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Abstract. In the context of authenticated encryption (AE), generic composition has referred to the
construction of an AE scheme by gluing together a conventional (privacy-only) encryption scheme and
a MAC. Since the work of Bellare and Namprempre (2000) and then Krawczyk (2001), the conventional
wisdom has become that there are three forms of generic composition, with Encrypt-then-MAC the only
one that generically works. However, many caveats to this understanding have surfaced over the years.
Here we explore this issue further, showing how this understanding oversimplifies the situation because
it ignores the results’ sensitivity to definitional choices. When encryption is formalized differently,
making it either IV-based or nonce-based, rather than probabilistic, and when the AE goal is likewise
changed to take in a nonce, qualitatively different results emerge. We explore these alternatives versions
of the generic-composition story. We also evidence the overreaching understanding of prior generic-
composition results by pointing out that the Encrypt-then-MAC mechanism of ISO 19772 is completely
wrong.

Keywords: authenticated encryption, generic composition, IV-based encryption, nonce-based encryp-
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1 Introduction

Specificity of GC results. We revisit the problem of creating an authenticated encryption (AE)
scheme by generic composition (GC). This well-known problem was first articulated and studied in
a paper by Bellare and Namprempre [3, 4] (henceforth BN). A review of discourse surrounding BN
makes clear that, to its readers, the paper’s message was that

1. there are three ways to glue together a (privacy-only) encryption scheme and a MAC, well
summarized by the names Encrypt-and-MAC, Encrypt-then-MAC, and MAC-then-Encrypt;

2. but of these three ways, only Encrypt-then-MAC works well: it alone will always be secure
when the underlying primitives are sound.

While BN does of course contain such results, we claim that the understanding articulated above
is nonetheless off-base, for it makes no reference to the type of schemes from which one starts, nor
the type of scheme one aims to build. The omission is untenable because GC results turn out to
depend crucially on these choices—and multiple alternatives are as reasonable as those selected by
BN.

Types of encryption schemes. What are these definitional choices allegedly so important for
GC? See Figure 1. To begin, in schemes for probabilistic encryption (pE), the encryption algo-
rithm is provided a key and plaintext, and, by a process that employs internal coins, it generates
a ciphertext [2, 13]. The plaintext must be recoverable from (just) the ciphertext and key. Syntac-
tically, a probabilistic authenticated-encryption (pAE) scheme is the same as a pE scheme.
But a pAE scheme should also protect the receiver against forged ciphertexts [3–5].

BN focuses on turning a pE scheme and a MAC into a pAE scheme. But conventional, standard-
ized encryption schemes—modes like CBC or CTR [9, 12]—are not really pE schemes, for in lieu of
internally generated random coins they use an externally provided IV (initialization vector). Let us
call such schemes IV-based encryption (ivE). When security is proven for such schemes [1, 2] the
IV is selected uniformly at random, and then, for definitional purposes, prepended to the cipher-
text. But the standards do not insist that the IV be uniform, nor do they consider it to be part of
the ciphertext [9, 12, 14]. In practice, IVs are frequently non-random or communicated out-of-band.
In effect, theorists have considered the pE scheme canonically induced by an ivE scheme—but the
two objects are not the same thing.

A scheme for nonce-based encryption (nE) is syntactically similar to an ivE scheme. Again
there is an externally provided value, like the IV, but now referred to as a nonce (“number used
once”). Security for nE is expected to hold as long as the nonce is not repeated [20]. One expects
ease-of-correct-use advantages over ivE, insofar as it should be easier for a user to successfully
provide a non-repeating value than a random IV. Standard ivE schemes that are secure when the
IV is random (eg, CBC or CTR) are not secure in the nE sense: they are easily attacked if the IV
is merely a nonce.

Finally, a scheme for nonce-based authenticated-encryption (nAE) is like an nE scheme
but the decrypting party should reject illegitimate ciphertexts. Standardized AE methods—modes
like CCM, GCM, and OCB [10, 11, 15]—are secure as nAE schemes. Following standard practice,
nAE schemes are further assumed to include associated data (AD). This string, provided to the
encryption and decryption algorithms, is authenticated but not encrypted [19]. For practical utility
of AE, the AD turns out to be crucial.
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type E takes D takes summary of basic security requirement

pE K,M K,C privacy: ind = (ciphertexts ≈ EK(rand-bits)) – EK flips the needed coins

pAE K,M K,C privacy + auth: ind, plus adv can’t forge ciphertexts – EK flips the needed coins

ivE K, IV ,M K, IV , C privacy: (IV i ‖Ci) ≈ rand-bits – the environment selects a random IV

nE K,N,M K,N,C privacy: ind$ = (ciphertexts ≈ rand-bits) – adv provides non-repeating N

nAE K,N,A,M K,N,A,C privacy + auth: ind$ + adv can’t forge ciphertexts – adv selects non-repeating N

Fig. 1. Types of AE schemes. The first column gives the name we will use for this type of symmetric encryption
scheme. The second and third columns specify the inputs to encryption E and decryption D: the key K, plaintext M ,
ciphertext C, initialization vector IV , nonce N , and associated data A. The final column gives a brief description of
the main security definition we will use.

Contributions. This paper explores how GC results turn on the basic definitional distinctions
named above. Consider the GC scheme of ISO 19772 [15]. The scheme is in the Encrypt-then-MAC
tradition, and the standard appeals to BN to support this choice [15, p. 15]. Yet the ISO scheme
is wrong. (It is currently being revised in response to our critique [17].) The root problem, we
maintain, is that the standard attends to none of the distinctions just described. To apply BN’s
Encrypt-then-MAC result to a scheme like CBC one would need to select its IV uniformly at
random, prepend this to the ciphertext, then take the MAC over this string. But the ISO standard
does none of this; the IV is not required to be random, and the scope of the MAC doesn’t include
it. This makes the scheme trivial to break. A discussion of the ISO scheme appears in Section 6.

One might view the ISO problem as just a document’s failure to make clear that which cryptog-
raphers know quite well. We see it differently—as symptomatic of an overreaching understanding of
BN. For years we have observed, in papers and talks, that people say, and believe, that “Encrypt-
then-MAC works well, while MAC-then-Encrypt does not.” But this claim should be understood
as a specific fact about pE + MAC → pAE conversion. Viewed as a general, definitionally-robust
statement about AE, the claim is without foundation.

A modern view of AE should entail a multiplicity of starting points and ending points. Yet
not all starting points, or ending points, are equal. The ISO 19772 attack suggests that ivE makes
a good starting point for GC; after all, the aim of GC is to support generic use of off-the-shelf
primitives, and ivE nicely formalizes what is found on that shelf. Similarly, the nAE goal has
proven to be the desired-in-practice ending point. We thus explore ivE+MAC→ nAE conversion.
We start off by assuming that the MAC can authenticate tuples of strings (a vecMAC). We then
consider a universe of 160 candidate schemes, the A-schemes. Eight of these are favored : they are
always secure when their underlying primitives are sound, and with good bounds. See Figure 2.
One A-scheme is transitional : it has an inferior established bound. Three A-schemes are elusive:
for them, we have been unable to generically establish security or insecurity. The remaining 148
A-schemes are meaningless or wrong. Next we show how to realize any of the favored A-scheme
using a conventional string-input MAC (a strMAC). The resulting B-schemes are shown in Figure 3.

Two of the schemes given are already known. Scheme A4 is SIV [21] (apart from the fact that the
latter permits vector-valued AD, a natural extension that we ignore), while B1 is EAX [6] (or the
generalization of it called EAX2). Our treatment places these modes within a generic-composition
framework. In the process, the correctness proof of each mode is actually simplified.

To ensure that we did not overlook any correct schemes, we initially used a computer to identify
those with trivial attacks. We were left to deal with the more modest number of remaining schemes.
The computer-assisted work was eventually rendered unnecessary by conventional proofs.
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Fig. 2. The eight “favored” A-schemes. These convert an ivE scheme E and a vecMAC F into an nAE scheme.
The IV is FL(N [, A] [,M ]) and the tag T is either T =FL(N,A,M) or T =FL(N,A,C). For this diagram we assume
F iv=F tag=F .

We also look at the construction of nAE schemes from an nE scheme and a MAC [19, 20].
While nE schemes are not what practice directly provides—no more than pE schemes are—they
are trivial to construct from an ivE scheme, and they mesh well with the nAE target. For this
nE +MAC→ nAE problem we identify 20 candidate schemes, which we call N-schemes. Three of
them turn out to be secure, all with tight bounds. The security of one scheme we cannot resolve.
The other 16 N-schemes are insecure.

Tidy encryption. Our formalization of ivE, nE, and nAE schemes includes a syntactic re-
quirement, tidiness, that, when combined with the usual correctness requirement, demands that
encryption and decryption be inverses of each other. (For an ivE scheme, correctness says that
EK(IV ,M) = C �= ⊥ implies that DK(IV , C) = M , while tidiness says that DK(IV , C) = M �= ⊥
implies that EK(IV ,M) = C.) In the context of deterministic symmetric encryption, we regard
sloppy schemes—those that are not tidy—as perilous in practice, and needlessly degenerate. Tidi-
ness, we feel, is what one should demand.

Were sloppy nE and ivE schemes allowed, the generic composition story would shift again: only
schemes A5 and A6, B5 and B6, and N2 would be generically secure. The sensitivity of GC to
the sloppy/tidy distinction is another manifestation of the sensitivity of GC results to definitional
choices.

A preemptive warning against misinterpretation. A body of results (eg, [8, 22]) have
shown traditional MAC-then-Encrypt (MtE) schemes to be difficult to use properly in practice.
Although some of our secure schemes can be viewed as being in the style of MtE, the results
of this paper should not be interpreted as providing blanket support for MtE schemes. We urge
extreme caution when applying any generic composition result from the literature, as implementers
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Fig. 3. The eight B-schemes corresponding to the favored A-schemes. Each converts an ivE scheme E and a
strMAC f to an nAE scheme. The methods instantiate the vecMAC with a strMAC using the “XOR3” construction.

and standardizing bodies must insure that the underlying encryption and MAC primitives are of
the type assumed by the result, and that they are composed in exactly the way the security
result demands. Experience has demonstrated this area to be fraught with instantiation and usage
difficulties.

Relatedly, we point out that our AE notions of security follow tradition in assuming that decryp-
tion failures return a single kind of error message, regardless of the cause. Hence implementations
of our GC methods should insure, to the maximum extent possible, that this requirement is met.

Final introductory remarks. One might interpret our results as saying that the conventional
wisdom—that Encrypt-then-MAC is the only safe GC method—is wrong, an artifact of early work
having admitted sloppy schemes and considered only pE+MAC→ pAE conversion. An alternative
interpretation is that the conventional wisdom is essentially right, that Encrypt-then-MAC is the
only safe GC method, for it works across multiple definitional settings, whereas the story becomes
nuanced for other GC schemes.

Nothing in this paper should be understood as suggesting that there is anything wrong with
BN. If that paper has been misconstrued, it was not for a lack of clarity. Our definitions and results
are complementary.

We recently received a note from Bellare and Tackmann [7] pointing out that for the original
nE definition of Rogaway [19], neither Encrypt-and-MAC nor MAC-then-Encrypt work for nE +
MAC→ nAE conversion, contradicting a (therefore buggy) theorem statement [19, Th. 7]. We had
previously noticed the need to outlaw sloppy or length-increasing nE schemes to get these results
to go through.
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2 Definitions

This section provides key definitions. Some aspects are standard, but others (particularly tidiness,
schemes recognizing their own domains, and identifying encryption schemes by their encryption
algorithms) are not. We begin with some notation.

Notation. Strings are binary and finite. The length of x is |x|, x ‖ y is the concatenation of x
and y, and ε is the empty string. The set of all strings is {0, 1}∗. If A is a probabilistic algorithm
we can treat it as a distribution; if A is a distribution we can treat it as the set that is its support.
If A is a distribution we write a�A for sampling from A and letting a be the result. If A is a finite
set the uniform distribution is usually assumed.

We write Pr[S1; S2; · · · ; Sn : E] for the probability of event E after the experiment described
by the preceding sequence of steps. When a function F (x1, . . . , xn) has multiple arguments, we may
write them as subscripts, then superscripts, then parenthesized arguments. Thus EN,A

K (M) means
E(K,N,A,M). We use a superscript for functionality presented to an algorithm as an oracle; for
example, AF indicates that algorithm A has oracle access to F .

Kinds of encryption scheme. A scheme for nonce-based AE (nAE) is a triple Π = (K, E ,D).
The key space K is a finite nonempty set. Encryption algorithm E is deterministic and takes a four-
tuple of strings K,N,A,M to a value C ← EN,A

K (M) that is either a string or the symbol ⊥
(“invalid”). We require the existence of sets N , A, andM, the nonce space, associated-data space
(AD space), and message space, such that EN,A

K (M) �= ⊥ iff (K,N,A,M) ∈ K×N ×A×M. We
require that M contains two or more strings; that if M contains a string of length m it contains
all strings of length m, and the same for A; and that when EK(N,A,M) is a string its length
�(|N |, |A|, |M |) depends only on |N |, |A|, and |M |. Decryption algorithm D is deterministic and
takes a four-tuple of strings K,N,A,C to a value M that is either a string inM or the symbol ⊥.
We require that E and D be inverses of one another, implying:

(Correctness) if EN,A
K (M) = C �= ⊥ then DN,A

K (C) = M , and

(Tidiness) if DN,A
K (C) = M �= ⊥ then EN,A

K (M) = C.

Algorithm D is said to reject ciphertext C if DN,A
K (C) = ⊥ and to accept it otherwise. Our security

notion for a nAE scheme is given in Figure 4. The definition measures how well an adversary can
distinguish an encryption-oracle / decryption-oracle pair from a corresponding pair of oracles that
return random bits and ⊥. Here and later, queries that would allow trivial wins are disallowed.

The syntax changes little when we are not expecting authenticity: schemes for IV-based en-
cryption (ivE) and nonce-based encryption (nE) have the syntax above except for omitting
all mention of AD. Security is specified in Figure 4. For ivE, the nonce N and nonce space N are
renamed IV and IV. With each query M the oracle selects a random IV and returns it alongside
the ciphertext. For nE, the adversary provides a plaintext and a non-repeating nonce with each
encryption query.

A scheme for probabilistic encryption (pE) or probabilistic AE (pAE) is a triple Π =
(K, E ,D). Key space K is a finite nonempty set. Encryption algorithm E is probabilistic and maps a
pair of strings K,M to a value C� EK(M) that is either a string or the symbol ⊥ (“invalid”). We
require the existence of a setM, the message space, such that EK(M) �= ⊥ iff (K,M) ∈ K×M. We
assume thatM contains two or more strings and ifM contains a string of length m then it contains
all strings of length m. We demand that when EK(M) is a string, its length �(|M |) depends only on
|M |. Decryption function D is deterministic and maps a pair of strings K,C to a value M ← DK(C)
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that is either a string or the symbol ⊥. We require correctness: if EK(M) = C then DK(C) = M .
Algorithm D rejects ciphertext C if DK(C) = ⊥ and accepts it otherwise. Representative security
definitions for pE and pAE schemes are given in Figure 4. For pE the adversary aims to distinguish
an encryption oracle from an oracle that returns an appropriate number of random bits. For pAE
the adversary also gets a decryption oracle or an oracle that always returns ⊥.

Tidiness. In a pE or pAE scheme, what happens if the decryption algorithm DK is fed an
illegitimate ciphertext—a string C that is not the encryption of any string M under the key K?
We didn’t require D to reject, and perhaps it wouldn’t make sense to, as a party has no realistic
way to know, in general, if an alleged plaintext M for C would encrypt to it. But the situation is
different for an ivE, nE, or nAE, as the decrypting party can easily check if a candidate plaintext M
really does encrypt to a provided ciphertext C. And, in practice, this re-encryption never needs to
be done: for real-world schemes, the natural decryption algorithm rejects illegitimate ciphertexts.
Philosophically, once encryption and decryption become deterministic, one would expect them to
be inverses of one another, as with a blockcipher.

An ivE scheme is sloppy if it satisfies everything but the tidiness condition. Might a “real world”
ivE scheme be sloppy? The only case we know is when removal of padding is done wrong. Define
E IVK (M) = CBCIV

K (M10p), meaning CBC encryption over some n-bit blockcipher, with p ≥ 0 the
least number such that n divides |M10p|. Let DIV

K (C) = ⊥ if |C| is not a positive multiple of n, and,
otherwise, CBC-decrypt C to get M ′, strip away all trailing 0-bits, then strip any trailing 1-bit,
then return what remains. Then any ciphertexts that CBC-decrypts to a string of zero-bits will
give a plaintext of ε, which never encrypts to what we started from. So the method is sloppy. But
it should be considered wrong: the intermediate plaintext M ′ was supposed to end in 10p, for some
p ∈ [0..n − 1], and if it did not, then ⊥ should be returned. One is asking for trouble by silently
accepting an improperly padded string.

Compact nomenclature. We formalized encryption schemes—all kinds—as tuplesΠ = (K, E ,D).
But tidiness means we don’t need to specify decryption: given E one must have DK(IV , C) = M
if there is a (necessarily unique) M ∈ {0, 1}∗ such that EK(IV ,M) = C, and DK(IV , C) = ⊥
otherwise. (For nonce-based schemes, rename IV as N ; for nAE schemes, add in the the AD.)
While there may still be reasons for writing down a decryption algorithm (eg, to demonstrate effi-
cient computability), its not needed for well-definedness. We thus identify an ivE/nE/nAE scheme
Π = (K, E ,D) by its encryption algorithm, writing E : K × IV ×M → {0, 1}∗ for an ivE scheme,
E : K×N ×M→ {0, 1}∗ for an nE scheme, and E : K×N ×A×M→ {0, 1}∗ for an nAE scheme.
Remember, however, that the algorithm E can actually take in other strings outside the specified
domain, retiring ⊥ in such cases.

MACs. A message authentication code (MAC) is a deterministic algorithm F that takes in a
key K and a value X and outputs either an n-bit string T or the symbol ⊥. The domain of F is
the set X such that FK(X) �= ⊥ (we forbid this to depend on K). We write F : K × X → {0, 1}n
for a MAC with domain X .

It is possible to be more general, considering probabilistic or stateful MACs, but neither prim-
itive makes a suitable starting point when the goal is to create an nAE scheme. It is also possible
to be less general; in particular, allowing the domain to be more than just strings is unusual. So
is having the MAC recognize its own domain. Security of F is defined by Advprf

F (A) = Pr[AF ⇒
1]−Pr[Aρ ⇒ 1]. The game on the left selects K�K and then provides the adversary an oracle for
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AdvpE
Π (A) = Pr

[
AE(·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]
where Π = (K, E,D) is a pE scheme; K�K at the beginning of each game; E(M) returns C� EK(M); and $(M) computes
C� EK(M), returns ⊥ if C = ⊥, and otherwise returns |C| random bits.

AdvpAE
Π (A) = Pr

[
AE(·),D(·) ⇒ 1

]
− Pr

[
A$(·),⊥(·) ⇒ 1

]
where Π = (K, E,D) is a pAE scheme; K�K at the beginning of each game; E(M) returns C� EK(M) and D(C) returns
DK(M); $(M) computes C� EK(M) and returns ⊥ if C = ⊥ and |C| random bits otherwise; ⊥(M) returns ⊥; and A may
not make a decryption (=right) query C if C was returned by a prior encryption (=left) query.

AdvivE
Π (A) = Pr

[
AE(·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]
where Π = (K, E,D) is an ivE scheme; K�K at the beginning of each game; E(M) selects IV � IV and returns
IV ‖ EK(IV ,M); and $(M) selects IV � IV, computes C = EK(IV ,M), returns ⊥ if C = ⊥, and otherwise returns

∣∣IV ‖C∣∣
random bits.

AdvnE
Π (A) = Pr

[
AE(·,·) ⇒ 1

]
− Pr

[
A$(·,·) ⇒ 1

]
where Π = (K, E,D) is a nE scheme; K�K at the beginning of each game; E(N,M) returns EK(N,M); $(N,M) computes
C ← EK(N,M), returns ⊥ if C = ⊥, and otherwise returns |C| random bits; and A may not repeat the first component of
an oracle query.

AdvnAE
Π (A) = Pr

[
AE(·,·,·),D(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]
where Π = (K, E,D) is an nAE scheme; K�K at the beginning of each game; E(N,A,M) returns EK(N,A,M) and
D(N,A,C) returns DK(N,A,C); and $(N,A,M) computes C ← EK(N,A,M), returns ⊥ if C = ⊥, and |C| random bits
otherwise, and ⊥(N,A,M) returns ⊥; and A may not repeat the first component of an encryption (=left) query, nor make
a decryption (=right) query (N,A,C) after C was obtained from a prior encryption (=left) query (N,A,M).

Fig. 4. Definitions for encryption: probabilistic encryption (pE), probabilistic authenticated encryption (pAE),
iv-based encryption (ivE), nonce-based encryption (nE), and nonce-based AE (nAE). For consistency, we give ind$-
style notions throughout.

FK(·). The game on the right selects a uniformly random function ρ from X to {0, 1}n and provides
the adversary an oracle for it. With either oracle, queries outside X return ⊥. A string-input MAC
(strMAC) (the conventional setting) has domain X ⊆ {0, 1}∗. A vector-input MAC (vecMAC) has
a domain X with one or more component, and not necessarily strings.

Infectiousness of ⊥. Encryption schemes and MACs return ⊥ when applied to a point outside
their domain. To specify algorithms without having tedious checks for this, we establish the con-
vention that all functions return ⊥ if any input is ⊥. For example, if T = ⊥ then C = C ‖T is ⊥;
and if IV = ⊥ then C = EK(IV ,M) is ⊥.

3 AE from IV-Based Encryption and a Vector-Input MAC

We study a family of nAE constructions that combine an ivE encryption scheme and a MAC. The
former is assumed to provide ind$-style privacy when the IV is chosen uniformly and prepended
to the ciphertext (ivE-security). The latter comes in two varieties, a vector-input MAC (vecMAC)
and a string-input MAC (strMAC). This section assumes a vecMAC; the next section extends the
treatment to a strMAC. Using a vecMAC provides a clean starting point for situations where one
would like to authenticate a collection of typed values, like a nonce, AD, and plaintext. It is also a
convenient waypoint for getting to ivE + strMAC→ nAE.
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Candidate schemes. We define a set of candidate schemes, the A-schemes, to make an nAE
scheme out of an ivE scheme E : K × {0, 1}η ×M → {0, 1}∗, a vecMAC F iv : L × X iv → {0, 1}η,
and a vecMAC F tag : L × X tag → {0, 1}τ . Our constructions come in three types.

– Type A1 schemes. The nAE scheme E = A1.bbbbbb[E , F iv, F tag] defines EN,A
K L (M) = C ‖ T

where

IV = F iv
L (N | �, A | �, M | �) and C = EK(IV , M) and T = F tag

L (N | �, A | �, M | �).
The notation X | � means that the value is either the binary string X (the value is present)
or the distinguished symbol � (it is absent). The binary string bbbbbb ∈ {0, 1}6 specifies the
chosen inputs to F iv and F tag, with 1 for present and 0 for absent, and ordered as above. For
example, scheme A1.100111[E , F iv, F tag] sets IV = F iv

L (N,�,�) and T = F tag
L (N,A,M).

– Type A2 schemes. The nAE scheme E = A2.bbbbbb[E , F iv, F tag] defines EN,A
K L (M) = C ‖ T

where

IV = F iv
L (N | �, A | �, M | �) and C = EK(IV , M) and T = F tag

L ( N | �, A | �, C).
Notation is as above. In particular, bbbbbb remains a 6-bit string, but its final bit is fixed: it’s
always 1. (Nothing new would be included by allowing � in place of C, since that’s covered as
a type A1 scheme.)

– Type A3 schemes. The nAE scheme E = A3.bbbbbb[E , F iv, F tag] defines EN,A
K L (M) = C

where

IV = F iv
L (N | �, A | �, M | �) and T = F tag

L (N | �, A | �, M | �) and C = EK(IV ,M ‖ T ).

According to our conventions, the formulas above return EN,A
K L (M) = ⊥ if the calculation of IV , C,

or T returns ⊥. This happens when points are outside of the domain E , F iv, or F tag.
Many of the “schemes” named above are not valid schemes: while there are a total of 26+25+26 =

160 candidates, many will fail to satisfy the syntax of an nAE schemes. A candidate scheme might
be invalid for all (E , F iv, F tag), or it might be valid for some (E , F iv, F tag) but not for others. We are
only interested in candidate schemes E with parameters (E , F iv, F tag) that are compatible—ones
where the specified composition does indeed satisfy the syntax of an nAE scheme. For example,
with A1.001111 (where IV = F iv

L (�,�,M) and T = F tag
L (N,A,M)) there will never be a way to

decrypt. And even for a scheme like A1.100111 (where IV = F iv
L (N,�,�) and T = F tag

L (N,A,M)),
still we need for the domains to properly mesh. If they do not, the (non-)scheme is excluded from
study.

Type A1 and type A2 schemes are outer-tag schemes, as T falls outside of what’s encrypted
by E . Type A3 schemes are inner-tag schemes, as T lies inside the scope of what’s encrypted by E .
This distinction seems as compelling as the A1, A2, A3 distinction that corresponds to E&M, EtM,
and MtE style composition.

It is a thesis that our enumeration of A-schemes includes all natural ways to make an nAE
scheme from an ivE scheme and a vecMAC. More specifically, the schemes are designed to exhaust
all possibilities that employ one call to the ivE, two calls to the MAC, and one concatenation
involving a MAC-produced tag.

Underlying PRF. It is unintuitive why, in the context of GC, we should use a common key L
for components F iv and F tag. The choice enhances generality and uniformity of treatment: the
two MACs have the option of employing non-overlapping portions of the key L (supporting key
separation), but they are not obliged to do so (enabling a significant, additional scheme).
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Yet common keying has drawbacks. When MACs F 0
L, F

1
L are queried on disjoint sets X0,X1

the pair need not resemble random functions ρ0, ρ1. To overcome this, retaining the generality and
potential key-concision we seek, we assume that any (F iv, F tag) used to instantiate an A-scheme
E = Ai.bbbbbb[E , F iv, F tag] can be derived from an underlying PRF F : L×X → {0, 1}n by either

F iv
L (x) = FL(x)[1 .. η] and F tag

L (x) = FL(x)[1 .. τ ], or (1)

F iv
L (x) = FL(iv,x)[1 .. η] and F tag

L (x) = FL(tag,x)[1 .. τ ],

for distinct constants iv and tag, (2)

where n ≥ max{η, τ}. In words, F iv and F tag must spring from an underlying PRF F , either with
or without domain separation. The approach encompass all schemes that would arise by assuming
independent keys for F iv and F tag, plus all schemes that arise by using a singly-keyed PRF for
both of these MACs.

Summary of security results. We identify nine provably secure A-schemes, nicknamed A1–
A9. See Figure 5. When one selects an ivE-scheme E and a MAC F that induces F iv and F tag so
as to get a valid nAE scheme (which can always be done in these cases), these nine compositional
methods are secure, assuming E is ivE-secure and F is PRF secure. The concrete bounds proven
for A1–A8 are tight. The bound for A9 is inferior, due to the (somewhat curious) presence of ivE-
advantage (i.e., privacy) term appearing in the authenticity bound. Additionally, the absence of
the nonce N in the computation of F tag prohibits its generic realization (by the construction we
will give) from a conventional, string-input MAC. For these reasons we consider A1–A8 “better”
than A9 and call them favored ; A9 is termed transitional. The favored schemes are exactly those A-
schemes for which the IV depends on (at least) the nonce N , while the tag T depends on everything:
T = F tag

L (N,A,M) or T = FL(N,A,C).
Also shown in Figure 5 are three elusive schemes, A10, A11 and A12, whose status remains

open. That they provide privacy (in the nE-sense) follows from the ivE-security of the underlying
encryption scheme. But we have been unable to prove that these schemes provide authenticity
under the same assumptions used for A1–A9. Nor have we been able to construct a counterexample
to demonstrate that those assumptions do not suffice. (We have spent a considerable effort on both
possibilities.) In Section E we discuss the technical difficulties encountered. We also prove there
that A10, A11, and A12 do provide authenticity under an additional security assumption, what
we call the knowledge-of-tags assumption. We do not know if this new assumption is implied by
ivE-security.

All A-schemes other than A1–A12 are insecure, as we shall prove. We must do so in a systematic
manner, of course, there being 148 such schemes.

For-free domain-separation. It’s important to notice that for all secure and potentially secure
A-schemes except A4, the pattern of arguments fed to F iv and F tag (ie, which arguments are present
and which are absent) are distinct. In particular, the domain-of-application for these MACs are
intrinsically separated: no vector x that might be fed to one MAC could ever be fed to the other.
So, in all of these cases, there is no loss of generality to drop the domain-separation constants of
equation (2). As for A4, the only natural way to achieve validity—for plaintexts to be recoverable
from ciphertexts—is for F iv

K (x) = F tag
K (x) = FK(x). Our subsequent analysis assumes this for A4.

In short, our security analysis establishes that there is no loss of generality to assume no domain
separation, equation (1), for all secure A-schemes.
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An Scheme IV Tag Sec Comments See

A1 A1.100111 F iv
L (N,�,�) F tag

L (N,A,M) yes (Favored) Encrypt can compute C, T in parallel. A.2

A2 A1.110111 F iv
L (N,A,�) F tag

L (N,A,M) yes (Favored) Encrypt can compute C, T in parallel. A.2

A3 A1.101111 F iv
L (N,�,M) F tag

L (N,A,M) yes (Favored) Assume IV recoverable. Untruncatable. A.2

A4 A1.111111 F iv
L (N,A,M) F tag

L (N,A,M) yes (Favored) Assume F iv=F tag. Untruncatable. Nonce-reuse secure. A.3

A5 A2.100111 F iv
L (N,�,�) F tag

L (N,A,C) yes (Favored) Decrypt can validate T first, compute M , T in parallel. A.2

A6 A2.110111 F iv
L (N,A,�) F tag

L (N,A,C) yes (Favored) Decrypt can validate T first, compute M , T in parallel. A.2

A7 A3.100111 F iv
L (N,�,�) F tag

L (N,A,M) yes (Favored) Untruncatable. A.2

A8 A3.110111 F iv
L (N,A,�) F tag

L (N,A,M) yes (Favored) Untruncatable. A.2

A9 A3.110101 F iv
L (N,A,�) F tag

L (N,�,M) yes (Transitional) Weaker bound. Untruncatable. A.4

A10 A3.110011 F iv
L (N,A,�) F tag

L (�, A,M) ?? (Elusive) Security unresolved. E

A11 A3.110001 F iv
L (N,A,�) F tag

L (�,�,M) ?? (Elusive) Security unresolved. E

A12 A3.100011 F iv
L (N,�,�) F tag

L (�, A,M) ?? (Elusive) Security unresolved. E

— all others — — no Counterexamples given. C

Fig. 5. Security of A-schemes: ivE+vecMAC →nAE. The first column gives a nickname for the scheme. The
next column gives the full name. The next two columns (formally redundant) serve as a reminder for how IV and T
are determined. A “yes” in the “Sec” column means that we give a proof of security assuming ivE and PRF security
for the primitives. A “no” means that we give a counterexample to such a proof existing. A “??” means that we have
been unable to find a proof or counterexample. Comments include notes on security and efficiency. “Untruncatable”
means that the tag T cannot be truncated. The “See” column indicates the Section where a proof can be found.
Favored schemes were earlier pictured in Figure 2.

Theorems. We are now ready to state our results about the security of the A-schemes. For the
proofs of Theorems 1 and 2, see Appendices A and C, respectively. The characterization leaves a
small “hole” (schemes A10, A11, and A12); see Appendix E for discussion and results about those
three schemes. For compactness, our theorem statements are somewhat qualitative. But the proofs
give a quantitative analysis of the reductions and concrete bounds. For these details, see Figure 9.

Theorem 1 (Security of A1–A9). Fix a compositional method An ∈ {A1, . . . ,A9} and let
E : K×{0, 1}η×M→ {0, 1}∗ be an ivE-scheme. Fix integers 1 ≤ η, τ ≤ r and let F : L×X → {0, 1}r
be a vecMAC from which F iv : L × X iv → {0, 1}η and F tag : L × X tag → {0, 1}τ are derived. Let
the resulting nAE-scheme be denoted E = An[E , F iv, F tag]. Then there are blackbox reductions,
explicitly given and analyzed in the proof of this theorem, that transform an adversary breaking
the nAE-security of E into adversaries breaking the ivE-security of E , the PRF-security of F iv, and
the PRF-security of F tag. For schemes A1–A8, the reductions are tight.

Theorem 2 (Insecurity of A-schemes other than A1–A12). Fix an A-compositional method
other than A1–A12 and integers 1 ≤ η, τ ≤ r. Then there is an ivE-secure encryption scheme
E : K×{0, 1}η×M→ {0, 1}∗ and a vecMAC F iv : L×X iv → {0, 1}η and F tag : L×X tag → {0, 1}τ ,
derived from a a PRF-secure F : L×X → {0, 1}r, such that the resulting nAE-scheme is completely
insecure. The claim holds under standard, scheme-dependent cryptographic assumptions stated in
the proof.

Elusive schemes. It may seem surprising that the security status of schemes A10, A11, and
A12 remains open. Indeed we initially thought that these schemes would admit (more-or-less)
straightforward proofs or counterexamples, like other GC schemes. Let us give some intuition for
some difficulties encountered.
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Notice that in A10–A12, unlike A1–A9, the nonce is not an input to both F iv and F tag. For
privacy, this causes no problems. But suppose an authenticity-attacking A11-adversary makes en-
cryption queries (N1, A1,M1) and (N2, A2,M2), where M1 �= M2, and then prepares a ciphertext
query (N,A,C) with the following properties. First, (N,A) = (N1, A1), which implies that the IV
used for decrypting C is IV 1 = F iv

L (N1, A1). Second, C decrypts to M2 ‖T2, where T2 = F tag
L (M2).

For a tidy ivE-scheme E , this means that C = EK(IV 1,M2 ‖T2). Since both IV i and Tj were
already computed, one cannot appeal to the PRF-security of F iv or F tag. Moreover, assuming
that E is a secure ivE-scheme lets us conclude nothing about the (computational) randomness of
EK(IV 1,M2 ‖T2) after having observed C1 = EK(IV 1,M1 ‖T1). Intuitively, it should be hard for
an adversary to create such an (N,A,C), in particular since the tags T1 and T2 should be hidden.
Yet it is not at all obvious how to argue this case away. Similar situations can arise in A10 and
A12.

Instead, one might try to create a counterexample, exploiting the characteristics of the vexing
case above. (If sloppy E were allowed this would be easy.) But since IVs and tags should be random,
any “useful” weaknesses built into E would likely need to be triggered by most IVs or tags. This
would likely render E insecure, and useless as a counterexample. One might try to lightly modify
F iv and F tag so that they enable E to selectively trigger weaknesses, thereby retaining ivE-security.
But any reliable test that E could run on IV , T would likely result in an attack that breaks the
PRF-security of F iv or F tag.

In Section E we give security proofs for A10, A11, and A12 by leveraging a new knowledge-of-tags
assumption.

4 AE from IV-Based Encryption and a String-Input MAC

We turn our attention to achieving nAE from an ivE scheme and a conventional, string-input MAC.
In place of our vector-input MAC we will call a string-input MAC multiple times, xoring the results.

There are two basic approaches to this enterprise. The first is to mimic the process already
carried out in Section 3. One begins by identifying all candidate “B-schemes” de novo: methods
that combine one call to an ivE scheme and three calls to a MAC algorithm, one for each of N , A,
and either M or C = EK(IV ,M). The generated ciphertext is either C ‖T (outer-MAC schemes)
or C = EK(IV ,M ‖T ) (inner-MAC schemes), where T is the xor of computed MAC values. Each
MAC is computed using a different key, one of L1, L2, or L3. For each candidate scheme, one seeks
either a proof of security (under the ivE and PRF assumptions) or a counter-example. Carrying
out this treatment leads to a taxonomy paralleling that discovered for A-schemes.

A second approach is to leverage our ivE + vecMAC results, instantiating the secure schemes
using a strMAC. On the downside, this does not give rise to a secure/insecure classification of all
schemes cut from a common cloth. On the upside, it is simpler, and with it we identify a set of
schemes desirable for a high-level reason: an abstraction boundary that lets us cleanly understand
why security holds. Namely, it holds because the subject scheme is an instantiation of a scheme
already known to be secure.

In the rest of this section, we follow the second approach, identifying nine secure ivE+strMAC→
nAE schemes corresponding to A1–A9 (eight of them preferred, owing to the better bound). Scheme
A10, by nature of its structure, does not admit the same generic strMAC instantiation that suffices
for A1–A9. We drop it from consideration.
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From strMAC to vecMAC. We recall that schemes A1–A9 can be regarded as depending on an
ivE scheme E and a vecMAC F : L× (N × (A∪{�})× (M∪{�}))→ {0, 1}r from which functions
F iv and F tag are defined. Here, we give a method to transform a strMAC f : L×X → {0, 1}r into
a vecMAC F : L3 × (X × (X ∪ {�})× (X ∪ {�}))→ {0, 1}r, in order to instantiate A1–A9. We do
this via the three-xor construction, defined by

FL1,L2,L3(N,A,M) = f ′L1(N)⊕ f ′L2(A)⊕ f ′L3(M) where f ′L(X) =

{
fL(X) if X ∈ {0, 1}∗, and
0n if X = �

(3)

We write the construction F = XOR3[f ]. Now the three-xor construction certainly does not work,
in general, to transform a PRF with domain X to one with domain X×(X∪{�})×(X∪{�}); for ex-
ample, an adversary that obtains, by queries, Y0 = FL1,L2,L3(N,�,�) and Y1 = FL1,L2,L3(N,�,M)
and Y2 = FL1,L2,L3(N,A,�) and Y3 = FL1,L2,L3(N,A,M) can trivially distinguish if F is given by
the xor-construction or is uniform: in the former case, Y3 = Y0 ⊕ Y1 ⊕ Y2. All the same, that the
xor construction works well in the context of realizing any of schemes A1–A9.

For k ≥ 1 a number, define a sequence of queries (N1, · · · ), . . . , (Nq, · · · ) as at-most-k-repeating
if no value N occurs as a first query coordinate more than k times. An adversary at-most-k-repeats
if the sequence of queries it asks is at-most-k-repeating, regardless of query responses.

Our observation is that, if f is a good PRF, then XOR3[f ] is a good PRF when restricted to
at-most-2-repeats adversaries. We omit the proof.

Lemma 1 (XOR3 construction). Fix r ≥ 1, let f : L × X → {0, 1}r, and let F = XOR3[f ].
There is an explicitly given blackbox reduction B with the following property: for any at-most-2-
repeats adversary AF there is an adversary Af = B(AF ) such that Advprf

f (Af ) ≥ Advprf
F (AF ).

Adversary Af makes at most three times the number of queries as AF , the total length μ of those
queries is unchanged, and the running time of Af is essentially unchanged as well.

To apply Lemma 1 we use the characterization of nAE security that allows the adversary only a
single decryption query [21]. This notion is equivalent to our nAE notion of security (which gives
the adversary an arbitrary number of decryption queries) apart from a multiplicative degradation
in the security bound by a factor of qd, the number of decryption queries. But for the 1-decryption
game, the sequence of adversarial queries is at-most-2-repeating (no repetitions among encryption
queries; then a single nonce-repetition for the decryption query). As a result, there is no significant
loss in using XOR3[f ] to instantiate a vecMAC F

We conclude that the underlying MAC F of all favored A-scheme, and also A9, can be realized
by the XOR3 construction. There is a quantitative loss of qd, which is due to the “weaker” definition
for nAE security; we have not determined if this loss is artifactual or necessary. In Figure 3 we draw
the eight B schemes obtained by applying the XOR3 construction to the corresponding A-schemes.
Methods B1 and B4 essentially coincide with EAX and SIV [6, 21], neither of which was viewed as
an instance of a framework like that described here.

Collapsing the PRF keys. For simplicity, we defined the XOR3 construction as using three
different keys. But of course we can realize fL1, fL2, fL3 by, for example, fL1(X) = fL(c1 ‖X),
fL2(X) = fL(c2 ‖X), and fL3(X) = fL(c3 ‖X), for distinct, equal-length constants c1, c2, c3.
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Fig. 6. Three correct N-schemes (left) and an elusive one (right). The methods achieve nE+vecMAC→ nAE
conversion. Application of the XOR3 construction to N1, N2, and N3 will result in three corresponding schemes
that achieve nE + strMAC → nAE conversion. A second application of the XOR3 construction will recover the
ivE + strMAC→ nAE constructions B1, B5, and B7.

5 AE from Nonce-Based Encryption and a MAC

We study nAE constructions obtained by generically combining an nE encryption scheme and a
MAC. The problem was previously investigated Rogaway [19]. (We compare our results at the end
of this section.) The nE scheme from which we start is assumed to provide ind$-style privacy when
the nonce is never repeated (nE-security), while the MAC can be either a strMAC or a vecMAC.
We focus on the latter, as the XOR3 construction can again be used to convert to to a secure
nE + strMAC scheme. Our treatment follows, but abbreviates, that of Section 3, as the current
setting is substantially simpler.

Candidate schemes. We define schemes, the N-schemes, to make an nAE scheme from an nE
scheme E : K×{0, 1}η×M→ {0, 1}∗ and a vecMAC F : L×X → {0, 1}τ . Our constructions come
in three types.

– Type N1 schemes. The nAE scheme E = N1.bbb[E , F ] defines EN,A
K L (M) = C ‖ T where

C = EK(N, M) and T = FL(N | �, A | �, M | �).
– Type N2 schemes. The nAE scheme E = N2.bbb[E , F ] defines EN,A

K L (M) = C ‖ T where

C = EK(N, M) and T = FL( N | �, A | �, C).

We again take bbb ∈ {0, 1}3, but the third bit must be one.

– Type N3 schemes. The nAE scheme E = N3.bbb[E , F ] defines EN,A
K L (M) = C where

T = FL(N | �, A | �, M | �) and C = EK(N,M ‖ T ).

As before, the formulas return EN,A
K L (M) = ⊥ if the calculation of C or T returns ⊥.

There are a total of 23 +22 +23 = 20 candidate schemes, but many fail to satisfy the syntax of
an nAE scheme. We are only interested in candidate methods that are valid nAE schemes.

Security results. We identify three provably secure schemes, nicknamed N1, N2, and N3. See
Figure 6 and 7. The methods are secure when E is nE-secure and F is PRF-secure. For all three
schemes, the concrete bounds are tight. Also shown in Figure 5 is a scheme N4 whose status remains
open. Similar to the elusive A-schemes, N4 provides privacy (in the nE-sense), as follows from the
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Nn Scheme Tag Secure? Comments See §
N1 N1.111 FL(N,A,M) yes (Favored) Encrypt can compute C, T in parallel B

N2 N2.111 FL(N,A,M) yes (Favored) Decrypt can validate T first, compute M , T in parallel B

N3 N3.111 FL(N,A,M) yes (Favored) Untruncatable. B

N4 N3.011 FL(�, A,M) ?? (Elusive) Security unresolved. Tag untruncatable. —

— all others — no Counterexamples given. D

Fig. 7. Security of N-schemes: nE+vecMAC →nAE.

nE-security of the underlying encryption scheme. But we have been unable to prove that N4 provides
authenticity (under the same assumptions used for N1–N3); nor have we been able to construct a
counterexample to demonstrate that the nE and PRF assumptions do not suffice. The technical
difficulties are similar to those encountered in the attempts to deal with A11 and A12. As for
N-schemes other than N1–N4, all 16 are insecure; we exhibit attacks in [18].

Theorems. We now state our results about the security of the N-schemes. For proofs, see Appen-
dices B and D. The combination leaves a small “hole,” which is scheme N4. For compactness, our
theorem statements are again somewhat qualitative. But the proofs (Appendices B and D) are not.
They provide explicit reductions and quantitative analyses. For concrete bounds, see Figure 9.

Theorem 3 (Security of N1–N3). Fix a compositional method Nn ∈ {N1,N2,N3} and integer
τ ≥ 1. Fix an nE-scheme E : K × {0, 1}η ×M → {0, 1}∗ and a vecMAC F : L × X → {0, 1}τ that
results in a valid nAE scheme E = Nn[E , F ]. Then there are blackbox reductions, explicitly given
and analyzed in the proof of this theorem, that transform an adversary breaking the nAE-security
of E to adversaries breaking the nE-security of E and the PRF-security of F . The reductions are
tight.

A claim that N2 and N3 correctly accomplish nE + vecMAC → nAE conversion appears in
earlier work by Rogaway [19, 20]. As pointed out by Bellare and Tackmann [7], the claim there
was wrong for N3, as Rogaway’s definitions had permitted sloppy schemes. This would make a
counterexample for N3 (and also for N1) straightforward.

6 The ISO-Standard for Generic Composition

In this section we consider the Encrypt-then-MAC (EtM) mechanism of the ISO 19772 standard [15,
Section 10]. We explore what went wrong, and why.

The problem. The EtM method of ISO 19772 (mechanism 5; henceforth isoEtM) combines a
conventional encryption mode E and a MAC f .4For the former the standard allows CBC, CFB,
OFB, or CTR—any ISO 10116 [14] scheme except ECB. For the MAC, f , the standard permits
any of the algorithms of ISO 9797 [16]. These are variants of the CBC MAC. The latest edition of
the standard names six CBC MAC variants, but the actual number is greater, as there are multiple
possibilities for padding and key-separation.

The standard describes isoEtM encryption in just nine lines of text. After choosing an appro-
priate “starting variable” (SV) S for encryption mode E , we’re told to encrypt plaintext D to

4 This section mostly follows naming conventions of the ISO standard, rather than the names used elsewhere in this
paper.
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Fig. 8. Possible provenance of the ISO 19772 error. Left : The EtM method of BN, employing a probabilistic
encryption algorithm E and a MAC f . The final ciphertext is C = C ‖T . Middle: A correct instantiation of EtM
using an IV-based encryption scheme. With each encryption a random S is generated and embedded in C. The final
ciphertext is C = C ‖T . Right : Mechanism 5 of ISO 19772. We can consider the final ciphertext as C = S ‖C ‖T , but
the string S is never MACed.

ciphertext C =C ′ ‖T by setting C ′ = EK1(D) and T = fK2(C
′). In describing what “appropriate”

means for S, the standard asserts that [t]his variable shall be distinct for every message to be pro-
tected during the lifetime of a key, and must be made available to the recipient of the message [15,
p. 14]. It continues: Further possible requirements for S are described in the appropriate clauses
of ISO 10116. The document levies no requirements on SV, but an annex says that a randomly
chosen statistically unique SV is recommended [14, Annex B].

We aren’t certain what this last phrase means, but suppose it to urge the use of uniformly
random bits. But that possibility runs contrary to the requirement that SV not repeat. One is left
to wonder if the SV is a nonce, a random value, or something else. But even if one insists that
SV be uniformly random, still we have the biggest problem: ISO 10116 makes clear that the SV
it is not a part of the ciphertext C ′ one gets from applying the encryption mode E . The SV is
separate from the ciphertext, communicated out-of-band. The result is that isoEtM never provides
authenticity for SV, which leads to trivial attacks. See Figure 8. For example, let the adversary
ask for the encryption of any message, obtaining a ciphertext C = C ′ ‖T and its associated SV S.
Then a valid forgery is C itself, along with any SV S′ other than S. Attacks like this break not
only the AE property, but also weaker aims, like nonmalleability.

There are further problems with isoEtM. The standard asserts that To prevent information
leakage an integrity-protected secret SV is recommended. The intent is baffling, as though the
specified encryption modes are not self-contained primitives, but part of a larger cryptographic
process. The AE scheme of the standard could potentially be such an enclosing process, but its SV
is not integrity or privacy protected.

The correspondingly terse isoEtM decryption process partitions the ciphertext C into C ′ and T ,
outputs INVALID if T �= fK2(C

′), and outputs δK1(C) otherwise, with δ the underlying mode’s
decryption algorithm. No mention is made of the SV. It is unclear what happens if δK1(C) results
in an error, a possibility implicit from the fact that padding is anticipated with ISO 10772 schemes
yet considered considered out-of-scope.

Overall, it is unclear if isoEtM aims to provide pAE, nAE (without AD), or something else.
But the omission of the SV from the scope of the MAC renders the method incorrect no matter



16 Namprempre, Rogaway, and Shrimpton

what. There is no clear message space for the scheme, as padding is implicit and out of scope. It is
unclear what one is supposed to do, on decryption, when padding problems arise. As for the MACs
themselves, some ISO 9797 schemes are insecure when message lengths vary, a problem inherited
by the enclosing AE scheme. There is no support for AD.

Diagnosis. ISO 19772 standardized five additional AE schemes, and we notice no problems with
any of them. (A minor bug in the definition of GCM was pointed out by others, and is currently
being corrected[17].) Why did the committee have bigger problems with (the conceptually simpler)
GC?

When Bellare and Namprempre formalized Encrypt-then-MAC they assumed probabilistic en-
cryption as the starting point. This is what any theory-trained cryptographer would have done at
that time. But pE has remained a theorists’ conceptualization: it is not an abstraction boundary
widely understood by practitioners, realized by standards, embodied in APIs, or explained in popu-
lar books. Using this starting point within a standard is unlike building a scheme from a blockcipher,
a primitive that is widely understood by practitioners, realized by standards, embodied in APIs,
and explained in popular books. Given the difference between pE and actual, standardized encryp-
tion schemes, and given GC’s sensitivity to definitional and algorithmic adjustments, it seems, in
retrospect, a setting for which people are likely to err.
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A Proofs of Security for A-Schemes

A.1 Proof Preliminaries

Resource conventions. Let G be an algorithm, possibly randomized and oracle-querying. An
adversary A is an example that is both randomized and oracle-querying. Let tG(�) be the maximum
amount of time to compute G on any sequence of inputs X1, X2, . . . , Xq of total bitlength at most �.
We write tG for an overall maximum. If G makes blackbox calls to an algorithm O, the time to
compute O is charged to G.

When an algorithm makes an oracle query, we define the length of the query to be the sum of
the bitlength of the query itself and the bitlength of the oracle response. The bitlength of tuples
and non-string symbols is relative to some fixed, implicit encoding.

For the pE, ivE, nE and PRF-security notions notions we count the number of queries q made
by the adversary A to its single oracle, these having a total length of μ. For the pAE and nAE
notions we count the number of queries qe make by A to its encryption oracle, and the number of
queries qd to its decryption oracle. The total length of these queries are μe and μd.

Auth security. Let E be an nAE scheme and A an adversary. We define the auth-advantage
of A attacking E as Advauth

E (A) = Pr
[
K�K : AEK ,D∗

K gets its second oracle to return 1
]
. Here,

on input (N,A,M), oracle EK returns EK(N,A,M); while, on input (N,A,C), oracle D∗K(N,A,C)
returns 1 if D(K,N,A,C) �= ⊥, and 0 otherwise. The advantage measure Advauth1

E (A) is the same,
with the restriction that A makes a single decryption query (without loss of generality, its final
query).

We make frequent use of the following lemma. Informally, it says that analyzing the security
of an nAE scheme with respect to adversaries asking a single decryption query suffices to conclude
security against adversaries asking multiple queries. The proof is a straightforward hybrid argument
(over the decryption queries), so we omit it.
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Scheme E AdvnAE
E (A) ≤ Advprf

F (B(A)) +AdvivE
E (D1(A)) + . . . D2 Resources

A1–A3, A5–A8 qd/2
τ —

A4 qd/2
n —

A9 qd
(
AdvivE

E (D2(A)) + 2/2τ
) t′ ≤ tA + tE(2μe) + c(μ + nqe),

q′ = qe + 1, μ′ < 2μe

N1–N3 qd/2
τ —

Fig. 9. Summary of concrete bounds for A1–A9, and N1–N3. For A1–A9, each nAE-scheme E is a composition of ivE-
scheme E and vecMAC F (from which F iv and F tag are derived). For N1–N3, each nAE-scheme E is a composition of
nE-scheme E and vecMAC F (from which F iv and F tag are derived). Reductions B and D1 are described in Lemma 3
(for A1–A9) and Lemma 4 (for N1–N3); these are common to the bounds of all schemes. The middle column gives
the additional terms that are unique to the indicated schemes, and the final column gives the resources used by
additional reductions. Resources are always with respect to the tA, qe, qd, μe, μd associated to A. The value c is a
constant implicit in proofs.

Lemma 2. Let E be an nAE scheme. Let A be an adversary (for attacking E), asking qe queries
to its encryption oracle of total length μe, and qd queries to its decryption oracle of total length
μd. Let tA be the running time of A given these queries. Then there is an (explicitly known)
blackbox reduction B such that Advauth

Π (A) ≤ qd ·Advauth1
Π (B) . Reduction B has time complexity

tA+ tE(μe)+ c(μd) for a constant c; it asks at most qe queries to its encryption oracle, these having
total length μe, and makes one query to its decryption oracle, having total length at most μd.

The proofs for A1–A9 all share a common opening, which we capture in the following lemma. It
allows us to move directly to the most interesting portions of those proofs.

Lemma 3. Fix a compositional method An ∈ {A1, . . . ,A9}, and let E : K×{0, 1}η×M→ {0, 1}∗
be an ivE-scheme. Fix integers 0 < η, τ ≤ r, and let F : L × X → {0, 1}r be a vecMAC. From F ,
derive F iv : L × X iv → {0, 1}η and F tag : L × X tag → {0, 1}τ according to our conventions, so that
the resulting nAE-scheme E = An[E , F iv, F tag] is syntactically valid. Let A be an nAE-adversary
for E . Then there are blackbox reductions B and D1, explicitly given and analyzed in the proof of
this theorem, such that

AdvnAE
E (A) ≤ Advprf

F (B(A)) +Advauth
Ẽ (A) +AdvivE

E (D1(A))

where Ẽ is shorthand for the composition An[E , ρiv, ρtag] using random functions ρiv and ρtag in
place of F iv and F tag (respectively). Say A asks qe queries to its encryption oracle, and qd queries
to its decryption oracle, with q = qe + qd. The encryption queries have total length μe, and the
decryption queries have total length μd, with μ = μe+μd. Let tA be the running time of A, given this
total number and length of queries. Then reduction B has running time at most tA+2tF (μ)+tE(μ),
asks at most 2(qe+ qd) queries to its oracle, with total length at most μ. Reduction D1 has running
time tA + tF (μ) + tE(μe), asks at most qe queries to its oracle, with total length at most μe.

Proof. Applying standard techniques, we expand AdvnAE
E (A) as follows.

AdvnAE
E (A) ≤ Pr

[
AE[E,F iv,F tag],D[E,F iv,F tag] ⇒ 1

]
− Pr

[
AE[E,ρiv,ρtag],D[E,ρiv,ρtag] ⇒ 1

]
(4)

+Pr
[
AE[E,ρiv,ρtag],D[E,ρiv,ρtag] ⇒ 1

]
− Pr

[
A$E,⊥ ⇒ 1

]

≤Advprf
F (B(A)) +AdvnAE

Ẽ (A)
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where the probabilities are over the implicit sampling of keys K,L or random functions ρiv, ρtag.
When the compositional method is A4, ρiv = ρtag. For compactness, $E is the random bits oracle
for the nAE-advantage over E . (This is to distinguish it from the random-bits oracle $ for the ivE-

advantage over E .) The difference of probabilities in line (4) is bounded by Advprf
F (B(A)), where

B runs A and responds to its oracle queries as follows. When A asks encryption query (N,A,M),
B calls its oracle once with the inputs needed to create IV , and a second time (if necessary) with
the inputs needed to create a tag T . It then computes C ← EK(IV,M ‖T ) or C ← EK(IV,M) ‖T
as appropriate for the composition, and returns C to A. When A asks decryption query (N,A,C),
B similarly simulates D, using its oracle to produce the needed IV and to check the validity of the
tag.

We now bound AdvnAE
Ẽ (A). To this end, we continue our expansion

AdvnAE
Ẽ (A) = Pr

[
AE[E,ρiv,ρtag],D[E,ρiv,ρtag] ⇒ 1

]
− Pr

[
AE[E,ρiv,ρtag],⊥ ⇒ 1

]

+Pr
[
AE[E,ρiv,ρtag],⊥ ⇒ 1

]
− Pr

[
AE[$,ρiv,ρtag],⊥ ⇒ 1

]

+Pr
[
AE[$,ρiv,ρtag],⊥ ⇒ 1

]
− Pr

[
A$E,⊥ ⇒ 1

]

≤ Pr
[
AE[E,ρiv,ρtag],D[E,ρiv,ρtag] ⇒ 1

]
− Pr

[
AE[E,ρiv,ρtag],⊥ ⇒ 1

]
+AdvivE

E (D1(A))

where Pr
[
AE[$,ρiv,ρtag],⊥ ⇒ 1

]
−Pr

[
A$E,⊥ ⇒ 1

]
= 0 for any A. For compositional methods A1-A3

and A5-A9, the reduction D1 runs A and response to oracle queries as follows. When A makes
encryption query (N,A,M), D1 creates tag T by simulating ρtag locally (via lazy sampling), using
the appropriate input for the composition. It then calls its own oracle, on M or M ‖T (as appro-
priate), to simulate the remainder of E . We note that since the nonce N is always part of the input
to ρiv, the uniformly random IVs returned by either the EK- or $-oracles suffices to simulate ρiv.
When A asks a decryption query, D1 simply returns ⊥.

For compositional method A4, the reduction D1 behaves similarly, except that it uses the
oracle-returned IVs as both IV and T .

Finally, we claim that Pr
[
AE[E,ρiv,ρtag],D[E,ρiv,ρtag] ⇒ 1

]
−Pr

[
AE[E,ρiv,ρtag],⊥ ⇒ 1

]
≤ Advauth

Ẽ (A).
To see this, note that the encryption oracles in the probabilities on the left side of claimed expres-
sion is identical to the one provided by the experiment defining Advauth

Ẽ (·). Moreover, the difference
on the left side is 0 unless A makes a decryption query (N,A,C) that would cause D[E , ρiv, ρtag]
to return something other than the symbol ⊥. But this is exactly the event that would cause the
decryption oracle D∗[E , ρiv, ρtag] to return 1 in the Auth-experiment. Since we can assume without
loss that A halts with its output immediately upon receiving something other than ⊥ from its
decryption oracle, the claim is proved. The proof of the lemma follows. ��

A.2 Proof of Security for A1, A2, A3, A5, A6, A7, A8

In light of Lemma 3, we concern ourselves with bounding Advauth
Ẽ (A). We can assume without loss

that A asks a single decryption query, this being its final query before terminating its execution.
By Lemma 2 we have Advauth

Ẽ (A) ≤ qd ·Advauth1
Ẽ (A), with a mild abuse of notation. We will refer

to the single decryption query made by A as the forgery attempt.
Let the encryption queries of A be (Ni, Ai,Mi), and Ci the corresponding ciphertexts, for each

i ∈ [qe], and let Ci be the corresponding ciphertexts. For each of these queries, let Vi ∈ X iv be
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the input to F iv. Let (N∗, A∗, C∗) be the forgery attempt, and let V ∗ ∈ X iv be defined as were
the Vi, so we can define IV ∗ = ρiv(V

∗) as the IV associated to the forgery attempt. We break the
remainder of our analysis into two pieces, first considering A1–A6, and then A7–A8.

Schemes A1–A3, A5–A6. For these parse C∗ = Y ∗ ‖T ∗, where |T ∗| = τ , and define define M∗

to be the unique string such that Y ∗ = EK(IV ∗,M∗). (Here, we have used the tidiness of E to
equate decryption of Y ∗ with the encryption of M∗.) To bound Advauth1

Ẽ (A) there are two cases
to consider.

Case 1 : For A1–A3, assume (N∗, A∗,M∗) �= (Ni, Ai,Mi) for any i ∈ [qe]. Then the forgery attempt
is valid with probability at most 1/2τ because ρtag(N

∗, A∗,M∗) is uniformly random.
Likewise for A5–A6, assume (N∗, A∗, C∗) �= (Ni, Ai, Ci) for any i ∈ [qe]. Then the forgery

attempt is valid with probability at most 1/2τ because ρtag(N
∗, A∗, C∗) is uniformly random.

Case 2 : For A1–A3, assume that (N∗, A∗,M∗) = (Nj , Aj ,Mj) for some particular j ∈ [qe]. (There
can be only one such j, since Nj is distinct.) Note that this implies T ∗ = Tj , too. Moreover, we
claim that V ∗ �= Vj . To see this, assume that V ∗ = Vj , and notice that this implies IV∗ = ρiv(Vj) =
IV j . Thus the forgery attempt is valid iff C∗ = E(IVj ,Mj) ‖Tj = Cj ; but then (N∗, A∗, C∗) =
(Nj , Aj , Cj) is not an allowed forgery attempt. So it must be that V ∗ �= Vj . But this is impossible,
since the assumption of the case is that (N∗, A∗,M∗) = (Nj , Aj ,Mj), and this implies that V ∗ = Vj .
So this case never results in a valid forgery attempt for A1–A4.

For A5–A6 there is nothing to consider in this case, since (N∗, A∗, C∗) = (Nj , Aj , Cj) for some
j ∈ [qe] would be a disallowed forgery attempt.

Thus, for A1–A3 and A5–A6 we can conclude that Advauth1
Ẽ (A) ≤ 1/2τ .

Schemes A7–A8. Define M∗ ‖T ∗ to be the unique string such that C∗ = EK(IV ∗,M∗ ‖T ∗), where
|T ∗| = τ . Again, to bound Advauth1

Ẽ (A) there are two cases to consider.

Case 1 : Assume (N∗, A∗,M∗) �= (Ni, Ai,Mi) for any i ∈ [qe]. Then the forgery attempt is valid
with probability at most 1/2τ because ρtag(N

∗, A∗,M∗) is uniformly random.

Case 2 : Assume (N∗, A∗,M∗) = (Nj , Aj ,Mj) for some particular i ∈ [qe], with T ∗ = Tj as a con-
sequence. It must be that V ∗ �= Vj , since otherwise IV ∗ = IV j and C∗ = EK(IV j ,Mj ‖Tj) = Cj ,
and this would result in (N∗, A∗, C∗) = (Nj , Aj , Cj) being a disallowed forgery attempt. But the
assumption of the case makes V ∗ �= Vj is impossible. So this case never results in a valid forgery
attempt.

Thus, for A7–A8 we can also conclude that Advauth1
Ẽ (A) ≤ 1/2τ .

Pulling everything together and employing Lemma 3, we have AdvnAE
Ẽ (A) ≤ Advprf

F (B(A)) +

AdvivE
E (D(A)) + qd/2

τ .

A.3 Proof of Security for A4

In light of Lemma 3, we concern ourselves with bounding Advauth
Ẽ (A). We can assume without loss

that A asks a single decryption query, this being its final query before terminating its execution.
By Lemma 2 we have Advauth

Ẽ (A) ≤ qd ·Advauth1
Ẽ (A), with a mild abuse of notation. We will refer

to the single decryption query made by A as the forgery attempt.
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Let the encryption queries of A be (Ni, Ai,Mi), and Ci the corresponding ciphertexts, for each
i ∈ [qe], and let Ci be the corresponding ciphertexts. Let (N∗, A∗, C∗) be the forgery attempt, and
define IV ∗ = ρ(N∗, A∗,M∗) as the IV associated to the forgery attempt. Parse C∗ = Y ∗ ‖T ∗,
where |T ∗| = n, and define define M∗ to be the unique string such that Y ∗ = EK(IV ∗,M∗). (Here,
we have used the tidiness of E to equate decryption of Y ∗ with the encryption of M∗.) To bound
Advauth1

Ẽ (A) there are two cases to consider.

Case 1 : Assume (N∗, A∗,M∗) �= (Ni, Ai,Mi) for any i ∈ [qe]. Then the forgery attempt is valid
with probability at most 1/2n because ρ(N∗, A∗,M∗) is uniformly random.

Case 2 : Assume that (N∗, A∗,M∗) = (Nj , Aj ,Mj) for some particular j ∈ [qe]. (There can be only
one such j, since Nj is distinct.) Note that this implies T ∗ = Tj , and IV ∗ = IV j . But then it must
be that C∗ = Cj , in which case (N∗, A∗, C∗) = (Nj , Aj , Cj) is not a valid forgery attempt. So this
case never results in a valid forgery attempt.

Thus, for A4 we can conclude that Advauth1
Ẽ (A) ≤ 1/2n.

Pulling everything together and employing Lemma 3, we have AdvnAE
Ẽ (A) ≤ Advprf

F (B(A)) +

AdvivE
E (D(A)) + qd/2

n.

A.4 Proof of Security for A9

In light of Lemma 3, we concern ourselves with bounding Advauth
Ẽ (A). We can assume without loss

that A asks a single decryption query, this being its final query before terminating its execution.
By Lemma 2 we have Advauth

Ẽ (A) ≤ qd ·Advauth1
Ẽ (A), with a mild abuse of notation. We will refer

to the single decryption query made by A as the forgery attempt. Let the encryption queries of A
be (Ni, Ai,Mi) with i ∈ [qe]. Let (N

∗, A∗, C∗) be the forgery attempt, denote by IV ∗ = ρiv(N
∗, A∗)

be the associated IV, and let M∗ ‖T ∗ be the unique string such that C∗ = EK(IV ∗,M∗ ‖T ∗),
where |T ∗| = τ . (Here we have used the tidiness of E to equate decryption of C∗ with encryption
of M∗ ‖T ∗). To bound Advauth1

Ẽ (A) there are two cases to consider.

Case 1: (N∗,M∗) �= (Ni,Mi) for any i ∈ [qe]. Then the forgery attempt is valid with probability at
most 1/2τ because ρtag(N

∗,M∗) is uniformly random.

Case 2: (N∗,M∗) = (Nj ,Mj) for some j ∈ [qe]. In this case, it must be that T ∗ = Tj , and we observe
that N∗ tells us exactly what is the index j. We claim that it must be that A∗ �= Aj . For if A

∗ = Aj ,
then IV ∗ = ρiv(Nj , Aj) = IV j , and the forgery attempt is valid iff C∗ = E(IV j ,Mj ‖Tj) = Cj . But
then (N∗, A∗, C∗) = (Nj , Aj , Cj) which is disallowed.

Now, A∗ �= Aj implies that IV ∗ = ρiv(Nj , A
∗) is uniformly random. Moreover, the forgery

attempt is valid iff C∗ = E(IV ∗,Mj ‖Tj) for a random IV. Let DEnc
2 (A) be an ivE-adversary

(for E) that operates as follows. When A makes query (Ni, Ai,Mi), adversary D2(A) computes
Ti = ρtag(Nj ,Mj) via lazy sampling, and queries Enc(Mi ‖Ti). This returns IV i ‖Ci, and D2(A)
returns Ci to A. Adversary D2(A) stores (Ni, Ai,Mi, Ti, Ci) for later use. When A halts with its
forgery attempt (N∗, A∗, C∗), adversaryD2(A) finds theNj = N∗ and then (re)queries Enc(Mj ‖Tj).
This returns IV ∗ ‖C and D2(A) outputs 1 iff C∗ = C.

When Enc(X) = IV ‖ E IVK (X), we see that the simulation of Ẽ = E [E , ρiv, ρtag] is correct because
the Ni are all distinct (by assumption), meaning that the random IVs sampled by Enc faithfully

implement random function ρiv. Thus Pr
[
DE2 (A)⇒ 1

]
≥ Pr

[
AẼ forges

]
.
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On the other hand, when Enc(X) = IV ‖ $(X), we have Pr
[
D$

2(A)⇒ 1
]
≤ 1/2τ . To see this,

note that the ciphertext C is a random bit string of length at least τ bits (as are all of the Ci

observed by A). Thus, AdvivE
E (D2(A)) ≥ Pr

[
AẼ forges

]
− 1/2τ in this case.

As Case 1 and 2 are mutually exclusive and exhaustive, we haveAdvauth1
Ẽ (A) ≤ AdvivE

E (D2(A))+

2/2τ . Pulling everything together and employing Lemma 3, we haveAdvnAE
Ẽ (A) ≤ Advprf

F (B(A))+

AdvivE
E (D1(A)) + qd

(
AdvivE

E (D2(A)) + 2/2τ
)
.

B Proofs of Security for N-Schemes

B.1 Proof Preliminiaries for the proofs for N-Schemes

The proofs for N1–N3 all share a common opening in a similar manner as A1–A10. We capture this
commonality in the following lemma.

Lemma 4. Fix a compositional method Nn ∈ {N1,N2,N3}, and let E : K×{0, 1}η×M→ {0, 1}∗
be an nE-scheme. Fix integers 0 < η, τ ≤ r, and let F : L × X → {0, 1}r be a vecMAC. From F ,
derive F tag : L × X tag → {0, 1}τ according to our conventions, so that the resulting nAE-scheme
E = Nn[E , F tag] is syntactically valid. Let A be an nAE-adversary for E . Then there are blackbox
reductions B and D1, explicitly given and analyzed in the proof of this theorem, such that

AdvnAE
E (A) ≤ Advprf

F (B(A)) +Advauth
Ẽ (A) +AdvnE

E (D1(A))

where Ẽ is shorthand for the composition Nn[E , ρtag] using random function ρtag in place of F tag.
SayA asks qe queries to its encryption oracle, and qd queries to its decryption oracle, with q = qe+qd.
The encryption queries have total length μe, and the decryption queries have total length μd, with
μ = μe + μd. Let tA be the running time of A, given this total number and length of queries. Then
reduction B has running time at most tA + 2tF (μ) + tE(μ), asks at most 2(qe + qd) queries to its
oracle, with total length at most μ. Reduction D1 has running time tA + tF (μ) + tE(μe), asks at
most qe queries to its oracle, with total length at most μe.

Proof. Applying standard techniques, we expand AdvnAE
E (A) as follows.

AdvnAE
E (A) ≤ Pr

[
AE[E,F tag],D[E,F tag] ⇒ 1

]
− Pr

[
AE[E,ρtag],D[E,ρtag] ⇒ 1

]
(5)

+Pr
[
AE[E,ρtag],D[E,ρtag] ⇒ 1

]
− Pr

[
A$E,⊥ ⇒ 1

]

≤Advprf
F (B(A)) +AdvnAE

Ẽ (A)

where the probabilities are over the implicit sampling of keys K,L or random function ρtag. For
compactness, $E is the random bits oracle for the nAE-advantage over E . (This is to distinguish it
from the random-bits oracle $ for the nE-advantage over E .) The difference of probabilities in line

(5) is bounded by Advprf
F (B(A)), where B runs A and responds to its oracle queries as follows.

When A asks encryption query (N,A,M), B calls its oracle with the inputs needed to create a tag T .
It then computes C ← EK(N,M ‖T ) or C ← EK(N,M) ‖T as appropriate for the composition,
and returns C to A. When A asks decryption query (N,A,C), B similarly simulates D, using its
oracle to check the validity of the tag.
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We now bound AdvnAE
Ẽ (A). To this end, we continue our expansion

AdvnAE
Ẽ (A) = Pr

[
AE[E,ρtag],D[E,ρtag] ⇒ 1

]
− Pr

[
AE[E,ρtag],⊥ ⇒ 1

]

+Pr
[
AE[E,ρtag],⊥ ⇒ 1

]
− Pr

[
AE[$,ρtag],⊥ ⇒ 1

]

+Pr
[
AE[$,ρtag],⊥ ⇒ 1

]
− Pr

[
A$E,⊥ ⇒ 1

]

≤ Pr
[
AE[E,ρtag],D[E,ρtag] ⇒ 1

]
− Pr

[
AE[E,ρtag],⊥ ⇒ 1

]
+AdvivE

E (D1(A))

where Pr
[
AE[$,ρtag],⊥ ⇒ 1

]
−Pr

[
A$E,⊥ ⇒ 1

]
= 0 for any A. The reductionD1 runs A and responds

to oracle queries as follows. When A makes encryption query (N,A,M), D1 creates tag T by
simulating ρtag locally (via lazy sampling), using the appropriate input for the composition. It then
calls its own oracle, on M or M ‖T (as appropriate), to simulate the remainder of E . When A asks
a decryption query, D1 simply returns ⊥.

Finally, we claim that Pr
[
AE[E,ρtag],D[E,ρtag] ⇒ 1

]
− Pr

[
AE[E,ρtag],⊥ ⇒ 1

]
≤ Advauth

Ẽ (A). To
see this, note that the encryption oracles in the probabilities on the left side of claimed expression
is identical to the one provided by the experiment defining Advauth

Ẽ (·). Moreover, the difference
on the left side is 0 unless A makes a decryption query (N,A,C) that would cause D[E , ρtag] to
return something other than ⊥. But this is exactly the event that would cause the decryption oracle
D∗[E , ρtag] to return 1 in the Auth-experiment. Since we can assume without loss that A halts with
its output immediately upon receiving something other than ⊥ from its decryption oracle, the claim
is proved. The proof of the lemma follows. ��

B.2 Proof of Security for N1, N2, N3

In light of Lemma 4, we concern ourselves with bounding Advauth
Ẽ (A). We can assume without loss

that A asks a single decryption query, this being its final query before terminating its execution.
By Lemma 2 we have Advauth

Ẽ (A) ≤ qd ·Advauth1
Ẽ (A), with a mild abuse of notation. We will refer

to the single decryption query made by A as the forgery attempt.

Let the encryption queries of A be (Ni, Ai,Mi), and Ci the corresponding ciphertexts, for each
i ∈ [qe]. Let (N

∗, A∗, C∗) be the forgery attempt. We break the remainder of our analysis into two
pieces, first considering N1 and N2, then N3.

Schemes N1 and N2. For these parse C∗ = Y ∗ ‖T ∗, where |T ∗| = n, and define M∗ to be the unique
string such that Y ∗ = EK(N∗,M∗). (Here, we have used the tidiness of E to equate decryption of Y ∗

with the encryption of M∗.) To bound Advauth1
Ẽ (A) there are two cases to consider.

Case 1 : For N1, assume (N∗, A∗,M∗) �= (Ni, Ai,Mi) for any i ∈ [qe]. Then the forgery attempt is
valid with probability at most 1/2τ because ρtag(N

∗, A∗,M∗) is uniformly random.

Likewise for N2, assume (N∗, A∗, C∗) �= (Ni, Ai, Ci) for any i ∈ [qe]. Then the forgery attempt
is valid with probability at most 1/2τ because ρtag(N

∗, A∗, C∗) is uniformly random.

Case 2 : For N1, assume that (N∗, A∗,M∗) = (Nj , Aj ,Mj) for some particular j ∈ [qe]. (There can
be only one such j, since Nj is distinct.) Note that this implies T ∗ = Tj , too. Now notice that
the forgery attempt is valid iff C∗ = E(Nj ,Mj) ‖Tj = Cj . Thus, (N

∗, A∗, C∗) = (Nj , Aj , Cj) and
consequently is a disallowed forgery attempt.
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Group Ã1 Ã2 Ã3 Ã4 Ã5 Ã6 Ã7 Ã8 Ã9 Ã10
Schemes A1.0***** A1.1****0 A1.1***01 A1.1**011 A2.0*0**1 A2.1*0*01 A2.1*0011 A3.**0**0 A3.0*0**1 A3.100*01
Attack Atk-1 Atk-2 Atk-3 Atk-4 Atk-1 Atk-5 Atk-6 Atk-7 Atk-8 Atk-9

Group Ñ1 Ñ2 Ñ3 Ñ4 Ñ5 Ñ7 Ñ8
Schemes N1.0** N1.10* N1.110 N2.0*1 N2.101 N3.*0* N3.*10
Attack Atk-10 Atk-11 Atk-2 Atk-6 Atk-12 Atk-13 Atk-14

Fig. 10. Insecure candidate schemes. The A-groups are constructed from an ivE and a vecMAC. The N-groups
are constructed from an nE and a vecMAC. Recall that we only allow A2.**0**1,A3.**0***, and N2.**1.

For N2, there is nothing to consider in this case, since (N∗, A∗, C∗) = (Nj , Aj , Cj) for some
j ∈ [qe] would be a disallowed forgery attempt.

Thus, we can conclude that Advauth1
Ẽ (A) ≤ 1/2τ .

Scheme N3. Define M∗ ‖T ∗ to be the unique string such that C∗ = EK(N∗,M∗ ‖T ∗), where |T ∗| =
n. Again, to bound Advauth1

Ẽ (A) there are two cases to consider.

Case 1 : Assume (N∗, A∗,M∗) �= (Ni, Ai,Mi) for any i ∈ [qe]. Then the forgery attempt is valid
with probability at most 1/2τ because ρtag(N

∗, A∗,M∗) is uniformly random.

Case 2 : Assume (N∗, A∗,M∗) = (Nj , Aj ,Mj) for some particular i ∈ [qe], with T ∗ = Tj as a
consequence. Since E is a deterministic function, it must be that (N∗, A∗, C∗) = (Nj , Aj , Cj) and
consequently is a disallowed forgery attempt.

Thus, for N3 we can also conclude that Advauth1
Ẽ (A) ≤ 1/2τ .

Pulling everything together, we have AdvnAE
Ẽ (A) ≤ Advprf

F (B(A)) +AdvnE
E (D1(A)) + qd/2

τ .

C Attacks on A-Schemes other than A1–A12

This section lists all the insecure schemes for the A-schemes along with the attacks against them
as shown in Figure 10.

– Atk-1: Ask (N1, A,M), receive C1 ‖T1. Then, ask (N2, A,M), receive C2 ‖T2. If C1 = C2,
then the encryption oracle is real. This breaks the privacy of the composed scheme.

– Atk-2: Let E = (K, E ,D) be the counter-mode encryption scheme based on a block cipher of size
n. Let M be a string of n bits. Ask (N,A,M), receive C‖T where |C| = n. Forge (N,A,C‖T ).
Since the tag does not depend on the plaintext, the tag verification will be successful.

– Atk-3: Let E = (K, E ,D) be a length-preserving scheme that admits one-bit plaintexts, and
has n-bit IVs where n � 1. Ask (N,A, 0), receive C = C ′ ‖T , where |C ′| = 1. Submit as
forgery (N,A′, C). Note that the forgery wins if EK(IV, 0) = C ′, since in this case the tag T is
correct. By pigeonhole, for any key K it must be that maxb∈{0,1}{PrIV (EK(IV, 0) = b)} ≥ 1/2
and hence the probability that (N,A′, C) is a valid forgery is at least 1/4.

– Atk-4: This attack is almost the same as Atk-3 except that, for the forgery, we modifyN instead
of A. Specifically, let E = (K, E ,D) be a length-preserving scheme that admits one-bit plaintexts,
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and has n-bit IVs where n � 1. Ask (N,A, 0), receive C = C ′ ‖T , where |C ′| = 1. Submit as
forgery (N ′, A, C). Note that the forgery wins if EK(IV, 0) = C ′, since in this case the tag T is
correct. By pigeonhole, for any key K it must be that maxb∈{0,1}{PrIV (EK(IV, 0) = b)} ≥ 1/2
and hence the probability that (N ′, A, C) is a valid forgery is at least 1/4.

– Atk-5: Ask (N,A,M), receive C = C ′ ‖T . Submit as forgery (N,A′, C) where A �= A′. Since
(N,C) has not changed, (N,A′, C) is a valid forgery.

– Atk-6: Ask (N,A,M), receive C = C ′ ‖T . Submit as forgery (N ′, A, C) where N �= N ′. Since
(A,C) has not changed, (N ′, A, C) is a valid forgery.

– Atk-7: Let E = (K, E ,D) be the counter-mode encryption scheme based on a block cipher
E whose block size is n, and let F tag be a block cipher of size n as well. Let M be a string
of length n. Ask (N,A,M), receive C[1]C[2] where |C[1]| = |C[2]| = n. Submit as forgery
(N,A,C[1]C[2]). We argue that this forgery is valid. We first explain what happens if both N
and A are used to compute the tag, i.e. the case where the scheme is A3.**0110. The analysis for
the case where only N (resp. A) is used to compute the tag, i.e. A3.**0100 (resp. A3.**0010),
can be easily adapted by removing A (resp. N) from the input list of F tag in the following
argument.

Let T = F tag
L (N,A) where L is the key used for the tag-computing PRF. Notice that

under counter-mode encryption, C[2] = EK(||IV + 1||)⊕ T where ||x|| denotes an n-bit binary
representation of the integer x and IV is the value of the IV computed from only either or
both N and A. Let the decryption DK(IV, C[1]C[2]) = M ′‖T ′ where |T ′| = n. Notice that
T ′ = EK(||IV + 1||)⊕ C[2] = T . Thus, the tag verification succeeds.

– Atk-8: Let E = (K, E ,D) be the counter-mode encryption scheme based on a block cipher of
size n. Let M be a string of n bits. Ask (N,A,M), receive C1. Then, ask (N ′, A,M), receive
C2. If the first n bits of C1 equal those of C2, then the encryption oracle is real. This breaks
the privacy of the composed scheme.

– Atk-9: Ask (N,A,M), receive C. Submit as forgery (N,A′, C) where A �= A′. Since the IV
depends only on N , its value is unchanged. Consequently, C decrypts to the original M and its
tag, which in turn is also unchanged since it is computed based on only N and M .

D Attacks on N-Schemes other than N1–N4

This section lists all the insecure schemes for the N-schemes along with the attacks against them
as shown in Figure 10.

– Atk-10: Ask (N1, A,M), receive C1‖T1. Ask (N2, A,M) where N2 �= N1, receive C2‖T2. If
T1 = T2, then the encryption oracle is real.

– Atk-11: Ask (N,A,M), receive C = C ′ ‖T . Submit as forgery (N,A′, C) where A �= A′. In
order to see that (N,A′, C) is valid, notice that the decryption DK(N,C ′) must decrypt to the
original plaintext M (due to the correctness of the base encryption scheme). Thus, even if both
N and M are to be used to compute the tag, the resulting tag will still be T .

– Atk-12: Ask (N,A,M), receive C = C ′ ‖T . Submit as forgery (N,A′, C) where A �= A′. Since
N and C ′ have not changed, the tag T , which depends only on N and C ′, remains valid.

– Atk-13: Ask (N,A,M), receive C. Submit as forgery (N,A′, C) where A �= A′. In order to see
that (N,A′, C) is valid, notice that the decryption DK(N,C) must decrypt to the original input
M‖T where T is the tag part (due to the correctness of the base encryption scheme). Thus,
even if both N and M are to be used to compute the tag, the resulting tag will still be T .
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KoTE,Ext,Tsel ,τ (A):

i← 0; win← 0
K�K
Run AEnc,Reveal,Test

Return win

Oracle Enc(N,A,M):

i← i+ 1
(Ni, Ai,Mi)← (N,A,M)
IV i � {0, 1}n
Si ← Tsel(Ni, Ai,Mi)
if T [Si] = ⊥ then

T [Si]� {0, 1}τ
Ti ← T [Si]
Xi ←Mi ‖Ti

Ci ← EK(IV i, Xi)
Q ← Q∪ {(i, IV i,Mi, Ci)}
Return (IVi, Ci)

Oracle Reveal(j):

T ← T ∪ {(j, Tj)}
Return Tj

Oracle Test(j∗, C∗):

X ← Ext(j∗, C∗,Q, T )
valid← xgood← 0
if ∃Xi such that
(1)C∗ = EK(IVj∗ , Xi) and
(2) (·, Ti) �∈ T and
(3) Xi = Xj∗

then
valid← 1
if X = Xi then xgood← 1

if valid ∧ ¬xgood then
win← 1
Return 1

Return 0

Fig. 11. The Knowledge-of-Tags (KoT) Experiment. Function Tsel(u, v, w) selects a fixed, ordered subset
of its inputs. Deterministic algorithm Ext is the plaintext extractor. Parameter τ is the tag-length.

– Atk-14: Let E = (K, E ,D) be the counter-mode encryption scheme based on a block cipher
E whose block size is n, and let F tag be a block cipher of size n as well. Let M be a string
of length n. Ask (N,A,M), receive C[1]C[2] where |C[1]| = |C[2]| = n. Submit as forgery
(N,A,C[1]C[2]). We argue that this forgery is valid. We first explain what happens if both N
and A are used to compute the tag, i.e. the case where the scheme is N3.110. The analysis
for the case where only A is used to compute the tag, i.e. N3.010, can be easily adapted by
removing N from the input list of F tag in the following argument.

Let T = F tag
L (N,A) where L is the key used for the tag-computing PRF. Notice that

under counter-mode encryption, C[2] = EK(||N + 1||) ⊕ T where ||x|| denotes an n-bit binary
representation of the integer x. Let the decryption DK(N,C[1]C[2]) = M ′‖T ′ where |T ′| = n.
Notice that T ′ = EK(||N + 1||)⊕ C[2] = T . Thus, the tag verification succeeds.

E Elusive Schemes A10–A12

As we discussed in Section 3, efforts to prove that A11 and A12 are secure against ciphertext
forgeries, assuming only a PRF-secure vecMAC and an ivE-secure E , have failed. But there is
intuitive support for thinking these compositions should be secure: all observed ciphertexts are
indistinguishable from random bits and, as a consequence, at least τ -bits of the input to E , the tag,
should be unknown to the attacker. Hence, producing a forgery (N∗, A∗, C∗) that yields a valid
M∗ ‖T ∗ should be difficult — if M∗ has never been seen by F tag, then the correct T ∗ is random; if
M∗ has been seen by F tag, then you need to know what value of T ∗ to “target” under decryption.
(Tidiness of E rules out simple forgeries that work no matter what value the tags take.)

To formalize this intuition, we introduce the knowledge-of-tags (KoT) experiment in Figure 11.
“Knowing” a tag is captured by introducing a plaintext extractor Ext, a deterministic algorithm
that takes as input all of the inputs explicitly available to the forging adversary and outputs a
string X or ⊥. The forger wins it if manages to produce a forgery that uses an old IV ∗ = IV j and
an old M∗ ‖T ∗ = Mi ‖Ti for which it does not (explicitly) know Ti, and yet the extractor fails to
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determine this Mi ‖Ti. Loosely speaking if the forger wins the KoT game, it has done so without
(extractable) knowledge of tag Ti.

For an IV-based encryption scheme E , a plaintext extractor Ext, a tag-length τ , and a tag-
input selection function Tsel , we write Advkot

E,Ext,Tsel ,τ
(A) = Pr [KoTE,Ext,Tsel ,τ (A) = 1 ]. for the KoT-

advantage of adversary A.
As Theorem 4 shows, if E is KoT-secure (in addition to being ivE-secure) and F tag, F iv are PRF-

secure, then A11 is secure against ciphertext forgeries. We skip directly to analyzing A11[E , ρiv, ρtag],
since the theorem lifts to A11[E , F iv, F tag] by standard methods. We also focus on adversaries
making a single forgery attempt (ie, Auth1-adversaries), in light of Lemma 2. Theorem 5 gives a
similar result for the A12 composition method.

Although we do not explore the KoT notion here, we note that it is straightforward to construct
extractors for common blockcipher modes, such as CTR and CBC mode. Thus, we expect common
blockcipher modes to be provably KoT-secure.

Theorem 4. Fix n, τ > 0. Let X iv and X tag be the domains-of-application for F iv and F tag (resp.)
in the A11 composition method. Let ρiv : X iv → {0, 1}n and ρtag : X tag → {0, 1}τ be random func-
tions. Let E : K×{0, 1}∗ → {0, 1}∗ be an ivE-scheme with length function �. Let E = A11[E , ρiv, ρtag]
be the A11-composition and, correspondingly, let tag-input selection function Tsel (N,A,M) = M .
Let Ext be a plaintext extractor for E . Let A be an Auth-adversary, asking q queries to its oracle,
prior to outputting its single forgery attempt. Then there exist black-box reductions D1, D2, and
B, all explicitly constructed in the proof of this theorem, such that

Advauth1
E (A) ≤ 3q + 1

2τ
+ 2AdvivE

E (D1(A)) +AdvivE
E (D2(A)) +Advkot

E,Ext,Tsel ,τ
(B(A))

Proof. We begin by establishing some notation. Let (N1, A1,M1), (N2, A2,M2), . . . , (Nq, Aq,Mq) be
the sequence of queries asked by A, and let C1, C2, . . . , Cq be the corresponding oracle responses. Let
(N∗, A∗, C∗) be the adversary’s forgery attempt, IV ∗ = ρiv(N

∗, A∗) be the IV induced by N∗, A∗,
and let M∗ ‖T ∗ = DK(IV ∗, C∗) where |T ∗| = n. We say that (N∗, A∗, C∗) is a valid forgery if
ρtag(M

∗) = T ∗, i.e. that decryption under the A11-composition will return a non-⊥ value.

Case 1: Assume that M∗ �∈ {M1,M2, . . . ,Mq}. The probability that (N∗, A∗, C∗) is a valid forgery
is at most 1/2τ , since (N∗, A∗, C∗) iff ρtag(M

∗) = T ∗.

Case 2: Now assume that M∗ = Mi for some i ∈ [q]. Then the forgery is valid only if T ∗ = Ti, so
assume that holds. Since E is tidy, this implies that C∗ = EK(IV ∗,Mi ‖Ti). There are two cases to
consider, that IV ∗ is “new”, meaning that (N∗, A∗) �∈ {(N1, A1), (N2, A2), . . . , (Nq, Aq)}, and the
complementary case.

Case 2a: Assume that (N∗, A∗) �∈ {(N1, A1), (N2, A2), . . . , (Nq, Aq)}. Then IV ∗ is uniformly ran-
dom, so the probability that the forgery is valid is equal to p = Pr [ IV ∗� {0, 1}n : EK(IV ∗,Mi ‖Ti) ].
We now give an adversary D1(A) such that p ≤ .5AdvivE

E (D1(A)). Specifically, let DO1 (A) be de-
fined as follows. It runs A, and when asks query (Ni, Ai,Mi), adversaryD1(A) creates Ti = ρtag(Mi)
by lazy sampling simulation of ρtag. It then queries Mi ‖Ti to its oracle O, receiving (IV i, Ci) in re-
turn, and responds to A with Ci. When A halts with forgery attempt (N∗, A∗, C∗), adversaryD1(A)
again queries each of M1 ‖T1,M2 ‖T2, . . . ,Mq ‖Tq to O, receiving (V1, Y1), (V2, Y2), . . . , (Vq, Yq) in
return. If C∗ ∈ {Y1, . . . , Yq}, then D1(A) halts with output bit 1; if not, D1(A) halts with output
bit 0.
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Consider AdvivE
E (D1(A)) = Pr

[
D
EK(·)
1 (A)⇒ 1

]
− Pr

[
D

$(·)
1 (A)⇒ 1

]
. It is not hard to verify

that Pr
[
D
EK(·)
1 (A)⇒ 1

]
≥ .5p. If O = $ then Y1, . . . , Yq are uniformly random, independent

strings. Thus the probability that C∗ ∈ {Y1, . . . , Yq} is at most q/2s where s = mini∈[q] |Yi| ≥ τ . We

conclude that in Case 2a, the probability of a valid forgery is at most 2AdvivE
E (D1(A)) + 2q/2τ .

Case 2b: Assume that (N∗, A∗) = (Nj , Aj) for some j ∈ [q]. This implies that IV ∗ = IV j , and that
the forgery is “Case 2b valid” iff C∗ = EK(IV j ,Mi ‖Ti). We note immediately that it must be that
Mi ‖Ti �= Mj ‖Tj , since equality would result in C∗ = Cj and the forgery attempt being disallowed.
Let Pr [ (N∗, A∗, C∗)�A Case 2b valid ] denote the probability of forging in Case 2b.

To bound Pr [ (N∗, A∗, C∗)�A : Case 2b valid ], we consider a new game, H0, given in Fig-
ure 13. In this game, adversary A is provided with an encryption oracle Enc that faithfully simulates
encryption under E , but additionally providing IV j . It also performs some bookkeeping that does
not affect the oracle’s behavior. The game provides A with a new Reveal-oracle, which allows the
adversary to query an index j, and receive the tag Tj in return. Thus, this oracle reveals to the
adversary what was the tag associated to the j-th encryption query. Game H0 returns 1 exactly
when the flag win = 1, and this occurs iff A outputs (j∗, C∗) such that C∗ = EK(IV j , Xi), subject
to two restrictions: first, Xi �= Xj∗ (preventing trivial wins, in which C∗ = Cj∗); and second Xi

must be a string whose value is not explicitly available to A via having made a Reveal-query. We
point out that once win← 1 then the game returns 1 no matter what Ext returns

We note that A in H0 is free to make no Reveal-queries (and ignore the IVs that Enc provides),
in which case H0 returns 1 exactly when A would produce a valid Case 2b forgery. We can assume,
then that

Pr [ (N∗, A∗, C∗)�A : Case 2b valid ] ≤ Pr [H0(A) = 1 ]

with a slight abuse of the notation, to avoid declaring a new adversary. By total probability, we
have Pr [H0(A) = 1 ] = Pr [H0(A) = 1 ∧ xgood ] + Pr [H0(A) = 1 ∧ ¬xgood ].

We now show that Pr [H0(A) = 1 ∧ xgood ] can be bounded in terms of the ivE-advantage of
some adversaryD2(A) attacking E . LetDO2 run A and respond to its queries as follows. When A asks
Enc-query (Ni, Ai,Mi), adversary D2(A) simulates Enc up through creating Xi. It then queries Xi

to its oracle, receiving (IV i, Ci) in return, and then continues to simulate the maintenance of set Q,
responding to A with (IV i, Ci). If A queries Reveal(j), then D2(A) exactly simulates Reveal.
When A outputs (j∗, C∗), adversary D2(A) runs Ext(j∗, C∗,Q, T ), this returning a string X or ⊥.
If Ext returns string X = Xi such that Ti �∈ T , then D2(A) halts with output bit 1. Otherwise,
D2(A) halts with output bit 0.

We claim that Pr [H0(A) = 1 ∧ xgood ] ≤ Pr
[
D
EK
2 (A)⇒ 1

]
. This is true because D2(A) out-

puts one if the extractor manages to return any Xi such that Ti �∈ T , but H0(A) = 1∧ xgood only
occurs if the extractor returns a particular Xi meeting that restriction. Thus, we have

Pr [H0(A) = 1 ] ≤ AdvivE
E (D2(A)) + Pr

[
D$

2(A)⇒ 1
]
+ Pr [H0(A) = 1 ∧ ¬xgood ] .

Now, to bound Pr
[
D2(A)$ ⇒ 1

]
, consider game G0 in Figure 12. We see that G0(A) returns 1

exactly when D2 returns 1. Moreover, the Enc-oracle in G0 returns (IV i, Ci), where IV i� {0, 1}n
and Ci� {0, 1}�(|Mi|+τ), which is exactly what a $-oracle would return. The additional code inside
the Enc-oracle is for bookkeeping purposes only. Finally, the Reveal-oracle in G0 behaves exactly

as in H0, as expected by A. Thus, we see that Pr
[
D$

2(A)⇒ 1
]
≤ Pr [G0Ext,Tsel ,τ (A) = 1 ]. Now,
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notice that in G0 the responses of the Enc-oracle are independent of the tags Ti, and depend on the
adversary’s queries only through |Mi|. Thus, we can move the sampling of tags from Enc to Reveal,
which is when the tag values actually must be fixed. Moreover, notice that only the particular
Tj requested by A in its Reveal-queries are needed to execute A and Ext. Thus we can move the
sampling of all other tags until after both the adversary A and the extractor Ext have finished their
executions. We implement these changes in game G1, and conclude that Pr [G0Ext,Tsel ,τ (A) = 1 ] =
Pr [G1Ext,Tsel ,τ (A) = 1 ]. But in G1 it is clear that the chance that the extractor returns X that
causes xgood← 1 (thus G1 returns 1) is at most (q−|T |)/2τ ; hence Pr [G1Ext,Tsel ,τ (A) = 1 ] ≤ q/2τ .

Finally, to bound Pr [H0(A) = 1 ∧ ¬xgood ] let B(A) be a KoT-adversary that runs A, respond-
ing to A’s Enc and Reveal queries using its own oracles of the same name. When A outputs (j∗, C∗),
adversary B forwards this to its Test-oracle. By construction, we see that win = 1 in the KoT-game
exactly when valid∧¬xgood holds in H0. Thus, Pr [H0(A) = 1 ∧ ¬xgood ] ≤ Advkot

E,Ext,Tsel ,τ
(B(A)).

Putting it all together, we have

Pr [ (N∗, A∗, C∗) valid ] ≤ AdvivE
E (D2(A)) + q/2τ +Advkot

E,Ext,Tsel ,τ
(B(A))

in Case 2b. Combining this with the result for Case 2a gives the bound on Case 2; further combining
this with Case 1 gives the bound of the theorem. ��

Theorem 5. Fix n, τ > 0. Let X iv and X tag be the domains-of-application for F iv and F tag

(resp.) in the A11 composition method. Let ρiv : X iv → {0, 1}n and ρtag : X tag → {0, 1}τ be
random functions. Let E : K × {0, 1}∗ → {0, 1}∗ be an ivE-scheme with length function �. Let
E = A11[E , ρiv, ρtag] be the A11-composition and, correspondingly, let tag-input selection function
Tsel (N,A,M) = (A,M). Let Ext be a plaintext extractor for E . Let A be an Auth-adversary, ask-
ing q queries to its oracle, prior to outputting its single forgery attempt. Then there exist black-box
reductions D1, D2, and B, all explicitly constructed in the proof of this theorem, such that

Advauth1
E (A) ≤ 3q + 1

2τ
+ 2AdvivE

E (D1(A)) +AdvivE
E (D2(A)) +Advkot

E,Ext,Tsel ,τ
(B(A))

Proof. The proof is nearly identical to that of Theorem 4, with the following small alternations.
Case 1 assumes that (A∗,M∗) �∈ {(A1,M1), . . . , (Aq,Mq)}, with the same conclusion of the case.
Case 2 then assumes that (A∗,M∗) = (Ai,Mi) for some j ∈ [q], and proceeds to consider subcases
2a and 2b. The former supposes that IV ∗ is new (i.e. N∗ is new), and the latter that IV ∗ = IV j

for some j ∈ [q] with Mj ‖Tj �= Mi ‖Ti. The conclusions of these subcases are same as those of
Theorem 4. ��
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G0(A) :

i← 0; xgood← 0
K�K
(j∗, C∗)← AEnc,Reveal

X ← Ext(j∗, C∗,Q, T )
if ∃i such that X = Xi ∧ Ti �∈ T
then xgood← 1
Return xgood

Oracle Enc(N,A,M):

i← i+ 1; (Ni, Ai,Mi)← (N,A,M)
Si ← Tsel(Ni, Ai,Mi)
if T [Si] = ⊥ then T [Si]� {0, 1}τ
Ti ← T [Si]
Xi ←Mi ‖Ti

IV i � {0, 1}n
Ci � {0, 1}�(|Mi|+τ)

Q ← Q∪ {(i, IVi,Mi, Ci)}
Return (IVi, Ci)

Oracle Reveal(j):

T ← T ∪ {(j, Tj)}
Return Tj

G1(A) :

i← 0; xgood← 0
K�K
(j∗, C∗)← AEnc,Reveal

X ← Ext(j∗, C∗,Q, T )
for j = 1 to q do
if T [Sj ] = ⊥ then T [Sj ]� {0, 1}τ
Tj ← T [Sj ]
Xj ←Mj ‖Tj

if ∃i such that X = Xi ∧ Ti �∈ T
then xgood← 1
Return xgood

Oracle Enc(N,A,M):

i← i+ 1; (Ni, Ai,Mi)← (N,A,M)
Si ← Tsel(Ni, Ai,Mi)
IVi � {0, 1}n
Ci � {0, 1}�(|Mi|+τ)

Q ← Q∪ {(i, IVi,Mi, Ci)}
Return (IVi, Ci)

Oracle Reveal(j):

Sj ← Tsel(Nj , Aj ,Mj)
if T [Sj ] = ⊥ then
T [Sj ]� {0, 1}τ

Tj ← T [Sj ]
T ← T ∪ {(j, Tj)}
Return T [Sj ]

Fig. 12. Games for the proof of Theorem 4.

H0(A) :

i← 0
valid← xgood← 0
K�K
(j∗, C∗)← AEnc,Reveal

X ← Ext(j∗, C∗,Q, T )
if Xi = Mi ‖Ti such that
(1) C∗ = EK(IV j∗ , Xi) and
(2) Xi �= Xj∗ and
(3) Ti /∈ T
then

valid← 1
if X = Xi then xgood← 1

Return valid

Oracle Enc(N,A,M):

i← i+ 1; (Ni, Ai,Mi)← (N,A,M)
Si ← Tsel(Ni, Ai,Mi)
if T [Si] = ⊥ then T [Si]� {0, 1}τ
Ti ← T [Si]
Xi ←Mi ‖Ti

IV i � {0, 1}n
Ci � EK(IV i, Xi)
Q ← Q∪ {(i, IVi,Mi, Ci)}
Return (IVi, Ci)

Oracle Reveal(j):

T ← T ∪ {Tj}
Return Tj

Fig. 13. Games for the proof of Theorem 4.


