
Using Random Error Correcting Codes in Near-Collision

Attacks on Generic Hash-Functions

Inna Polak?, Adi Shamir??

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science

Rehovot 76100, Israel

Abstract. In this paper we consider the problem of �nding a near-collision with Hamming
distance bounded by r in a generic cryptographic hash function h whose outputs can be
modeled as random n-bit strings. In 2011, Lamberger suggested a modi�ed version of Pollard's
rho method which computes a chain of values by alternately applying the hash function h and
an error correcting code e to a random starting value x0 until it cycles. This turns some (but
not all) of the near-collisions in h into full collisions in f = e ◦ h, which are easy to �nd. In
2012, Leurent improved Lamberger's memoryless algorithm by using any available amount of
memory to store the endpoints of multiple chains of f values, and using Van Oorschot and
Wiener's algorithm to �nd many full collisions in f , hoping that one of them will be an r-
near-collision in h. This is currently the best known time/memory tradeo� algorithm for the
problem.
The e�ciency of both Lamberger's and Leurent's algorithms depend on the quality of their
error correction code. Since they have to apply error correction to any bit string, they want
to use perfect codes, but all the known constructions of such codes can correct only 1 or 3
errors. To deal with a larger number of errors, they recommend using a concatenation of many
Hamming codes, each capable of correcting a single error in a particular subset of the bits,
along with some projections. As we show in this paper, this is a suboptimal choice, which can
be considerably improved by using randomly chosen linear codes instead of Hamming codes
and storing a precomputed lookup table to make the error correction process e�cient. We
show both theoretically and experimentally that this is a better way to utilize the available
memory, instead of devoting all the memory to the storage of chain endpoints. Compared to
Leurent's algorithm, we demonstrate an improvement ratio which grows with the size of the
problem. In particular, we experimentally veri�ed an improvement ratio of about 3 in a small
example with n = 160 and r = 33 which we implemented on a single PC, and mathematically
predicted an improvement ratio of about 730 in a large example with n = 1024 and r = 100,
using 240 memory.

Keywords: hash function, near-collision, random-code, time-memory trade-o�, generic at-
tack

1 Introduction

A hash function h maps an arbitrarily long input into an n-bit digest. Cryptographically
strong hash functions should be indistinguishable from random functions, and in particular
it should be di�cult to �nd collisions (de�ned as pairs (m1,m2) s.t. m1 6= m2 and h (m1) =
h (m2)) in fewer than 2n/2 evaluations of h.

In this paper we consider a weaker notion of collision called r-near-collision, in which
up to r bits in h (m1) and h (m2) are allowed to be di�erent. There are several reasons
why we may want to study such near-collisions. First of all, in many applications such as
the generation of cryptographic keys or MAC's, the standard output of a hash function
is too long, and we use only a subset of its bits. In this case, a near-collision can become
a real collision if the di�ering bits are thrown away. In addition, �nding near-collisions is

? innapolak@gmail.com
?? adi.shamir@weizmann.ac.il

often a useful �rst step when we try to �nd a multi-block collision in a hash function, as
demonstrated in [20,12,18]). By studying the complexity of near-collision attacks on generic
hash functions (which are modeled as random functions), we can get upper-bounds on
the near-collision resistance of any concrete hash-function, but in some cases we can do
much better (see [1,3,15]). Even when we cannot turn such a near-collision attack into a
full collision attack, the mere existence of a better than expected near-collision attack may
su�ce to disqualify a new hash function proposal. Finally, the task of �nding a near-collision
can be used as a more �exible and accurate type of proof-of-work [5,13] than �nding a full
collision since there are more parameters that we can specify in de�ning the computational
task.

Let us now introduce our notation. The �nite �eld whose elements are {0, 1}n is denoted
by Fn2 . We use the notation of dH to describe the Hamming distance function, and ‖‖H for
the Hamming-weight. We call x, y ∈ Fn2 R-close vectors if dH (x, y) ≤ R. The ball of radius
R around x in Fn2 , de�ned as {y|dH (y, x) ≤ R}, is denoted by Bn

R (x). Its volume is denoted
by V n

R , and is de�ned as

V n
R =

R∑
i=0

(
n

i

)
Any r1-near-collision is in particular also an r2-near-collision for every r1 ≤ r2 (when r =

0 it is simply a full-collision). Therefore, the di�culty of �nding r-near-collision decreases as
r increases. However, detecting such a collision as soon as it occurs becomes algorithmically
harder as r increases. The probability of a random pair of points in Fn2 to be r-close is
qnr := V n

r · 2−n. By the birthday paradox, the �rst r-near-collision is thus expected to be
seen after about 1/

√
qnr = 2n/2/

√
V n
r hash evaluations. These evaluations require less than

2n/2 time, but actually �nding the unique near-collision among them requires more than
2n/2 time (since the property of being r-close for r ≥ 1 is not transitive, there is no sorting
order which will always place the nearly colliding values next to each other, see Appendix
A). Note that if we continue to evaluate h on O(2n/2) additional inputs, we expect to have
one full-collision which is very easy to �nd in O(2n/2) time (see [21]), and by de�nition it
will also be an r-near-collision for any r. If we consider both the evaluation of h and the
search step as unit time operations and try to minimize the total time complexity, our goal
is to evaluate h on more points than absolutely necessary in order to make the search part
faster, keeping each one of these complexities below the trivial bound of 2n/2.

When we consider the issue of memory complexity, there are many known algorithms
([6,2,16,17,14]) which use only constant or logarithmic amount of memory in order to �nd a
full collision shortly after it is �rst created. Most of these algorithms are based on Pollard's
rho method, which evaluates a chain of values of h, and uses the fact that any equality
between two values on the chain implies an equality between their successors. Unfortunately,
we cannot directly use this technique to �nd near-collisions, since the h-successors of two
values which nearly collide can be arbitrarily far apart.

In 2011, Lamberger [8] suggested using a error correction code in order to turn some near-
collisions into full collisions, and further studied such constructions in [7,9]. His proposed
algorithm (described in greater detail in Section 2.1) uses a variant of Pollard's rho method
which alternately applies the hash function h and the error correction operation e to some
random initial value x0 until it loops. He then hopes that the two colliding values after
some e will be nearly colliding values after the previous h. In 2012, Leurent [10] extended
Lamberger's algorithm by using Van Oorschot and Wiener's technique[19] to �nd many
simultaneous collisions with an algorithm which can be parallelized. Leurent's algorithm
is not memoryless, and suggests a time-memory tradeo� for the problem of �nding near-

collisions. However, it used the same type of error correction codes that Lamberger used,
along with some bit truncation (which can be viewed as a primitive type of error correction
code whose code-words have zeroes in all the truncated positions).

Note that in standard error correction applications, we only have to correct bit strings
which are in small balls surrounding each code-word, but the union of all these balls can be
a tiny fraction of the whole space and thus we may be unable to change the vast majority of
bit strings into code-words. In our application, we have to e�ciently correct any bit string
provided by h into a nearby codeword, and thus we want to use a covering code in which
the union of all the sets of vectors which are corrected to each code-word exactly covers the
space. A good code should minimize the following two types of errors in the algorithm: Two
outputs of h may be very close to each other but will be missed by the algorithm if they
are corrected by e into two di�erent code-words, or they may be more than r apart but
still mapped by e to the same code-word. The �rst type of error is very common since in a
high dimensional space a random vector x is expected to be at maximal distance from its
associated code-word, and thus even when we change x into a neighboring x′ by a single bit
�ip, it is likely to move further away from the code-word and thus into the region surrounding
a di�erent code-word. The second type of error (which we call a "false alarm") is likely to
occur when the error correction region around each code-word is a highly elongated ellipsoid
rather than a sphere, which allows some pairs of vectors (e.g., at the opposite ends of the
ellipsoid) to be mapped into the same code-word even though they are very far apart.

The ideal codes in our application are thus codes which partition the whole space into the
disjoint union of spheres of the same radius. Such codes (called perfect codes) are extremely
rare, and their known constructions can correct only one or three errors, which is too small
for our application. To overcome this problem, Lamberger and Leurent proposed using a
concatenation of several Hamming codes (which are perfect codes capable of correcting
a single error), where each code is applied to a di�erent set of bits. Unfortunately, this
severely distorts the error correction regions surrounding each code-word. For example, if
we divide n = 240 bits into 16 substrings and use a concatenation of 16 Hamming codes
which can correct a single error among the 15 bits in each substring, then we can correct
some combinations of 16 errors (if each error occurs in a di�erent substring), but we cannot
correct some combinations with just two errors (if they occur in the same substring). In
addition, random patterns of 4 or more errors are likely to have such repetitions by the
birthday paradox, and thus the average error correction capability of such concatenated
codes is much smaller than the number of codes.

In this paper we propose to replace the Hamming codes by random linear error correcting
codes denoted by [n, k]. Their code-words (which we hope to be uniformly distributed in the
whole space) form a k-dimensional linear subset of vectors of length n over a �nite �eld. The
whole space can be partitioned into 2k regions, where each region contains all the vectors
which are closest to a particular code-word. A code has covering radius R if R is the smallest
integer such that each region is contained in the R-ball around the code-word (and thus the
union of these balls covers the entire space). A [n, k] linear code with covering radius R is
denoted by [n, k]R. In this case, when we �nd a collision in f = e ◦ h, it is guaranteed to
be a 2R-near-collision in h by the triangle inequality.

Randomly selected linear codes do not have e�cient error correction algorithms. We
overcome this problem by devoting some of the available memory to a lookup table, which
can be prepared in advance (but not for free - to have a fair comparison with previous
algorithms we take this preprocessing time into account). We show that the performance of
such codes di�ers from the theoretically best possible covering codes only by small constant
factors, and is considerably better than the concatenation of Hamming codes proposed by

Lamberger and Leurent. In fact, the gap between the codes is already practically signi�cant
for small values of n, and grows in an unbounded way as we increase the parameters of the
problem. In particular, we present experimental evidence that by using random codes we can
improve Leurent's algorithm by a factor of at least 3 when trying to solve a simple problem
such as �nding a 33-near-collisions in the SHA-1 hash function, and present theoretical
analysis which shows that �nding 100-near-collisions in a hash function with n = 1024 can
be improved by about three orders of magnitude for practical amounts of memory (see Table
1).

The paper is organized as follows. In Section 2 we describe previous algorithms for �nding
near-collisions. In Section 3 we analyze the properties of error correcting codes in the context
of �nding near-collisions. In Section 4 we consider random codes and linear random codes,
and show how to construct them and how to implement their decoding function in constant
time using a su�ciently large preprocessed lookup table. In Section 5 we show how previous
memoryless algorithms for �nding near-collisions can be improved by using random codes.
In Section 6 we analyze the time-memory tradeo�s of the new algorithm and demonstrate
that it improves Leurent's algorithm. We conclude in Section 7.

2 Previous Work

2.1 Lamberger's construction of a linear covering-code

Lamberger [8] tries to �nd codes which have an e�cient error correction function e, have
the desired covering radius R, and have a minimum number of code-words K. His algorithm
then uses Pollard's Rho-method to �nd a collision in e ◦ h in O(

√
K) time. By the triangle

inequality, the distance between two vectors decoded into the same code-word is at most
2R, and thus he �nds a r = 2R-near-collision in h.

Error correction codes which can correct any received message with errors in up to R
coordinates are also covering-codes of radius R only if they are perfect codes of radius R [11].
Unfortunately, the only non-trivial known perfect codes in Fn2 are the [23, 12] 3 Golay code
and the

[
2i − 1, 2i − i− 1

]
1 Hamming codes Hi for i ≥ 1. To e�ciently handle more errors,

Lamberger's approach is to concatenate several Hamming codes. Concatenation of m linear
codes[ni, ki]Ri for 1 ≤ i ≤ m, results in [n, k]R code where n =

∑m
i=1 ni, k =

∑m
i=1 ki and

R =
∑m

i=1Ri.
1 The nearest-neighbor of a vector in Fn2 in such code is the nearest-neighbor

in each one of the substrings separately. We denote such a concatenation of codes by the
operator ⊕, and t× C will stand for

⊕t
i=1C (concatenation of the code C t times).

Hamming codes exist only for n = 2k− 1. For arbitrary values of n, Lamberger suggests
using an [n, k]R code which is the concatenation of several Hamming codes of two consecutive
sizes, along with the trivial projection code [i, i]0 in Fi2, i.e.,

HnR = s×Hl+1 ⊕ (R− s)×Hl ⊕ Fx2 (2.1)

where l :=
⌊
log2

(
n
R + 1

)⌋
, s :=

⌊
n−R(2l−1)

2l

⌋
and x := s ·

(
2l+1 − 1

)
+ (R− s)

(
2l − 1

)
. The

dimension of the code is:
k = n−R · l − s (2.2)

The size of the code is K = 2k and therefore his algorithm's complexity is 2k/2.
Lamberger proves that this method gives lower complexity than what can be achieved

by projection alone (formally de�ned as the [n, k] code Pnk whose function e = πnk sets
certain n− k coordinates to zero, which can also be viewed as the truncation of n− k bits).

1 The concatenation can be also presented as a direct sum of the codes

Similar analysis was carried out by Gordon [4], who compared the minimal-hamming-weight
decoding functions of projection and random codes from the viewpoint of locally sensitive

hash-functions, and proved that random codes are asymptotically better than projections in
minimizing the distance between random points in the space and their corresponding code-
words for given ratios of k/n when n→∞ 2. Using πnn−r◦h in Pollard's algorithm, Lamberger
�nds an r-near-collision after about 2(n−r)/2 hash computations. It can be improved by
truncating 2r + 1 bits, and using πnn−2r−1, for which a single trial of the Rho-method �nds

an r-near-collision with probability 1/2. This gives an overall complexity of 2 ·2(n−2r−1)/2 =
2(n+1)/2−r.

2.2 Time-memory trade-o�s for near-collisions

Leurent in [10] provides a near-collision attack with a time-memory tradeo�. His main idea
is to use the algorithm of Van Oorschot [19] for parallel collision search of many collisions
when having some memory available.

Let πnn′ be the projection function that truncates τ = n−n′, and let ψn
′
R be the decoding

function of Hn′R for a given R. Then the function used in Pollard's algorithm is ψn
′
R ◦πnn′ ◦h,

and it �nds as many full collisions in its domain as needed, until one of them happens to be
an r-near-collision in the original hash function h. An equivalent representation of the code
is:

YnR,τ := Hn′R ⊕ Pτ0 (2.3)

Let pτ,R denote the probability that a detected near-collision in the algorithm is an r-
near-collision, which can be calculated for given τ and R. Then lτ,R := 1/pτ,R is the expected
number of collisions that have to be considered until an r-near-collision in h is found. The
dimensions of the codes YnR,τ , which are the lengths of Hn′R , are denoted by kτ,R, and are
given by Formula (2.2). The time-complexity of the algorithm is bounded by:(√

π

2
+

5
√
lτ,R√
M

)
·
√
lτ,R · 2kτ,R/2 (2.4)

Leurent provides a script that calculates the complexity for every possible R, τ in the ranges
0 ≤ τ ≤ n and 0 ≤ R ≤ 2r, and returns the estimated optimal parameters which gives the
lowest complexity bound.

3 Properties of Code-Systems for Finding Near-Collisions

We analyze algorithms for �nding r-near-collisions (r > 0) using maps applied on the hash-
values that increase the chance of colliding after the map for nearby hash values. We notice
that error-correction codes are designed for di�erent applications. Due to some analogous
properties, we still use the term �decoding function� to describe the map, and the term
�code� to describe the domain set of a map. However, the decoding function doesn't have to
be the nearest-neighbor function. We will use the term �code-system� to describe the code
together with its related decoding-function e. For convenience, we will use the same letter to
describe the code-set and the code-system. The radius of a code-system in the generalized
meaning is the maximum number of bit-�ips made by the decoding function e.

The only near-collisions in h detectable by these algorithms are (m1,m2) such that both
h (m1) and h (m1) are decoded to the same code-word (e (h (m1)) = e (h (m2))). This implies
theoretical lower bounds for these methods.
2 This is the special case with p = 1/2 of his claim, in which the distribution of the points in the n-
dimensional space is uniform, and there are no assumptions about them being close to the code-words.

From now on, we will use the following notations:

� βC will be the probability that a random pair x, y is decoded to the same code-word in
C.

� ρC (R) will be the probability mass function (PMF)3 of the distance between pairs de-
coded to the same code-word in C.

� RC (R) will be the cumulative distribution function (CDF) of ρC , which describes the
probability for a pair decoded to the same code-word to be R-close.

� ϕC (R) is the chance that a random R-close pair is decoded to the same code-word in
C.

In this section we denote:

Ar := the event that x,y are r-close. When r is �xed, we will simply use A.

BC := the event that a random pair of vectors x, y are decoded to the same code-word
in C. When C is �xed, we will simply use B.

It is easy to verify that Pr [A] = qnr which is a constant for given n and r, and Pr [BC] =
βC .

The probability that a collision is detectable is Pr [A ∧B], and by the birthday paradox,
it requires 1/

√
Pr [A ∧B] trials, while the lower bound without the code is 1/

√
Pr [A]

By the conditional probability formula:

Pr [A ∧B] = Pr [B|A] · Pr [A] = Pr [A|B] · Pr [B] (3.1)

Therefore, using the code increases the lower bound for hash computations by a factor of
1/
√
Pr [B|A], which is exactly:

1/
√
ϕC (r) (3.2)

The overall bound is:
1

√
qnr ·

√
ϕC (r)

(3.3)

Hence, a higher ϕC (r) is an indication of a potentially better code in terms of the number
of hash calculations required.

We can also speci�cally look at an algorithm that ignores random collisions in the code-
space until an r-near-collision is detected. The chance of a collision to be an r-near-collision
is Pr [A|B] and therefore 1/Pr [A|B] collisions are expected to be examined. As Pr [A|B] =
RC (r), the time complexity of the algorithm is at least:

1/RC (r) (3.4)

Hence, a higher RC (r) is also an indication of a potentially better code in terms of the time
complexity of the algorithm.

When we construct a code-system, there is a tradeo� between getting a higher ϕC and
getting a higher RC . For example, the only code-system which satis�es ϕC (r) = 1 for r ≥ 1
has a single code-word, and thus has the property Pr [A|B] = Pr [A]. So 1/Pr [A] = 1/qnr
computations are required, which is the square of the lower bound on hash-computations
when the code is not used. However, code-systems which have equal βC are comparable. By
Equation (3.1):

ϕC (r) · qnr = RC (r) · βC (3.5)

3 In statistics, a probability mass function f of a discrete random variable X is de�ned as: f (k) =
Pr [X = k].

Thus, ϕC (r) and RC (r) are proportional to each other with ratio βC/q
n
r . In particular,

when the codes are of the same size and the pre-images of all the code-words are of uniform
size, βC = 1/ |C|, and then:

RC (r) = (qnr · |C|) · ϕC (r) (3.6)

Such special cases are [n, k] linear codes, for which |C| = 2k.

3.1 Concatenation of several code-systems

Lamberger's algorithm described in Section 2.1 uses covering codes which are a concatena-
tion of error-correction codes. We can similarly combine several code-systems with codes
C1, C2, . . . , Ct of lengths n1, n2, . . . , nt by concatenating the codes into a code C =

⊕t
i=1Ci

of length n =
∑t

i=0 ni. The decoding function of the resulting system is the composition of
all the decoding functions applied to their appropriate substrings. If the systems are of radii
R1, R2, . . . , Rt, the resultant system is of radius R =

∑t
i=0Ri.

As the bits of random vectors are unrelated:

βC = Pr [BC] = Pr

[
t∧
i=1

BCi

]
=

t∏
i=1

Pr [BCi] =

t∏
i=1

βCi (3.7)

By the de�nition of the distribution ρC , it will be the convolution of all ρCi :

ρC (R) = (ρC1 ∗ ρC2 ∗ . . . ∗ ρCt) [R] (3.8)

The RC (R) is the CDF of ρC (R), and ϕC (r) is given by Equation (3.5).
Let's denote:

VC :=
t∏
i=1

V ni
Ri

(3.9)

It describes the actual volume of a single code-word's pre-image if the concatenated codes
are prefect, or an upper bound on the volume otherwise.

We have RC (2R) = 1 and we can calculate ϕC (2R):

βC =

t∏
i=1

βCi ≤
t∏
i=1

qniRi =

t∏
i=1

V ni
Ri

2ni
=

∏t
i=1 V

ni
Ri

2n
=
VC
2n

(3.10)

So:

ϕC (2R) =
βC
qn2R
≤ VC
V n
2R

(3.11)

For perfect codes the inequalities becomes equalities. It is easy to see that VC is strictly
maximal when t = 1, and is V n

R in that case. No other case reaches the bound of the perfect
code of length n and radius R. The bound decreases when the vector is partitioned into
more parts.

4 Random Codes

Suppose we could randomly sample a function f : {0, 1}n → {0, 1} that returns 1 on 2n/p
of the inputs (i.e, it returns 1 with probability p = 2−µ on a random point). We can use it
as code-word indicator to de�ne the code:

Cf = {x ∈ {0, 1}n |f (x) = 1}

Each element is decoded to its nearest-neighbor. To make it well de�ned in our metric,
we have to break ties by de�ning a secondary order. For example, we can decide that among
two vectors with the same Hamming distance to x, one is closer if the XOR between it and
x has a larger numeric value in binary representation.

4.1 Limited radius version

We may force the above system into a system of some bounded radius R by changing the
decoding function so that if there is no code-word in Bn

R (x) then x is not corrected into any
member of Cf , and remains unchanged. This applies to vectors in:

Ĉf :=
⋂
c∈Cf

Bn
R (c)

Let's denote the probability that x is decoded into Cf by α. Given the probability p, α
is the complement of the probability of not succeeding in V n

R trials:

α = α (n,R, p) = 1− (1− p)V
n
R (4.1)

Notice that if p = 1/V n
R then:

α = 1−
(
1− 1

V n
R

)V nR
≈ 1− 1

e

Compared to a theoretical perfect code of radius R, βC is smaller by α2. However, due to
the search order for code-words within Bn

R (x), the function R (·) increases and so does the
bound in Equation (3.4). Therefore ϕ (·) decreases by less than α2 and the lower bound in
Equation (3.3) increases by at most 1/α ≈ 1.58 which is a small constant.

4.2 Estimating the distribution functions

The size of the code is |C| = 2n ·p and the distribution of the code-words in the full space is
expected to be close to uniform, so the pre-images of the code-words are of similar volumes
and therefore:

βC ≈ 1/ |C| = 2−n

p
(4.2)

So RC and ϕC are related by Equation (3.6). By de�nition, RC can be calculated as CDF
of ρC , and we describe how to calculate the latter in Appendix B.

4.3 Linear random code

If f can be easily sampled or calculated, the decoding of a single x can be conducted by
an average of 1/p evaluations of f . Even though the decoding does not require any hash-
evaluations, this may be a high complexity operation for a small p. For a truly random
function a full description of the decoding process, for example using a look-up table, would
be impractical in terms of memory. However, as described below the situation is much better
for linear codes.

A random [n, n− µ] code can be de�ned as the kernel of a randomly chosen matrix
A ∈ {0, 1}µ×n of maximal rank. We denote such a code by Cnµ . The code-word indicator
function f(x) returns 1 when Ax = 0. In a neighborhood of a randomly chosen x it behaves
similarly to a random function that returns 1 with probability p = 2−µ. As shown in
Appendix C, a table of size K = 2µ that describes the decoding operation in the vicinity
of the zero code-word makes it possible to �nd the nearest neighbor in the entire space in
constant time via simple shifts.

Even though we count the memory in units which are table entries, we would like to
point out that due to the fact that we store only vectors of very low hamming-weight, the
content of the table can be compressed and stored much more e�ciently.

Read-Only-Memory vs. Random-Access-Memory Notice that the lookup table we
construct does not depend on the hash-function, but only on the chosen linear code. For
a constant matrix A which is randomly chosen in advance, the table can be constructed
and hard-coded on a Read-Only-Memory (ROM), which is much cheaper than Random-
Access-Memory (RAM), and thus a special-purpose computing machine may have more of
it. Therefore, in scenarios which have almost no RAM, where we would normally use the
Rho-method to �nd near-collisions, we may still use a large look-up table if we have enough
ROM. Such a lookup table could also be stored on an external device or some common
server which can be queried.

5 Rho-Method Algorithm using Random-Codes

In Section 2.1 we described Lamberger's algorithm for �nding 2R-near-collisions which is
based on a single run of the Rho-method algorithm. For a general code-system C with the
restriction of RC = 1, the complexity of this algorithm is:

1/
√
βC

For a random-code with limited radius R, the complexity is larger by a factor of about 1/α
compared to a theoretical perfect code (see Section 4). The gap between the β of Lamberger's
construction and a perfect code grows as R grows, due to the partition of the vector into
more parts, as can be seen in Formula (3.10).

For example when looking for a 24-near-collision in F128
2 , a random-code could improve

Lamberger's algorithm by a signi�cant factor of 69.3, ignoring the cost of the decoding.
However, a linear-random-code of radius R requires a table of about V n

R size, which is
impractical for V 128

12 .
Using a random-code-system 2×C6426 , when C6426 has limited radius 6 and α ≈ 0.7, requires

a lookup-table of practical size 226. We get βC =
(
βC6426

)2
and βC6426 = α2 ·2−64 ·V 64

6 ≈ 2−38.67.

The total expected number of hash evaluations is 1/
√
βC = 1/βC6426 = 238.67 (multiplied by a

small constant that depends on the Rho-method's implementation, and can be ignored since
it a�ects the two algorithms we compare similarly). Lamberger's algorithm uses a [128, 87]12
code and makes an expected number of 243.5 hash evaluations. Therefore our code improves
Lamberger's algorithm's time-complexity in this case by a factor of 28.4.

When we do not restrict the code to have RC = 1, the Rho-method has to be repeated
lC := 1/RC times on average and the complexity increases to:

lC/
√
βC

Due to the large number of available parameters and the fact that we do not want to
ignore constant factors, we estimated the optimal parameters for a random-code and for
Lamberger's construction using a script which exhaustively searches over all their possible
choices rather than via some asymptotic formula. For Lamberger's construction, we got
that the optimal radius for �nding a 24-near-collision is 28, and the number of expected
hash-computations is about 239.1, where lC ≈ 8.6. Using a linear random-code 2× C12834 our
algorithm �nds 24-near-collision after an expected number of 235.3 hash computations, when
lC ≈ 39.1. This is an improvement by a factor of 14.2.

6 Time-Memory Trade-o� using Random-Codes

In Section 2.2 we described Leurent's algorithm [10] for �nding near-collisions, using a table
of size M = 2m to store the endpoints of chains in Van Oorschot and Wiener's algorithm.

Our goal is to improve the algorithm by using random-codes instead of the concatenation
of Hamming-codes.

Although we can sometimes distinguish between the memory that is used for storing
the chains and the memory that is used to store the look-up tables (as described in Section
4.3), in this section we consider the harder case in which we have only one type of memory
of size M . Therefore, we are limited to use not more than M memory units including the
look-up table of the random-codes. Considering the fact that we can compress the table (see
the remark in Section 4.3) and the fact that when such codes are concatenated more than
once we still store the table only once, we can assume for the sake of simplicity that we can
use a random-code with up to m equations, and still consume only a small fraction of the
available memory for its associated lookup table.

The code-systems we use are of the form:

Znµ,j,τ := j × Cn′µ ⊕ Fx2 ⊕ Pτ0 (6.1)

where n′ = b(n− τ)/jc and x = (n− τ) mod j.
When using the linear version of Cn′µ , Znµ,j,τ is a [n, n− j · µ− τ] linear code. The pro-

jection Pτ0 , for any value of τ , is a code-system that decodes all the vectors in Fτ2 into the a
single code-word and therefore has the properties: βPτ0 = 1 , ϕPτ0 ≡ 1 and RPτ0 distributes

according to the binomial distribution N
(
τ, 12
)
. We calculate the distribution RZnµ,j,τ (R) as

a convolution between N
(
τ, 12
)
and j times RCn′µ (R). Then, the expected number of distinct

collisions we have to �nd is:
lµ,j,τ := 1/RZnµ,j,τ (r) (6.2)

In order to optimize the algorithm, we choose τ and µ that minimize the following upper
bound on the time complexity:

T (µ, j, τ) =

(√
π

2
+

5
√
lµ,j,τ√
M

)
·
√
lµ,j,τ · 2(n−j·τ−µ)/2 (6.3)

This can be done using brute-force computations of at most one value of T (µ, j, τ) for every
possible τ, j · µ ≤ n (in fact, most of the parameters within the range can be easily ruled-
out by simple estimations). We used a script to compute the exact values of the optimal
parameters (see Appendix D).

We can generalize the formula for code-systems which are not necessarily linear 4. Given
a code-system C and the parameter r of the problem, if we calculate βC and RC (r), we can
get the following complexity upper bound:

T =

(√
π

2
+

5√
M · RC (r)

)
·

√
1

RC (r) · βC
(6.4)

We would like to remind the reader that RC (r)·βC = ϕC (r)·qnr by Equation (3.5) which
describes the probability of a random pair of vectors to be a detectable r-near-collision. This
is another way to see that the signi�cance of ϕC (r) over RC (r) grows when we have more
memory. This form also emphasizes how Formula (6.3) should be adapted when limiting the
radius.

In some application we may want to �nd a large number i of r-near-collisions. In this
case we will have to �nd i/RC (r) collisions and the formula becomes:

4 Van Oorschot's analyzed his algorithm for hash-functions that induce random-graphs on their output
domains. We assume that the special properties of the graph induced byDec ◦ h do not a�ect much the
performance of the algorithm. However, such e�ect may exist and could be further analyzed.

T =

(√
π

2
+

5 · i√
M · RC (r)

)
·

√
i

RC (r) · βC
(6.5)

6.1 Complexity analysis

For relevant parameters, a single optimal random-code is better than 3 or more concate-
nated Hamming-Codes and this advantage grows when the number of concatenated codes
increases, because it is particularly true for random-codes of similar dimension (which are
comparable). However, the memory requirements for these random-codes also grows. The
truncation-code Pτ0 may have low RPτ0 for large τ , but at the same time it has the property
ϕPτ0 ≡ 1, which cannot be achieved by any other code-system. As was shown before, the im-
portance of the ϕ distribution over R grows as M gets larger. Thus, generally speaking, the
optimal τ is higher for larger M values, and the optimal code on the remaining part makes
fewer bit-�ips on random inputs. This can also be seen in [10, Table 1]. Thus, on one hand,
when we have little memory we may not be able to construct the optimal random-code, and
on the other hand, when we have a lot of memory the random-code does not improve much
if at all.

Although the concatenation of random-codes is never optimal when we ignore memory
considerations, the actual memory requirements for codes of smaller dimensions are much
smaller. Moreover, a concatenation of a competitive random-code several times requires only
a single common lookup-table, and by the relations described in Section 3.1, the improve-
ment factors over Lamberger's construction of similar dimensions are roughly multiplied.
Therefore, the advantage of random-codes grows with n, since we can truncate some of the
bits and still have enough bits to partition into large-enough bit-ranges for which practical
sized random-codes can be constructed. In Table 1 we show concrete sets of parameters for
which our algorithm improves Leurent's algorithm by several orders of magnitude.

Table 1. Comparison of number of the hash-calculations using Leurent's algorithm that uses Lamberger's
construction versus our algorithm that uses random-codes in two variants: with and without limiting the
radius. The upper entry is based on experimental results. The lower 3 entries are predictions based on
calculations made using a script. T values are in logarithmic scale.

Leurent's algorithm [(2.3),(2.4)] Our algorithm [(6.1),(6.3)]
Improvement ratio

n, r m T (R, τ) T (µ, j, τ)

160, 33 16 above 35.06 (2, 106)a
33.46 (15, 1, 98) - limited radius R = 3 above 3

34.91 (15, 1, 98) minor

1024, 80 38 389.7 (14, 206) 381.3 (38, 6, 70) 354.5

1024, 100 40 363.6 (13, 269) 354.1 (40, 7, 79) 728.8

1024, 100 52 358.6 (12, 294) 348.1 (52, 7, 16) 1482

a In 10 executions of Leurent's algorithm we got one unusually bad result (238.4 hash-computations) and
two mildly bad ones. It could be a result of unoptimized elements of the algorithm. Thus, we reduced
the time-complexity of Leurent's algorithm by arti�cially terminating it after a certain number of steps,
which is the number of computations as in the 2nd worst result, and took into consideration that our
e�ort resulted in 9 successful experiments instead of 10. Van Oorschot suggests to restart the process after
10M = 10 ·216 collisions, but then it would not be optimal. However, we did not modify the experimental
results of our algorithm in any way, and thus, the comparison in this table is actually biased in favor of
Leurent's algorithm. In spite of this, our algorithm is about 3 times better in this small example in the
limited radius version.

Although the predicted upper bounds for the case we tested experimentally were similar
in Leurent's algorithm and in the two versions of our algorithm, in practice our code with

limited radius improved Leurent's algorithm for �nding a 33-near-collision in SHA-1 hash
function using 216 memory by a factor of at least 3. This indicates that the improvement
factors we obtain may be even higher than those we predict from our script. When we
consider larger values of n, the improvement factors become much larger. For example,
even our pessimistic estimates indicate that our algorithm is expected to improve Laurent's
algorithm by a factor of about 730, which is almost three orders of magnitude, when looking
for a 100-near-collision in a 1024-dimensional space using 240 memory.

7 Conclusions and Further Work

In this paper we analyzed the two major statistical properties that make certain codes
better for �nding near-collisions, which are ϕ (r) and R (r). We showed how to choose the
optimal parameters of these random codes, described how to use lookup tables in order to
decode an arbitrary vector into its related code-words in constant time, and discussed their
advantages and disadvantages. We saw that random-codes have better properties than the
concatenation of Hamming-codes of radius 1 for overall radii larger than 3, and that the
gaps grow when the radius grows. We re-analyzed the time-memory trade-o� of Leurent's
algorithm after replacing the Hamming-codes with random-codes.

If we are allowed to use an unbounded amount of cheap ROM to store the �xed table used
to decode vectors into their nearest code-words, we can achieve even larger improvements
in many ranges of the parameters. For example, we can improve Lamberger's construction
which uses the rho method by a factor of 69.3 in the settings described in Section 5. Without
this assumption, i.e, when we had to use the available memory both for the table and for
the endpoints, we still showed experimentally that for a small example there is a reduction
of the number of hash evaluations by a factor of at least 3. The improvement ratio increases
with n, and in Table 1 we showed concrete examples in which the improvement ratio is
several orders of magnitude.

7.1 Further Work

We tried to analyze a multi-code variant of a random-code with limited radius R. Instead
of leaving 1−α fraction of the hash-values unchanged by the decoding function, we serially
try a sequence of decoding-functions with various linear shifts of the code-words, until one
of them succeeds. In other words, we used the same random matrix A to de�ne a series of
codes as the solutions of Ax = vi. We chose v0 = 0 and then each vi was chosen from among
the image-points whose pre-images cannot be decoded into the previous codes. This way,
the distances between di�erent code-components are at least R. This variation has negligible
e�ect on RC but increases the βC and ϕC to about α

2−α of the linear-version instead of α2.
However, in our practical experiments we did not get conclusive results about the e�ect on
the time-complexity when using Van Oorschot's algorithm. This is possibly due to the e�ect
of both variations on the statistical properties of the graph induced by e◦h, which in�uences
the probabilities of having new collisions overviewed along the run of the algorithm. This
e�ect should be further analyzed.

We also suggest to consider other models in which the distance function is not the
Hamming-distance. For example, we can consider a weighted-Hamming-distance in which
bits have weights that correspond to the probability that they will be discarded when we
extract a smaller number of random bits from the large output of the hash function.

References

1. Eli Biham and Ra� Chen. Near-collisions of sha-0. In Advances in Cryptology�CRYPTO 2004, pages
290�305. Springer, 2004.

2. Richard P Brent. An improved monte carlo factorization algorithm. BIT Numerical Mathematics,
20(2):176�184, 1980.

3. Florent Chabaud and Antoine Joux. Di�erential collisions in sha-0. In Advances in Cryptology�

CRYPTO'98, pages 56�71. Springer, 1998.
4. Daniel M Gordon, Victor Miller, and Peter Ostapenko. Optimal hash functions for approximate closest

pairs on the n-cube. arXiv preprint arXiv:0806.3284, 2008.
5. Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols. In Secure Information

Networks, pages 258�272. Springer, 1999.
6. DE Knuth. Seminumerical algorithm (arithmetic) the art of computer programming vol. 2, 1981.
7. Mario Lamberger, Florian Mendel, Vincent Rijmen, and Koen Simoens. Memoryless near-collisions via

coding theory. Designs, Codes and Cryptography, 62(1):1�18, 2012.
8. Mario Lamberger and Vincent Rijmen. Optimal covering codes for �nding near-collisions. In Selected

Areas in Cryptography, pages 187�197. Springer, 2011.
9. Mario Lamberger and Elmar Teu�. Memoryless near-collisions, revisited. Information Processing Let-

ters, 113(3):60�66, 2013.
10. Gaetan Leurent. Time-memory trade-o�s for near-collisions. IACR Cryptology ePrint Archive, 2012:731,

2012.
11. Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-correcting codes,

volume 16. Elsevier, 1977.
12. Florian Mendel and Martin Schlä�er. On free-start collisions and collisions for tib3. In Information

Security, pages 95�106. Springer, 2009.
13. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Consulted, 1:2012, 2008.
14. Gabriel Nivasch. Cycle detection using a stack. Information Processing Letters, 90(3):135 � 140, 2004.
15. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting coding theory for collision

attacks on sha-1. In Cryptography and Coding, pages 78�95. Springer, 2005.
16. Jean-Jacques Quisquater and Jean-Paui Delescaille. How easy is collision search. new results and

applications to des. In Advances in Cryptology-Crypto'89 Proceedings, pages 408�413. Springer, 1990.
17. Robert Sedgewick, Thomas G Szymanski, and Andrew C Yao. The complexity of �nding cycles in

periodic functions. SIAM Journal on Computing, 11(2):376�390, 1982.
18. Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra, David Molnar, Dag Arne Osvik,

and Benne De Weger. Short chosen-pre�x collisions for md5 and the creation of a rogue ca certi�cate.
In Advances in Cryptology-CRYPTO 2009, pages 55�69. Springer, 2009.

19. Paul C Van Oorschot and Michael J Wiener. Parallel collision search with cryptanalytic applications.
Journal of cryptology, 12(1):1�28, 1999.

20. Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In Advances in Cryptology�

EUROCRYPT 2005, pages 19�35. Springer, 2005.
21. Gideon Yuval. How to swindle rabin. Cryptologia, 3(3):187�191, 1979.

A Generalization of Yuval's full-memory approach for near-collisions

Yuval's algorithm for �nding a collision [21] computes and stores in a hash-table5 distinct
hash values until a collision between a new value and previous values is detected. It is based
on the birthday paradox and has the time and memory complexity of 2n/2.

As mentioned in [8], its generalization for near-collisions requires checking the pres-
ence of all the values in Bn

r (x) for each new hash value x. It reaches the lower bound in
hash-computations but has time-complexity of O

(
2n/2 ·

√
V n
r

)
and requires O

(
2n/2/

√
V n
r

)
memory. We can reduce the time-complexity by storing for every computed x all the pairs
(y,m) such that y ∈ Bn

R (x), for some R ≤ r/2, and beforehand check for collisions with pre-
vious points by querying the points in Bn

r−R (x). It is easy to see that the �rst r-collision is

detected by the algorithm. The time complexity is reduced to O
(
2n/2 · V n

r−R/
√
V n
r

)
, which

is still above O
(
2n/2

)
, but the memory demand is increased to O

(
2n/2 · V n

R /
√
V n
r

)
.

5 The hash-table is a data-structure in computer-science that implements insertions, searches and deletions
of data in expected complexity of O (1). It uses a generic hash-function for index-computations, but it
should not be confused with cryptographic hash-functions.

B Calculation of ρ distribution of random-codes

First we calculate the distribution of the number of bits �ipped by the decoding function
on a random value x, that we denote by χ:

χ (R) = Pr [dH (x,Dec (x)) = R] =

Pr [dH (x,Dec (x)) ≤ R]− Pr [dH (x,Dec (x)) ≤ R− 1] ≈(
1− e−pV nR1

)
−
(
1− e−pV

n
R−1

)
= e−pV

n
R−1 − e−pV nR (B.1)

Then we estimate the distribution over the triples (dist1, dist2,#overlaps), when dist1 =
dH (c, x1), dist2 = dH (c, x1) and #overlaps stands for the number of bits that are �ipped
by the Dec function for both x1 and x2.

dist1 and dist2 are independent and distributed according to χ. Therefore, the distri-
bution of (dist1, dist2,#overlaps) is described by:

Pr [(dist1, dist2,#overlaps) = (b1, b2, s)] =

χ (b1) · χ (b2) · Pr [#overlaps = s|dist1 = b1 ∧ dist2 = b2] (B.2)

For any given pair, if the chances of every bit to be �ipped on any message is the same,
given dist1 and dist2 , the number of overlaps between dist1 and dist2 bits distributes
according to a hyper-geometric distribution. Combinatorially this is the number of �special
items� that are picked when choosing dist2 distinct items from a pool of n items, of which
dist1 are �special�:

Pr [#overlaps = s|dist1 = b1 ∧ dist2 = b2] =

(
b1
s

)
·
(
n−b1
b2−s

)(
n
b2

) (B.3)

However, this estimate does not take into account that the secondary order we use works
for our bene�t. Generally speaking, the lower bits have larger probability to be �ipped. For
example, if not more than b bits are �ipped in the majority of the vectors, the probability
of �nding a code-word within the �rst V n

b trials is some α > 1/2. If a certain vector is not
decoded within these trials, there are V n−1

b next trials to �nd a code-word that di�ers in
b+1 bits, one of which is the �rst bit. Since b is much smaller than n, the ratio between V n

b

and V n−1
b is close to 1. Therefore, in probability of almost α, if more than b bits are �ipped,

one of the �ipped bits is going to be the �rst.

The actual distance between the hash values of pairs that correspond to a certain triple
is dist = dist1 + dist2− 2 ·#overlaps.

ρ (R) :=
∑

b1+b2−2s=R
Pr [(dist1, dist2,#overlaps) = (b1, b2, s)] (B.4)

When we limit the radius to R, for every b > R the value of χ (b) should be set to 0,
and for every b ≤ R it should be divided by α =

∑
i≤R χ (i).

C Using a Lookup Table to E�ciently Decode Random Linear Codes

For a linear code de�ned in Section 4.3, the nearest-neighbor of a given x is c = x+∆ when
∆ is the minimal vector such that A (x⊕∆) = 0, or equivalently Ax = A∆. We will call ∆
the minimal pre-image of y = Ax.

We construct a lookup-table that stores the minimal pre-image of y for any index y ∈
{0, 1}µ. Then the decoding process for a given x takes a constant time: calculate the value
Ax ∈ {0, 1}µ, �nd its minimal pre-image from the table, and get the code-word c = x⊕∆.

The table can be initialized e�ciently by generating the smallest vectors in an increasing
order starting from ∆ = 0n, in a sort of a spiral (de�ned primarily by the Hamming distance
and secondly by the secondary order). In each iteration we calculate y = A∆, and store the
∆ at the y-th entry of the look-up table if it is empty. We stop when the entries of the table
are �lled. The size of the table is K = 2µ. By the coupon collector argument, the expected
number of vectors being overviewed is K · logK, which is almost linear in K.

The distance between two vectors x1 and x2 that are encoded to the same code-word,
by addition of ∆1 and ∆2 respectively, is:

dH (x1, x2) = ‖x1 ⊕ x2‖H = ‖(c⊕∆1)⊕ (c⊕∆2)‖H = ‖∆1 ⊕∆2‖H

Due to the linear independence of the rows of A, which we may assume, both ∆1 and
∆2 could be seen as randomly taken from the values in the table, independently of the
code-word. Having the look-up table set, the distribution ρ (r) is exactly the distribution of
distances between pairs of entries in the table. It can be calculated in about K2/2 steps or
approximated experimentally by pair sampling.

C.1 Modi�cation for a version with limited radius

In the version of the linear-random-code with radius R, we stop just before the weight of ∆
reaches R + 1 after V n

R iterations. The remaining unset entries are set to zero, so a vector
x for which Ax equals to the index of one of these entries will not be changed by the code
(by xoring with zero).

D Script to estimate the time-complexity of the algorithm

The following script calculates the optimal parameters and estimates the complexity of our
time-memory tradeo� algorithm.

It gets as input:

� n : The length of the domain
� max_dist : The maximal distance in the near-collision
� log_mem : log(M)

It outputs the following parameters which describe the code de�ned in Equation (6.1):

� T : The complexity in logarithmic scale (see Equation (6.3))
� mu : µ. The rank of the matrix that de�nes the linear random code
� j : j. The number of times that the random-code is concatenated
� trunc : t. The number of truncated bits
� alarms : lµ,j,τ de�ned in Equation (6.2). The expected number of collisions detected in
the code, until one is a [max_dist]-near-collision in h

Listing 1.1. A Matlab script that calculates the optimal parameters and estimates the complexity

function [T, mu, j , trunc , alarms] =
near_coll is ion_random_code (n , max_dist , log_mem)

warning ('OFF ' , 'MATLAB: nchoosek : La r g eCoe f f i c i e n t ') ;
max_flips = ce i l (min(max_dist/2+3 , max_dist)) ;

mem = 2^log_mem ;
max_t = min(2∗ (max_dist+max(log_mem , 25)) , n) ;
t_vec = 0 : max_t ;
code_l = n − t_vec ;
[t_temp , p_temp] = ndgrid (t_vec , 0 : n) ;
f f = (p_temp <= code_l (t_temp+1)) &

(mod(p_temp , ce i l (p_temp ./ log_mem)) == 0) ;
t = t_temp(f f) ;
p_pow = p_temp(f f) ;
k = ce i l (p_pow./ log_mem) ;
p_pow_k = p_pow./max(k , 1) ;
n_k = f loor ((n−t) . /max(k , 1)) ;
p_code = 2.^(−p_pow_k) ;
n_k_min = min(n_k) ;
code_lengths = n_k_min : n ;
code_length_inx = n_k − n_k_min + 1 ;
search_length = n − t − p_pow ;
bin_dist_vec = arrayfun (@(t_param)

binomia l_dist (t_param , max_dist) ,
t_vec , ' UniformOutput ' , f a l s e) ;

[i_param , j_param , r_param , mutual_overlap] =
arrayfun (@(code_l_param) cover ing_dist_over lap (
code_l_param , max_flips , max_dist) ,
code_lengths , ' UniformOutput ' , f a l s e) ;

balls_n_r_vec = arrayfun (@(i) balls_n_r (i , min(i , max_flips)) ,
code_lengths , ' UniformOutput ' , f a l s e) ;

inx = (1 : numel (t)) ' ;
chances = arrayfun (@(i) success_chances (bin_dist_vec (t (i)+1) ,

k (i) , p_code (i) , i_param(code_length_inx (i)) ,
j_param(code_length_inx (i)) , r_param(code_length_inx (i)) ,
mutual_overlap (code_length_inx (i)) ,
balls_n_r_vec (code_length_inx (i)) , max_dist) , inx) ;

col_needed = 1 ./ chances ;
complexity= log2 (sqrt (pi/2)+5∗ sqrt (col_needed . /mem)) +

search_length /2 + log2 (col_needed) / 2 ;
[min_C, min_idx]=min(complexity) ;
T = min_C;
mu = p_pow_k(min_idx) ;
j = k (min_idx) ;
alarms = log2 (col_needed (min_idx)) ;
trunc = t (min_idx) ;
warning ('ON' , 'MATLAB: nchoosek : La r g eCoe f f i c i e n t ') ;

end

function [val id_chance] = success_chances (bin_dist_vec_cel l , k ,
p_code , i_param_cell , j_param_cell , r_param_cell ,
mutual_overlap_cel l , balls_n_r_vec_cell , max_dist)

bin_dist_vec = ce l l 2mat (bin_dist_vec_cel l) ;
i_param = ce l l 2mat (i_param_cell) ;

j_param = ce l l 2mat (j_param_cell) ;
r_param = ce l l 2mat (r_param_cell) ;
mutual_overlap = ce l l 2mat (mutual_overlap_cel l) ;
balls_n_r_vec = ce l l 2mat (balls_n_r_vec_cell) ;
chances_cdf = geocdf_my (balls_n_r_vec , p_code) ;
f l i p p e d = zeros (numel (balls_n_r_vec) , 1) ;
f l i p p e d (1) = chances_cdf (1) ;
f l i p p e d (2 : end)= chances_cdf (2 : end) − chances_cdf (1 : (end−1)) ;
mutual_chances = mutual_overlap .∗ f l i p p e d (i_param+1)

.∗ f l i p p e d (j_param+1);
d_temp = accumarray (r_param+1, mutual_chances) ;
d_code = d_temp (1 : min(end , max_dist+1)) ;
d = bin_dist_vec ;
for i = 1 : k

d = conv (d_code , d (1 : min(end , max_dist +1))) ;
end

val id_chance = sum(d (1 : min(end , max_dist +1))) ;
end

function [i_param , j_param , r_param , mutual_overlap] =
cover ing_dist_over lap (n , max_flips , max_dist)

max_f = min(n , max_flips) ;
[i , j , ove r l ap s] = ndgrid (0 :max_f , 0 :max_f , 0 :max_f) ;
f f = (i<=j) & (over laps<=i) & (i+j−2∗ove r l ap s <= max_dist) ;
i_param = i (f f) ;
j_param = j (f f) ;
overlaps_param = ove r l ap s (f f) ;
r_param = i_param + j_param −2∗overlaps_param ;
mutual_overlap = hygepdf (overlaps_param , n , i_param , j_param)

.∗(1+(i_param ~= j_param)) ;
end

function [b in_dist] = binomia l_dist (n , k)
pd = makedist (' Binomial ' , 'N ' ,n) ;
b in_dist = pdf (pd , 0 : k) ;

end

function [b a l l_ s i z e] = balls_n_r (n , r)
r_max = min(n , r) ;
c i r c l e s = arrayfun (@(x) nchoosek (n , x) , 0 : r_max) ;
ba l l_ s i z e = zeros (r+1, 1) ;
b a l l_ s i z e (1) = 1 ;
for ind = 2 : r_max+1;

ba l l_ s i z e (ind)= ba l l_ s i z e (ind−1)+ c i r c l e s (ind) ;
end

ba l l_ s i z e (r_max+2:end)= ba l l_ s i z e (r_max+1) ;
end

function y = geocdf_my (n , p)
i f p < 2^(−35)

y = 1−exp(−n∗p) ;
else

y = 1−(1−p) .^n ;
end

end

	Using Random Error Correcting Codes in Near-Collision Attacks on Generic Hash-Functions

