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Abstract

State-of-the-art authenticated key exchange (AKE) protocols are proven secure in game-
based security models. These models have considerably evolved in strength from the original
Bellare-Rogaway model. However, so far only informal impossibility results, which suggest
that no protocol can be secure against stronger adversaries, have been sketched. At the same
time, there are many different security models being used, all of which aim to model the
strongest possible adversary. In this paper we provide the first systematic analysis of the
limits of game-based security models. Our analysis reveals that different security goals can be
achieved in different relevant classes of AKE protocols. From our formal impossibility results,
we derive strong security models for these protocol classes and give protocols that are secure
in them. In particular, we analyse the security of AKE protocols in the presence of adversaries
who can perform attacks based on chosen randomness, in which the adversary controls the
randomness used in protocol sessions. Protocols that do not modify memory shared among
sessions, which we call stateless protocols, are insecure against chosen-randomness attacks.
We propose novel stateful protocols that provide resilience even against this worst case
randomness failure, thereby weakening the security assumptions required on the random
number generator.

Keywords. authenticated key exchange (AKE), security models, impossibility results,
stateless protocols, stateful protocols, bad randomness, chosen-randomness.

1 Introduction

Authenticated Key Exchange (AKE) protocols have been a core building block of secure systems
since the invention of public-key cryptography. The first formal security model for evaluating the
security of AKE protocols was introduced in 1993 by Bellare and Rogaway [5]. Since then, there
has been a steady stream of AKE protocols and associated security models. The most influential
additions and modifications to the original Bellare-Rogaway model incorporate further security
guarantees or increase the capabilities of the adversary [6,12,22,24]. However, few results exist on
the exact limits of AKE security and, consequently, on strongest security guarantees achievable
by AKE protocols. Most impossibility results in the literature are implicitly formulated as
restrictions on the adversary’s behavior with regard to the target session, and suggest that it
is impossible to construct a protocol secure with respect to a less restricted adversary. These
observations on strongest possible adversaries are often incorrect or only hold under unstated
protocol restrictions. For example, the claim that the eCK model is the strongest possible
model for analyzing two-message AKE protocols [13, 24, 25] was refuted in [18], proving that
stronger guarantees than eCK security can be achieved for two-message protocols. Further, most
prominent AKE security models are formally incomparable, as shown in [14, 15]; technically,
there are nearly as many security models as there are protocol proposals. The sometimes subtle
differences between the models are in fact critical for security, because they determine whether the
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security model covers practically relevant attack scenarios. We argue that rigorous impossibility
results for key exchange protocol design and subsequent systematic security models are still
missing in the context of ever stronger AKE security guarantees.

In this paper we show that many of the restrictions posed on the behavior of the adversary
in the models stem from unstated assumptions on the considered protocol class. Specifically,
our impossibility results reveal a previously unstated assumption on the protocols analyzed
in AKE security models: the protocols do not modify memory shared among sessions, i.e.,
they only modify session-specific memory. It turns out that lifting this assumption enables the
design of protocols that are secure against stronger adversaries that control the randomness used
in protocol sessions. In particular, our results enable us to weaken the security assumptions
on the random number generator (RNG) used to produce session-specific randomness. This
is particularly timely given the recently discovered security vulnerabilities that involve either
flawed [1,26,28,35] or weakened [29,31,32,36] RNGs. In 2008, Bello discovered a randomness
vulnerability in Debian’s OpenSSL package; keys generated by the RNG of this package were
predictable [1]. As a consequence, protocol sessions of the DHE variant of SSL, e. g., might
have been compromised as attackers were able to predict the ephemeral secret keys used to
establish the shared session key and hence to decrypt further communication between client and
server [1, 35]. In August 2013, attackers took control of Bitcoin transactions due to flaws in
Android’s Java and OpenSSL RNG [26]. As multiple transactions were signed using the same
randomness in the ECDSA signature generation, an attacker was able to recover the long-term
secret signing key of the user initiating the transactions and perform transactions on its behalf.
Further, it seems that the security of certain cryptographic systems such as RNGs has been
deliberately weakened to, e. g., eavesdrop on private communication [31]. We introduce new
security models that incorporate the worst-case scenario of adversaries controlling the randomness
involved in protocol sessions and propose countermeasures against such attacks. Security in our
new models implies security under repeated or predictable randomness.

Contributions. First, we perform the first systematic analysis of the limits of game-based AKE
security. We identify several relevant protocol classes for which we provide formal impossibility
results. That is, given an arbitrary protocol from a certain class, we specify attacks that can be
applied to this protocol. Our impossibility results (a) clarify which security guarantees cannot
be achieved by any protocol in the respective class, and (b) allow us to systematically develop
strong security models for each class. We give for each class a concrete protocol that is secure in
the corresponding strong model.

Second, some of the models that we derive from our impossibility results allow the adversary
to perform chosen-randomness attacks even against the target session: these attacks go far
beyond attacks covered in earlier security models. While stateless protocols fail to achieve
security against such adversaries, we present stateful protocols, which modify memory that is
shared among sessions, and achieve security against attacks based on choosing session-specific
randomness. We thereby significantly reduce the assumptions needed from the RNG.

Third, our exploration of the limits of game-based security leads to a protocol hierarchy
based on the constructed protocols. Our hierarchy highlights the security guarantees that can be
achieved by each class, and provides a novel way of selecting an optimal trade-off between the
type of protocol and the security it offers.

Related work. Impossibility results. In general, proposals for AKE protocols are motivated by
either claiming stronger security guarantees or improved efficiency. This has resulted in a large
number of works that suggest to provide security against the strongest possible adversary [10,
13,19,20,23–25]. Until now, such comments mostly relied on informal impossibility results. For
example, Krawczyk [22] sketched a generic perfect forward secrecy attack, for which he claimed
that it breaks the security of any “implicitly authenticated” two-message AKE protocol. This
attack has led to the statements that (a) no two-message protocol can provide PFS [23, p. 56],
and (b) the eCK model capturing only weak perfect forward secrecy is the strongest possible
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model for analyzing two-message AKE protocols [24, 25]. However, in [18], it is shown that
two-message protocols can achieve PFS even for eCK-like adversaries.

Yang et al. state that no protocol can be secure against reset-and-replay attacks on the target
session [34, p. 120]. In a reset-and-replay attack the adversary first sets the randomness of a
session to the same randomness as used in a previous session of the same user and then replays
messages to the session so that both sessions compute the same session key [34]. Based on their
impossibility result, they design a security model in which reset attacks are disallowed on the
target session. As we see in Section 5.2, their result only holds for a particular class of protocols,
namely the class of stateless protocols, which do not modify memory that is shared among
sessions. Since we consider a wider range of protocols, we arrive at the conclusion that there are
protocols that are secure against reset-and-replay attacks on the target session. In particular, we
construct variants of the NAXOS protocol [24] that are secure against such attacks.

Similarly, Boyd and González Nieto [10] show that one-round AKE protocols that do
not provide message replay detection cannot achieve PFS if the adversary can also reveal
session-specific randomness of the target session’s peer. Their argument is based on a variant
of Krawczyk’s PFS attack [22]. They note that protocols that provide replay detection via
timestamps or counters are not vulnerable to this attack. We show in Section 7 that there are
one-round protocols that do not require replay detection and are only vulnerable to Boyd and
González Nieto’s [10] attack if the target session is activated with a message replayed from the
first session of its peer. We construct a protocol that achieves security even under compromise of
the target session’s randomness and the actor of that session’s long-term secret key as long as the
randomness of at least one of the previous sessions of the same user has not been compromised.

Randomness failures. The first models addressing the leakage of session-specific information
include the eCK model [24] and the CK model [12]. The eCK model considers an information-
leaking RNG that leaks values after they have been generated, which is modelled via the query
ephemeral-key. Intermediate protocol computations are assumed to be outside of the adversary’s
control. In contrast, the CK model considers long-term keys stored in secure memory (e.g., an
HSM), whereas protocol computations are (partly) done in less-protected memory. The adversary
has read-only access to the less-protected memory through a query session-state. However, in the
vast majority of proofs in the CK model, the less-protected memory has been defined to contain
exactly the randomness, thereby effectively modeling an information-leaking RNG. Unlike our
work, CK and eCK do not consider predictable, failing, or compromised RNGs.

Yang et al. [34] first analyzed AKE security w.r.t. adversaries who can manipulate random
values. They define two security models: Reset-1 and Reset-2. In the Reset-1 model the adversary
controls the randomness of each session, with the restrictions that the adversary (a) does not
issue corrupt queries to the actor and peer of the test session, and (b) the randomness used in
the test and partner session is not used in any other session. Thus, the Reset-1 model captures
neither weak perfect forward secrecy nor reset-and-replay attacks on the target session or its
partner session. In contrast, the models that we develop in Section 5 and Section 6 capture
reset attacks on the target session, reset attacks on its partner session, and weak perfect forward
secrecy. The Reset-2 model captures repeated secret randomness in multiple sessions due to
reset attacks, but no chosen-randomness attacks. Whereas the Reset-2 model captures weak
perfect forward secrecy, it does not allow the adversary to perform reset attacks against either
the target session or its partner session. In Section 5.3 we design a similar model to the Reset-2
model, which we call XAKE. In the XAKE model, the adversary is allowed to perform reset attacks
even against the target session and its partner session. We show that security in a model that
captures chosen-randomness attacks implies security in the XAKE model. Yang et al. [34] provide
a transformation that turns a protocol secure in the Reset-2 model into a protocol that is secure
in both models, by replacing the randomness x used in the original protocol by FK(x), where F
is a pseudorandom function family, and K is an additional long-term secret key.

Ristenpart and Yilek [30] show that virtual machine (VM) snapshots can lead to VM reset
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attacks. As a countermeasure, they propose a framework for hedging cryptographic operations
based on preprocessing potentially bad RNG-supplied randomness together with additional inputs
with HMAC to provide pseudorandomness for the cryptographic operation; their framework
uses hedging techniques for public-key encryption of Bellare et al. [3]. Hedging a cryptographic
operation means designing it in such a way that, given good randomness, the operation provably
achieves strong security goals, and, given bad randomness, the operation achieves weaker, but
still meaningful, security goals [3]. Our models cover VM reset attacks on stateless protocols,
i.e., resettable randomness, and we thereby address some of their future work.

Stateless and stateful AKE protocols. Most AKE protocols (e. g., HMQV [22], NAXOS [24],
CMQV [33]) are stateless, i.e., they only modify session-specific memory, whereas the memory
that is shared among sessions is invariant under protocol execution. Furthermore, the security
of stateful AKE protocols, which update the memory that is shared among sessions during
execution of the protocol, has not been considered in the context of randomness failures.

A few stateful protocols have been suggested. For example, Blake-Wilson et al. [7] propose
to modify their Protocol 2 by concatenating the secret value that is used as the secret material
to derive the session key with the value of a counter. We denote this new protocol by Protocol
2C. Instead of running the protocol each time a session key is required, a new session key is
obtained by simply incrementing the counter and computing a new hash value [7]. The idea of
using a counter variable is presented in the context of special applications for which it might not
be desirable to run the protocol whenever a new session key has to be established. However, no
security proof of Protocol 2C has been given. In Section 7.1 we prove the security of the CNX
protocol, a stateful variant of the NAXOS protocol. The CNX protocol includes a global counter
value, which is shared across the sessions of a user, as input to the hash function H1 used in the
computation of the outgoing messages.

2 Authenticated key exchange framework

In this section we define a framework to reason about the security of AKE protocols belonging to
different classes against adversaries with diverse capabilities. This framework allows to express
existing AKE security models such as the eCK model [24], the eCKw model [18] and the eCK-
PFS model [18] as well as extensions of these models that permit the adversary to choose the
randomness used in protocol sessions.

2.1 Security model

Sessions and session-specific memory. Let P be a finite set of N binary strings representing
user identifiers. Each user can execute multiple instances of an AKE protocol, called sessions,
concurrently. We can uniquely identify specific sessions of a user by referring to the order in
which they are created. Thus, the i-th session of user P̂ is denoted by the tuple (P̂ , i) ∈ P × N.
These tuples are not used by the protocol, but allow the adversary to identify the sessions he
created. We model each user by a probabilistic Turing machine. For each user P̂ , the state of
its Turing machine consists of the memory contents of the user, where we differentiate between
session-specific memory and user memory, which is shared among different sessions. We take an
abstract view on the session-specific memory and assume that it can be separated into distinct
named fields, referred to as variables and listed in Table 1. Some of these variables are set upon
session creation, whereas others are set or updated during execution of the protocol. The next
step to be executed by the protocol is stored in the variable step. Alternatively, this value could
be stored in the variable data. We choose to store it in a separate variable for clarity. We say
that a session s has accepted (or is completed) if the value of its status variable taking values
in the set {active, accepted, rejected} is accepted. We denote by sts the session-specific
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actor the session’s actor (the user running the session)
peer the session’s peer (the intended communication partner)
role taken role; either I (initiator) or R (responder)
sent, recv concatenation of all messages sent, respectively received, in the session
status session status; either active, accepted, or rejected
key key established in the session
rand randomness used in the session
data any additional session-specific or protocol-specific data
step protocol step to be executed (in the session)

Table 1: Elements of session state

memory related to session s. The session-specific memory contains the session-specific variables
of Table 1. Initially we assume that each session-specific variable is undefined, denoted by ⊥.

User memory. The user memory of some user stores the user’s long-term public/secret key
pair, the public key of all other users Q̂ ∈ P as well as additional variables that might be required
by the protocol. The information stored in the user memory is accessed and possibly updated
by sessions of the user according to the protocol specification. In contrast to session-specific
information, data stored in the user memory of some user P̂ is shared among different sessions of
the user P̂ . We denote by st P̂ the user memory of user P̂ ∈ P.

Game state and game behaviour (see also [11]). The adversary, modeled as a probabilistic
polynomial-time algorithm, interacts with the users in the set P within a game through queries
in a set Q. The state of the game (or game state) contains session-specific state information sts
for all sessions s, user-specific information st P̂ for each user P̂ ∈ P as well as other information
related to the game such as some bit that the adversary attempts to guess. The game behaviour,
which we denote by Φ, describes how the game processes the queries in Q. More precisely, the
game behaviour Φ is an algorithm taking as input the current state of the game GST , a query
q ∈ Q, a protocol π, and a security parameter 1k, and returning a new state GST ′ as well as a
response response ∈ {0, 1}∗ ∪ {⊥, ?} to the adversary’s query q.

Definition 1 (h-message protocol). Let 1k be the security parameter. An h-message protocol
π, where h is the sum of the number of messages sent and received during a protocol session,
consists of

� a set of domain parameters,
� a probabilistic polynomial-time key generation algorithm KeyGen, which takes as input the

security parameter and outputs a public/secret key pair, and
� a deterministic polynomial-time algorithm Ψ executed by a user in a session. This algorithm

takes as input the security parameter 1k, the session-specific memory sts of a session s, the
user memory st P̂ of the actor P̂ of session s, and a message m ∈ {0, 1}∗, and outputs a triple
of elements (m′, st ′s, st ′

P̂
), where m′ ∈ {0, 1}∗ ∪ {?} is a message, st ′s is an updated internal

session state, and st ′
P̂

is an updated state of the user memory of user P̂ .

If h is even, then the number of messages m′ 6= ? output by Ψ during a protocol session is h
2 for

both roles initiator and responder. If h is odd, then the number of messages m′ 6= ? output by Ψ
during a protocol session is h+1

2 for the initiator role and h−1
2 for the responder role.

The output of the key exchange algorithm Ψ (see Definition 1) may include the value ? to indicate
that the session does not generate an outgoing message.

Setup of the game. A setup algorithm SetupG is used to generate a set of a fixed number
N of user identifiers, to set all session-specific variables to ⊥, and to initialize the user memory
of each user. The algorithm SetupG takes as input the protocol π and the security parameter
1k, and outputs an initial game state GSTinit. More precisely, the setup algorithm proceeds as
follows:
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1. generate a set P = {P̂1, ..., P̂N} of N distinct binary strings (representing user identifiers),
2. for all users P̂ ∈ P: generate a long-term public/secret key pair (pkP̂ , skP̂ ) using algorithm

KeyGen,
3. for all users P̂ ∈ P : store the key pair (pkP̂ , skP̂ ) together with the set {(P̂ , pkP̂ ) | P̂ ∈ P\{P̂}}

in the user memory st P̂ , and
4. initialize all other user-specific variables if such variables are used by the protocol.

Queries. The specification of some of the queries that we define below is similar to queries
defined in the framework of Boyd et al. [9]. The public-info query, which was informally introduced
in [11, p. 4], allows the adversary to obtain information that was generated during the setup
phase of the game such as the users’ identifiers and their public keys.

� public-info(). The query returns a set L of information which contains the set {(P̂ , pkP̂ ) | P̂ ∈
P} as well as the initial values of all other variables stored in the user memory of each user,
except for the users’ long-term secret key, if such variables are used by the protocol.

The queries in the set QR = {create, send} model regular execution of the protocol.

� create(P̂ , r[, Q̂]). The query models the creation of a new session s for the user with identifier P̂ .
It requires that P̂ ∈ P, Q̂ ∈ P , and that r ∈ {I,R}; otherwise, it returns ⊥. Session variables
are initialized as

(sactor , srole , ssent , srecv , sstatus , skey , sstep)← (P̂ , r, ε, ε, active,⊥, 1) .

A bit string in {0, 1}k is sampled uniformly at random and assigned to srand ; we assume
that all randomness required during the execution of session s is deterministically derived
from srand . If the optional peer identifier Q̂ is provided, the variable speer is set to Q̂.
The key exchange algorithm Ψ is executed on input (1k, sts, st P̂ , ε). The algorithm returns a
triple of elements (m′, st ′s, st ′

P̂
). We set sts ← st ′s and st P̂ ← st ′

P̂
. The query returns m′.

� send(P̂ , i,m). The query models sending message m to the i’th session of user P̂ , which we
denote by s. It requires that sstatus = active; otherwise it returns ⊥. The algorithm Ψ is run
on input (1k, sts, st P̂ ,m), and outputs a triple of elements (m′, st ′s, st ′

P̂
). We set sts ← st ′s

and st P̂ ← st ′
P̂

. The query returns m′.

The queries in the set QC = {session-key, corrupt, randomness, cr-create} that we define next model
the corruption of a user’s secrets. The randomness query models the adversary’s capability of
learning the randomness srand of a particular session s. In contrast, the cr-create query models
the adversary’s capability of choosing the randomness used within a session. Note that we do not
explicitly model repeated randomness, i. e. secret uniform bits that have been used in previous
key exchange sessions. However, we show in Section 5.3 that security in the model that we
present in Section 5.1 implies security in a similar model capturing repeated randomness. The
significance of session-key queries is threefold. First, key exchange protocols are required to
provide security against known-key attacks [27], which can be ensured through key independence
among different sessions. Known-key attacks are captured in security models via session-key
queries on non-matching sessions. Second, in an unknown-key share (UKS) attack, the adversary
establishes two sessions which compute the same session key even if both sessions have different
intended communication partners. The relevance of UKS attacks is discussed, e. g., in [8]. A
formal definition of a UKS attack and how it is reflected in a security model via session-key
queries is given in [16]. Third, session-key queries capture replay attacks combined with chosen-
randomness attacks. In these replay attacks, the adversary causes two non-matching sessions
to compute the same session key by setting the randomness of the second session to the same
randomness as used in the first session and replaying the messages received by the first session
to the second session [34].
In the definition of the queries session-key and randomness we denote the i’th session of user P̂
by s.
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� session-key(P̂ , i). The query requires that sstatus = accepted; otherwise, it returns ⊥. The
query returns the session key skey of session s.

� corrupt(P̂ ). If P̂ /∈ P, then S returns ⊥. Otherwise the query returns the long-term secret
key skP̂ of user P̂ .

� randomness(P̂ , i). If sstatus 6= ⊥, then the randomness srand used in session s is returned.
Otherwise, the query returns ⊥.

� cr-create(P̂ , r, rnd[, Q̂]). The query models the creation of a new session s, using randomness
rnd chosen by the adversary, for the user P̂ . The query requires that P̂ ∈ P, Q̂ ∈ P, rnd ∈
{0, 1}k, and that r ∈ {I,R}; otherwise, it returns ⊥. Session variables are initialized as

(sactor , srole , ssent , srecv , sstatus , skey , srand , sstep)← (P̂ , r, ε, ε, active,⊥, rnd, 1) .

If the optional peer identifier Q̂ is provided, the variable speer is set to Q̂.
The key exchange algorithm Ψ is executed on input (1k, sts, st P̂ , ε). The algorithm returns a
triple (m′, st ′s, st ′

P̂
). We set sts ← st ′s and st P̂ ← st ′

P̂
. The query returns m′.

The set QnoCR = QR ∪ (QC \ {cr-create}) contains all execution and corruption queries, except
the query cr-create.

The notion of matching sessions specifies when two sessions are supposed to be intended
communication partners. It is formalized below via matching conversations as in [18,24].

Definition 2 (Matching sessions). Let π be an h-message protocol. We say that two sessions s
and s′ of π are matching if sstatus = s′status = accepted and sactor = s′peer∧speer = s′actor∧ssent =
s′recv ∧ srecv = s′sent ∧ srole 6= s′role .

We next define a parameterized family of AKE security models. The parameters for each
model consist of a subset Q of the above adversary queries and a freshness predicate F , which
restricts the adversary from performing certain combinations of queries.

Definition 3 (AKE security model). Let π be an h-message protocol. Let Q be a set of adversary
queries such that QR ⊆ Q ⊆ QR ∪QC. Let F be a freshness predicate, that is, a predicate that
takes a session of protocol π and a sequence of queries (including arguments and results) in Q.
We call (Q,F ) an AKE security model.

Remark 1. In this work we fix a particular definition for matching sessions (namely, Definition 2)
and construct strong security models with respect to this definition. It is straightforward to adapt
these models to other definitions of matching sessions that are suitable for analyzing protocols
such as (H)MQV that allow two sessions performing the same role to compute the same session
key.

2.2 Security experiment

We associate to each AKE security model X = (Q,F ) a security experiment W (X), defined
below, played by an adversary E against a challenger. To win the experiment, the adversary
aims to distinguish a real session key from a random key, modelled through the following query.

� test-session(s). This query requires that sstatus = accepted; otherwise, it returns ⊥. A bit b
is chosen at random. If b = 0, then skey is returned. If b = 1, then a random key is returned
according to the probability distribution of keys generated by the protocol.

Definition 4 (Security experiment W (X)). Let π be an h-message protocol. Let X = (Q,F ) be
an AKE security model. We define experiment W (X), between an adversary E and a challenger
who implements all the users, as follows:

1. The game is initialized with domain parameters for security parameter 1k and the setup
algorithm SetupG is executed.
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2. The adversary E first issues the query public-info, and then performs any sequence of queries
from the set Q.

3. At some point in the experiment, E issues a test-session query to a session s that has accepted
and satisfies F at the time the query is issued.

4. The adversary may continue with queries from Q, under the condition that the test session
must continue to satisfy F .

5. Finally, E outputs a bit b′ as his guess for b.

The adversary E wins the security experiment W (X) if he correctly guesses the bit b chosen by
the challenger during the test-session query (i. e., if b = b′, where b′ is E’s guess). Success of E in
the experiment is expressed in terms of E’s advantage in distinguishing whether he received the
real or a random session key in response to the test-session query. The advantage of adversary E
in the above security experiment against a key exchange protocol π for security parameter k is
defined as Advπ,EW (X)(k) = |2P (b = b′)− 1|.

Definition 5 (AKE security). A key exchange protocol π is said to be secure in AKE security
model (Q,F ) if, for all PPT adversaries E, it holds that

� if two users successfully complete matching sessions, then they compute the same session key,

� the probability of event Multiple-Match
W (X)
π,E (k) is negligible, where

Multiple-Match
W (X)
π,E (k) denotes the event that there exists a session that has accepted with

at least two matching sessions, and
� E has no more than a negligible advantage in winning the W (X) security experiment, that is,

there exists a negligible function negl in the security parameter k such that Advπ,EW (X)(k) ≤
negl(k).

Informally, the second requirement in Definition 5 (see also [5]) states that, for a given session of
protocol π that has accepted, it holds that its matching session, if it exists, is unique.

3 Protocol Classes

In this section we define a series of relevant protocol classes. The largest protocol class includes,
e. g., one-round protocols and Diffie-Hellman type protocols. As we see in Section 4 and Section 6,
the distinction between these classes allows the systematic development of strong security models
for analyzing protocols belonging to the respective classes.

3.1 Classes AKE, INDP, and INDP-DH

We start by defining a global class of AKE protocols. Such protocols are required to be executable,
i. e., if the messages of two users Â and B̂ are faithfully relayed to each other, then both users end
up with a shared session key (see also [4–6]). A second requirement ensures that protocol messages
depend on session-specific randomness. Both properties are used for proving impossibility results
in Section 4.

Definition 6 (Protocol class AKE). We define AKE as the class of all h-message protocols that
meet the following requirements: In the presence of an eavesdropping adversary,

� two users Â and B̂ can complete matching sessions, in which case they hold the same session
key, and

� the probability that two sessions of the same user output in all protocol steps identical messages
is negligible in the security parameter.

We next consider a subclass of two-message AKE protocols, namely the class INDP of one-round
AKE protocols, where the outgoing message can be computed before any (valid) message is
received. Formally, we define the class of one-round protocols as follows.
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Protocol 2C [7]

HMQV [22]
NAXOS [24]

π1 [18]
YAK [19]

HMQV-C [23]

AKE

INDP

INDP-DH

SL

Figure 1: Venn Diagram of the protocol classes and example protocols

Definition 7 (Protocol class INDP). The protocol class INDP consists of all two-message protocols
in AKE for which the outgoing message of any session s with status sstatus 6= rejected does not
depend on the incoming message.

We define the class INDP-DH of one-round Diffie-Hellman type protocols as a subclass of INDP
as follows.

Definition 8 (Protocol class INDP-DH). Let G = 〈g〉 be a cyclic group of prime order p generated
by g. Let KeyGen be the key generation algorithm defined as KeyGen(): Choose a ∈R [0, p− 1];
Set A← ga; Return secret key sk = a and public key pk = A.

The protocol class INDP-DH consists of all protocols in the class INDP with domain parameters
(G, g, p), key generation algorithm KeyGen, and where the outgoing message of any initiator

session s in status sstatus 6= rejected is of the form (δ, gfI(1k,sts,stÂ)) and the outgoing message of

any responder session s′ in status s′status 6= rejected is of the form (δ′, gfR(1k,sts′ ,stB̂)), where Â is
the actor of session s, B̂ is the actor of session s′, fI , fR : {0, 1}∗ → Zp are two polynomial-time
computable functions, and δ, δ′ is optional publicly available information such as the identifiers
of actor and peer of the session.

3.2 Stateless and stateful protocols

We distinguish between stateless and stateful protocols. Stateless protocols leave the state of a
user’s memory (i.e., the memory that is shared among sessions) invariant under execution of the
protocol. In contrast, the state of a user’s memory is modified when executing a protocol that is
not stateless. Examples of stateless and stateful protocols are given in Figure 1 and in Section 7.

We define the class of stateless AKE protocols as a subclass of the class AKE as follows.

Definition 9 (Stateless protocol). Let A,B, and C be sets. Let proj3 : A× B × C → C be the
map given by proj3(a, b, c) = c for all (a, b, c) ∈ A× B × C. Let π be a protocol in the class AKE.
We say that π is a stateless protocol if

proj3
(
Ψ(1k, sts, st P̂ ,m)

)
= st P̂ ,

for all (k, sts, st P̂ ,m) ∈ N× {sts | s ∈ P × N} × {st P̂ | P̂ ∈ P} × {0, 1}
∗. We denote by SL the

subclass of AKE containing all stateless protocols.

Definition 10 (Stateful protocol). Let π be a protocol in the class AKE. We say that π is a
stateful protocol if π is not stateless.
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Remark 2. Stateless protocols cannot provide message replay detection to reject messages that
have been received in earlier sessions of the same user as this would require storing all previously
received messages in a table in the user memory and, upon receipt of a valid message in a
session, accessing the table in the user memory and checking whether the message corresponds to
a message in the table.

Most recently proposed strong AKE protocols fall into the narrow class INDP-DH ∩ SL. As
we illustrate next, protocols from the wider classes can achieve stronger security.

4 Impossibility results and strong models for stateless protocols

In this section we provide impossibility results for protocols in the classes AKE ∩ SL, INDP ∩ SL
and INDP-DH ∩ SL with respect to an adversary who is given access to the queries in the set
QnoCR = QR ∪ (QC \ {cr-create}). We then derive strong security models for reasoning about
the security of protocols in the respective classes from these impossibility results. Each of our
models can be satisfied by existing stateless protocols. In Section 5 we show that no stateless
protocol can achieve security in stronger models, in which the adversary can additionally perform
chosen-randomness attacks via the cr-create query.

We start by defining the notion of partially matching sessions in a similar way as matching
conversations in [5, Definition 4.1].

Definition 11 (Partially matching sessions). Let π be an h-message protocol, where h ≥ 2. Let
s denote a session of π with sstatus = accepted. We say that session s is partially matching
session s′ in status s′status 6= ⊥ if the following conditions hold:

� srole 6= s′role ∧ sactor = s′peer ∧ speer = s′actor and either

� srole = I ∧ ssend [1..m] = s′recv [1..m] ∧ srecv [1..m] = s′send [1..m] with m = h
2 if h is even and

m = h−1
2 if h is odd, or

� srole = R∧ ssend [1..(m− 1)] = s′recv [1..(m− 1)] ∧ srecv [1..m] = s′send [1..m] with m = h
2 if h

is even and m = h+1
2 if h is odd,

where ssend [1..l] denotes the concatenation of the first l messages sent by session s and srecv [1..l]
denotes the concatenation of the first l messages received by session s.

Remark 3. In contrast to the notion of matching sessions (see Definition 2), which is only
defined for completed sessions, the notion of partially matching sessions does not require the
last message sent by one session to be received by the partner session. This allows us to capture
combinations of randomness and corrupt attacks on such sessions as well.

To relate a received message that was not constructed by the adversary to the session it
originates from, we use the concept of origin-session, which was first introduced in [17]. The
existence of an origin-session for a given session implies integrity of the received messages.

Definition 12 (origin-session). We say that a session s′ with s′status 6= ⊥ is an origin-session
for a session s with sstatus = accepted if s′send = srecv .

Theorem 1 (Impossibility result for AKE ∩ SL). Let π be an arbitrary protocol in the class
AKE ∩ SL. Let X = (QnoCR, F ) be the AKE security model with F being true for all sessions
s and all sequences of queries. Let s∗ denote the test session and let s′ denote a session such
that s∗ is partially matching session s′. There exist adversaries who win the security experiment
W (X) against protocol π with non-negligible probability by issuing either

1. a query session-key(s∗), or
2. a query session-key(s̃), where s̃ and s∗ are matching sessions, or
3. a query corrupt(s∗actor ) and a query randomness(s∗), or
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4. a query corrupt(s∗peer ) as well as a query randomness(s′), or
5. a query corrupt(s∗peer ) before creation of session s∗ via a create query or as long as s∗status =

active and s∗recv = ε, and impersonating the peer to session s∗.

Proof. Let π ∈ AKE∩SL. There exist PPT adversaries who win the security game W (X) against
protocol π with non-negligible probability, as follows.

Scenario 1: Adversary E1 establishes two sessions s and s′ that are matching (via a sequence
of create and send queries) and chooses session s as the test session. Issuing a session-key(s)
query reveals the session key of session s.

Scenario 2: Since π ∈ AKE, adversary E2 can establish via a sequence of create and send
queries two sessions s and s′ that are matching according to Definition 2. He then issues the
test-session query to one of the two sessions, say to session s, and issues a session-key query
to session s′. E2 thereby learns the session key of session s.

Scenario 3: Adversary E3 establishes two sessions s and s′ that are matching and chooses
session s as the test session. Issuing the queries corrupt(sactor ) and randomness(s) reveals
the long-term secret key of sactor = P̂ and the randomness srand of session s, respectively.
Together with the set L returned as response to the query public-info and the last message
received during session s, which we denote by m′, the adversary can compute the session key
of session s by executing the algorithm Ψ on input (1k, sts, st P̂ ,m

′). Note that the user state
remains unchanged during protocol execution as π ∈ SL.

Scenario 4: Assume that π ∈ AKE ∩ SL is an h-message protocol with h even. The proof works
similarly for the case where h is odd.
Case 1: test session in initiator role. First E4 establishes via a sequence of create and send
queries an initiator session s and a responder session s′ such that s and s′ are matching
sessions (this is possible since π ∈ AKE). Clearly, session s is also partially matching session
s′. He then chooses session s as the test session. Issuing the queries corrupt(speer ) and
randomness(s′) reveals the long-term secret key of speer = P̂ and the randomness s′rand of
session s′, respectively. Since π ∈ SL and the initial values of additional variables in the user
memory are returned as response to the query public-info, the user state st P̂ is known to
the adversary. Hence, the adversary can emulate the session key computation of a matching
session and compute the session key of session s by executing Ψ on input (1k, sts′ , st P̂ ,m),
where m denotes the last incoming message to session s′.
Case 2: test session in responder role. First E4 establishes via a sequence of create and send
queries an incomplete initiator session s and a responder session s′ such that s′ is partially
matching session s (this is possible since π ∈ AKE). He then chooses session s′ as the test
session. Issuing the queries corrupt(s′peer ) and randomness(s) reveals the long-term secret
key of s′peer and the randomness of session s, respectively. Similar to the previous case, the
adversary is able to compute the session key of session s′.

Scenario 5: Adversary E5 issues a corrupt query to some user, say user Q̂. He then creates a
responder session s by issuing the query create(P̂ ,R, Q̂). The adversary now impersonates
user Q̂ to sactor as follows. E5 chooses randomness r ∈R {0, 1}k and runs the protocol with
P̂ on behalf of Q̂ by executing the algorithm Ψ. The algorithm Ψ executed by the adversary
takes as input, among others, the user state of user Q̂ containing its long-term secret key skQ̂
and the set L returned as response to the public-info query. Once session s has accepted, he
chooses the latter as the test session. The adversary can compute the session key of session s,
for which no origin-session exists, by emulating a matching session. Note that a similar attack
also works against (a) an initiator session, (b) an initiator session s such that sstatus = active

and srecv = ε, and (c) a responder session s such that sstatus = active and srecv = ε.

Theorem 1 gives rise to the security model ΩAKE∩SL defined as follows. The associated freshness
notion restricts the adversary from performing the generic attacks specified in Theorem 1.

11



Definition 13 (ΩAKE∩SL). The ΩAKE∩SL model is defined by (Q,F ), where Q = QnoCR and a
session is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued,
3. not both queries corrupt(sactor ) and randomness(s) have been issued,
4. for all sessions s′ such that s is partially matching session s′, not both queries corrupt(speer )

and randomness(s′) have been issued, and
5. if there exists no origin-session for session s, then no corrupt(speer ) query has been issued

before creation of session s via a create query or as long as sstatus = active and srecv = ε.

To see that there exist protocols in the class AKE ∩ SL that are secure in the model ΩAKE∩SL,
consider the protocol SIG∗(NAXOS) obtained by applying the signature transformation SIG
with optional fields from [18] to the NAXOS protocol. Clearly, protocol SIG∗(NAXOS) does
not belong to the class INDP ∩ SL since the outgoing message of a responder session depends
on the Diffie-Hellman exponential contained in the incoming message. Adapting the proof
of [18, Theorem 1], it can be shown that protocol SIG∗(NAXOS) is secure in model ΩAKE∩SL.

Even though security in model ΩAKE∩SL can be achieved by protocols in the class AKE ∩ SL,
we next show that no protocol in the class INDP can provide these strong security guarantees.

Proposition 1 (Impossibility result for INDP). No protocol in the class INDP can satisfy security
in the model ΩAKE∩SL.

Proof. Let π be an arbitrary protocol in INDP. There exists an adversary E who wins the
W (ΩAKE∩SL) experiment against the challenger with non-negligible probability as follows. The
adversary E first reveals the long-term secret key of some user Â by issuing the query corrupt(Â).
Since E knows the values of all the variables stored in the user memory of user Â (through the
queries public-info and corrupt(Â)), E can run the first protocol execution step on behalf of Â
by executing the deterministic algorithm Ψ on input (1k, sts, st Â, ε), where the values of the

state sts of the emulated session s are as follows, sactor = Â, speer = B̂, srole = I, ssent = ε,
srecv = ε, sstatus = active, skey = ⊥, srand = z (with z ∈R {0, 1}k), sdata = ⊥, and sstep = 1.
The algorithm Ψ outputs a message m, an updated session state, and an updated state of the
user memory. The adversary then creates an initiator session s1 of user Â with peer B̂ via the
query create(Â, I, B̂). The latter query returns a message m1. He then creates a responder
session s2 of user B̂ via the query create(B̂,R, Â), and sends the message m, previously obtained
by executing Ψ, to session s2 via the query send(B̂, 1,m). As a response, the adversary receives
the message m2, which he sends to session s1 via a send query. Upon receiving message m2 in
session s1, Â executes Ψ(1k, sts1 , st Â,m2) and thereby completes the session. E now chooses
the completed session s1 as the test session, and reveals the long-term secret key of the peer
of the test session, namely user B̂, as well as the randomness of session s2. This enables him
to compute the session key of the test session by executing Ψ on input (1k, st s̃, st B̂,m1), where
m1 is the outgoing message of session s1 and the values of the session state st s̃ are as follows,
sactor = B̂, speer = Â, srole = R, ssent = ε, srecv = ε, sstatus = active, skey = ⊥, srand is the
randomness of session s2, sstep = 2, and sdata is obtained by executing the first protocol step.
E thereby emulates a matching session of user B̂. The previous attack shows that protocol π
is insecure in the ΩAKE∩SL model. Note that the test session is fresh in ΩAKE∩SL since there is
no freshness condition on a session that is an origin-session for the test session but no partially
matching session for the test session in the definition of FΩAKE∩SL . Also, there is no matching
session for the test session s1 since the message m sent by the adversary to session s2 is different,
with overwhelming probability, from the message m1 output by session s1, by Definition 6.

The notion of c-origin-session is a stronger notion than origin-session as the former additionally
requires distinct roles and agreement on the communicating users.
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Definition 14 (c-origin-session). We say that a session s′ with s′status 6= ⊥ is a c-origin-session
for a session s with sstatus = accepted if sactor = s′peer∧speer = s′actor∧srecv = s′sent∧srole 6= s′role .

Note that for protocols in the class INDP the last condition of Definition 13 can be simplified.
This follows from the fact that a created initiator session s of any protocol in the class INDP
completes upon receipt of a valid message m and the variable srecv = ε is then updated with
message m, i. e. srecv ← (srecv ,m). Consequently, the point in time of receipt of the first message
m in an initiator session s coincides with the completion of session s. The same reasoning is
applicable to responder sessions. It follows from (a) the previous observation, (b) the model
ΩAKE∩SL, and (c) Proposition 1 that a strong model for analyzing protocols in the class INDP∩SL
is model ΩINDP∩SL defined as follows.

Definition 15 (ΩINDP∩SL). The ΩINDP∩SL model is defined by (Q,F ), where Q = QnoCR, and a
session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued,
3. not both queries corrupt(sactor ) and randomness(s) have been issued,
4. for all sessions s′ such that s′ is a c-origin-session for session s, not both queries corrupt(speer )

and randomness(s′) have been issued, and
5. if there exists no origin-session for session s, then no corrupt(speer ) query has been issued

before the completion of session s.

It is not difficult to verify that protocol SIGt(NAXOS) obtained by applying a tagged
version of the signature transformation SIG from [18] to the NAXOS protocol is secure in model
ΩINDP∩SL. The outgoing message of a SIGt(NAXOS) initiator session of user Â is of the form
(X,SignÂ(0, X, B̂)) while the outgoing message of a SIGt(NAXOS) responder session of user B̂

is of the form (Y,SignB̂(1, Y, Â)).
We next show that any protocol in the class INDP-DH is insecure in ΩINDP∩SL.

Proposition 2 (Impossibility result for INDP-DH). No one-round Diffie-Hellman type protocol
in the class INDP-DH can satisfy security in the model ΩINDP∩SL.

Proof. Let π be an arbitrary protocol in INDP-DH. There exists an adversary E who wins the
W (ΩINDP∩SL) experiment against the challenger with non-negligible probability as follows. The
adversary E first creates an initiator session s at Â with peer B̂ via the query create(Â, I, B̂)
and receives as a response the message m = (δ,X), where X is the Diffie-Hellman exponential
generated in session s and δ denotes optional public information. E chooses a value z ∈R Zq,
computes Z = gz, and sends message m̃ = (δ′, Z) to session s. Upon receiving message m̃ in
session s, Â executes Ψ(1k, sts, st Â, m̃). E then chooses the completed session s as the test session

and reveals the long-term secret key of user B̂ via the query corrupt(B̂). This enables him to
compute the session key of the test session by executing Ψ on input (1k, st s̃, st B̂,m), where st s̃ is
the state of the emulated matching session s̃. Note that the query public-info returned the initial
values of additional variables stored in the user memory. This attack shows that π is insecure in
ΩINDP∩SL. It is a generalized version of the attack described by Krawczyk in [22, p. 15].

Remark 4. Any protocol π ∈ INDP-DH ∩ SL that does not contain sufficient public information
in the outgoing message is insecure in the model derived from model ΩINDP∩SL and Proposition 2.
This follows from the fact that a redirect event of a message from a session of a different user than
the test session’s peer can cause the existence of an origin-session that is not a c-origin-session
for the test session. However, we do not distinguish between the relative strength of AKE protocols
based on public information within the outgoing messages; adding such information does not
provide additional security guarantees as it can be altered by the adversary.

From the previous remark and Proposition 2 we derive the following security model.
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Definition 16 (ΩINDP-DH∩SL). The ΩINDP-DH∩SL model is defined by (Q,F ), where Q = QnoCR

and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued, and
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued, and
3. not both queries corrupt(sactor ) and randomness(s) have been issued, and
4. for all sessions s′ such that s′ is an origin-session for session s, not both queries corrupt(speer )

and randomness(s′) have been issued, and
5. if there exists no origin-session for session s, then no corrupt(speer ) query has been issued.

The model ΩINDP-DH∩SL is very similar to the eCKw model defined in [18]. The NAXOS
protocol [24] provides an example of a protocol in the class INDP-DH ∩ SL that is secure in the
eCKw model.

5 Models capturing chosen-randomness attacks

5.1 Deriving models with chosen-randomness

As an immediate consequence of Theorem 1, we obtain Theorem 2, which generalizes our
impossibility results on protocol class AKE ∩ SL to adversaries who are in addition given access
to the query cr-create.

Theorem 2 (Impossibility result for AKE∩ SL under chosen-randomness). Let π be an arbitrary
protocol in the class AKE∩ SL. Let X = (QnoCR ∪{cr-create}, F ) be the AKE security model with
F being true for all sessions s and all sequences of queries. Let s∗ denote the test session and let
s′ denote a session such that s∗ is partially matching session s′. There exist adversaries who win
the security experiment W (X) against protocol π with non-negligible probability by issuing

1. a query session-key(s∗), or
2. a query session-key(s̃), where s̃ and s∗ are matching sessions, or
3. a query corrupt(s∗actor ) and a (randomness or cr-create) query to session s∗, or
4. a query corrupt(s∗peer ) as well as a (randomness or cr-create) query to session s′, or
5. a query corrupt(s∗peer ) before creation of session s∗ via a (create or cr-create) query or as long

as s∗status = active and s∗recv = ε, and impersonating the peer to the test session s∗.

The previous theorem gives rise to the security model Ω−AKE defined as follows.

Definition 17 (Ω−AKE). The Ω−AKE model is defined by (Q,F ), where Q = QnoCR ∪ {cr-create},
and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued,
3. not both queries corrupt(sactor ) and (randomness(s) or cr-create(.) creating session s) have

been issued,
4. for all sessions s′ such that s is partially matching session s′, not both queries corrupt(speer )

and (randomness(s′) or cr-create(.) creating session s′) have been issued, and
5. if there exists no origin-session for session s, then no corrupt(speer ) query has been issued

before creation of session s via a (create or cr-create) query or as long as sstatus = active

and srecv = ε.

The models Ω−INDP and Ω−INDP-DH, defined below, are obtained from the models ΩINDP∩SL and
ΩINDP-DH∩SL, respectively, in a similar way as model Ω−AKE is obtained from model ΩAKE∩SL.

Definition 18 (Ω−INDP). The Ω−INDP model is defined by (Q,F ), where Q = QnoCR ∪ {cr-create},
and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued,
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2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued,
3. not both queries corrupt(sactor ) and (randomness(s) or cr-create(.) creating session s) have

been issued,
4. for all sessions s′ such that s′ is a c-origin-session for session s, not both queries corrupt(speer )

and (randomness(s′) or cr-create(.) creating session s′) have been issued, and
5. if there exists no origin-session for session s, then no corrupt(speer ) query has been issued

before the completion of session s.

Definition 19 (Ω−INDP-DH). The Ω−INDP-DH model is defined by (Q,F ), where Q = QnoCR ∪
{cr-create} and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued, and
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued, and
3. not both queries corrupt(sactor ) and (randomness(s) or cr-create(.) creating session s) have

been issued, and
4. for all sessions s′ such that s′ is an origin-session for session s, not both queries corrupt(speer )

and (randomness(s′) or cr-create(.) creating session s′) have been issued, and
5. if there exists no origin-session for session s, then no corrupt(speer ) query has been issued.

We show in Section 5.3 that security in our extended models, which additionally capture
attacks based on chosen randomness, implies security against attacks exploiting repeated ran-
domness failures.

5.2 Insecurity of stateless protocols against chosen-randomness attacks

Even though the following proposition states that no stateless protocol is secure in model
Ω−INDP-DH, we show in Section 7 that stateful protocols can in fact achieve these stronger security
guarantees.

Proposition 3 (Impossibility result for AKE ∩ SL under chosen-randomness). No protocol in
the class AKE ∩ SL can satisfy security in the model Ω−INDP-DH.

Proof. Let π be an arbitrary protocol in AKE ∩ SL. There exists an adversary E that wins the
Ω−INDP-DH game against the challenger with non-negligible probability as follows. The adversary E

first completes a regular execution between two users Â and B̂, i.e. Â and B̂ complete matching
sessions s and s′, respectively. He then issues a randomness query against the responder session s′

of user B̂. E creates another responder session s′′ of user B̂ via the query cr-create(B̂,R, str, Â),
where str denotes the randomness that he revealed from session s′, and replays the messages
from session s to session s′′. As the randomness used in session s′′ is identical to the randomness
used in session s′ and π ∈ SL, the messages that E receives from session s′′ are the same as the
messages sent by session s′. Now, E chooses the completed session s′ as the test session, and
reveals the session key computed in session s′′ via a session-key(s′′) query. As the session keys
computed in sessions s′ and s′′ are the same and both sessions are non-matching, the adversary
learns the session key of the test session. Hence, the protocol π is insecure in the Ω−INDP-DH model.
A similar attack that involves cr-create queries on both sessions s′ and s′′ is sketched in [34, p.
119].

Corollary 1. No protocol in the class AKE ∩ SL can satisfy security in either model Ω−INDP or
model Ω−AKE.

Proof. By Proposition 3, we know that no protocol in the class AKE ∩ SL can satisfy security in
the model Ω−INDP-DH. The corollary now follows from the fact that the models Ω−INDP and Ω−AKE
are both at least as strong as model Ω−INDP-DH (by Proposition 9).
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5.3 Repeated randomness failures

In this section we show that security in the Ω−AKE model implies security against repeated
randomness. To this end, we compare the relative strength of security between the model Ω−AKE
and a very similar model to Ω−AKE, where the adversary is not given access to the query cr-create,
but to the query reset-create. The latter query allows the adversary to create a session that uses
the same randomness as used in a previous session of the same user. Practically, this models a
flawed RNG that produces the same value more than once.

The query reset-create creates a new session with the same randomness as used in a previous
session of the same user.

� reset-create(P̂ , r, i[, Q̂]). The query models the creation of a new session s, using the same
randomness as in session s′ = (P̂ , i), for the user P̂ . The query requires that P̂ ∈ P, Q̂ ∈
P, r ∈ {I,R}, and that s′status 6= ⊥; otherwise, it returns ⊥. Session variables are initialized
as

(sactor , srole , ssent , srecv , sstatus , skey , srand , sstep)← (P̂ , r, ε, ε, active,⊥, s′rand , 1) .

If the optional peer identifier Q̂ is provided, the variable speer is set to Q̂.
The key exchange algorithm Ψ is executed on input (1k, sts, st P̂ , ε). The algorithm returns a
triple (m′, st ′s, st ′

P̂
). We set sts ← st ′s and st P̂ ← st ′

P̂
. The query returns m′.

Consider the security model XAKE = (QnoCR ∪ {reset-create}, F ), where a session s = (P̂ , i) is
said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued,
3. not both queries corrupt(P̂ ) and (randomness(s) or reset-create(.) creating session s) have

been issued,
4. for all sessions s′ such that s is partially matching session s′, not both queries corrupt(speer )

and (randomness(s′) or reset-create(.) creating session s′) have been issued, and
5. if there exists no origin-session for session s, then no corrupt(speer ) query has been issued

before creation of session s or as long as sstatus = active and srecv = ε.

The relative strength of security between security models, first discussed by Choo et al. [14],
is formally defined by Cremers and Feltz [18] as follows. Let secure(M,π) be a predicate that is
true if and only if the protocol π is secure in security model M .

Definition 20. Let Π be a class of AKE protocols. We say that a security model M ′ is at least
as strong as a security model M with respect to Π, denoted by M ≤Π

Sec M
′, if

∀ π ∈ Π. secure(M ′, π)⇒ secure(M,π). (1)

Proposition 4. Let Π = AKE. The model Ω−AKE is at least as strong as the model XAKE with
respect to Π according to Definition 20.

Proof. The first condition of Definition 5 is satisfied since matching is defined in the same way
for both models Ω−AKE and XAKE. Let π ∈ Π. To show that the second and third condition of
Definition 5 hold, we construct an adversary E′ attacking protocol π in model Ω−AKE using an
adversary E attacking π in model XAKE. Adversary E′ proceeds as follows. Whenever E issues a
query create, corrupt, randomness, session-key or test-session, adversary E′ issues the same query
and forwards the answer received to E. Whenever E issues a query reset-create(P̂ , r, i[, Q̂]) to
create a new session of user P̂ , adversary E′ first checks whether the status of session s = (P̂ , i)
is different from ⊥. If this is the case, then E′ issues the following sequence of queries: 1.
randomness(P̂ , i), and 2. cr-create(P̂ , r, srand [, Q̂]). At the end of E’s execution, i. e. after it has
output its guess bit b, E′ outputs b as well. Note that if F holds for the test session, then
the freshness condition of model Ω−AKE is also satisfied. In particular, if there exists a partially
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matching session for the test session and the actors of both sessions are the same, then there
is no corrupt query on that user in case a query reset-create was issued to create either of the
two sessions. If there exists a partially matching session for the test session and the actors of
both sessions are different, then a reset-create query on the test session only involves a query
cr-create and a query randomness on another session of the test session’s actor; issuing a corrupt
query on the test session’s peer does not render the test session un-fresh in model Ω−AKE as
long as there is no query randomness on the partially matching session. Hence, it holds that

Advπ,EW (XAKE)(k) ≤ Advπ,E
′

W (Ω−AKE)
(k), where k denotes the security parameter. Since by assumption

protocol π is secure in Ω−AKE, there is a negligible function g such that Advπ,E
′

W (Ω−AKE)
(k) ≤ g(k). It

follows that protocol π is secure in XAKE.

We obtain the following corollary as an immediate consequence of Proposition 4.

Corollary 2. Let Π = AKE. The model Ω−AKE is at least as strong as the model YAKE =
(QR ∪ {corrupt, session-key, reset-create}, F ′) with respect to Π according to Definition 20, where
F ′ is obtained from predicate F above by removing the randomness query from the conditions.

Proof. Since XAKE ≤Π
Sec Ω−AKE (by Proposition 4) and YAKE ≤Π

Sec XAKE (by a similar reduction
proof as in the proof of Proposition 4), it follows that YAKE ≤Π

Sec Ω−AKE by transitivity of
Implication (1).

6 Impossibility results and strong models for stateful protocols

We next present a generalized impossibility result and its derived model for the broad class AKE
taking into account the adversary’s ability to choose session-specific randomness. Recall that the
completion of a session occurs at the time at which the status of the session is set to accepted.

Corollary 3 (Impossibility result for AKE). Let π be an arbitrary protocol in the class AKE. Let
X = (QnoCR ∪ {cr-create}, F ) be the AKE security model with F being true for all sessions s and
all sequences of queries. Let s∗ denote the test session and let s′ denote a session such that s∗ is
partially matching session s′. There exist adversaries who win the security experiment W (X)
against protocol π with non-negligible probability by issuing either

1. a query session-key(s∗), or
2. a query session-key(s̃), where s̃ and s∗ are matching sessions, or
3. a query corrupt(s∗actor ) as well as (randomness or cr-create) queries on all sessions s with

sactor = s∗actor , where the query create or cr-create creating session s occurred before completion
of session s∗, or

4. a query corrupt(s∗peer ) as well as (randomness or cr-create) queries on all sessions s with
sactor = s′actor , where the query create or cr-create creating session s occurred before completion
of session s′, or

5. a query corrupt(s∗peer ) before creation of session s∗ via a query (create or cr-create) or as long
as s∗status = active and s∗recv = ε, and impersonating the peer to the test session s∗.

Proof. Corollary 3 follows from Theorem 1 and the following observation. Given the initial
value of all the variables stored in the user memory of user P̂ returned as response to the query
public-info, the randomness used in all sessions of user P̂ that are created before completion
of the test session, and the long-term secret key of P̂ , the adversary can emulate the protocol
execution steps on behalf of user P̂ by executing Ψ sequentially to recompute the session-specific
and user-specific data from the first session of user P̂ to the relevant session of user P̂ .

Remark 5 (On Corollary 3). Consider a protocol π ∈ AKE storing previously seen messages
to prevent replay attacks. Then, in case a session s receives a message m sent by some session
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s′, the user memory of user sactor gets updated after receiving this message. Thus, if another
session s′′ of user sactor , created before s was created, is activated via a query send with the same
message m later on, then session s′′ is aborted as it detected a previously received message (even
if the session was created before session s). Similar situations might occur if updates of the user
state occurring in later steps of the protocol execution involve the randomness of the session.
Therefore, some of the attacks in Corollary 3 require the randomness of all sessions created prior
to completion of the target session or its partially matching session.

Corollary 3 gives rise to the model ΩAKE defined as follows.

Definition 21 (ΩAKE). The model ΩAKE is defined by (Q,F ), where Q = QnoCR ∪ {cr-create}
and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued,
3. not all queries corrupt(sactor ) as well as (randomness or cr-create) queries on all sessions s̃

with s̃actor = sactor , where the query create or cr-create creating session s̃ occurred before
completion of session s, have been issued,

4. for all sessions s′ such that s is partially matching session s′, not all queries corrupt(speer ) as
well as (randomness or cr-create) on all sessions s̃ with s̃actor = s′actor , where the query create
or cr-create creating session s̃ occurred before completion of session s′, have been issued, and

5. if there exists no origin-session for session s, then no corrupt(speer ) query has been issued
before creation of session s via a query (create or cr-create) or as long as sstatus = active

and srecv = ε.

In this work we restrict ourselves to the subclass ISM (Initial State Modification) of the
class AKE and provide strong models for analyzing protocols in this subclass. The class ISM
contains all AKE protocols that may only access and update user memory upon creation of
sessions. It contains, e. g., the CNX protocol as well as the NXPR protocol, which we present in
Section 7.1 We leave the analysis of protocols that update user memory at later steps in the
protocol execution as future work.

From the definition of the class ISM and from Corollary 3, we derive the following model.

Definition 22 (ΩAKE∩ISM). The model ΩAKE∩ISM is defined by (Q,F ), where Q = QnoCR ∪
{cr-create} and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued,
3. not all queries corrupt(sactor ) as well as (randomness or cr-create) on all sessions s̃ with

s̃actor = sactor , where the query create or cr-create creating session s̃ occurred before or at
creation of session s, have been issued,

4. for all sessions s′ such that s is partially matching session s′, not all queries corrupt(speer )
as well as (randomness or cr-create) on all sessions s̃ with s̃actor = s′actor , where the query
create or cr-create creating session s̃ occurred before or at creation of session s′, have been
issued, and

5. if there exists no origin-session for session s, then no corrupt(speer ) query has been issued
before creation of session s via a query (create or cr-create) or as long as sstatus = active

and srecv = ε.

Whereas in the models that we defined in Section 4 and Section 5, the adversary is not
allowed to compromise both the randomness of the target session and the long-term secret key of
the actor of the target session, the adversary is allowed to compromise the latter values in the

1Note that this subclass does not contain protocols providing message replay detection as such protocols need
to access and update the list of received messages stored in the user memory upon receipt of a message. However
the subclass contains protocols such as NAXOS and CMQV, which do not modify the user memory.
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ΩAKE∩ISM model and its descendants as long as the randomness of at least one of the previous
sessions of the actor of the target session has not been compromised.

Definition 22 and Proposition 1 give rise to the model ΩINDP∩ISM defined below. The third
condition in Definition 23 prevents the adversary from both corrupting the actor of the target
session and revealing the randomness of all sessions of this user that were created prior to creation
of the target session as well as the randomness of the target session itself. As the user memory
is accessed and updated upon creation of sessions only, the responses for the previous queries
would allow the adversary to emulate the protocol execution steps for the target session. The
fourth condition specifies a similar requirement for sessions that are c-origin-sessions for the
target session.

Definition 23 (ΩINDP∩ISM). The model ΩINDP∩ISM is defined by (Q,F ), where Q = QnoCR ∪
{cr-create} and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued,
3. not all queries corrupt(sactor ) as well as (randomness or cr-create) on all sessions s̃ with

s̃actor = sactor , where the query create or cr-create creating session s̃ occurred before or at
creation of session s, have been issued,

4. for all sessions s′ such that s′ is a c-origin-session for session s, not all queries corrupt(speer )
as well as (randomness or cr-create) on all sessions s̃ with s̃actor = s′actor , where the query
create or cr-create creating session s̃ occurred before or at creation of session s′, have been
issued, and

5. if there exists no origin-session for session s, then no corrupt(speer ) query has been issued
before the completion of session s.

Definition 22 and Propositions 1 and 2 give rise to the model ΩINDP-DH∩ISM defined as follows.

Definition 24 (ΩINDP-DH∩ISM). The model ΩINDP-DH∩ISM is defined by (Q,F ), where Q = QnoCR∪
{cr-create} and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) has been issued,
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued,
3. not all queries corrupt(sactor ) as well as (randomness or cr-create) on all sessions s̃ with

s̃actor = sactor , where the query create or cr-create creating session s̃ occurred before or at
creation of session s, have been issued,

4. for all sessions s′ such that s′ is an origin-session for session s, not all queries corrupt(speer )
as well as (randomness or cr-create) on all sessions s̃ with s̃actor = s′actor , where the query
create or cr-create creating session s̃ occurred before or at creation of session s′, have been
issued, and

5. if there exists no origin-session for session s, then no corrupt(speer ) query has been issued.

We formally study the relations between the different security models that we derived from
impossibility results in Section 8.

Remark 6 (comparison with [10]). Boyd and González Nieto [10] show that one-round AKE
protocols that do not provide message replay detection cannot achieve PFS if the adversary
can reveal session-specific randomness of the target session’s peer. The attack on which their
argument is based is disallowed in model ΩINDP∩ISM, but only if the replayed message originates
from the first created session of the target session’s peer. In case the target session receives a
message replayed from the n’th session of its peer, where n > 1, then the adversary is allowed to
compromise the randomness of the n’th session of the peer as well as the long-term secret key of
the peer after the end of the target session as long as he does not reveal the randomness of the
previous n− 1 sessions of the peer. Our results thus reflect the impossibility result of Boyd and
González Nieto on the class of protocols ISM only if the replayed message originates from the
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first session of the target session’s peer. In particular, the attack in the proof of Theorem 1 from
which we derived the fourth condition in Definition 13 can be seen as a generalized version of
Boyd and González Nieto’s attack.

7 Construction of strongly secure stateful protocols

In the previous sections we derived strong models capturing chosen-randomness attacks from
impossibility results on given protocol classes. We have seen that stateless protocols fail to
achieve security in these models. In this section we provide stateful variants of the NAXOS
protocol [24], which are secure against attacks based on chosen randomness.

7.1 Protocol CNX

The CNX protocol (“Counter-NaXos”), shown in Figure 2, is a variant of the NAXOS protocol [24]
and provides an example of a protocol from the class INDP-DH\SL, where H1 : {0, 1}∗ → Zp and

H2 : {0, 1}∗ → {0, 1}k denote two hash functions. In contrast to the NAXOS protocol, protocol
CNX additionally includes a global counter value, which is shared across the sessions of a user,
as input to the hash function H1. We assume that each user maintains a counter l, taking values
in N, initialized with 0 and incremented by one upon creation of a new session. This counter
variable is stored in the user memory. We write st P̂ .l to access the counter variable l of user P̂ .
The CNX protocol proceeds as follows.

1. Upon creation of a new initiator session s = (Â, i) with a create(Â, I, B̂) query, user Â
increments the counter variable st Â.l← st Â.l + 1, sets sdata ← st Â.l, computes an outgoing

public key X ← gH1(srand ,a,sdata ), and returns X as an outgoing message.
2. Upon creation of a new responder session s′ = (B̂, j) with a create(B̂,R, Â) query, user B̂

increments the counter variable st B̂.l← st B̂.l + 1 and sets s′data ← st B̂.l.

3. When the responder receives message X via a send(B̂, j,X) query, he computes an outgoing
public key Y ← gH1(s′rand ,b,s

′
data ) and returns Y as an outgoing message. He computes a session

key s′key ← H2(AH1(s′rand ,b,s
′
data ), Xb, XH1(s′rand ,b,s

′
data ),

Â, B̂) and accepts s′status ← accepted.
4. When the initiator receives message Y via a send(Â, i, Y ) query, he computes a session key
skey ← H2(Y a, BH1(srand ,a,sdata ), Y H1(srand ,a,sdata ), Â, B̂) and accepts sstatus ← accepted.

Remark 7. In the specification of the CNX protocol given in Figure 2, the variable sdata stores
the current value of the counter. The H1 values, which depend on the value of the counter, are
recomputed in the session key computation. In particular, it is essential for initiator sessions to
store the counter value in the variable sdata to prevent the use of a different counter value in
the session key computation due to other activations of sessions of the same user in between
creation of the session and completion of the session. As an alternative specification of the CNX
protocol, one could consider storing the exponent H1(srand , a, st Â.l) in the variable sdata . Then
users would not need to recompute the H1 value in the session key computation.

The following proposition states that the CNX protocol is secure in model Ω−INDP-DH.

Proposition 5. Under the GAP-CDH assumption in the cyclic group G of prime order p, the
CNX protocol is secure in model Ω−INDP-DH, when H1, H2 are modeled as independent random
oracles.

We refer the reader to Appendix A for the proof of Proposition 5.

By a straightforward adaptation of the proof of [18, Theorem 1] via integration of the cr-create
query into the security models, we can show that protocol SIGt(CNX) obtained by applying the
tagged version of the signature transformation SIG suggested in Section 4 to the CNX protocol is
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Initiator I Responder R

st Â: a, {(P̂ , pkP̂ ) | P̂ ∈ P}, l st B̂: b, {(P̂ , pkP̂ ) | P̂ ∈ P}, l

st Â.l← st Â.l + 1 st B̂.l← st B̂.l + 1
sdata ← st Â.l s′data ← st B̂.l

X ← gH1(srand ,a,sdata ) X−−−−−→
Y ← gH1(s′rand ,b,s

′
data )

σ1 ← AH1(s′rand ,b,s
′
data )

σ2 ← Xb

σ3 ← XH1(s′rand ,b,s
′
data )

s′key ← H2(σ1, σ2, σ3, Â, B̂)

σ1 ← Y a Y←−−−−− s′status ← accepted

σ2 ← BH1(srand ,a,sdata )

σ3 ← Y H1(srand ,a,sdata )

skey ← H2(σ1, σ2, σ3, Â, B̂)
sstatus ← accepted

Figure 2: CNX protocol

secure in model Ω−INDP. Similarly, we can show that protocol SIG∗(CNX), obtained by applying
the signature transformation SIG with optional fields to the CNX protocol, is secure in model
Ω−AKE.

Remark 8 (sequence numbers). In contrast to the use of sequence numbers to uniquely identify
messages, the recipient of a message during execution of the CNX protocol does not need to
store and maintain state information of each possible verifier to detect previously used sequence
numbers (see also [27, p. 399]). However, as stated in [10], protocols using sequence numbers to
order messages are secure against Boyd and González Nieto’s replay attack [10, p. 458]. Moreover
such protocols are secure against reset-and-replay attacks. Thus, designers of protocols face a
trade-off between efficiency and security against various types of replay attacks.

Remark 9 (comparison with [34]). Yang et al. [34] argue that whenever the randomness of one
session is identical to the randomness of another session of the same user, the adversary can
learn the session key of either of the two sessions by performing a replay attack combined with a
session-key query (as both sessions compute the same session key, but are non-matching). While
Proposition 3 confirms that this statement holds for all protocols in the class AKE ∩ SL, we have
shown that there exists a protocol in AKE, namely CNX, that achieves security even under such
reset-and-replay attacks against the target session.

7.2 Protocol NXPR

Even though the CNX protocol is secure in model Ω−INDP-DH, it fails to achieve security in the
stronger model ΩINDP-DH∩ISM, as the following proposition shows.

Proposition 6. The CNX protocol is insecure in model ΩINDP-DH∩ISM.

Proof. The following attack shows that the CNX protocol is insecure in ΩINDP-DH∩ISM. The
adversary creates an initiator session s of user Â via the query create(Â, I, B̂) and an initiator
session of user B̂ by issuing the query create(B̂, I, Ĉ). He then creates a responder session s′

via the query create(B̂,R, Â) and activates session s′ by sending the message X = gx sent by
session s to session s′. The adversary then sends message Y sent by session s′ to session s.
Session s accepts the key skey = H2(Y a, BH1(srand ,a,sdata ), Y H1(srand ,a,sdata ), Â, B̂) as the session

key, while session s′ accepts as its key s′key = H2(AH1(s′rand ,b,s
′
data ), Xb, XH1(s′rand ,b,s

′
data ), Â, B̂). The
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completed session s is chosen as the test session. Now a randomness query to session s′ revealing
the randomness of session s′ followed by a corrupt(B̂) query revealing the long-term secret key
of user B̂, allows the adversary to compute the session key of the test session s (as he knows
the counter value used in session s′). Note that the test session is fresh in ΩINDP-DH∩ISM since
the adversary did not issue the query randomness or cr-create to the first created session of user
B̂.

The NXPR protocol (“NaXos with Previous Randomness”), shown in Figure 3, is a variant of
the NAXOS protocol [24] and provides an example of a protocol from the class INDP-DH ∩ ISM,
where H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}k denote two hash functions. In contrast to the
NAXOS protocol, protocol NXPR additionally includes the randomness of all sessions that have
been previously created as input to the hash function H1. We assume that each user maintains a
variable l ∈ {0, 1}∗ initialized with the empty string ε. We write st P̂ .l to access the variable l

stored in the user memory of user P̂ .

Initiator I Responder R

st Â: a, {(P̂ , pkP̂ ) | P̂ ∈ P}, l st B̂: b, {(P̂ , pkP̂ ) | P̂ ∈ P}, l

srand ← {0, 1}k s′rand ← {0, 1}k
sdata ← st Â.l s′data ← st B̂.l
st Â.l← (srand , sdata) st B̂.l← (s′rand , s

′
data)

X ← gH1(srand ,sdata ,a)

X−−−−−→
Y ← gH1(s′rand ,s

′
data ,b)

σ1 ← AH1(s′rand ,s
′
data ,b)

σ2 ← Xb

σ3 ← XH1(s′rand ,s
′
data ,b)

s′key ← H2(σ1, σ2, σ3, Â, B̂)

s′status ← accepted
Y←−−−−−

σ1 ← Y a

σ2 ← BH1(srand ,sdata ,a)

σ3 ← Y H1(srand ,sdata ,a)

skey ← H2(σ1, σ2, σ3, Â, B̂)
sstatus ← accepted

Figure 3: NXPR Protocol

Proposition 7. Under the GAP-CDH assumption in the cyclic group G of prime order p, the
NXPR protocol is secure in the ΩINDP-DH∩ISM model, when H1, H2 are modeled as independent
random oracles.

We refer the reader to Appendix B for the proof of Proposition 7.

By a straightforward adaptation of the proof of [18, Theorem 1] via integration of the cr-create
query into the security models, we can show that protocol SIGt(NXPR) obtained by applying the
tagged version of the signature transformation SIG suggested in Section 4 to the NXPR protocol
is secure in model ΩINDP∩ISM. Similarly, we can show that protocol SIG∗(NXPR), obtained by
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applying the signature transformation SIG with optional fields to the NXPR protocol, is secure
in model ΩAKE∩ISM.

Remark 10 (user state comparison of NXPR to CNX). In contrast to the CNX protocol, the
NXPR protocol requires each user to store the concatenation of the randomness generated in all
his sessions in the user memory. Thus, before the n’th session, where n > 1, of user P̂ is created,
the user memory st P̂ contains its long-term secret key, the long-term public key of all users

Q̂ ∈ P, and the concatenation of n− 1 bit strings of length k corresponding to the randomness
generated in all previous sessions of user P̂ .

8 Relations between the security models

In this section we illustrate the relations between the different security models that we established.

Proposition 8. Let Π be protocol class AKE.

� The model ΩINDP∩SL is stronger than the model ΩINDP-DH∩SL with respect to Π according to
Definition 20.

� The model ΩAKE∩SL is stronger than the model ΩINDP∩SL with respect to Π according to
Definition 20.

Proof. We first show that ΩINDP-DH∩SL ≤AKE
Sec ΩINDP∩SL. The proof that ΩINDP∩SL ≤AKE

Sec ΩAKE∩SL
proceeds in a very similar way. The first condition of Definition 5 is satisfied as matching is
defined in the same way for both models ΩINDP-DH∩SL and ΩINDP∩SL. To see that the second
condition of Definition 5 holds, it suffices to show that if there exists an adversary E such that

the probability of event Multiple-Match
W (ΩINDP-DH∩SL)
π,E (k) is non-negligible, then there exists an

adversary E′ such that the probability of event Multiple-Match
W (ΩINDP∩SL)
π,E (k) is non-negligible.

This is straightforward. Let π ∈ Π. To show that the third condition of Definition 5 holds,
we construct an adversary E′ attacking protocol π in model ΩINDP∩SL using an adversary E
attacking π in ΩINDP-DH∩SL. Adversary E′ proceeds as follows. Whenever E issues a query
q ∈ QnoCR ∪ {test-session}, adversary E′ issues the same query and forwards the answer received
to E. At the end of E’s execution, i. e., after it has output its guess bit b, E′ outputs b as well.
Note that if the freshness condition of ΩINDP-DH∩SL holds for the test session, then by definition
the freshness condition of ΩINDP∩SL also holds. First, if there is no origin-session, then the fifth
condition of the freshness condition of model ΩINDP-DH∩SL requires that there is no corrupt query
has been issued on the peer of the test session, which implies the fifth condition of the freshness
condition of model ΩINDP∩SL. Second, if there is an origin-session s for the test session, then it is
required in model ΩINDP-DH∩SL that not both queries corrupt on the peer of the test session and
randomness on session s have been issued. Now, if session s is a c-origin-session for the test session,
then the fourth condition of the freshness definition of model ΩINDP∩SL is satisfied. However, if
session s is not a c-origin-session for the test session, then freshness in the model ΩINDP∩SL is
guaranteed as well. Even though both of the critical queries are allowed in the model ΩINDP∩SL,
they do not occur since otherwise freshness in the model ΩINDP-DH∩SL would be violated. Hence,

it holds that Advπ,EW (X)(k) ≤ Advπ,E
′

W (X)(k), where k denotes the security parameter. Since by
assumption protocol π is secure in model ΩINDP∩SL, there is a negligible function g such that

Advπ,E
′

W (X)(k) ≤ g(k). It follows that protocol π is secure in model ΩINDP-DH∩SL.
The NAXOS protocol provides an example of a protocol that is secure in the model

ΩINDP-DH∩SL, but insecure in ΩINDP∩SL. The protocol SIGt(NAXOS) introduced in Section 4
provides an example of a protocol that is secure in ΩINDP∩SL, but insecure in ΩAKE∩SL as the
following replay attack shows.

1. First the adversary establishes via a sequence of create and send queries an initiator session s
of user Â and a responder session s′ of user B̂ such that s and s′ are matching sessions.
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2. The adversary creates another initiator session s′′ of user Â with peer B̂, and replays the
message sent by session s′ to session s′′. Clearly, session s′ is a c-origin-session for session s′′,
but s′′ is not partially matching session s′.

3. He then chooses session s′′ as the test session and issues the queries corrupt(B̂) and randomness(s′).
4. Since the adversary knows the user state of user B̂ and the randomness of session s′, he can

emulate the session key computation of a matching session and compute the session key of
session s′′ by executing Ψ on input (1k, sts′p , st B̂, s

′′
sent), where sts′p denotes the session-specific

memory of session s′ after its creation, but before its completion.

Proposition 9. Let Π be protocol class AKE.

� The model Ω−INDP is stronger than the model Ω−INDP-DH with respect to Π according to Defini-
tion 20.

� The model Ω−AKE is stronger than the model Ω−INDP with respect to Π according to Definition 20.

Proof. The proofs that model Ω−INDP is at least as strong as the model Ω−INDP-DH and that model
Ω−AKE is at least as strong as the model Ω−INDP are similar to the proof of Proposition 8.

The CNX protocol provides an example of a protocol that is secure in model Ω−INDP-DH, but
insecure in model Ω−INDP due to a PFS attack. The protocol SIGt(CNX) introduced in Section 7
provides an example of a protocol that is secure in model Ω−INDP, but insecure in model Ω−AKE
due to the same replay attack as the one on the protocol SIGt(NAXOS) described in the proof
of Proposition 8.

Proposition 10. Let Π be protocol class AKE.

� The model Ω−INDP-DH is stronger than the model ΩINDP-DH∩SL with respect to Π according to
Definition 20.

� The model Ω−INDP is stronger than the model ΩINDP∩SL with respect to Π according to Defini-
tion 20.

� The model Ω−AKE is stronger than the model ΩAKE∩SL with respect to Π according to Defini-
tion 20.

Proof. The proof that model Ω−INDP-DH is at least as strong as the model ΩINDP-DH∩SL proceeds
in a similar way as the proof of Proposition 8. The same holds for the other pairs of models.

The protocols SIG∗(NAXOS), SIGt(NAXOS), and NAXOS provide examples of protocols
that are secure in the models ΩAKE∩SL, ΩINDP∩SL, and ΩINDP-DH∩SL, respectively. As all of these
protocols are stateless, they fail to provide security in our models that give the adversary access
to the query cr-create, by Proposition 3.

Proposition 11. Let Π be protocol class AKE.

� The model ΩINDP∩ISM is stronger than the model ΩINDP-DH∩ISM with respect to Π according to
Definition 20.

� The model ΩAKE∩ISM is stronger than the model ΩINDP∩ISM with respect to Π according to
Definition 20.

Proof. The proof is similar to the proof of Proposition 8.
To prove that model ΩINDP∩ISM is stronger than model ΩINDP-DH∩ISM, we need to show,

among others, that the third condition of Definition 5 holds. Thus, we construct an adversary E′

attacking protocol π in model ΩINDP∩ISM using an adversary E attacking π in model ΩINDP-DH∩ISM,
where π ∈ AKE. Whenever E issues a query q ∈ QnoCR ∪ {cr-create, test-session}, adversary E′

issues the same query and forwards the answer received to E. Note that if the freshness condition
of ΩINDP-DH∩ISM holds for the test session, then by definition the freshness condition of ΩINDP∩ISM
also holds. First, if there is no origin-session, then the fifth condition of the freshness condition
of model ΩINDP-DH∩ISM requires that there is no corrupt query has been issued on the peer of the
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test session, which implies Condition 5 of the freshness condition of model ΩINDP∩ISM. The case
where there is an origin-session for the test session is treated is the same way as in the proof of
Proposition 8. The proof that ΩINDP∩ISM ≤AKE

Sec ΩAKE∩ISM proceeds in a very similar way.
The NXPR protocol presented in Section 7.2 provides an example of a protocol that is

secure in the model ΩINDP-DH∩ISM, but insecure in ΩINDP∩ISM due to a PFS attack. The protocol
SIGt(NXPR) introduced in Section 7.2 provides an example of a protocol that is secure in model
ΩINDP∩ISM, but insecure in model ΩAKE∩ISM due to the same replay attack as the one on the
protocol SIGt(NAXOS) described in the proof of Proposition 8.

Proposition 12. Let Π be protocol class AKE.

� The model ΩINDP-DH∩ISM is stronger than the model Ω−INDP-DH with respect to Π according to
Definition 20.

� The model ΩINDP∩ISM is stronger than the model Ω−INDP with respect to Π according to
Definition 20.

� The model ΩAKE∩ISM is stronger than the model Ω−AKE with respect to Π according to Defini-
tion 20.

Proof. The proof that model ΩINDP-DH∩ISM is at least as strong as the model Ω−INDP-DH proceeds
in a similar way as the proof of Proposition 8. Among others, we need to show that the third
condition of Definition 5 holds. Thus, we construct an adversary E′ attacking protocol π in
model ΩINDP-DH∩ISM using an adversary E attacking π in model Ω−INDP-DH, where π ∈ AKE.
Whenever E issues a query q ∈ QnoCR ∪ {cr-create, test-session}, adversary E′ issues the same
query and forwards the answer received to E. Note that if the freshness condition of Ω−INDP-DH
is satisfied for the test session s, then the freshness condition of ΩINDP-DH∩ISM is also satisfied.
The third condition of freshness in model Ω−INDP-DH requires that not both queries corrupt(sactor )
and (randomness(s) or cr-create(s)) have been issued, which implies Conditions 3 of freshness
in model ΩINDP-DH∩ISM. The same argument applies to the fourth condition of the freshness
definition.

The proofs that model ΩINDP∩ISM is at least as strong as model Ω−INDP and that model
ΩAKE∩ISM is at least as strong as model Ω−AKE are similar to the proof of the previous statement.

The CNX protocol provides an example of a protocol that is secure in model Ω−INDP-DH, but
insecure in model ΩINDP-DH∩ISM (see Proposition 6). The protocols SIGt(CNX) and SIG∗(CNX)
from Section 7.1 are secure in the models Ω−INDP and Ω−AKE, respectively, but insecure in the
corresponding lifted models ΩINDP∩ISM and ΩAKE∩ISM due to a similar attack as in the proof of
Proposition 6.

8.1 Protocol-security hierarchy

In Figure 4 we show the protocol-security hierarchy [2] for AKE security of the protocols developed
in this paper with respect to security models of this paper. Each node in Figure 4 lists a protocol
and the security model in which the protocol is secure. Arrows indicate stronger protocols, i. e.,
the protocol at the end of an arrow is not only secure in the same models as the protocol at
the start of that arrow, but also in a stronger model, listed below the protocol name. Further,
if there is an arrow between two nodes, then the protocol at the start of the arrow is insecure
in the model indicated in the node at the end of the arrow. Thus, the protocol at the top of
the hierarchy is the only one that is secure in all models in the figure. We discuss below the
protocols of the hierarchy in Figure 4.

The rounded rectangles in Figure 4 identify protocol classes. For each class, we identify
the security guarantees that cannot be achieved by any of its members. For example, because
NAXOS is a member of INDP-DH∩ SL, it cannot provide PFS nor message origin authentication.
Additionally, NAXOS is insecure if the RNG is compromised or fails (see Proposition 3). The
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NXPR
ΩINDP-DH∩ISM

SIGt(NXPR)
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INDP
Protocols in this class
can provide PFS, but
cannot provide recent

aliveness for either user.

INDP-DH
Protocols in this class

can at best provide
weak-PFS and cannot

provide any message
origin authentication.

Figure 4: Annotated protocol-security hierarchy

protocols in the figure that belong to the class AKE \ SL are secure even against attacks based on
bad randomness such as reset-and-replay attacks. In contrast to the protocols CNX, SIGt(CNX),
and SIG∗(CNX), the protocols NXPR, SIGt(NXPR), and SIG∗(NXPR), achieve security even
under compromise of the randomness of the target session and the long-term secret key of the
actor of that session as long as the randomness of at least one of the previous sessions of the
same user has not been compromised.

The protocols in the class INDP can provide PFS, but cannot provide recent aliveness. Recent
aliveness means that, after completion of a session with a certain peer, the user executing the
session has a guarantee that its peer has been alive during the execution of the protocol [21].
For example, the protocol SIGt(NAXOS) provides PFS as it is secure in the model ΩINDP∩SL,
but it does not provide recent aliveness, because the messages of initiator and responder can be
generated independently of each other. In contrast, the protocols SIG∗(NAXOS), SIG∗(CNX),
and SIG∗(NXPR) provide recent aliveness to the initiator in the models ΩAKE∩SL, Ω−AKE, and
ΩAKE∩ISM, respectively. The responder not only signs his own Diffie-Hellman exponential but
also the exponential that he received from the initiator. Thus, the latter protocols also achieve
security against replay attacks to the initiator. Recent aliveness for both initiator and responder
can be achieved in three-message protocols, e. g., by adding a third message that contains a
signature on the Diffie-Hellman exponential that the initiator received from his peer.

9 Conclusions

In this paper we clarified the limits of AKE security by giving formal impossibility results on
the security of protocols that belong to different classes, and deriving security models for the
respective protocol classes from these impossibility results. If a protocol designer aims to develop
a protocol in a certain class, our results demonstrate which strong guarantees can be achieved
by such protocols. Conversely, if a certain security guarantee is required, our results indicate in
which protocol classes it can be achieved. For example, PFS under weak security assumptions on
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the RNG can be achieved in the protocol class AKE \ (SL ∪ INDP-DH).
We provided new variants of the NAXOS protocol, which are secure against attacks based on

chosen randomness; in these protocol variants, the state of a user’s memory is modified during
execution of the protocol. The CNX protocol is secure in the model Ω−INDP-DH. The NXPR
protocol is secure in the stronger model ΩINDP-DH∩ISM. Our results show that it is possible
to construct secure AKE protocols under significantly weaker assumptions on the RNG than
previously thought possible.

Our models do not cover adversarial registration of public keys [9]. Adding this capability
would yield additional impossibility results and derived models, which we leave as future work.
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A Proof of Proposition 5

Proof. It is straightforward to verify the first condition of Definition 5. We next verify that
the second condition of Definition 5 holds. Let E denote a PPT adversary against protocol

π := CNX. We show that the probability of event Multiple-Match
W (Ω−INDP-DH)

π,E (k) is bounded

above by a negligible function in the security parameter k, where Multiple-Match
W (Ω−INDP-DH)

π,E (k)
denotes the event that, in the security experiment, there exist a session s with sstatus = accepted

and at least two distinct sessions s′ and s′′ that are matching session s. Note that, if both
sessions s′ and s′′ are matching session s, then it must hold that s′′actor = s′actor and s′′role = s′role).
In addition, the counter value in two different sessions of the same user are distinct. For some
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fixed session s that has accepted, let Ev denote the event that there exist two distinct sessions s′

and s′′ such that s and s′ are matching as well as s and s′′. We have:

P (Ev) ≤ P (
⋃

s′,s′′

s′ 6=s′′
{H1(s′′rand , skP̂ , i) = H1(s′rand , skP̂ , j)})

≤
∑

s′,s′′

s′ 6=s′′
P ({H1(s′′rand , skP̂ , i) = H1(s′rand , skP̂ , j)})

≤ q2
s

1
p ,

where P̂ = s′′actor = s′actor , i 6= j and qs denotes the number of created sessions (either via the create

or the cr-create query) by the adversary. Therefore, P (Multiple-Match
W (ΩINDP-DH)
π,E (k)) ≤ q3

s
1
p .

The third condition of Definition 5 is implied by an adaptation of the security proof of
NAXOS in the eCKw model from [18]. Let s∗ denote the test session. Consider first the event
Kc where the adversary M wins the security experiment against π with non-negligible advantage
and does not query H2 with (σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 = CDH(B,X) and
σ3 = CDH(X,Y ).

Event Kc

If event Kc occurs, then the adversary M must have issued a session-key query to some session s
such that Ks = Ks∗ (where Ks and Ks∗ denote the session keys computed in sessions s and s∗,
respectively) and s does not match s∗. We consider the following four events:

1. A1 : there exist two distinct sessions s′, s′′ created via a create query such that s′rand = s′′rand .
2. A2 : there exists a session s 6= s∗ such that H1(srand , sksactor , i) =
H1(s∗rand , sks∗actor , j).

3. A3 : there exists a session s′ 6= s∗ such that H2(inputs′) = H2(inputs∗) with inputs′ 6= inputs∗ .
4. A4 : there exists an adversarial query inputM to the oracle H2 such that H2(inputM ) =
H2(inputs∗) with inputM 6= inputs∗ .

In contrast to the NAXOS protocol with respect to model ΩINDP-DH, the adversary cannot force
two sessions of protocol π of the same user with the same role to compute the same session key
via a chosen-randomness replay attack, as the H1 values in both sessions will be different with
overwhelming probability due to different counter values. The latter event is included in event
A2.

Analysis of event Kc

We denote by qs the number of created sessions (either via the create or the cr-create query) by
the adversary and by qro2 the number of queries to the random oracle H2. We have that

P (Kc) ≤ P (A1 ∨A2 ∨A3 ∨A4) ≤ P (A1) + P (A2) + P (A3) + P (A4)

≤ q2
s

2

1

2k
+
qs
p

+
qs + qro2

2k
,

which is a negligible function of the security parameter k.
In the subsequent events (and their analyses) we assume that no collisions in the queries to the

oracle H1 occur and that none of the events A1, ..., A4 occurs. As in the proof of [18, Proposition
7], we next consider the following three events:

1. DL ∧K,
2. TO ∧DLc ∧K, and
3. (TO)c ∧DLc ∧K, where

TO denotes the event that there exists an origin-session for the test session, DL denotes the
event where there exists a user Ĉ ∈ P such that the adversary M , during its execution,
queries H1 with (∗, c, ∗) before issuing a corrupt(Ĉ) query and K denotes the event that M
wins the security experiment against NAXOS by querying H2 with (σ1, σ2, σ3, Â, B̂), where
σ1 = CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y ).
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Event DL ∧K
Let the input to the GAP-DLog challenge be C. Suppose that event DL ∧ K occurs with
non-negligible probability. In this case, the simulator S chooses one user Ĉ ∈ P at random
and sets its long-term public key to C. S chooses long-term secret/public key pairs for the
remaining honest parties and stores the associated long-term secret keys. Additionally S chooses
a random value m ∈R {1, 2, ..., qs}. We denote the m’th activated session by adversary M by s∗.
Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w.l.o.g. We now define S’s responses
to M ’s queries for the pre-specified peer setting; the post-specified peer case proceeds similarly.
Algorithm S maintains tables Q, J, T and L, all of which are initially empty. S also maintains a
variable ω initialized with 1 and a table CV maintaining for each user the current counter value.
Initially, table CV contains an entry (P̂ , 0) for each user P̂ ∈ P.

1. create
(
P̂ , r, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}. If one

of the checks fails, then S returns ⊥. Else, S initializes the session variables according to
the protocol specification, and stores an entry of the form (s, srand , sksactor , ls, κ) ∈ (P ×N)×
{0, 1}k × (Zp ∪ {∗})× N× Zp in table Q as follows:

� S retrieves the counter value c for the user with identifier P̂ from table CV , increments
c by 1, and updates the counter value for P̂ stored in table CV with c+ 1,

� S chooses srand ∈R {0, 1}k (i. e. the randomness of session s),
� S chooses κ ∈R Zp,
� if sactor 6= Ĉ, then S stores the entry (s, srand , sksactor , c+ 1, κ) in Q, else S stores the

entry (s, srand , ∗, c+ 1, κ) in Q,2 and
� if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

2. cr-create
(
P̂ , r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}.

If one of the checks fails, then S returns ⊥. Else, S initializes the session variables according
to the protocol specification, and stores an entry of the form (s, srand , sksactor , ls, κ) ∈ (P ×
N)× {0, 1}k × (Zp ∪ {∗})× N× Zp in table Q as follows:

� S retrieves the counter value c for the user with identifier P̂ from table CV , increments
c by 1, and updates the counter value for P̂ stored in table CV with c+ 1,

� if there is an entry (ri, hi, li, κi) in table J such that ri = str, hi = skP̂ , and li = c+ 1,
then S sets ω ← κi, else S chooses κ ∈R Zp, and sets ω ← κ.3

� if sactor 6= Ĉ, then S stores the entry (s, srand , sksactor , c+ 1, x5) in Q, else S stores the
entry (s, srand , ∗, c+ 1, x5) in Q, where x5 denotes the value of variable ω,

� if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

3. S stores entries of the form (r, h, l, κ) ∈ {0, 1}k × Zp × N× Zp in table J . When M makes a
query of the form (r, h, l) to the random oracle for H1, answer it as follows:

� If C = gh, then S aborts M and is successful by outputting DLogg(C) = h.
� Else if (r, h, l, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .
� Else if there exists an entry (s, srand , sksactor , ls, κ) in Q, for some s ∈ P × N, srand ∈
{0, 1}k , sksactor ∈ Zp, ls ∈ N and κ ∈ Zp, such that srand = r, sksactor = h and ls = l,
then S returns κ to M and stores the entry (r, h, l, κ) in table J .

� Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, l, κ) in table J .

4. send(P̂ , i, V ) to send message V to session s = (P̂ , i): If sstatus 6= active, then S returns ⊥.

2We do not need to keep consistency with H1 queries via lookup in table J since the probability that the
adversary guesses the randomness of a session created via a query create is negligible.

3Here we need to keep consistency with H1 queries via lookup in table J to be able to consistently answer
all possible combinations of queries. Consider, e. g., the following scenario. The adversary first issues a query
(x, skP̂ , i) to H1 and then issues the query cr-create(P̂ , r, x, Q̂), which increments the current counter value i− 1

by 1 so that the counter value used in session s = (P̂ , i) is i. So, in contrast to the NAXOS proof with respect to
model eCKw, we need to additionally keep consistency between cr-create queries and queries to the random oracle
for H1.
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Else if srole = I, then S does the following. If V /∈ G, then the status of session s is set to
rejected. Else, the status of session s is set to accepted, the variable recv is updated to
srecv ← (srecv , V ) and

� If there exists an entry (speer , sactor ,R, srecv , ssent , λ) in table T , then S stores the
entry (sactor , speer , I, ssent , srecv , λ) in table T .

� Else if there exists an entry (σ1, σ2, σ3, sactor , speer , λ) in table L, for some λ ∈ {0, 1}k,
such that DDH(srecv , ssent , σ3) = 1, DDH(ssent , pkspeer , σ2) = 1 and DDH(srecv , pksactor , σ1) =
1, then S stores (sactor , speer , I, ssent , srecv , λ) in table T .

� Else, S chooses µ ∈R {0, 1}k and stores the entry (sactor , speer , I, ssent , srecv ,
µ) in T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session s is set to
rejected. Else, S sets the status of session s to accepted, and the variable recv to (srecv , V ).
S returns gκ to M , where κ denotes the last element of the entry (s, r, sksactor , l, κ) in table
Q, and proceeds in a similar way as in the previous case.

5. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle for H2, answer

it as follows:

� If
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

� Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some

λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1, DDH(V, pkP̂i
, σ1) = 1 and

DDH(U, pkP̂j
, σ2) = 1, then S returns λ to M and stores the entry

(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

� Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in L.

6. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand (via lookup in
table Q).

7. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers this query by
lookup in table T .

8. test-session(s): If s 6= s∗, then S aborts; otherwise S answers the query in the appropriate
way.

9. corrupt(P̂ ): If P̂ /∈ P, then S returns ⊥. Else if P̂ = Ĉ, then S aborts. Else S returns skP̂ .
10. M outputs a guess: S aborts.

Analysis of event DL ∧K
Similar to the analysis of the related event DL ∧K in the proof of [18, Proposition 7].

Event TO ∧DLc ∧K
Let s∗ and s′ denote the test session and the origin-session for the test session, respectively. We
split event Evt := TO ∧DLc ∧K into the following events B1, ..., B3 so that Evt = B1 ∨B2 ∨B3:

1. B1 : Evt occurs and s∗peer = s′actor .
2. B2 : Evt occurs and s∗peer 6= s′actor and M does issue neither a randomness(s′) query nor a

cr-create(s′,×) query to the origin-session s′ of s∗, but may issue a corrupt(s∗peer ) query.
3. B3 : Evt occurs and s∗peer 6= s′actor and M does not issue a corrupt(s∗peer ) query, but may issue

either a randomness(s′) query or a cr-create(s′,×) query to the origin-session s′ of s∗.

Event B1

Let the input to the GDH challenge be (X0, Y0). Suppose that event B1 occurs with non-negligible
probability. In this case S chooses long-term secret/public key pairs for all the honest parties
and stores the associated long-term secret keys. Additionally S chooses two random values
m,n ∈R {1, 2, ..., qs}. The m’th activated session by adversary M will be called s∗ and the n’th
activated session will be called s′. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I,
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w.l.o.g.. The simulation of M ′s environment proceeds as follows:

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, then S chooses
s∗rand ∈R {0, 1}k. Else, S sets s∗rand ← str. Then, S (a) returns the message X0, where (X0, Y0)

is the GDH challenge, (b) increments by 1 the counter value c for the user with identifier Â
(stored in table CV ), and (c) stores the updated counter value c+ 1 for Â in table CV .4

2. create(B̂, r, Q̂) or cr-create(B̂, r, str, Q̂) to create session s′: If create is issued, then S chooses
s′rand ∈R {0, 1}k. Else, S sets s′rand ← str. S then increments by 1 the counter value c for the

user with identifier B̂ (stored in table CV ), and stores the updated counter value c+ 1 for B̂
in table CV .If r = I, then S returns message Y0 to M , where (X0, Y0) is the GDH challenge.
Else, ? is returned.

3. send(B̂, i, Z) with (B̂, i) = s′: If s′status 6= active, then S returns ⊥. Else if s′role = R and
Z ∈ G, then S returns message Y0 to M , where (X0, Y0) is the GDH challenge, sets the
status of session s′ to accepted, and proceeds as in the previous simulation for completing
the session. Else, S proceeds as in the previous simulation.

4. send(Â, i, Y0) with (Â, i) = s∗: S proceeds as in the previous simulation for completing the
session.

5. Other create, cr-create and send queries are answered as in the previous simulation.
6. randomness(s): If sstatus = ⊥, then S returns ⊥. Else, S returns srand .
7. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers this query by

lookup in table T .
8. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S aborts; otherwise
S answers the query in the appropriate way.

9. H1(r, h, ∗): If h = a and r = s∗rand or if h = b and r = s′rand , then S aborts. Otherwise S
simulates a random oracle as in the previous simulation.

10. corrupt(P̂ ): If P̂ /∈ P, then S returns ⊥. Else, S returns skP̂ .

11. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle for H2, answer

it as follows:

� If
{
P̂i, P̂j

}
=
{
Â, B̂

}
, σ1 = Y a

0 , σ2 = Xb
0 and DDH(X0, Y0, σ3) = 1, then S aborts M

and is successful by outputting CDH(X0, Y0) = σ3.

� Else if
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

� Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some

λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1, DDH(V, pkP̂i
, σ1) = 1 and

DDH(U, pkP̂j
, σ2) = 1, then S returns λ to M and stores the entry

(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

� Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in L.

12. M outputs a guess: S aborts.

Analysis of event B1

Similar to the analysis of the related event B1 in the proof of [18, Proposition 7].

Event B2

Let the input to the GDH challenge be (X0, Y0). Suppose that event B2 occurs with non-negligible
probability. The simulation of S proceeds in the same way as for event B1 with the following
changes:

� create(B̂, r, Q̂) or cr-create(B̂, r, str, Q̂) to create session s′: If cr-create is issued, then S aborts.
Else, S proceeds as described before.

4Note that s∗rand is not used in the calculation.
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� randomness(s): If sstatus = ⊥, then S returns ⊥. Else if s = s′, then S aborts. Else, S returns
srand .

� H1(r, h, ∗): If h = a and r = s∗rand , then S aborts. Otherwise S simulates a random oracle as
in the previous simulation.

Analysis of event B2

Similar to the analysis of the related event B2 in the proof of [18, Proposition 7].

Event B3

Let the input to the GDH challenge be (X0, B). Suppose that event B3 occurs with non-negligible
probability. In this case, S chooses one user B̂ ∈ P at random from the set P and sets its
long-term public key to B. S chooses long-term secret/public key pairs for the remaining parties
in P and stores the associated long-term secret keys. Additionally S chooses two random values
m,n ∈R {1, 2, ..., qs}. We denote the m’th activated session by adversary M by s∗ and the
n’th activated session by s′. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w.l.o.g..
Algorithm S maintains tables Q, J, T and L, all of which are initially empty. S also maintains
a variable ω initialized with 1 and a table CV maintaining for each user the current counter
value. Initially, table CV contains an entry (P̂ , 0) for each user P̂ ∈ P. The simulation of M ′s
environment proceeds as follows:

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, then S chooses
s∗rand ∈R {0, 1}k. Else, S sets s∗rand ← str. Then, S (a) returns the message X0, (b) increments

by 1 the counter value c for the user with identifier Â (stored in table CV ), and (c) stores
the updated counter value c+ 1 for Â in table CV .

2. create
(
P̂ , r, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}. If one

of the checks fails, then S returns ⊥. Else, S initializes the session variables according to
the protocol specification, and stores an entry of the form (s, srand , sksactor , ls, κ) ∈ (P ×N)×
{0, 1}k × (Zp ∪ {∗})× N× Zp in table Q as follows:

� S retrieves the counter value c for the user with identifier P̂ from table CV , increments
c by 1, and updates the counter value for P̂ stored in table CV with c+ 1,

� S chooses srand ∈R {0, 1}k (i. e. the randomness of session s),
� S chooses κ ∈R Zp,
� if sactor 6= B̂, then S stores the entry (s, srand , sksactor , c+ 1, κ) in Q, else S stores the

entry (s, srand , ∗, c+ 1, κ) in Q, and
� if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

3. cr-create
(
P̂ , r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}.

If one of the checks fails, then S returns ⊥. Else, S initializes the session variables according
to the protocol specification, and stores an entry of the form (s, srand , sksactor , ls, κ) ∈ (P ×
N)× {0, 1}k × (Zp ∪ {∗})× N× Zp in table Q as follows:

� S retrieves the counter value c for the user with identifier P̂ from table CV , increments
c by 1, and updates the counter value for P̂ stored in table CV with c+ 1,

� if there is an entry (ri, hi, li, κi) in table J such that ri = str, hi = skP̂ , and li = c+ 1,
then S sets ω ← κi, else S chooses κ ∈R Zp, and sets ω ← κ.

� if sactor 6= B̂, then S stores the entry (s, srand , sksactor , c+ 1, x5) in Q, else S stores the
entry (s, srand , ∗, c+ 1, x5) in Q, where x5 denotes the value of variable ω,

� if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

4. S stores entries of the form (r, h, l, κ) ∈ {0, 1}k × Zp × N× Zp in table J . When M makes a
query of the form (r, h, l) to the random oracle for H1, answer it as follows:

� If r = s∗rand and h = a, then S aborts,
� Else if (r, h, l, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .
� Else if there exists an entry (s, srand , sksactor , ls, κ) in Q, for some s ∈ P × N, srand ∈
{0, 1}k , sksactor ∈ Zp, ls ∈ N and κ ∈ Zp, such that srand = r, sksactor = h and ls = l,
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then S returns κ to M and stores the entry (r, h, l, κ) in table J .
� Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, l, κ) in table J .

5. send(P̂ , i, V ) to send message V to session s = (P̂ , i): If sstatus 6= active, then S returns ⊥.
Else if srole = I, then S does the following. If V /∈ G, then the status of session s is set to
rejected. Else, the status of session s is set to accepted, the variable recv is updated to
srecv ← (srecv , V ) and

� If there exists an entry (speer , sactor ,R, srecv , ssent , λ) in table T , then S stores the
entry (sactor , speer , I, ssent , srecv , λ) in table T .

� Else if there exists an entry (σ1, σ2, σ3, sactor , speer , λ) in table L, for some λ ∈ {0, 1}k,
such that DDH(srecv , ssent , σ3) = 1, DDH(ssent , pkspeer , σ2) = 1 and DDH(srecv , pksactor , σ1) =
1, then S stores (sactor , speer , I, ssent , srecv , λ) in table T .

� Else, S chooses µ ∈R {0, 1}k and stores the entry (sactor , speer , I, ssent , srecv ,
µ) in T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session s is set to
rejected. Else, S sets the status of session s to accepted, and the variable recv to (srecv , V ).
S returns gκ to M , where κ denotes the last element of the entry (s, r, sksactor , l, κ) in table
Q, and proceeds in a similar way as in the previous case.

6. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle for H2, answer

it as follows:

� If s′status 6= ⊥,
{
P̂i, P̂j

}
=
{
Â, B̂

}
, σ1 = Aκ, DDH(X0, B, σ2) = 1, and σ3 = Xκ

0 ,

where κ denotes the last element of the entry (s′, s′rand , sks′actor , l, κ) in table Q5, then
S aborts M and is successful by outputting CDH(X0, B) = σ2.

� Else if
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

� Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some

λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1, DDH(V, pkP̂i
, σ1) = 1 and

DDH(U, pkP̂j
, σ2) = 1, then S returns λ to M and stores the entry

(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

� Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in L.

7. randomness(s): If sstatus = ⊥, then S returns ⊥. Else, S returns srand .
8. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers this query by

lookup in table T .
9. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S aborts; otherwise
S answers the query in the appropriate way.

10. corrupt(P̂ ): If P̂ /∈ P, then S returns ⊥. Else if P̂ = B̂, then S aborts. Else, S returns skP̂ .
11. M outputs a guess: S aborts.

Analysis of event B3

Similar to the analysis of the related event B3 in the proof of [18, Proposition 7].

Event (TO)c ∧DLc ∧K
The simulation and analysis are very similar to the simulation and analysis related to event
B3.

5This entry exists in table Q since the status of the session is different to ⊥.
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B Proof of Proposition 7

Proof. It is straightforward to verify the first condition of Definition 5. We next verify that
the second condition of Definition 5 holds. Let E denote a PPT adversary against protocol

π := NXPR. We show that the probability of event Multiple-Match
W (ΩINDP-DH∩ISM)
π,E (k) is bounded

above by a negligible function in the security parameter k, where Multiple-Match
W (ΩINDP-DH∩ISM)
π,E (k)

denotes the event that, in the security experiment, there exist a session s with sstatus = accepted

and at least two distinct sessions s′ and s′′ that are matching session s. Note that, if both
sessions s′ and s′′ are matching session s, then it must hold that s′′actor = s′actor and s′′role = s′role .
In addition, it is easy to see that the value of the variable data in two different sessions of the
same user are distinct (since of different length). For some fixed session s that has accepted,
let Ev denote the event that there exist two distinct sessions s′ and s′′ such that s and s′ are
matching as well as s and s′′. We have:

P (Ev) ≤ P (
⋃

s′,s′′

s′ 6=s′′
{H1(s′′rand , s

′′
data , skP̂ ) = H1(s′rand , s

′
data , skP̂ )})

≤
∑

s′,s′′

s′ 6=s′′
P ({H1(s′′rand , s

′′
data , skP̂ ) = H1(s′rand , s

′
data , skP̂ )})

≤ q2s
p ,

where P̂ = s′′actor = s′actor and qs denotes the number of created sessions (either via the create or
the cr-create query) by the adversary.

In the above computation, we distinguished between the following two events:

1. D1 := {s′′rand 6= s′rand ∧ s′′data 6= s′data}; the probability that the two hash values are identical
given D1 is the probability of a collision in the hash function, and

2. D2 := {s′′rand = s′rand ∧ s′′data 6= s′data}; the probability that the two hash values are identical
given D2 is the probability of a collision in the hash function.

The events D3 := {s′′rand = s′rand ∧ s′′data = s′data} and D4 := {s′′rand 6= s′rand ∧ s′′data = s′data} both
occur with probability zero.

Even though the value of the variable rand can be the same for two different session of the
same user due to the queries cr-create and randomness, the value of the variable data of two
different sessions s′ and s′′ of the same user is always different since the bit strings s′data and
s′′data differ in length. Given a created session s, the length of the bit string sdata depends on the
number of sessions of user sactor that have already been created either via create or cr-create.

Finally, P (Multiple-Match
W (ΩINDP-DH∩ISM)
π,E (k)) ≤ q3

s
1
p .

The third condition of Definition 5 is implied by an adaptation of the security proof of
protocol CNX in the Ω−INDP-DH model (see Appendix A). Let s∗ denote the test session. Consider
first the event Kc where the adversary M wins the security experiment against π with non-
negligible advantage and does not query H2 with (σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 =
CDH(B,X) and σ3 = CDH(X,Y ).

Event Kc

If event Kc occurs, then the adversary M must have issued a session-key query to some session s
such that Ks = Ks∗ (where Ks and Ks∗ denote the session keys computed in sessions s and s∗,
respectively) and s does not match s∗. We consider the following four events:

1. A1 : there exist two distinct sessions s′, s′′ created via a create query such that s′rand = s′′rand .6

2. A2 : there exists a session s 6= s∗ such that H1(srand , sdata) = H1(s∗rand , s
∗
data).

3. A3 : there exists a session s′ 6= s∗ such that H2(inputs′) = H2(inputs∗) with inputs′ 6= inputs∗ .
4. A4 : there exists an adversarial query inputM to the oracle H2 such that H2(inputM ) =
H2(inputs∗) with inputM 6= inputs∗ .

6Under event A1 the query randomness (e. g., for two sessions of different users) together with other queries
might enable the adversary to learn all the information necessary to compute the session key of the target session
without violating the freshness condition.
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Analysis of event Kc

We denote by qs the number of created sessions (either via the query create or the query cr-create)
by the adversary and by qro2 the number of queries to the random oracle H2. We have that

P (Kc) ≤ P (A1 ∨A2 ∨A3 ∨A4) ≤ P (A1) + P (A2) + P (A3) + P (A4)

≤ q2
s

2

1

2k
+
qs
p

+
qs + qro2

2k
,

which is a negligible function of the security parameter k.
In contrast to the NAXOS protocol analyzed with respect to model ΩINDP-DH, the adversary

cannot force two sessions of protocol π of the same user with the same role to compute the same
session key via a chosen-randomness replay attack since the H1 values in both sessions will be
different with overwhelming probability. The latter event is included in event A2.

In the subsequent events (and their analyses) we assume that no collisions in the queries to the
oracle H1 occur and that none of the events A1, ..., A4 occurs. As in the proof of [18, Proposition
7], we next consider the following three events:

1. DL ∧K,
2. TO ∧DLc ∧K, and
3. (TO)c ∧DLc ∧K, where

TO denotes the event that there exists an origin-session for the test session, DL denotes the
event where there exists a user Ĉ ∈ P such that the adversary M , during its execution,
queries H1 with (∗, c) before issuing a corrupt(Ĉ) query and K denotes the event that M
wins the security experiment against NXPR by querying H2 with (σ1, σ2, σ3, Â, B̂), where
σ1 = CDH(Y,A), σ2 = CDH(B,X) and σ3 = CDH(X,Y ).

Event DL ∧K
Let the input to the GAP-DLog challenge be C. Suppose that event DL ∧ K occurs with
non-negligible probability. In this case, the simulator S chooses one user Ĉ ∈ P at random
and sets its long-term public key to C. S chooses long-term secret/public key pairs for the
remaining honest parties and stores the associated long-term secret keys. Additionally S chooses
a random value m ∈R {1, 2, ..., qs}. We denote the m’th activated session by adversary M by s∗.
Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w.l.o.g. We now define S’s responses
to M ’s queries for the pre-specified peer setting; the post-specified peer case proceeds similarly.
Algorithm S maintains tables Q, J, T and L, all of which are initially empty. S also maintains a
variable ω initialized with 1.

1. create
(
P̂ , r, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}. If one

of the checks fails, then S returns ⊥. Else, S initializes the session variables according to
the protocol specification, and stores an entry of the form (s, srand , ls, sksactor , κ) ∈ (P ×N)×
{0, 1}k × {0, 1}∗ × (Zp ∪ {∗})× Zp in table Q as follows:

� S chooses srand ∈R {0, 1}k (i. e. the randomness of session s),
� S chooses κ ∈R Zp,
� if there is no entry (s, srand , ls, sksactor , κ) in table Q such that sactor = P̂ , then S sets

the value of ls to srand , else S sets the value of ls to (srand , ls′), where s′ is the previous
session with s′actor = sactor for which an entry in table Q has been made.7

� if sactor 6= Ĉ, then S stores the entry (s, srand , sdata , sksactor , κ) in Q, else S stores the
entry (s, srand , sdata , ∗, κ) in Q, and

� if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

2. cr-create
(
P̂ , r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}.

If one of the checks fails, then S returns ⊥. Else, S initializes the session variables according

7The value of ls′ is the concatenation of the randomness of the current and the previous sessions of the same
user.
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to the protocol specification, and stores an entry of the form (s, srand , ls, sksactor , κ) ∈ (P ×
N)× {0, 1}k × {0, 1}∗ × (Zp ∪ {∗})× Zp in table Q as follows:

� if there is an entry (ri, hi, κi) in table J such that ri = (str, ls′), and hi = skP̂ , where
s′ is the previous session with s′actor = sactor for which an entry in table Q has been
made, then S sets ω ← κi, else S chooses κ ∈R Zp and sets ω ← κ.

� if sactor 6= Ĉ, then S stores the entry (s, srand , ri, sksactor , ω) in Q, else S stores the
entry (s, srand , ls, ∗, ω) in Q with ls = (str, ls′),

� if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

3. S stores entries of the form (r, h, κ) ∈ {0, 1}∗ × Zp × Zp in table J . When M makes a query
of the form (r, h) to the random oracle for H1, answer it as follows:

� If C = gh, then S aborts M and is successful by outputting DLogg(C) = h.
� Else if (r, h, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .
� Else if there exists an entry (s, srand , ls, sksactor , κ) in table Q with ls = r and sksactor = h,

then S returns κ to M and stores the entry (r, h, κ) in table J .
� Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, κ) in table J .

4. send(P̂ , i, V ) to send message V to session s = (P̂ , i): If sstatus 6= active, then S returns ⊥.
Else if srole = I, then S does the following. If V /∈ G, then the status of session s is set to
rejected. Else, the status of session s is set to accepted, and

� If there exists an entry (speer , sactor ,R, srecv , ssent , λ) in table T , then S stores the
entry (sactor , speer , I, ssent , srecv , λ) in table T .

� Else if there exists an entry (σ1, σ2, σ3, sactor , speer , λ) in table L, for some λ ∈ {0, 1}k,
such that DDH(srecv , ssent , σ3) = 1, DDH(ssent , pkspeer , σ2) = 1 and DDH(srecv , pksactor , σ1) =
1, then S stores (sactor , speer , I, ssent , srecv , λ) in table T .

� Else, S chooses µ ∈R {0, 1}k and stores the entry (sactor , speer , I, ssent , srecv ,
µ) in T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session s is set to
rejected. Else, S sets the status of session s to accepted, returns gκ to M , where κ denotes
the last element of the entry (s, srand , ls, sksactor , κ) in table Q, and proceeds in a similar way
as in the previous case.

5. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle for H2, answer

it as follows:

� If
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

� Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some

λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1, DDH(V, pkP̂i
, σ1) = 1 and

DDH(U, pkP̂j
, σ2) = 1, then S returns λ to M and stores the entry

(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

� Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in L.

6. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand .
7. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers this query by

lookup in table T .
8. test-session(s): If s 6= s∗, then S aborts; otherwise S answers the query in the appropriate

way.
9. corrupt(P̂ ): If P̂ /∈ P, then S returns ⊥. Else if P̂ = Ĉ, then S aborts. Else, S returns skP̂ .

10. M outputs a guess: S aborts.

Analysis of event DL ∧K
Similar to the analysis of the related event DL ∧K in the proof of [18, Proposition 7].
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Event TO ∧DLc ∧K
Let s∗ and s′ denote the test session and the origin-session for the test session, respectively. We
split event Evt := TO ∧DLc ∧K into the following events B1, ..., B3 so that Evt = B1 ∨B2 ∨B3:

1. B1 : Evt occurs and s∗peer = s′actor .
2. B2 : Evt occurs and s∗peer 6= s′actor and M does not issue the queries randomness or cr-create to

all sessions of s′actor that were created prior to creation of the origin-session s′ of s∗, including
the origin-session itself, but may issue a corrupt(s∗peer ) query.

3. B3 : Evt occurs and s∗peer 6= s′actor and M does not issue a corrupt(s∗peer ) query, but may issue
the queries randomness or cr-create to all session created prior to creation of the origin-session,
including the origin-session s′ itself.

Event B1

Let the input to the GDH challenge be (X0, Y0). Suppose that event B1 occurs with non-negligible
probability. In this case S chooses long-term secret/public key pairs for all the honest parties
and stores the associated long-term secret keys. Additionally S chooses two random values
m,n ∈R {1, 2, ..., qs}. The m’th activated session by adversary M will be called s∗ and the n’th
activated session will be called s′. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I,
w.l.o.g.. We now define S’s responses to M ’s queries. S maintains tables Q, J, T and L, all of
which are initially empty, as well as a variable ω initialized with 1.

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, S chooses
s∗rand ∈R {0, 1}k. Else, S sets s∗rand ← str. S (a) returns the message X0, where (X0, Y0) is the
GDH challenge, and (b) stores the entry (s∗, s∗rand , ls∗ , skÂ, ∗) in table Q, where ls∗ = (s∗rand , ls)

if there exists a previously created session s of user sactor = Â with an entry in table Q, and
ls∗ = s∗rand if there no such session exists.

2. create(B̂, r, Q̂) or cr-create(B̂, r, str, Q̂) with r ∈ {I,R} to create session s′: If create is issued,
S chooses s′rand ∈R {0, 1}k. Else, S sets s′rand ← str. S stores the entry (s′, s′rand , ls′ , skB̂, ∗) in

table Q, where ls′ = (s′rand , ls) if there exists a previously created session s of user sactor = Â
with an entry in table Q, and ls′ = s′rand if there no such session exists. If r = I, then S
returns message Y0 to M , where (X0, Y0) is the GDH challenge. Else, ? is returned.

3. send(B̂, i, Z) with (B̂, i) = s′: If s′status 6= active, then S returns ⊥. Else if s′role = R and
Z ∈ G, then S returns message Y0 to M , where (X0, Y0) is the GDH challenge, sets the
status of session s′ to accepted, and proceeds as in the previous simulation for completing
the session. Else, S proceeds as in the previous simulation.

4. send(Â, i, Y0) with (Â, i) = s∗: S proceeds as in the previous simulation for completing the
session.

5. Other create, cr-create and send queries are answered as in the simulation relative to event
DL ∧K.

6. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle for H2, answer

it as follows:

� If
{
P̂i, P̂j

}
=
{
Â, B̂

}
, σ1 = Y a

0 , σ2 = Xb
0 and DDH(X0, Y0, σ3) = 1, then S aborts M

and is successful by outputting CDH(X0, Y0) = σ3.

� Else if
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

� Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some

λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1, DDH(V, pkP̂i
, σ1) = 1 and

DDH(U, pkP̂j
, σ2) = 1, then S returns λ to M and stores the entry

(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

� Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in L.

7. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand .
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8. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers this query by
lookup in table T .

9. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S aborts; otherwise
S answers the query in the appropriate way.

10. H1(r, h): If r = ls∗ and h = skÂ or if r = ls′ and h = skB̂, then S aborts. Otherwise S
simulates a random oracle as in the simulation relative to event DL ∧K.

11. corrupt(P̂ ): If P̂ /∈ P, then S returns ⊥. Else, S returns skP̂ .
12. M outputs a guess: S aborts.

Analysis of event B1

S’s simulation of M ’s environment is perfect except with negligible probability. The probability
that M selects s∗ as the test-session and s′ as the origin-session for the test-session is 1

(qs)2
.

Assuming that this is indeed the case, S does not abort in Step 9. Under event DLc, the
adversary first issues a corrupt(P̂ ) query to party P̂ before making an H1 query that involves
the long-term secret key of party P̂ . Freshness of the test session guarantees that the adversary
can reveal/determine either ls∗ or skÂ, but not both. Similar for ls′ and skB̂. Hence S does not
abort in Step 10. Under event K, except with negligible probability of guessing CDH(X0, Y0),
S is successful as described in the first case of Step 6 and does not abort as in Step 12. Hence, if
event B1 occurs, then the success probability of S is given by P (S) ≥ 1

(qs)2
P (B1).

Event B2

Let the input to the GDH challenge be (X0, Y0). Suppose that event B2 occurs with non-negligible
probability. The simulation of S proceeds in the same way as for event B1 with the following
changes. S additionally keeps a history H of M ’s queries.

� randomness(s): If sstatus = ⊥, then S returns ⊥. Else if s = s′ and there were queries
(randomness or cr-create) to all previous sessions of the same user s′actor , then S aborts. Else,
S returns srand .

� H1(r, h): If r = ls∗ and h = skÂ, then S aborts. Otherwise S simulates a random oracle as in
the previous simulation.

Analysis of event B2

Similar to the analyses of the related event B2 in the proof of [18, Proposition 7] and event B1.

Event B3

Let the input to the GDH challenge be (X0, B). Suppose that event B3 occurs with non-negligible
probability. In this case, S chooses one user B̂ ∈ P at random from the set P and sets its
long-term public key to B. S chooses long-term secret/public key pairs for the remaining parties
in P and stores the associated long-term secret keys. Additionally S chooses two random values
m,n ∈R {1, 2, ..., qs}. We denote the m’th activated session by adversary M by s∗ and the
n’th activated session by s′. Suppose further that s∗actor = Â, s∗peer = B̂ and s∗role = I, w.l.o.g..
Algorithm S maintains tables Q, J, T and L, all of which are initially empty. S also maintains a
variable ω initialized with 1.

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, S chooses
s∗rand ∈R {0, 1}k. Else, S sets s∗rand ← str. S (a) returns the message X0, where (X0, B) is the
GDH challenge, and (b) stores the entry (s∗, s∗rand , ls∗ , skÂ, ∗) in table Q, where ls∗ = (s∗rand , ls)

if there exists a previously created session s of user sactor = Â with an entry in table Q, and
ls∗ = s∗rand if there no such session exists.

2. create
(
P̂ , r, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}. If one

of the checks fails, then S returns ⊥. Else, S initializes the session variables according to
the protocol specification, and stores an entry of the form (s, srand , ls, sksactor , κ) ∈ (P ×N)×
{0, 1}k × {0, 1}∗ × (Zp ∪ {∗})× Zp in table Q as follows:

� S chooses srand ∈R {0, 1}k (i. e. the randomness of session s),
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� S chooses κ ∈R Zp,
� if there is no entry (s, srand , ls, sksactor , κ) in table Q such that sactor = P̂ , then S sets

the value of ls to srand , else S sets the value of ls to (srand , ls′), where s′ is the previous
session with s′actor = sactor for which an entry in table Q has been made.

� if sactor 6= B̂, then S stores the entry (s, srand , sdata , sksactor , κ) in Q, else S stores the
entry (s, srand , sdata , ∗, κ) in Q, and

� if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

3. cr-create
(
P̂ , r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P, and r ∈ {I,R}.

If one of the checks fails, then S returns ⊥. Else, S initializes the session variables according
to the protocol specification, and stores an entry of the form (s, srand , ls, sksactor , κ) ∈ (P ×
N)× {0, 1}k × {0, 1}∗ × (Zp ∪ {∗})× Zp in table Q as follows:

� if there is an entry (ri, hi, κi) in table J such that ri = (str, ls′), and hi = skP̂ , where
s′ is the previous session with s′actor = sactor for which an entry in table Q has been
made, then S sets ω ← κi, else S chooses κ ∈R Zp and sets ω ← κ.

� if sactor 6= B̂, then S stores the entry (s, srand , ri, sksactor , ω) in Q, else S stores the
entry (s, srand , ls, ∗, ω) in Q with ls = (str, ls′),

� if r = I, then S returns the Diffie-Hellman exponential gκ to M , else S returns ?.

4. S stores entries of the form (r, h, κ) ∈ {0, 1}∗ × Zp × Zp in table J . When M makes a query
of the form (r, h) to the random oracle for H1, answer it as follows:

� If r = ls∗ and h = skÂ, then S aborts.
� Else if (r, h, κ) ∈ J for some κ ∈ Zp, then S returns κ to M .
� Else if there exists an entry (s, srand , ls, sksactor , κ) in table Q with ls = r and sksactor = h,

then S returns κ to M and stores the entry (r, h, κ) in table J .
� Else, S chooses κ ∈R Zp, returns it to M and stores the entry (r, h, κ) in table J .

5. send(P̂ , i, V ) to send message V to session s = (P̂ , i): If sstatus 6= active, then S returns ⊥.
Else if srole = I, then S does the following. If V /∈ G, then the status of session s is set to
rejected. Else, the status of session s is set to accepted, and

� If there exists an entry (speer , sactor ,R, srecv , ssent , λ) in table T , then S stores the
entry (sactor , speer , I, ssent , srecv , λ) in table T .

� Else if there exists an entry (σ1, σ2, σ3, sactor , speer , λ) in table L, for some λ ∈ {0, 1}k,
such that DDH(srecv , ssent , σ3) = 1, DDH(ssent , pkspeer , σ2) = 1 and DDH(srecv , pksactor , σ1) =
1, then S stores (sactor , speer , I, ssent , srecv , λ) in table T .

� Else, S chooses µ ∈R {0, 1}k and stores the entry (sactor , speer , I, ssent , srecv ,
µ) in T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session s is set to
rejected. Else, S sets the status of session s to accepted, returns gκ to M , where κ denotes
the last element of the entry (s, srand , ls, sksactor , κ) in table Q, and proceeds in a similar way
as in the previous case.

6. When M makes a query of the form
(
σ1, σ2, σ3, P̂i, P̂j

)
to the random oracle for H2, answer

it as follows:

� If
{
P̂i, P̂j

}
=
{
Â, B̂

}
, σ1 = Aκ, DDH(X0, B, σ2) = 1, and σ3 = Xκ

0 , where κ denotes

the last element of the entry (s′, s′rand , ls′ , sks′actor , κ) in table Q, then S aborts M and
is successful by outputting CDH(X0, B) = σ2.

� Else if
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

� If
(
σ1, σ2, σ3, P̂i, P̂j , λ

)
∈ L for some λ ∈ {0, 1}k, then S returns λ to M .

� Else if there exist entries
(
P̂i, P̂j , I, U, V, λ

)
or
(
P̂j , P̂i,R, V, U, λ

)
in table T , for some

λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1, DDH(V, pkP̂i
, σ1) = 1 and
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DDH(U, pkP̂j
, σ2) = 1, then S returns λ to M and stores the entry

(
σ1, σ2, σ3, P̂i, P̂j , λ

)
in table L.

� Else, S chooses µ ∈R {0, 1}k, returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i, P̂j , µ

)
in L.

7. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand .
8. session-key(s): If sstatus 6= accepted, then S returns ⊥. Otherwise, S answers this query by

lookup in table T .
9. test-session(s): If s 6= s∗ or if s′ is not the origin-session for session s∗, then S aborts; otherwise
S answers the query in the appropriate way.

10. corrupt(P̂ ): If P̂ /∈ P, then S returns ⊥. Else if P̂ = B̂, then S aborts. Else, S returns skP̂ .
11. M outputs a guess: S aborts.

Analysis of event B3

Similar to the analysis of the related event B3 in the proof of [18, Proposition 7].

Event (TO)c ∧DLc ∧K
The simulation and analysis are very similar to the simulation and analysis related to event
B3.
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