
Simon’s Circuit

A Note on Cleverly-Chosen Circuits

Paul Baecher∗

Abstract

Simon mentions in his seminal result separating collision-resistant hash functions from
one-way permutations (EUROCRYPT ’98), that the wrong strategy to sample collisions can
be exploited to invert the permutation. He, however, does not spell out a concrete circuit
that demonstrates this. In this short note, we describe and analyze one such circuit.

1 Introduction

Consider the following two collision-sampling oracles.

Oracle OA takes as input a circuit, samples uniformly at random a point in the domain of the
circuit, and samples a second point (again uniformly) from the set of points that map to
the same output. It returns the two points.

Oracle OB takes as input a circuit and samples uniformly at random from the list of all collisions.
It outputs the collision.

Which one of the oracles can you exploit to invert a one-way permutation?

Simon answers this question in his oracle separation [Sim98], where collision-resistant hash
functions do not exist, because a break oracle simply returns collisions for any circuit input. He
writes [Sim98] on page 4:

For example, an oracle which simply returns a random collision (i.e., a uniformly chosen
entry in the list of colliding pairs) would allow f to be inverted. (The space of collisions can
be manipulated by use of a cleverly chosen query circuit, so that a constant fraction of all
collisions involve an exponentially small fraction of the outputs.)

Put differently, oracle OB is not a good choice. In the remainder of this note, we study such a
“cleverly chosen” circuit—a circuit that allows us to invert a one-way permutation in the presence
of oracle OB. (But of course not in the presence of oracle OA, since Simon shows that no circuit
achieves this.)

Overview Say you would like to invert a one-way permutation π on some given point y = π(x).
Since OB simply samples from a large list of collisions of some circuit C, the main idea is to
make sure that the preimage x under π shows up in the list of collisions so often, that the oracle
returns it with good probability. At the same time, however, we know there cannot be many

∗Darmstadt University of Technology. E-Mail: baecher@cs.tu-darmstadt.de.

1

Domain Collision space

Image

0

Figure 1: Even though only a very small preimage subset maps to the zero point, the collision space is
evenly split between collisions that map to zero and those that do not. The hatched areas encode the
permutation’s preimage x of y.

preimages of C that contain x. Otherwise, oracle OA would be just as useful towards inverting π,
but we know from [Sim98] that this cannot be the case.

A key insight that allows us to balance these two competing constraints is the following. For
any function, the number of preimages k := k(z) for a given image value z leads to roughly
k2 entries in the collision list related to z. This is because all combinations of two preimages
mapping to the same value are feasible collisions. Depending on the exact definition of a collision,
that results in k(k − 1)/2 to k2 pairs. It turns out that this gap, namely k preimages versus k2

collisions, enables us to satisfy both contraints.
Our circuit is essentially the identity function (modulo compression) on 2n+ 1 bits, except

for one special image value 02n; see Figure 1. This value has 2n preimages—a tiny fraction of
the domain—and all of them encode the value x we would like to recover. Yet, the number of
collisions induced by these preimages is 2n2 = 22n, one half of the entire collision space. Hence,
oracle OB returns a collision containing x with constant probability.

2 Collisions

For any function f , the tuple (x0, x1) is called a collision if f(x0) = f(x1). Note that x0 and x1

need not be distinct, as it is the case in [Sim98]. Indeed, if x0 = x1, we call the collision trivial.
Note furthermore that two collisions (x0, x1) and (x1, x0) are considered different if x0 6= x1.

3 The Circuit

Denote by π : {0, 1}n → {0, 1}n a one-way permutation and let y ∈ {0, 1}n. Define the oracle
circuit Cπ

y
: {0, 1} × {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n as

Cπ

y
(b, x, x′) :=

{

(0n, 0n) if π(x) = y,

(x, x′) otherwise.

Clearly, the circuit is compressing.
Let us formally analyze the collision space of the circuit with respect to our definition of a

collision. We begin with the second case of the circuit. This case induces collisions, including
trivial ones, of the form

((b0, x, x
′), (b1, x, x

′))

2

as (b0, b1, x, x
′) ranges over

{0, 1} × {0, 1} ×
(

{0, 1}n \ {π−1(y)}
)

× {0, 1}n.

We have 2 · 2 · (2n − 1) · 2n = 22n+2 − 2n+2 ∈ O(22n) such collisions which we denote by the set
Coll2.

The first case of the circuit induces collisions, again including trivial ones, of the form
(

(b0, π
−1(y), x0), (b1, π

−1(y), x1)
)

where
(b0, x0, b1, x1) ∈ {0, 1} × {0, 1}n × {0, 1} × {0, 1}n.

There are 22n+2 ∈ Θ(22n) collisions of this form; denote these collisions as Coll1.
Finally, there are some collisions that involve both cases. These collisions are of the forms

(

(b0, 0
n, 0n), (b1, π

−1(y), x)
)

, or
(

(b1, π
−1(y), x), (b0, 0

n, 0n)
)

,

where
(b0, b1, x) ∈ {0, 1} × {0, 1} × {0, 1}n.

This accounts for 2 · (2 · 2 · 2n) = 2n+3 ∈ Θ(2n) such collisions in the set Coll12. Note that, by
construction, all sets of collisions are disjoint.

4 Two Collision-Sampling Oracles

Let us now analyze the usefulness of two different collision-sampling strategies OA, OB for inverting
π. Note that the analysis for OA is technically redundant (yet instructive), because it is a special
case of Simon’s main result.

Oracle OA(C
π

y): Oracle OB(C
π

y):

1 (b0, x0, x
′

0)←$ {0, 1} × {0, 1}
n × {0, 1}n 1 X ← {(v, v′) : Cπ

y (v) = Cπ

y (v
′)}

2 z ← Cπ

y (b0, x0, x
′

0) 2 c←$ X

3 X ← {(b, x, x′) : Cπ

y (b, x, x
′) = z} 3 return c

4 (b1, x1, x
′

1)←$ X

5 return ((b0, x0, x
′

0), (b1, x1, x
′

1))

Oracle OA. This oracle first samples a point uniformly in the domain of the circuit and then
samples uniformly a second, colliding preimage. For this sampling process, define event G0 as
“hitting” the first case in the first line, i.e., π(x0) = y. Analogously, define G1 as hitting the first
case in the fourth line, i.e., π(x1) = y. We also define event Z to occur if (x0, x

′

0) = (0n, 0n).
Clearly, the oracle’s answer can only be used to invert the one-way permutation if either G0 or G1

happens: otherwise, the outputs are independent of π. We define this by the event Invert and
observe that

Pr[Invert] = Pr[G0 ∨ G1]

= Pr[G0] + Pr[G1 ∧ ¬G0]

= Pr[G0] + Pr[G1 ∧ ¬G0|Z] Pr[Z] + Pr[G1|¬G0 ∧ ¬Z] Pr[¬G0 ∧ ¬Z]

= Pr[G0] + Pr[G1 ∧ ¬G0|Z] Pr[Z]

≤ Pr[G0] + Pr[Z]

= 2−n + 2−2n.

3

Here we used that Pr[G1|¬G0 ∧ ¬Z] = 0. To see this, note that ¬G0 implies x0 6= π−1(y).
Thus, it follows that Cπ

y
(b0, x0, x

′

0) = (x0, x
′

0) in the second line, and, since ¬Z, we know that
(x0, x

′

0) 6= (0n, 0n). The set of possible colliding points X in the third line hence only contains
(0, x0, x

′

0) and (1, x0, x
′

0); therefore x1 = x0 6= π−1(y), so G1 cannot happen. We conclude that
OA will return a preimage with negligible probability only.

Oracle OB. This oracle samples uniformly from the list of all collisions. For the circuit defined
in the previous section this means that, with probability roughly 1

2
, the oracle will output a

collision from the set Coll1 (or Coll2) because

2n ≈ |Coll12| ≪ |Coll1| ≈ |Coll2| ≈ 22n.

However, each collision from Coll1 contains the value π−1(y), i.e., the unique preimage of y.
Therefore, the oracle can be used to invert π with constant probability.

Remark. The curious reader should convince herself that the same arguments can be made
go through if (a) one does not count trivial collisions (x, x) as proper collisions, and (b) if one
considers collisions as sets {x0, x1} instead of pairs (x0, x1). (Or a combination thereof.)

Acknowledgements

I thank Christina Brzuska, Pooya Farshim, Giorgia Azzurra Marson, and Arno Mittelbach for
valuable comments on earlier versions of this article.

References

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403
of LNCS, pages 334–345. Springer, May / June 1998.

4

