({[D]}I , f(D))}≡{VIEWΠ(D,h)(I), y}. Here, {[D]}I =

⋃
C∈I{[D]}C , ≡ denotes in-

distinguishability, VIEWΠ(D,h)(I) the combined view of the parties in I, and h the coin
tosses of the parties in C\I.

Let VΠ be the set of all possible views for the protocol Π. We now formally define
the notion of DDP for protocols, close in spirit to the one introduced in [29]. Here, two
vectors D,D′ ∈ Dn are said to be neighbors if they differ in exactly one coordinate,
which corresponds to the scenario in which exactly one user changes her input.

Definition 6 (ε-DDP) We say that the data sanitization procedure implemented by a
randomized protocol Π among β computation parties C = {C1, . . . , Cβ} achieves ε-DDP
w.r.t. a coalition I ⊂ C of HbC computation parties of size t, if the following condition
holds: for any neighboring input vectors D,D′ ∈ Dn and any possible set S ⊆ VΠ,
Pr[VIEWΠ(D)(I) ∈ S] ≤ eεPr[VIEWΠ(D′)(I) ∈ S] holds.

For the malicious setting, the coalition I of HbC parties in Definitions 5 and 6
is replaced by an equal-sized coalition IM of malicious computationally-bounded (for
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a security parameter κ) parties and the protocol Π is replaced by a computational
protocol ΠM fortified against malicious attackers with the same t-secrecy property. The
above DDP relation changes to an indistinguishability-based computational DDP (IND-
DDP) [19,46] relation with a negligible function negl(κ) such that Pr[VIEWΠM(D)(I

M) ∈
S] ≤ eεPr[VIEWΠM(D′)(I

M) ∈ S] + negl(κ).
We now state our main theorems on ε-DDP in the HbC model, and ε-IND-DDP in

the malicious model and refer the readers to Appendix D for proof sketches.

Theorem 2 (ε-DDP) Let ε > 0. In the HbC setting, our distributed LM, DLM, and
EM protocols achieve ε-DDP w.r.t. any HbC coalition I ⊂ C of size t < β/2.

Theorem 3 (ε-IND-DDP) Let ε > 0 and κ be a sufficiently large security parameter.
In the malicious setting, our distributed LM, DLM, and EM protocols achieve ε-IND-
DDP w.r.t. any malicious coalition IM ⊂ C of size t < β/2, under the strong RSA and
decisional Diffie-Hellman assumptions for parameter κ.

6 Performance Analysis

Aliasgari et al. [9] microbenchmarked the performance for most of the required arith-
metic SMPC protocols in the HbC setting for three computation parties. However,
we could not successfully execute several library functions and their library does not
handle the malicious setting. Hence we decided to develop the complete SMPC library
for both the HbC and malicious setting from scratch. Here, we present our SMPC
implementation for integer, fixed point, and floating point arithmetic and measure the
performance costs for the distributed LM, DLM, and EM protocols in the HbC and
malicious settings.

Implementation. We implement all SMPC protocols discussed in §2 as well as our
DDP mechanisms as a multi-threaded object-oriented C++ code to support any num-
ber (≥ 3) of computation parties in the HbC and malicious settings. Our implemen-
tation uses the GMP library [1] for all finite field computations, the Relic toolkit [11]
for elliptic curve cryptographic (ECC) constructions, and the Boost [3] and OpenSSL
[4]libraries for secure communication. Our numeric SMPC libraries can be of indepen-
dent interest to other distributed computation scenarios, and our complete code base
is available online [2].

Experimental Setup. The experiments are performed over an 3.20 GHz (Intel i5)
Linux machine with 16 GB RAM, using a 1 Gbps LAN. We run experiments for the
3-party (i.e., β = 3 and t = 1), and 5-party (i.e., β = 5 and t = 2) computation setting.
The floating point numbers employed in the experiments have a bit-length of ` = 32 for
significands and k = 9 for (signed) exponents, which gives a precision of up to 2−256.
For integers and fixed point numbers, we use a bit-length of γ = 64, where f = 32 for
fixed point numbers. It gives a precision of 2−32 for the latter. The experiments use
finite fields of size 177 bits for integers, 208 bits for fixed point numbers, and 113 bits
for floating point significands. For floating point exponents, as well as sign and zero
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Type Protocol HbC Malicious
β = 3, β = 5, β = 3, β = 5,
t = 1 t = 2 t = 1 t = 2

Float FLAdd 0.48 0.76 14.6 29.2
FLMul 0.22 0.28 3.35 7.54
FLScMul 0.20 0.28 3.35 7.50
FLDiv 0.54 0.64 4.58 10.2
FLLT 0.16 0.23 2.82 6.22
FLRound 0.64 0.85 11.4 23.4

Convert FP2FL 0.83 1.21 25.7 50.9
Int2FL 0.85 1.22 25.7 50.9
FL2Int 1.35 1.91 26.3 54.3
FL2FP 1.40 1.96 26.8 55.3

Log FLLog2 12.0 17.0 274 566
Exp FLExp2 7.12 9.66 120 265

Table 5: Performance of a single 3-party and 5-party SMPC operations measured in
sec

bits, significantly smaller fields suffice. In contrast to [9], we do not employ batching
(which improves average computations times) since our distributed mechanisms call
the individual arithmetic SMPC functions only a few times. To determine an average
performance, we run the experiments ten times for both parameter sets. In Table 5,
we show our results for all required SMPC functionalities in the HbC and malicious
settings; in particular, we include the computation time for single 3-party and 5-party
arithmetic SMPC operations measured in seconds.

Cost Analysis (HbC setting). As expected, the logarithm and exponentiation
SMPC are the most expensive operations, and they will drive our distributed mech-
anism cost analysis. Our protocols also use Rec, IntAdd, FPAdd, RandInt SMPC, but
we do not include them in Table 5 as they are local operations that can be performed
significantly faster than the rest of the protocols.

Next, we determine the average performance costs for our distributed LM, DLM, and
EM protocols for (β = 3, t = 1) computation parties and 100, 000 users. The distributed
LM protocol has a computation cost of 15.5 sec, while the distributed DLM protocol
requires around 31.3 sec. The better efficiency of the LM mechanism is due to the fact
that we halved the number of costly logarithm operations FLLog2 and necessary follow-
up operations by using the property ln rx − ln ry = ln rx

ry
, which is not possible for its

discrete counterpart due to the necessary floor operations FLRound. The computation
cost of the distributed EM protocol linearly depends on the number m = |R| of result
candidates. For instance, for m = 5, the cost of computation is 42.3 sec.

For larger numbers of computation parties β, one can extrapolate the performance
from our analysis for (β = 3, t = 1) and (β = 5, t = 2). Even for β ≈ 100, we
expect the distributed LM and DLM protocols to take about a few hundred seconds
in the HbC setting. We also compared our experimental results with [9]. We could
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not reproduce their results, possibly due to the introduced memory management and
correctness verifications.

Cost Analysis (Malicious Setting). As expected, the computations times for the
SMPC operations secure against an active adversary are significantly higher (around
15-20 times) than those of the operations secure against an HbC adversary. The av-
erage performance costs for our distributed LM, DLM, and EM protocols for (β = 3,
t = 1) computation parties and 100, 000 users in the malicious setting are as follows:
The distributed LM protocol has an average computation cost of 344 sec, while the
distributed DLM protocol requires 477 sec. The cost of the distributed EM protocol,
for m = 5 result candidates, is 652 sec.

We stress that these operations are performed by computation parties, and that
there are no critical timing restrictions on DDP computations in most real-life scenarios,
such as web analytics. Nevertheless, we expect 1 order of magnitude performance gain
in the HbC as well as the malicious setting by employing high performance computing
servers. Furthermore, since users have to simply forward their shared values to the
computation parties, which is an inexpensive operation (< 1msec in the HbC setting
and a couple of milliseconds in the malicious setting), we believe that these numbers
demonstrate the practicality of PrivaDA even in a setting where clients are equipped
with computationally limited devices, such as smartphones.

7 Application Scenarios

We showcase the flexibility of our architecture by briefly discussing how PrivaDA can
be used to improve the state-of-the-art in three different application scenarios.

Web Analytics. Web analytics consist in the measurement, collection, analysis, and
reporting of Internet data about users visiting a website. For instance, data can include
user demographics, browsing behavior, and information about the clients’ systems. This
information is important for publishers, because it enables them to optimize their site
content according to the users’ interests, for advertisers, because it allows them to
target a selected population, and many other parties, which we will refer to as analysts.

State-of-the-Art. In order to obtain aggregated user information, today, websites com-
monly use third party web analytics services, called aggregators, which however track
individual users’ browsing behavior across the web, thereby violating their privacy.
Newer systems, e.g., a series of non-tracking web analytics systems [7, 20, 21] recently
proposed by Chen et al., provide users with DP guarantees but rely on strong non-
collusion assumptions. Should a collusion happen, not only the noise but also the
individual user’s data would be disclosed.

Protocol design in PrivaDA. The computation parties are operated by third-parties,
which are possibly paid by the aggregator. In order to avoid multiple responses by
each user without relying on a public key infrastructure, which is unrealistic in this
setting, we add an initial step to the protocol. The publisher signs and gives each
visiting user a different token, along with one or more queries and an associated expiry
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Figure 2: Privacy-preserving Web Analytics: Protocol Flow

time (within which the result has to be computed). The user sends the tokens to
the computation parties, together with their answer shares, so that the computation
parties are able to detect duplicates and to discard them before the aggregation. The
users have just to submit their shares and can then go offline. Finally, the support
for a variety of perturbation mechanisms enables the execution of different kinds of
analytical queries. The protocol is depicted in Figure 2.

Anonymous Surveys. A further application scenario consists of anonymous surveys.
In this setting, it is often reasonable to tolerate a little result perturbation in favor of
strong privacy guarantees for the participating users.

State-of-the-Art. ANONIZE [38] is a recently proposed large-scale anonymous survey
system. The authors exemplify it on an anonymous course evaluation service, in which
students grade the courses they attend. However, ANONIZE does not address the
problem that the survey result itself might still leak a lot of information about the
individual user, which differential privacy aims at preventing.

Protocol design in PrivaDA. As compared to ANONIZE, the usage of PrivaDA yields
differential privacy guarantees, besides avoiding the need to design and implement a
complicated ad-hoc protocol. We exemplify the usage of PrivaDA for anonymous sur-
veys on the previously mentioned course evaluation service. Before submitting a grade
for a certain course, students have to authenticate to prove their enrollment in that
class. We envision a public key infrastructure maintained by the university or an anony-
mous credential system used by the professor to grant her students access credentials.
The computation parties will be implemented by mutually distrustful organizations,
yet all interested in the results of the evaluation, such as the student association, the
university administration, and so on.

Traffic Statistics for Anonymous Communication Networks (ACNs). Given
their anonymous nature, it is hard to collect egress traffic statistics from ACNs, such
as Tor, without violating the privacy of users. Such statistics are interesting to both
designers and researchers, which might for instance want to know how much of the
network traffic is made up by people trying to circumvent censorship.

State-of-the-Art. Elahi et al. recently proposed PrivEx [30], a system for collecting
differentially private statistics on ACNs traffic in predefined slots of time (epochs).
Their work provides two ad-hoc protocols that rely on secret sharing and distributed
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decryption respectively. Nevertheless, to tolerate even an HbC adversary PrivEx has
to compromise on the utility or the epoch duration.

Protocol design in PrivaDA. We can easily apply PrivaDA to the problem of collecting
anonymous traffic statistics: we simply let the ACN egress nodes, which relay traffic
between the ACN and the destination websites, count the accesses to the different
destinations that they relayed. After a fixed epoch, they then share their individual
counts among mutually distrustful computation parties (e.g., privacy organizations,
research centers, and service providers), which jointly compute the overall egress traffic
in a privacy-preserving manner with optimal utility.

8 Conclusion and Future Work

Although it is a long-held belief that SMPCs may be used to generically design differ-
entially private data aggregation protocols, such an approach has not been undertaken
so far due to the inefficiency of generic constructions. In this work we demonstrated
the viability of such an approach, by designing an SMPC architecture that constitutes
not only a generic, but also a practical building block for designing a variety of privacy-
preserving data aggregation protocols. In particular, the computational effort on the
client side is negligible, which makes PrivaDA suitable even for computationally lim-
ited devices, such as smartphones. In contrast to previous works, PrivaDA supports a
variety of perturbation mechanisms, offers strong privacy guarantees as well as optimal
utility, and is resistant to answer pollution attacks. Furthermore, PrivaDA can support
a large number of clients without any significant performance penalty.

For the security of certain arithmetic operations, the SMPC schemes we use assume
that the majority of the computation parties are not colluding. This assumption is
present in any secret sharing-based SMPC scheme5. There exist SMPCs based on other
techniques (homomorphic encryption, oblivious transfer, etc.) that do not assume an
honest majority (e.g., [40,54]), but that are currently less efficient. Nevertheless, since
PrivaDA is parameterized over the underlying arithmetic SMPCs, it can take immediate
advantage of the rapid progress in this research field.

As a future work, we indeed intend to investigate the usage of alternative SMPC
schemes and to explore the integration of more sanitization mechanisms. To foster
further progress in this field, we made the implementation of PrivaDA publicly avail-
able [2]: to the best of our knowledge, this is the first publicly available SMPC imple-
mentation that supports a variety of arithmetic operations in the malicious setting.
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A Basic Arithmetic SMPC Protocols

Type Protocol Rounds Interactive Operations
Rand. Generation RandInt 0 0
Reconstruction Rec 1 1
Addition IntAdd 0 0

FPAdd 0 0
FLAdd log `+ log log `+ 27 14`+ (log log `) log `+ (`+ 9) log `+ 9k + 4 log k + 37

Multiplication FLMul 11 8`+ 10
Division FLDiv 2 log `+ 7 2 log `(`+ 2) + 3`+ 8
Scalar IntScMul 0 0
Multiplication FPScMul 0 0

FLScMul 10 8`+ 7
Comparison FLLT 6 4`+ 5k + 4 log k + 13
Conversion Int2FL log `+ 13 log `(2`− 3)− 11

FP2FL log `+ 13 log `(2`− 3)− 10
FL2Int 3 log log `+ 53 27`+ 3(log log `) log `+ 18 log `+ 20k + 19
FL2FP 3 log log `+ 53 27`+ 3(log log `) log `+ 18 log `+ 24k + 17

Rounding FLRound log log `+ 30 15`+ (log log `) log `+ 15 log `+ 8k + 10
Exponentiation FLExp2 12 log `+ log log `+ 27 8`2 + 9`+ ` log `+ (log `) log log `+ 12k + 9
Logarithm FLLog2 13.5`+ 0.5` log `+ 15`2 + 90.5`+ 0.5`(log `)(log log `) +

3 log `+ 0.5` log log `+ 3(log `) log log `+ 0.5`2 log `+ 11.5` log `+
3 log log `+ 146 4.5`k + 28k + 2` log k + 16 log k + 128

Table 6: Complexity of the employed SMPC tasks

Table 6 compares the complexities of the SMPC protocols introduced in § 2. The
complexity of SMPC protocols is generally measured in terms of two parameters: in-
teractive operations and rounds. An interactive operation involves every party sending
a message to every other party, while round complexity measures the number of se-
quential invocations of interactive operations. The additional local computations are
not included in the complexity. Note that the overhead to handle exceptions such as
overflow, underflow, invalid operation, division by zero is not included.
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ID Assumptions Utility (error)

Crypto-scheme &
Perturbation
Mechanism

Adversary
type Kind of queries

RN’10
[49]

#hon. users ≥ γN ,
bidirectional

communication

O(∆
ε ( k

γN )
2
),

w.c.: O(N2)
k = real #hon. users

Paillier scheme,
Lap noise

malicious aggr.,
no failure

sum-statistics for
time-series data

(counting queries)

SCRCS’11
[51] #hon. users ≥ γN

O( ∆
εγ ),

w.c.: O(
√
N)

Pollard’s Rho,
diluted∗ DLap noise HbC aggr. as above

AC’11
[6]

#failures ≤ αN ,
several keys to
store for user

O(∆
ε β(1

2 ,
1

1−α)
−1

),

w.c.: O(β(1
2 , N)

−1
)

modulo-addition
scheme,

Lap noise
malicious aggr.,

failures as above

CSS’12
[19] #hon. users ≥ γN

Õ(ε−1(logN)
1.5

),

w.c: Õ(
√
N(logN)1.5)

Pollard’s Rho ,
diluted DLap noise

HbC aggr.,
failures as above

CRFG’12
[21]

no collusion
aggr.-publ.,

pre-establ. queries,
bidirectional

communication
O(
√

logN
ε )

Goldwasser-
Micali scheme,
binomial noise

HbC aggr.,
malicious publ.

SQL-style queries
(yes/no answers

per buckets)

ACHFG’12
[7] as above

O(∆
ε )

Paillier scheme,
Lap noise as above as above

JK’12
[41]

no collusion
aggr.-auth.

O(∆
ε )

Paillier scheme ,
Shamir’s secret

sharing ,
DLap noise

malicious aggr.,
HbC auth.,

failures
linear queries for
time-series data

PrivaDA

hon. majority
between

computation parties O(∆
ε )

SMPC,
Lap, DLap noise,

Expon. Mech. malicious aggr.
multiple kinds

of queries

∗ Diluted DLap noise: according to a certain probability p it follows the DLap distribution, otherwise it is set to 0.

Table 7: Comparison between the existing DDP schemes

B Detailed Comparison with Related Work

Table 7 compares some of the most important works about DDP with ours. Here,
N denotes the total number of users; ∆ is used to denote the sensitivity of the
respective query (see § 2); the function β(·, ·) is defined β(x, y) = Γ(x)Γ(y)

Γ(x+y) , where

Γ(x) =
∫ +∞

0 xt−1e−xdx; γ is a lower bound on the fraction of honest users that we re-
quire as to guarantee DP; and α is an upper bound on the number of failures (i.e., data
that do not reach the aggregator) the system can accept. For the specifics of how the
noise for sanitization is generated for the individual approaches (i.e., use of Gaussian
or Gamma distributions to generate the Laplace noise) we refer to [36]. We note that
all papers in the table assume some compromised users (or computation parties), that
is, users that follow the protocol correctly but may collude with the aggregator, pass-
ing him some information like the noise they have added or their data. Furthermore,
the table specifies whether third parties, such as data aggregators (aggr.) or website
publishers (publ.), are HbC or malicious (i.e., allowed to deviate from the protocol).

Utility. As the table demonstrates, a central drawback of all fully distributed models
we compare is the poor utility of the result, due to the fact that the amount of noise each
user has to add in order to satisfy privacy guarantees depends on other users’ behaviors
(i.e., the fraction of possibly malicious users and the probability of failure specified by
γ, α, which are supposed to be known in advance and that must not be exceeded so
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as to achieve DP). The more users are falsely assumed to be malicious (i.e., small γ,
large k) the lower the final accuracy in the worst case (w.c.). In PrivaDA, instead, the
noise is generated in a distributed fashion starting from a random seed, which is jointly
computed by the computation parties: differently from the fully distributed models,
the final amount of noise obtained is exactly the one required to achieve DP (i.e., the
utility is optimal), irrespectively of the number of computation parties, the fraction of
honest entities, or the probability of failures.

Non-Collusion. Similarly to [7,21,41], PrivaDA relies on a non-collusion assumption,
but contrary to those approaches we distribute the trust not only amongst two, but
multiple parties (for which it suffices to assume an honest majority). In [41] an exten-
sion to the distributed case is proposed but the authors do not specify a method to
distributively generate the noise. We note that we use mutually distrustful computa-
tion parties to mitigate the computational effort from the users, but that we could in
principle let the users directly execute the perturbation phase if external parties were
to be avoided.

Supported Queries. Another drawback, common to all previous models, is the re-
striction to specific queries and perturbation mechanisms. Most of the models described
above, indeed, consider only counting queries, where the function is limited to weighted
sums or even only supports sums, and use the Laplace or discrete Laplace mechanism
to perturb data. The exponential mechanism, allowing perturbation in case of non
numerical queries, is studied in [8]. They propose a method to securely apply it using
SMPC. However, the system they propose is valid only for a two-party setting, differ-
ently from ours, that instead targets a multiparty scenario. By contrast, PrivaDA does
support all three of the above mechanisms, providing a uniform framework to answer
different kinds of queries in a differentially private manner.

C Limitations of Finite-precision Instantiations

While the theoretical definition of sanitization mechanisms for DP operates on reals
r ∈ R (or integers z ∈ Z), the implementations of such mechanisms have to approximate
these mathematical abstractions by finite-precision representations due to the physical
limitations of actual machines. This mismatch has been shown to give rise to several
attacks, as pointed out by Mironov [45] and Gazeau et al. [32]. Mironov [45] shows that
the irregularities of floating point implementations result in porous Laplace distribu-
tions, thus undermining the privacy guarantees of floating point implementations of this
sanitization mechanism. He proposes the snapping mechanism, which truncates large
values and rounds the final result so as to achieve DP of the implementation. Gazeau
et al. [32] show that, in general, approximation errors of any kind of finite-precision
representation of reals can lead to the disclosure of secrets. They provide a solution
to fix such privacy breaches for a large class of sanitization mechanisms. The solution
is based on the concept of closeness and uses rounding and truncation to guarantee a
limited (but acceptable) variant of DP.
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D Postponed Proof Sketches

D.1 Proof Sketch for Theorem 2

We start our analysis by proving t-secrecy for our protocols and then use this property
to prove ε-DDP. The SMPC arithmetic protocols over integers, fixed and floating point
numbers internally use only two basic SMPC primitives over finite field Fq, namely,
the addition and multiplication primitives for shared secret values from Fq. Due to the
linearity of the secret sharing protocol, addition can be performed locally for n > t;
however, multiplication requires one interaction among all parties for n ≥ 2t + 1. As-
suming secure instances of distributed addition and multiplication protocols over Fq [34]
(and secure protocols built on top of them), Aliasgari et al. [9] have proved the cor-
rectness and t-secrecy properties of the SMPC arithmetic protocols employed in our
mechanisms using Canetti’s composition theorem [17]. More formally, they suggested
that one can build a simulator for their arithmetic SMPC protocols by invoking sim-
ulators for the corresponding building blocks such that the resulting environment is
indistinguishable from the real protocol execution of participants.

The proof of t-secrecy for our protocols follows along the same lines, building a
simulator for each of the distributed DP mechanisms using the simulators for the un-
derlying floating point arithmetic SMPC protocols and the other building blocks, such
that the corresponding environment is indistinguishable from the corresponding real
distributed DP protocol execution.

The correctness and t-secrecy properties of our SMPC protocols allow us to lift the
DP analysis for the LM, DLM, and EM algorithms from § 3 to the corresponding SMPC
protocols. In particular, the correctness property ensures that the result is perturbed
as specified by the LM, DLM, and EM algorithms, while the t-secrecy of the SMPC
arithmetic protocols ensures that no information about user inputs and the noise is
available to the adversary controlling the t compromised computation parties.

D.2 Proof Sketch for Theorem 3

Since the computational verifiable secret sharing (VSS) scheme we use [48] enjoys the
perfect secrecy property, the t-secrecy analysis for the SMPC protocols in the mali-
cious setting remains almost the same as in the HbC setting. Nevertheless, the active
adversary can target the secure communication channels between the honest parties,
whose security relies on the decisional Diffie-Hellman assumption (or another stronger
Diffie-Hellman variant). However, an active adversary can only break channel secrecy
and consequently t-secrecy of SMPC protocols with a negligible probability (in κ).

The correctness of the computational SMPC protocols is also maintained in the
malicious setting up to a negligible probability in the security parameter κ: For a com-
putational VSS scheme, correctness requires the discrete logarithm assumption [48];
zero-knowledge (ZK) range proofs require the strong RSA assumption [16]; and finally,
the ZK proofs for the secure multiplication require the discrete logarithm assump-
tion [34].
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As a result, using the correctness and t-secrecy properties of the computational
SMPC schemes we can lift the DP analysis for the LM, DLM, and EM algorithms
from § 3 to the corresponding SMPC-based protocol by only introducing an additive
negligible factor corresponding to the event that one of the above assumption is broken.
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