Implementation and Improvement of the Partial
Sum Attack on 6-round AES

Francesco Alda, Riccardo Aragona, Lorenzo Nicolodi, and Massimiliano Sala

Abstract The Partial Sum Attack is one of the most powerful attacks, independent
of the key schedule, developed in the last 15 years against reduced-round versions
of AES. In this paper, we introduce a slight improvement to the basic attack which
lowers the number of chosen plaintexts needed to successfully mount it. Our ver-
sion of the attack on 6-round AES can be carried out completely in practice, as
we demonstrate providing a full implementation. We also detail the structure of our
implementation, showing the performances we achieve.

1 Introduction

The research on the cryptanalysis of block ciphers partly deals with studying and
proposing attacks on their reduced-round versions. Results on reduced versions are
very interesting, since they help to better understand the behavior of a cipher, point-
ing out weaknesses in its structure which can eventually lead to attacks on the full
version or characterize the security margin of the cipher.

In 2000, Ferguson et al. [5] introduced one of the most effective attacks, inde-
pendent of the key schedule, developed in the last 15 years against reduced-round

Francesco Alda
Horst Gortz Institute for IT Security and Faculty of Mathematics, Ruhr-Universitat Bochum, Uni-
versititsstraSe 150, 44801 Bochum, Germany, e-mail: francesco.alda@rub.de

Riccardo Aragona
Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo (Trento), Italy,
e-mail: riccardo.aragona@unitn.it

Lorenzo Nicolodi
Independent researcher, e-mail: lo@hidden-bits.com

Massimiliano Sala
Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo (Trento), Italy,
e-mail: maxsalacodes @gmail.com

2 Francesco Alda, Riccardo Aragona, Lorenzo Nicolodi, and Massimiliano Sala

versions of the Advanced Encryption Standard [3, 4], the Partial Sum Attack. Specif-
ically, they developed attacks against AES reduced to 6, 7 and 8 rounds. The attack
on 6-round is particularly powerful and its complexity is in the range which is re-
ferred to as practicable in the literature. It improves a previous attack which was first
described in [3]. The latter is based on integral cryptanalysis, a general technique
which is applicable to a large class of SPN block ciphers. This technique was orig-
inally designed by Lars Knudsen in the paper presenting the block cipher Square
[2], as a specific attack against its byte-oriented structure. This is the reason why
this class of attacks is commonly known as Square Attack. Since AES inherits many
properties from Square, this attack can be easily extended to reduced-round versions
of the Advanced Encryption Standard.

In this paper, we introduce a slight theoretical improvement to the Partial Sum
Attack on 6-round AES which lowers the number of chosen plaintexts needed to
successfully mount it, and we describe the structure of our full implementation. Af-
ter examining the literature which was developed after the publication of [5], we
are not aware of any effective implementation of this attack. Therefore, we strongly
believe that our implementation is the very first and, mostly, we show that it is
completely practicable. Moreover, we believe that our effort allows a deeper under-
standing of the attack workflow and can point out some other weaknesses neither
discovered nor exploited so far.

We would like to underline that a remark similar to the observation which our
improvement is based on can be found in [12], although we achieved this result in-
dependently. Nevertheless, we believe that our analysis is more careful and detailed.
In fact, the hypotheses which lead to this theoretical result are inherently strong,
since they require the reduced-round cipher to “behave” like a random permutation.
However, the attack we are dealing with strongly exploits the fact that AES can be
easily distinguished from a random permutation. Therefore, it was not clear a priori
whether these properties, or a good approximation of them, were actually satisfied
in a real scenario. Thanks to our implementation which exploits the aforementioned
improvement, we investigated these assumptions and explored how well the theoret-
ical model describes an actual execution of the attack. In particular, the experimental
results show that the number of false positives obtained closely matches that which
was expected from the theoretical analysis. For a detailed explanation, we refer to
Section 3.2.

The rest of the paper is organized as follows: in Section 2, we briefly introduce
the Square Attack and its extensions and we subsequently describe the Partial Sum
Attack in detail. In Section 3, we present our main results. First, we explain our
slight theoretical improvement, pointing out the issues that its implementation in-
volves. We then detail our implementation and provide the results of our computa-
tions. In particular, we achieved to recover a full 6-round key in less than 12 days
with 25 cores.

Implementation and Improvement of the Partial Sum Attack on 6-round AES 3

2 Preliminaries

We recall that the encryption process of AES-128, -192 and -256 consists of an ini-
tial key addition followed by the application of 10, 12 and 14 round transformations,
respectively. The initial key addition and every round transformation take as input an
intermediate result, called the sfate, and a round key which is derived from the cipher
key through the key schedule. The state is always treated as a 4 x 4 matrix whose
coefficients belong to IF,s. The output of any round is another state. The round trans-
formation is a sequence of four processing steps: SubBytes, ShiftRows, MixColumns
and AddRoundKey. The SubBytes (SB) step is the only non-linear transformation of
the cipher. It is an invertible byte substitution that operates independently on each
byte of the state, according to an S-box. The S-box, which is henceforth indicated as
¥, consists of the multiplicative patched inversion over [F,s, followed by an invertible
affine transformation. The ShiftRows (SR) step is a byte transposition that cyclically
shifts the rows of the state over different offsets. Specifically, let s; j and s; ; be the
state bytes in position (i, j) before and after the ShiftRows transformation, respec-
tively. Then s; ; = 5 (j1) moa 4 for i, j € {0,1,2,3}. The MixColumns (MC) step is a
linear transformation which operates on the state column-by-column, treating each
column as a polynomial over F,s[x]. This polynomial is then multiplied modulo
x* 41 with the fixed polynomial m(x) = (o + 1)x* +x% +x+ o, where & € Fys is
such that a® = a* 4+ o® + a + 1. Finally, in the AddRoundKey (ARK) transforma-
tion, the state is bitwise XORed with the corresponding round key. By SubBytes™!,
ShlftROWS_l, MixColumns—! and AddRoundKey_l, we denote the inverses of the
aforementioned steps. The final round differs from the others since the MixColumns
step is removed. For further details on the structure of AES, we refer to [3, 4].

In the following sections, we first give an overview on the Square Attack on 4-
round AES and we briefly introduce its extensions. We then describe the Partial Sum
Attack in detail.

2.1 Square Attack

The Square Attack is a chosen plaintext attack, which is independent of the specific
choices of the S-box of the SubBytes function, the multiplication polynomial of the
MixColumns transformation and the key schedule. For the sake of clarity, however,
we will often refer to the specific parameters used in AES.

In order to explain how this attack can be performed, we first introduce the following
definition.

Definition 1. A A-set is a set of 256 AES states that differ in one of the state bytes
(called active byte) and are equal in the other state bytes (called passive bytes). In
other words, if U is a A-set, for every x,y € U we have

4 Francesco Alda, Riccardo Aragona, Lorenzo Nicolodi, and Massimiliano Sala

xij #yij if (i,) is active
xij=yi; if (i) is passive

where i, j € {0,1,2,3}.

As it is explained in [4], the Square Attack on 4-round AES is heavily based on the
following property.
Proposition 1. Let bl(l) be the byte in position (i, j), i, j € {0,1,2,3}, of the I"" state
of a A-set after three rounds. Then

Y b =o0. (1)
I=1

In other words, the states at the end of the third round are balanced, i.e. all bytes
at the input of the fourth round sum to zero. Note that the initial key addition is
implicitly assumed and not counted in the number of rounds.

Let us consider a 4-round reduced AES, in which the fourth round is a final round,
i.e. it does not include MixColumns. This implies that every byte of the ciphertext
only depends on one byte of the input of the fourth round. The Square Attack on 4-

round AES can then be mounted as follows. For any 1™ state of a A-set, 1 <1< 256,
1(1])’ where i, j € {0, 1,2,3}, be the ciphertext byte in position (i, j). Let ki(f;)
guess for the byte in position (i, j) of the 4™ round key (which is the last key used).
(4)
iJ

let ¢ be a

For any (i, j), if the value of k; ; is correct, the following equation holds:

256 256
—1(() COARE) _
l; Y (Ci,j +k; j) = l;bi,(j—s-i) moda = 0; @

0
ij
of three rounds, and 7! is the S-box of SubBytes ™.

If Equation (2) does not hold, the assumed value for the key byte must be wrong.
This check is expected to eliminate all wrong key bytes, except for one value that

could satisfy (2) by chance. To be more precise, the following result holds.

where b,/ is the byte in position (i, j) of the /" state of a A-set after the application

Proposition 2. If (X (”)1515256 is a sequence of independent uniformly distributed
random variables with values in IF,s, then the probability

P

256
Y x0= 0] =278

=1

Proof. Let X and Y be two discrete independent random variables, with den-
sity functions fj(x) and f>(x) respectively. The convolution f3(x) = [f1 * f2](x) =
Y, f1(y)f2(x—y) is the density function of the random variable Z = X +Y. Since X
and Y take values in [F5s, their sum Z takes values in F,s too. Therefore, the density
function of Z is an uniformly distributed random variable, since it is the circular

Implementation and Improvement of the Partial Sum Attack on 6-round AES 5

convolution of two independent uniformly distributed random variables. This result
can be easily extended to the sum of an arbitrary number of random variables. O

Before proceeding with the analysis of the attack, we would like to stress that
the hypotheses of Proposition 2 are inherently strong. In particular, the bytes of
the state at the end of the 3™ round are assumed to be independent and uniformly
distributed. Although these are natural assumptions for modeling the attack, it is
not clear a priori whether they hold even in practice. We thus performed some tests
which aimed to estimate the probability to obtain a zero sum for a random set of
256 plaintexts and for a A-set at the end of the 3™ round. The values reported in
Table 1 were obtained by averaging the estimates we collected using 2 - 10* random
sets and 2 - 10* different A-sets, encrypted through an equal number of random keys,
respectively.

Table 1 Estimated probability to obtain a zero sum for a random set of plaintexts and for a A-set
at the end of the 3™ round. Number of trials: 2 - 10*

Random set | A-set

0.003904 | 0.007794

As Table 1 shows, the tests we performed give evidence that Proposition 2 well
describes the behavior of the cipher even at the end of the 3™ round. As expected,
for a random set of 256 plaintexts there exists (on average) only one value which
satisfies Equation (2) by chance. In the case of a A-set, the estimate is roughly
1/128, since both the correct key byte and another random value satisfy (2).

Since checking Equation (2) for a single A-set is expected to leave only 1 over
256 of the wrong key assumptions as a possible candidate, the 4™ round key can be
found with a sufficiently large confidence using two different A-sets. Henceforth,
this crosscheck will be referred to as verification step.

All in all, two A-sets have to be used, and all 16 bytes of the 4" round key need to be
recovered. Therefore, the working factor consists of 2° encryptions and 2° - 2% =213
evaluations of Equation (2).

In [4], Daemen et al. describe how this attack can be extended adding one round
at the end or one round at the beginning. Combining the basic attack on 4 rounds
with both extensions yields the Square Attack on 6-round AES. We can sketch this
attack as follows. For the extension by one round at the end, the attacker has to
perform a partial decryption of two rounds instead of only one, implying that four
more bytes of the final round key need to be guessed. The idea for the extension by
one round at the beginning consists of choosing a set of 256 plaintexts which, at the
end of the first round, results in a A-set with a single active byte. This requires to
guess four bytes of the initial round key k(?). We refer to [4] for further details on
these two extensions. In both cases, we need to guess five key bytes instead of one.
By combining these two methods, nine bytes need to be guessed.

6 Francesco Alda, Riccardo Aragona, Lorenzo Nicolodi, and Massimiliano Sala

2.2 Partial Sum Attack

Without considering the verification steps, the Square Attack on 6-round AES re-
quires the storage of 232 chosen plaintexts and the corresponding ciphertexts. More-
over, (28)% = 272 steps are needed for guessing nine key bytes, when it is applied to
only recover 4 bytes of the 6 round key. Therefore, it is completely out of reach
for current computing resources.

The Partial Sum Attack [5] significantly improves the Square Attack on 6-round
AES. Ferguson et al. introduced two main ideas. First, instead of guessing four bytes
of the initial round key k(o), one can use 232 plaintexts such that one column of the
states at the input of MixColumns of the first round ranges over all possible values
of (F,s)* and all other bytes are constant. Throughout the rest of the paper, we de-
note by A-set such a group of 232 plaintexts. For any value of the initial round key,
the corresponding ciphertexts consist of 22* groups of 2% encryptions that vary in
a single active byte at the end of the first round. In fact, imposing a particular lin-
ear combination which ranges over all possible values of F,s and three other linear
combinations which are constant for all 256 states, we can uniquely determine a set
of plaintexts which results in a A-set with a single active byte at the end of the first
round. In particular, one has 2°* ways to choose the values for these three linear
combinations.

Therefore, all an attacker has to do is guess four bytes of the 61 round key and one
byte of the 5™ round key, perform a partial decryption to a single state byte at the
end of the 4™ round, sum this value over all 232 encryptions, and check whether
the result is zero. Compared to the Square Attack on 6 rounds, the attacker needs to
guess 40 bits instead of 72.

The further idea behind the improvement introduced by Ferguson et al. consists in
organizing the partial decryption on partial sums. In order to properly understand
what partial sums are and how one can use them, we introduce the following nota-
tion, where the pair (i, j) is used to denote the state entry (with i, j € {0,1,2,3}),
and the index [(with 1 <1 < 232) denotes the /™ element of a A-set:

b(lj) is a byte at the end of the 4% round;

]
Z(J) is a byte of the state at the 5™ round before the application of MixColumns;
§) is the s column of the /™ state at the 5 round before the application of

<U:(GO0 (1>)T;

MixColumns. Thus a; ap),y 505 5,43

!

=

is a byte at the end of the 6" round, which we refer to as the ciphertext byte;
) is the ™ round key and k") = MixColumns~" (k));

’]) is a byte of k.

‘|
Kk
(

=<

=

It is easy to show that, in order to compute the partial decryption to a state byte at
the end of the 4™ round, we need to consider four bytes in each ciphertext and guess
the corresponding bytes of the 6" round key, according to one of the configurations
shown in Figure 1. Observe that each configuration has exactly one byte per state
row and one byte per state column.

Implementation and Improvement of the Partial Sum Attack on 6-round AES 7

15 set config. 2nd set config. 3'd set config. 4t set config.

Fig. 1 The set of 4 bytes of the 6™ round key (resp. ciphertexts) for the Partial Sum Attack on
6-round AES

In the following computations, with abuse of notation, we denote by Mix-
Columns~" and SubBytes™! the inverse of MixColumns and SubBytes applied to
a single column of the state. The relations between the a(!)’s, the ¢(!)’s and the k(")’s
are easily established:

1) 6)
a, 0+ Ky,
(f X0 kO
ab = a%i)] = MixColumns™" | SubBytes™! Zi)“ 1) mod 4 %é()’ 1) mod 4
J)
a%i)] C?Z,)(j 2) mod 4 + k%é()j 2) mod 4
a3 3.J C,(] 3)m0d4+k3 (j—3) mod 4

denote

)
)
n| = SubBytes ™!
)

for 1 <1<232.Let N be the byte matrix of MixColumns~". Working out the product,
we have

No- &P+ Ny - 4Ny - & 45 - £
S0 V58 +No- & M- 4N)
J Nz.gél;—&-Ng §111+N0 52’§+N1 53“; ’

Ny -ED 4Ny ED 4N E 4N - €

where, in the specific case of AES (see Section 2),

No=0o>+a’+a

N=a+a+1
M=o +a*+1
N3:(13+1.

Thus we can compute a state byte at the end of the 4™ round as follows:

8 Francesco Alda, Riccardo Aragona, Lorenzo Nicolodi, and Massimiliano Sala
(1) _ () 7(5)
bifjriymas =7 \4ijtkij))

where i € {0,1,2,3} and y~! is the S-box of SubBytes™', as usual. Observe that

in (3) y~! is applied to a,(lj) + l_cl(? rather than to a,(lj) + kf? The latter would be
)

wrong, since k;; is added after the application of MixColumns.

In order to identify a possible right guess, we have to check if 12)321 bl(l()J T—— 0.
This sum can be expressed as

232

Yor! (Nfi : éél) +Ni—i- 51(1) +Nyi- 52(1) +N3_i- 53(1) + I_C,(sj))) “)

=1

where the indices —i, 1 —i,2 —i,3 — i are all meant to be reduced modulo 4, giving
a remainder in {0, 1,2,3}.

If we trivially execute this summation, given ciphertexts and possible key
guesses, we have to sum 272 different values, which does not significantly improve
the basic Square Attack. As it is pointed out in [5], Expression (4) can be organized
in a more efficient manner. Once the row i is fixed, for each ¢ € {0,1,2,3}, it is

232 240

possible to associate a partial sum x,(l) to each set {éél), cees §,<l) }, defined as follows:

t
= YNl
z=0

In particular,
xgl) = xgl) + Nz_,-fzu) and xé” = xgl) + N3_,-§3(1).

In order to simplify the notation, let (c(()l),cgl),cél),cgl)) be the 4-tuple formed by

the /™ ciphertext’s bytes, extracted according to one of the configurations described
above. Guessing the key values and using the partial sums, we can define the fol-
lowing maps
noo 0 n o [n o l
(cé),c’g),c(z),cg)) — (xg),c‘g),cg)) — (xg),cg>) r—)xg>.
Using a similar notation, let (ko, k1, k>, k3) be four values for the 6™ round key, which

we want to guess, arranged in the same configuration chosen for the ciphertexts, and
let k4 be a guess for the 5™ round key byte l_cg_sj)

as follows.

. The Partial Sum Attack is organized

» We start with the list of 232 4-tuples (c(()l),cgl),cg),cgl)). Guessing ko and k;, we

can compute each triple (xgw,cg) , cgl)).

* We then guess k>, and compute each pair (xg”,cgl)).

» Similarly, we guess k3, and compute each value of xg”.
* Finally, guessing the value of k4, we can compute Expression (4) and check

whether the result is zero.

Implementation and Improvement of the Partial Sum Attack on 6-round AES 9

2.3 Complexity

In the first phase one guesses 2 bytes and processes 232 ciphertexts bytes. For each
choice of ko and k1, one more byte has to be guessed, but only 2 triples have to be
processed. In the third phase, k3 has to be guessed but one has only to process 2'°
pairs. This holds similarly for the other two phases. Summing up all the contribu-
tions, we obtain that 2°° operations are required for a single A-set of 232 elements.

3 Implementation and improvement

The results described in this work started from Alda’s Master’s thesis [1], where he
developed a C++ code of the Partial Sum Attack and introduced (independently of
[12]) the improvement specified in Section 3.2.

3.1 High-level scheme of the implementation

To the best of our knowledge, this is the very first implementation of the Partial Sum
Attack on 6-round AES. In this section, we explain the main ideas and principles
we used in our implementation. We refer to Section 3.3 for further technical details
on our implementation.

As it is displayed in Figure 2, the steps involved in the attack are very simple.
At the beginning of the attack, a A-set with 232 elements has to be encrypted. In
this way, we can obtain and store the 4-tuples (c(()l) , cgl),c(zl) , cgl)), formed by the /™
ciphertext’s bytes, extracted according to one of the configurations described in Sec-
tion 2.2. Extending the idea introduced in [5], it is sufficient to count how often each
4-tuple appears during the computation. As there are only 232 possible 4-tuples, we
do not have to store all (c(()]),c(ll),cgl),cgn) values. Since Expression (4) has to be
computed in a field of characteristic 2, it suffices to count modulo 2. In fact, only
the summands which appear an odd number of times give a non-zero contribution.
Hence, a single bit suffices for each count and it is possible to store our list of 4-
tuples in a 232-bit vector. Therefore, the space requirement for 232 counters is just
232 bits, which correspond to 0.5GB.

We then start a loop over 216 possible values of ko, k;. For each pair (ko,k;), we
compute the partial sums xgl) and store the triples (xil),cgl),cgl)). Using the same
rationale, it suffices to count the parity of times each triple occurs. Again, we store
all parities in a 22%-bit vector. Moreover, we observe that, using an appropriate sort-

(D)

ing, it suffices to compute the value x;’ every 216 elements: in fact, this value only
depends on c(()l),c(ll),ko and k;. Thus, if 1 <[,h < 232 we have

10 Francesco Alda, Riccardo Aragona, Lorenzo Nicolodi, and Massimiliano Sala

— 224

ko, k1 . k2 . ks . Kq

O

Final surr

¢y =co’ . _ m
by _ =5 =

This observation significantly reduces the number of computations involved in this
step, allowing entire blocks of bits to be updated at the price of very few calculations
(see Section 3.3 for further details).

The same ideas can be similarly applied to the second step. For each value k;, one

computes the partial sums xgl), counts the parity of times each pair (x(zl) , cgl)) occurs

)

and stores it in a 2'6-bit vector. As before, it suffices to compute the value Xy’ every

28 elements: in fact, this value only depends on xgl) , cgl) and k.

)

In the third step, for each value k3, we compute the partial sums x;’, count how

many times each xgl) occurs and store its parity in a 28-bit vector. Unlike the previ-

ous steps, this must be done scanning every entry of the 2'°-bit vector, since both
xg) and cgl) must be used in the computation of xgl). Finally, looping over the value
ky, it is possible to compute the final sum and check whether the result is zero.

As it was explained for the Square Attack, checking this sum for a single A-set is ex-
pected to eliminate 255 of the wrong key assumptions (ko, ki, k»,k3,k4). It is there-
fore necessary to verify their correctness using different A-sets (verification steps).
At each positive verification, the key space is reduced by a factor 278, Apparently,
this implies that 6 different A-sets (or more) are needed to find the correct 5-tuple

Implementation and Improvement of the Partial Sum Attack on 6-round AES 11

(ko,k1,ky,k3,ks) with overwhelming probability. This result can be improved, as it
is explained in the following section.

3.2 Improvement

As it was already underlined, when it was published, the Partial Sum Attack rep-
resented one of the best cryptanalytic results on reduced-round versions of the Ad-
vanced Encryption Standard. After its publication, many other researchers worked
on the integral cryptanalysis of Rijndael (and its specification AES), finding new
extensions or improvements for this class of attacks (see for example [7, 9, 12]).
Our approach started from performing a full implementation of the attack as it is
described in Section 3.1, trying to understand where some other potentialities could
be exploited.

In the original paper [5], it is claimed that at least 6 sets of 232 plaintexts, which
form a A-set, are necessary in order to find the correct 5-tuple (ko,k1,k2,k3,ky).
However, we observed that only two A-sets suffices to determine the correct 4-
tuple (ko, k1,k2,k3) with high probability. In fact, fixing one configuration according
to which the ciphertexts bytes (c(()l),cgw,cgl),cgl)) are extracted, one can compute
the sum in four different state bytes at the end of the 4™ round (we can choose
i €{0,1,2,3} in Equation (3)). We provide a visual example in Figure 3.

S:] SR ARK MC

5" round

6™ round

Fig. 3 The state bytes at the end of the 4™ round (in red) which can be computed for a configuration
according to which the ciphertexts bytes (cél),c(l[),cg) , cgl)), for 1 <1< 2%, are extracted

If we consider each sum as independent and make use of Proposition 2, using
only two A-sets, the probability that for a 4-tuple (ko, ki, kz,k3) there exists for each

12 Francesco Alda, Riccardo Aragona, Lorenzo Nicolodi, and Massimiliano Sala

row a value k4 which gives a zero sum for both A-sets is (1/256)%. Note that the
bytes of the 5™ round key, which produce zero sums, may be different for each
row, but, as for (kg,ki,kn,k3), their correctness should follow by the crosscheck-
ing between the two A-sets. Therefore, checking the value of the sum on four rows
at the end of the 4™ round is expected to determine, with sufficiently high confi-
dence, the correct 4-tuple (ko,k;,k2,k3). More specifically, only one false positive
(ko,k1,kz,k3) is expected to survive to all verification steps.

The hypothesis which this result is mainly based on consists of considering
the sums on four rows as independent. As pointed out in Section 2.1, there is no
certainty that this assumption holds perfectly in practice. Intuitively, even though
the bytes involved in the sums belong to the same state and their correlation is
hence nonzero, the diffusion and confusion introduced by the round transformations
should make it negligible after few rounds. The experimental results we performed
using our implementation (which exploits the aforementioned improvement) show
that using only two A-sets and computing the sum on four rows do not eliminate
all wrong guesses, as we expected. In particular, besides the correct 4-tuple, we
obtained on average one false positive, independently of the configuration chosen.
Although more tests are needed in order to provide a better estimate, our results al-
ready indicate that the probability of false positive closely matches the expected one.
Moreover, we believe that future analyses in this direction could point out further
properties of the cipher, which may lead to other improvements of the attack.

All in all, we observed that the number of chosen plaintexts which are necessary
in order to mount the attack (with high confidence) can be reduced from 6 A-sets of
232 elements to only 2. In order to lower the probability of false positives (but still
enhancing the basic attack described in [5]), we also performed some attacks using
3 A-sets, checking the sum on four rows at the end of the 4t round. As expected, in
this setting we did not observe any false positive.

Although we reached this conclusion independently, we would like to point out
that a remark similar to our observation can be found in [12]. As already observed,
we believe that our analysis is more careful and detailed, since we supported the ap-
plicability of the hypotheses which this result is based on by means of experimental
analyses on AES. Specifically, we provided a full implementation which strongly
exploits the aforementioned improvement, and the results we obtained running the
attack showed that the number of false positives closely matches the one which was
expected from the theoretical analysis.

Among other speed-ups we introduced, this improvement allowed us to achieve op-
timal performances, showing the complete practicability of the attack, as it will be
presented in the following section.

3.3 Implementation’s details

First of all, we ported Alda’s code [1] to C, to reduce the overhead of C++ ab-
stractions, which are useful but not essential for this kind of application. During

Implementation and Improvement of the Partial Sum Attack on 6-round AES 13

this phase, we decided to map every Boolean vector’s element to a bit inside an
unsigned char’s array. On one hand, this process forced us to create some an-
cillary functions to toggle and mask bits as necessary but, on the other hand, it had
the side effect of accelerating some functions where shifting and masking were re-
quired, because we did it byte by byte, instead of bit by bit. Moreover, it allowed us
to save space and time while writing and reading the encrypted arrays to and from
the disk, storing every 232 array in a 512MB file and saving time while testing the
attack. After completing the porting and introducing the new memory management
concepts, we started focusing on how the memory management operations could
be accelerated and we ended up managing every group of 8 unsigned char
array elements as an unsigned long long int array, where possible. This
allowed us to deal with the allocated memory as a set of 64 bit blocks, reducing the
time needed to complete, for example, some XOR operations between these arrays.
The resulting implementation was satisfactory.

We also decided to allow the parallelization of the attack on multiple core systems
and, for this purpose, we needed to exchange information between each process. We
chose OpenMPT [6, 8] because we appreciated its documentation and the maturity
of the open source project supporting it. Porting the code from a linear to a parallel
paradigm presented no real difficulties because the attack is mainly composed by
loops, repeated for values from 0O to 255, so we decided to execute the 5 most inner
loops on each worker (a worker is a parallel process running the attack), assigning
to each of them a range of values of kg to go through in the outer of these 5 loops.
Moreover, we shared the encrypted vectors, using NFSv4, on every system running
the attack and using the same share storage to save the guessed partial keys and to
check the status of the attack from each worker.

Our code works as follows. The master process coordinating the attack distributes
the values to each worker using the Round-Robin algorithm [11] and then
waits for replies from each of them. After finishing the attack with one of the as-
signed values, every worker reports the result to the master, if successful. If the
attack with that value was not successful, the worker checks the shared storage
looking if the current partial key has been guessed and, if so, it stops the attack,
otherwise it starts the attack with the next assigned value.

To retrieve the whole 16-byte key, the attack has to be run 4 times, according to
the four configurations shown in Figure 1. The master writes 4 files that contain the
partial keys guessed, and it also writes the whole key in another file when the attack
is completed for every configuration.

The final outcome of this effort was interesting in terms of memory and time
used. The attacks have been launched on 6 desktop PC, with 4 cores (Intel Pentium
CPU G640 @2.80GHz) and 8GB of RAM each, using 25 processes. The first pro-
cess coordinated the attacks, while the remaining 24 workers actually performed the
attacks. The results we obtained are summarized in Table 2.

From these experimental results, we can note that the attacks which use 3 A-
sets are generally slightly faster, though they obviously require more memory to
be performed. This is not too surprising, since using only 2 A-sets triggers more
verification steps on different rows (as observed in Section 3.2, there are more wrong

14

Francesco Alda, Riccardo Aragona, Lorenzo Nicolodi, and Massimiliano Sala

Table 2 Experimental results obtained running our implementation of the Partial Sum Attack on
6-round AES. The keys were chosen according to the example vectors provided in [10]

Number of A-sets | Average time (days) | Memory (GB)

2 12.1 1.028
3 11.5 1.542

key candidates which give a zero sum on a fixed row), which are time consuming
operations in our current implementation.

Based on the results of Table 2, we estimate that, on average, the 128-bit 6th

round key can be retrieved in 25.8 hours using 256 workers.

The source code of our implementation of the Partial Sum Attack is available on

http://tdsoc.org.

Acknowledgements Most of the results shown in this work were developed in the first author’s
Master’s thesis and he would like to thank the other authors, especially his supervisor (the last
author). For interesting discussions, the authors would like to thank Anna Rimoldi.

References

10.
11.

12.

. Alda, F.: The Partial Sum Attack on 6-round reduced AES: implementation and improvement.

Master’s thesis (laurea magistrale), University of Trento, Department of Mathematics (2013)
Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Fast Software Encryption.
pp. 149-165. Springer (1997)

Daemen, J., Rijmen, V.: AES proposal: Rijndael. In: First Advanced Encryption Standard
(AES) Conference (1998)

Daemen, J., Rijmen, V.: The design of Rijndael. Information Security and Cryptography,
Springer-Verlag, Berlin (2002), AES - the Advanced Encryption Standard

Ferguson, N, Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.: Improved
cryptanalysis of Rijndael. In: Fast software encryption. pp. 213-230. Springer (2001)
Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V.,
Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall,
T.S.: Open MPI: Goals, concept, and design of a next generation MPI implementation. LNCS,
vol. 3241, pp. 97-104. Springer (2004)

Galice, S., Minier, M.: Improving integral attacks against Rijndael-256 up to 9 rounds. In:
Progress in Cryptology—AFRICACRYPT 2008, pp. 1-15. Springer (2008)

Graham, R.L., Woodall, T.S., Squyres, J.M.: Open MPI: A flexible high performance MPI.
LNCS, vol. 3911, pp. 228-239. Springer (2006)

Li, Y.J., Wu, W.L.: Improved integral attacks on Rijndael. Journal of Information Science and
Engineering 27(6), 2031-2045 (2011)

Pub, N.E.: 197: Advanced encryption standard (AES). vol. 197, pp. 441-0311 (2001)
Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. John Wiley & Sons
(2008)

Tunstall, M.: Improved “partial sums”-based square attack on AES. In: International Confer-
ence on Security and Cryptography - SECRYPT 2012. pp. 25-34. INSTICC Press (2012)

