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Abstract. In the last few years, the efficiency of secure multi-party computation (MPC) increased in
several orders of magnitudes. However, this alone might not be enough if we want MPC protocols to be
used in practice. A crucial property that is needed in many applications is that everyone can check that
a given (secure) computation was performed correctly – even in the extreme case where all the parties
involved in the computation are corrupted, and even if the party who wants to verify the result was not
participating. This is especially relevant in the clients-servers setting, where many clients provide input
to a secure computation performed by a few servers. An obvious example of this is electronic voting,
but also in many types of auctions one may want independent verification of the result. Traditionally,
this is achieved by using non-interactive zero-knowledge proofs during the computation.
A recent trend in MPC protocols is to have a more expensive preprocessing phase followed by a very
efficient online phase, e.g., the recent so-called SPDZ protocol by Damg̊ard et al. Applications such as
voting and some auctions are perfect use-case for these protocols, as the parties usually know well in
advance when the computation will take place, and using those protocols allows us to use only cheap
information-theoretic primitives in the actual computation. Unfortunately no protocol of the SPDZ
type supports an audit phase.
In this paper, we show how to achieve efficient MPC with a public audit. We formalize the concept of
publicly auditable secure computation and provide an enhanced version of the SPDZ protocol where,
even if all the servers are corrupted, anyone with access to the transcript of the protocol can check
that the output is indeed correct. Most importantly, we do so without significantly compromising the
performance of SPDZ i.e. our online phase has complexity approximately twice that of SPDZ.
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1 Introduction

During the last few years MPC has evolved from a purely theoretical to a more practical tool. Several recent
protocols (e.g. BeDOZa [7], TinyOT [33] and the celebrated SPDZ [20,18]) achieve incredible performance for
the actual function evaluation, even if all but one player are actively corrupted. This is done by pushing all
the expensive cryptographic work into an offline phase and using only simple arithmetic operations during
the online phase1. Since these protocols allow the evaluation of an arbitrary circuit over a finite field or
ring, one can in particular use these protocols to implement, for instance, a shuffle-and-decrypt operation
for a voting application or the function that computes the winning bid in an auction. It is often the case
that we know well in advance the time at which a computation is to take place, and in any such case, the
aforementioned protocols offer very good performance. In fact the computational work per player in the
SPDZ protocol is comparable to the work one has to perform to compute the desired function in the clear,
with no security.

However, efficiency is not always enough: if the result we compute securely has large economic or political
consequences, such as in voting or auction applications, it may be required that correctness of the result can
be verified later. Ideally, we would want that this can done even if all parties involved in the computation
are corrupted, and even if the party who wants to verify the result was not involved in the computation.

The traditional solution to this is to ask every player to commit to all his secret data and to prove
in zero-knowledge for every message he sends, that this message was indeed computed according to the
protocol. If a common reference string is available, we can use non-interactive zero-knowledge proofs, which
allow anyone to verify the proofs and hence the result at any later time. However, this adds a very significant
computational overhead, and would lead to a horribly inefficient protocol, compared to the online phase of
SPDZ, for instance.

It is therefore natural to ask whether it is possible to achieve the best of both worlds and have highly
efficient MPC protocols with a high-speed online phase that are auditable, in the sense that everyone who
has access to the transcripts of the protocol can check if the result is correct even when all the servers are
corrupted. In this work we answer this question in the affirmative.

1.1 Contributions and Technical Overview

The model. We will focus on client-server MPC protocols, where a set of parties (called the input parties)
provide inputs to the actual working parties, who run the MPC protocol among themselves and make the
output public2. We will focus on the setting of MPC protocols for dishonest majority (and static corruptions):
as long as there is one honest party we can guarantee privacy of the inputs and correctness of the results,
but we can neither guarantee termination nor fairness. We will enhance the standard network model with a
bulletin board functionality. Parties are allowed to exchange messages privately, but our protocol will instruct
them also to make part of their conversation public.

Auditable MPC. Our first contribution is to provide a formal definition of the notion of publicly auditable
MPC as an extension of the classic formalization of secure function evaluation. We require correctness and
privacy when there is at least one honest party, and in addition ask that anyone, having only access to the
transcript of the computation published on the bulletin board, can check the correctness of the output. This
is formalized by introducing an extra, non-corruptible party (the auditor) who can ask the functionality if
the output was correct or not. We stress that the auditor does not need to be involved (or even exist!) before

1The offline phase is independent from the inputs and the circuit to be computed – only an upper bound on the
number of multiplication gates is needed.

2Note that the sets need not be distinct, and using standard transformations we can make sure that the servers
do not learn the inputs nor the output of the computation (think of the inputs/output being encrypted or secret
shared).
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and during the protocol. The role of the auditor is simply to check, once the computation is over, whether
the output was computed correctly or not.3

SPDZ recap. Given the motivation of this work, we are only interested in the notion of auditable MPC
if it can be achieved efficiently. Therefore our starting point is one of the most efficient MPC protocols for
arithmetic circuits with a cheap, information-theoretic online phase, namely SPDZ.

In a nutshell SPDZ works as follows: at the end of the offline phase all parties hold additive shares of
multiplicative triples (x, y, z) with z = x · y. Now the players can use these preprocessed triples to perform
multiplications using only linear operations over the finite field (plus some interaction). Moreover, these
linear operations can now be performed locally and are therefore essentially for free. However an adversary
could send the honest parties a share that is different from what he received at the end of the offline phase.
To make sure this is not the case, SPDZ adds information-theoretic MACs of the form γ = α · x to each
shared value x, where both the MAC γ and the key α are shared among the parties. These MACs are trivially
linear and can therefore follow the computation. Once the output is reconstructed, the MAC keys are also
revealed and the MACs checked for correctness, and in the case the check goes through, the honest parties
accept the output.

Auditable SPDZ. In order to make SPDZ auditable, we enhance each shared value x with a Pedersen
commitment gxhr to x with randomness r. The commitment key (g, h) comes from a common reference string
(CRS), such that even if all parties are corrupted, those commitments are still (computationally) binding. To
allow the parties to open their commitments, we provide them also with a sharing of the randomness r (each
party already knows a share of x). This new representation of values is still linear and is therefore compatible
with the existing SPDZ framework. During the computation phase, the parties ignore the commitments (they
are created during the offline phase, and only the openings must be sent to FBulletin) and it will be the job
of the auditor to use the linear properties of the commitments to verify that each step of the computation
was carried out correctly. Clearly the offline phase of SPDZ needs to be modified, in order to produce the
commitments to be used by the auditor. Moreover, we have to make this preprocessing step auditable as
well.

An example application: Low-latency voting from MPC. Our work can be seen as a part of a recent
trend in understanding how generic MPC protocols perform (in terms of efficiency) in comparison to special-
purpose protocols (see [27,17] for a discussion on private-set intersection). A notable example of special
purpose secure computation protocols are mixed-networks (mix-nets), first introduced by Chaum [14]. Here
we show how our publicly auditable version of SPDZ compares favorably with mix-nets in terms of latency.

In mix-nets a number of clients submit their encrypted inputs to some servers, who jointly shuffle and
decrypt the inputs in such a way that no one should be able to link the input ciphertexts with the output
plaintexts, if at least one of the shuffling servers is honest. Mix-nets are of prime importance in electronic
voting (like e.g. the Helios system [1]). A disadvantage of mix-nets is that they are inherently sequential :
server i cannot start shuffling before receiving the output of the shuffle performed by server i−1. Now, given
that the voter’s privacy depends on the assumption that there is at least 1 uncorrupted server (out of n), it is
desirable to increase the number of parties involved in the shuffle as much as possible. However, when using
mix-nets the latency of the protocol is linear in n, and therefore increasing n has a very negative impact on
the total efficiency of the protocol, here measured by the time between the last voter casts his vote and the
output of the election is announced. We argue here that implementing a shuffle using a generic protocol like
SPDZ makes the latency independent of the number of servers performing the shuffle.

More formally, let n be the number of servers and m the number of input ciphertexts. The computational
latency of mix-nets, here defined as the time we have to wait before all servers have done their computational

3In terms of feasibility, auditable MPC can be achieved by compiling a strong semi-honest protocol with NIZKs
– a semi-honest MPC protocol alone would not suffice as we cannot force the parties to sample uniform randomness,
nor can we trust them to force each other to do so by secure coin-tossing when everyone is corrupted. However, this
would not lead to a very practical solution.

3



work, will be at least O(n · m · λ3) where λ is the computational security parameter.4 Using SPDZ, the
computational latency is O(m · log(m) · κ2),5 since the total complexity of SPDZ is linear in n and the
servers work in parallel (κ is the statistical security parameter). Therefore mix-nets are more expensive by

a factor of
(

n
logm ·

λ3

κ2

)
: this is a significant speed-up when n grows – note also that typical values of λ for

public-key cryptography can be one or two orders of magnitudes greater than typical values for a statistical
security parameter κ (only field operations are performed during the SPDZ online phase). Clearly, to verify
the impact in practice one would have to implement both approaches and compare them.

1.2 Related Work

For certain applications, there already exist auditable protocols. The idea is known in the context of e.g.
electronic voting as public verifiability, and can also be found concerning online auctions and secret sharing.
To the best of our knowledge, the term public verifiability was first used by Cohen and Fischer in [15].
Widely known publicly auditable voting protocols are those of Schoenmakers [37] and Chaum et al. [13]
and the practical Helios [1]. Also stronger notions for voting protocols have been studied, see e.g. [36,31,39].
Verifiability also appeared for secret sharing schemes [37,23,38] and auctions [32,35]. We refer the reader
to the mentioned papers and the references therein for more information on these subjects. It is crucial to
point out that our suggested approach is not just another voting protocol – instead we lift verifiability to
arbitrary secure computations. In this setting, the notion of public verifiability has not been studied, with
the exception of [21], where the author presents a general transformation that turns universally satisfiable
protocols into instances that are auditable in our sense. This transformation is general and slows down the
computational phase of protocols, whereas our approach is tailor-made for fast computations.

In publicly verifiable delegation of computation (see e.g. [24,22] and references therein) a computationally
limited device delegates a computation to the cloud and wants to check that the result is correct. Verifiable
delegation is useless unless verification is more efficient than the evaluation. Note that in some sense our
requirement is the opposite: we want our workers to work as little as possible, while we are fine with asking
the auditor to perform more expensive computation.

External parties have been used before in cryptography to achieve otherwise impossible goals like fair-
ness [29], but in our case anyone can be the auditor and does not need to be online while the protocol is
executed. This is a qualitative difference with most of the other semi-trusted parties that appear in the
literature. The work by Asharov and Orlandi [4] investigated an enhanced notion of covert security, that
allows anyone to determine if a party cheated or not given the transcript of the protocol – the goal of our
notion is different, as we are interested in what happens when all parties are corrupted.

2 The Model

To formalize auditable MPC we add a new party PA to the standard MPC model. This new party only
performs the auditing and does not need to participate during the offline or the online phase. This auditor
does not even have to exist when the protocol is executed, but he can check the correctness of a result
based on a protocol transcript. This formal hack makes it possible to guarantee correctness even if everyone
participating in the computation is corrupted6.

As mentioned, we put ourselves in the client-server model, so the parties involved in an auditable MPC
protocols are:

The input parties: We consider m parties PI1 , . . . ,PIm with inputs (x1, . . . , xm).

4The λ3 factor is there because of the rerandomization step that is crucially done in every mix-net. Using “onions”
of encryptions would not be more efficient.

5The m · logm factor comes from the optimal shuffle of Ajtai et al. [3].
6We are not adding a semi-trusted third party to the actual protocol: our guarantee is that if there exist at least

one honest party in the universe who cares about the output of the computation, that party can check at any time
that the output is correct.
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The computing parties: We consider n parties P1, . . . ,Pn that participate in the computation phase.
Given a set of inputs x1, . . . , xm they compute an output y = C(x1, . . . , xm) for some circuit C over a
finite field F. Note that {PI1 , . . . ,PIm} and {P1, . . . ,Pn} may not be distinct.

The auditor: After the protocol run is over, anyone acting as the auditor PA can retrieve the transcript
of the protocol τ from the bulletin board and (using only the circuit C and the output y) determine if
the result is valid or not.

In the case where at least one party is honest, we require the same security guarantees as in normal MPC
with a dishonest majority. However, these standard security notions do not give any guarantee in the fully
malicious setting, i.e. when all parties are corrupted. We tweak the standard notions slightly and ask for an
additional property, called auditable correctness.

This notion captures the fact that in the fully malicious case, the input cannot be kept secret from A.
But we still want to prove that if the computing parties deviate from the protocol, then they will be caught
by PA, who has access to the transcript that is stored on a bulletin board FBulletin.

More formally, our definition for auditable correctness is as follows:

Definition 1 (Auditable Correctness). Let C be a circuit, x1, . . . , xm be inputs to C, y be a potential
output of C and τ be a protocol transcript for the evaluation of the circuit C. We say that an MPC protocol
satisfies Auditable Correctness if the following holds: the auditor PA with input τ outputs accept y with
overwhelming probability if the circuit C on input x1, . . . , xm produces the output y. At the same time the
auditor PA will return reject (except with negligible probability) if τ is not a transcript of an evaluation of
C or if C(x1, . . . , xm) 6= y.

Functionality FOnline

Initialize: On input (Init, C,F) from all parties (where C is a circuit with m inputs and one output, consisting of
addition and multiplication gates over F):

(1) Wait until A sends the sets Î ⊆ I (corrupted input parties) and P̂ ⊆ P (corrupted computing parties).
Input: On input

(
Input,PIi , idx, x

)
from PIi and

(
Input,PIi , idx, ?

)
from all parties Pj , with idx a fresh identifier

and x ∈ F:

(1) Store (idx, x).

(2) If |P̂| = n, send
(
Input,PIi , idx, x

)
to A.

Compute: On input (Compute) from all parties Pj :
(1) If an input gate of C has no value assigned, stop here.
(2) Compute yc = C(x1, . . . , xm).

(3) Send yc to A and wait for y∗ from A. If 0 < |P̂| < n, the functionality accepts only y∗ ∈ {⊥, yc}. If

|P̂| = n, any value y∗ ∈ F ∪ {⊥} is accepted.
(4) Send (Output, y∗) to all parties Pj .

Audit: On input (Audit, y) from PA (where y ∈ F), and if Compute was executed, the functionality does the
following:
if yc = y∗ = y then output accept y.
if y∗ = ⊥ then output no audit possible.
if yc 6= y∗ or y 6= y∗ then output reject.

Fig. 1: FOnline: Ideal functionality that describes MPC with audit.

The above definition gives rise to a new ideal functionality which we provide in Fig. 1. To simplify the
exposition, FOnline is only defined for one output value y. This can easily be generalized.

Note that we only defined our FOnline for deterministic functionalities. The reason for this is that when
all parties are corrupted, even the auditor cannot check whether the players followed the protocol correctly
in the sense of using real random tapes. This can be solved (using standard reductions) by letting the input
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parties contribute also random tapes and define the randomness used by the functionality as the XOR of
those random tapes – but in the extreme case where all the input parties are corrupted this will not help
us.

3 Online Phase

Our setup. Let p ∈ N be a prime and G be some Abelian group (in multiplicative notation) of order p
where the Discrete Logarithm Problem(DLP) is hard to solve (with respect to a given computational security
parameter λ). The MPC protocol will evaluate a circuit C over F = Zp with p ≥ 2κ (where κ is a statistical
security parameter), whereas we use the group G to ensure auditability. We let g, h ∈ G be two generators
of the group G where h is chosen such that logg(h) is not known (e.g. based on some CRS). For two values

x, x̃ ∈ F, we define pc(x, x̃) := gxhx̃ where we use x̃ to denote the randomness used in a commitment to the
value x.

Functionality FBulletin

Store: On input (store, id , i,msg) from Pi, where id was not assigned yet, store (id , i,msg).
Reveal IDs: On input (reveal all) from party Pi reveal all assigned id-values to Pi.
Reveal message: On input (get message, id) from Pi, the functionality checks whether id was assigned already.

If so, then it returns (id , j,msg) to Pi. Otherwise it returns (id ,⊥,⊥).

Fig. 2: FBulletin: Ideal functionality for the bulletin board.

We assume that a secure channel towards the input parties can be established, that a broadcast function-
ality is available and that we have access to a bulletin board FBulletin (Fig. 2), a commitment functionality
FCommit and a procedure to jointly produce random values FRand

7. We use the bulletin board FBulletin to
keep track of all those values that are broadcasted. Observe that no information that was posted to FBulletin

can ever be changed or erased.

Functionality FCommit

Commit: On input (commit, v, r, i, j, idv) by Pi, where both v and r are either in F or ⊥, and idv is a unique
identifier, it stores (v, r, i, j, idv) on a list and outputs (i, idv) to Pj .

Open: On input (open, i, j, idv) by Pi, the ideal functionality outputs (v, r, i, j, idv) to Pj . If (no open, i, idv) is

given by the adversary, and Pi ∈ P̂, the functionality outputs (⊥,⊥, i, j, idv) to Pj .

Fig. 3: FCommit: Ideal functionality for commitments.

The 〈·〉S-representation of SPDZ All computations during the online phase are done using additively-
shared values. In the setting with a dishonest majority, the parties cannot alter such a shared value as it
is secured using a secret-shared MAC (with key α). The key α is also additively-shared among the parties,
where party Pi holds share αi such that α =

∑n
i=1 αi.

If a value is put into such form, then we say that it is in 〈·〉S-representation.

Definition 2. Let x, y, e ∈ F, then the 〈x〉S-representation of x is defined as

〈x〉S =
(

(x1, . . . , xn) , (γ(x)1, . . . , γ(x)n)
)
,

7The SPDZ protocol already used FCommit and the proof of security holds in the ROM, so these are not extra
assumptions. We only additionally require the existence of FBulletin and the DLP-hard group G.
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Functionality FRand

Let F be a field such that there exists a PPT TM to efficiently sample values r ∈ F uniformly at random.

Random sample: Upon receiving (rand,F) from all parties, it samples a uniform r ∈ F and outputs (rand, r) to
all parties.

Fig. 4: FRand: Functionality to sample randomness.

where x =
∑n
i=1 xi and α · x =

∑n
i=1 γ(x)i. Each player Pi will hold his shares xi, γ(x)i of such a represen-

tation. Moreover, we define

〈x〉S + 〈y〉S =
(

(x1 + y1, . . . , xn + yn), (γ(x)1 + γ(y)1, . . . , γ(x)n + γ(y)n)
)
,

e · 〈x〉S =
(

(e · x1, . . . , e · xn), (e · γ(x)1, . . . , e · γ(x)n)
)
,

e+ 〈x〉S =
(

(x1 + e, x2, . . . , xn), (γ(x)1 + e · α1, . . . , γ(x)n + e · αn)
)
.

This representation is linear - if all parties agree upon the (linear) function that should be applied, then
they can perform these on the 〈·〉S-representations without interaction:

Remark 1. Let x, y, e ∈ F. We say that 〈x〉S =̂ 〈y〉S if the shares of x, y in 〈x〉S, 〈y〉S reconstruct to the same
value. Then it holds that

〈x〉S + 〈y〉S =̂ 〈x+ y〉S and e · 〈x〉S =̂ 〈e · x〉S and e+ 〈x〉S =̂ 〈e+ x〉S.

If we later want to reveal a value r inside 〈x〉S such that no party lied about its share, then we have to
check the shared MAC. Unfortunately, reconstructing both the secret and the MAC reveals the key and in a
distributed protocol, an adversary may be able to forge a different message due to early arrival of messages
(we assume rushing adversaries). We therefore introduce a protocol ΠMacCheck that verifies the MAC without
ever reconstructing the key. It can be found in Fig. 5.

Protocol ΠMacCheck

t values x1, . . . , xt have been opened. Each Pi has a key share αi and tag shares γ(xj)i for j ∈ [t].

(1) The parties use FRand to publicly sample a vector τ
$← Ft.

(2) Each party locally computes x =
∑t
j=1 τ [j] · xj .

(3) Each party locally computes γi =
∑t
j=1 τ [j] · γ(xj)i and σi = γi − αi · x.

(4) Each Pi uses FCommit to commit to σi as 〈〈σi〉〉.
(5) Each Pi uses FCommit to open 〈〈σi〉〉 to all parties.
(6) Each party computes and outputs σ =

∑n
i=1 σi.

Fig. 5: Protocol to verify the MACs on opened 〈·〉S-representations.

The following can then be shown:

Lemma 1. Let F = Zp for some prime p. If all shares were opened correctly and all parties follow the
protocol, then ΠMacCheck will always output 0. If one party cheated during the reconstruction of one xj or
sent an incorrect tag share, then ΠMacCheck outputs σ 6= 0 with probability at least 2/p.

Proof. See [18, Appendix D.3].
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3.1 The 〈·〉A-representation

In order to make SPDZ auditable we enhance the way shared values are represented and stored. In a nutshell,
we force the computing parties to commit to the inputs, opened values and outputs of the computation. All
intermediate steps can then be checked by performing the computation using the data on FBulletin. The
commitment scheme is information-theoretically hiding, and we will carry both the actual value 〈x〉S as well
as the randomness 〈x̃〉S of the commitment through the whole computation.

The commitment to a value x will be a Pedersen commitment pc(x, x̃) [34]. When we open a 〈·〉A-
representation, we reconstruct both x and x̃. This way the commitment is also opened (it is already published
on FBulletin) and everyone can check that it is correct (but the computing parties do not need to do so during
the online phase).

Definition 3. Let x, x̃ ∈ F and g, h ∈ G where both g, h generate G, then we define the 〈x〉A-representation
for x as

〈x〉A =
(
〈x〉S, 〈x̃〉S, pc(x, x̃)

)
,

where 〈x〉S is a representation of x as introduced in Def. 2.

Similarly to the linearity of 〈·〉S we can define linear operations on 〈·〉A as follows:

Definition 4. Let x, y, x̃, ỹ, e ∈ F. Then define

〈x〉A + 〈y〉A =
(
〈x〉S + 〈y〉S, 〈x̃〉S + 〈ỹ〉S, pc(x, x̃) · pc(y, ỹ)

)
,

e · 〈x〉A =
(
e · 〈x〉S, e · 〈x̃〉S, pc(x, x̃)e

)
,

e+ 〈x〉A =
(
e+ 〈x〉S, 〈x̃〉S, pc(e, 0) · pc(x, x̃)

)
.

We write that two 〈·〉A-representations 〈x〉A = (〈x〉S, 〈x̃〉S, cx), 〈y〉A = (〈y〉S, 〈ỹ〉S, cy) are identical (up to their
MACs), written 〈x〉A =̂ 〈y〉A, if

〈x〉S=̂〈y〉S and 〈x̃〉S=̂〈ỹ〉S and cx = cy.

Remark 2. Let x, y, e ∈ F. It holds that

〈x〉A + 〈y〉A =̂ 〈x+ y〉A and e · 〈x〉A =̂ 〈e · x〉A and e+ 〈x〉A =̂ 〈e+ x〉A.

In order to multiply two representations, we use Beaver’s circuit randomization technique [5], which works
because the representation is linear. Interestingly, one does not have to perform the computations on the
commitments during the online phase. Instead, only the 〈·〉S-representations are manipulated.

3.2 Shared randomness from the offline phase

Our online phase relies on the availability of 〈·〉A-representations of random values and multiplication triples.
In Fig. 6 we define the functionality FOffline that describes the behavior and output of the preprocessing. The
functionality will, in addition to generating random values and triples, also set up the shared MAC key. In
the case that all parties are corrupted, the functionality is allowed to output randomness that is not correct
– however, PA will be able to establish correctness during the audit phase.
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Functionality FOffline

Initialize: On input (Init,F,G, `) from all players, store the SIMD factor `. A chooses the set of parties P̂ ⊆ P
he corrupts.

(1) For all Pi ∈ P̂, A inputs αi ∈ F, while for all Pi ∈ P \ P̂, the functionality chooses αi
$← F uniformly at

random.
(2) Set they key α =

∑n
i=1 αi and send αi to Pi ∈ P \ P̂.

(3) Set the flag cheated = ⊥.

Audit: On input (Audit), return reject if cheated = > or if Initialize, Input or Triples was not executed. Else
return accept.

AuditRep(r1, . . . , rn, r̃1, . . . , r̃n):
(1) Set r =

∑n
i=1 ri, r̃ =

∑n
i=1 r̃i.

(2) If |P̂| = n, A inputs a vector ∆c ∈ G`. If ∆c is not the (1, . . . , 1) vector, set cheated = >.

If |P̂| < n set ∆c to the all-ones vector.
(3) Run macros 〈r〉S ← ASpdzRep(r1, . . . , rn) and 〈r̃〉S ← ASpdzRep(r̃1, . . . , r̃n).
(4) Define 〈r〉A = (〈r〉S, 〈r̃〉S, pc(r , r̃)�∆c). Return 〈r〉A.

ASpdzRep(r1, . . . , rn):
(1) Set r =

∑n
i=1 ri.

(2) For Pi ∈ P̂, A inputs γ(r)i,∆γ ∈ F`, and for Pi ∈ P \ P̂, choose γ(r)i
$← F` at random except for γ(r)j ,

with j being the smallest index not in P̂ (if there exists one).

(3) If |P̂| < n set

γ(r) = α · r +∆γ and γ(r)j = γ(r)−
n∑

j 6=i=1

γ(r)i,

else set γ(r) =
∑n
i=1 γ(r)i.

(4) Define 〈r〉S = (r1, . . . , rn,γ(r)1, . . . ,γ(r)n). Return 〈r〉S.

Input: This generates ` random values for the input.

(1) For each Pi ∈ P \ P̂ choose ri, r̃i
$← Fl, send these to Pi and pc(ri, r̃i) to A.

(2) For Pi ∈ P̂, A inputs ri, r̃i ∈ F`.
(3) Compute and return 〈r〉A ← AuditRep(r1, . . . , rn, r̃1, . . . , r̃n).

Triples: Generates ` multiplication triples.

(1) For Pi ∈ P \ P̂, the functionality samples ai, bi, ãi, b̃i
$← F` at random, sends them to Pi and

pc(ai, ãi), pc(bi, b̃i) to A.

(2) For Pi ∈ P̂, A inputs ai, bi, ci, ãi, b̃i, c̃i ∈ F`. Set a =
∑n
j=1 aj , b =

∑n
j=1 bj .

(3) Let Pi be an honest party. For each Pj ∈ P\P̂, j 6= i sample cj , c̃j
$← F`. For Pi set ci = a�b−

∑
j∈[n]\{i} cj

and c̃i
$← F`.

(4) For each Pi ∈ P \ P̂ send pc(ci, c̃i) to A and ci, c̃i to Pi. Set c =
∑
i ci.

(5) Run the macros

〈a〉A ← AuditRep(a1, . . . ,an, ã1, . . . , ãn),

〈b〉A ← AuditRep(b1, . . . , bn, b̃1, . . . , b̃n),

〈c〉A ← AuditRep(c1, . . . , cn, c̃1, . . . , c̃n).

(6) Return 〈a〉A, 〈b〉A, 〈c〉A.

Fig. 6: FOffline: Ideal functionality for the offline phase of auditable MPC.
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Protocol ΠOnline

The parties evaluate the circuit C over F, which has nI input gates and nM multiplication gates.

Initialize:
(1) The parties send (Init,F,G, `) to FOffline and obtain their shares αi.
(2) Use the random oracle H with the session ID and the CRS as input to choose two generators g, h ∈ G.
(3) The parties choose the smallest n′I ≥ nI , n′M ≥ nM such that ` divides both n′I , n

′
M . Then they and send

(Input, n′I) and (Triple, n′M ) to FOffline.

Input: PIi inputs a value x ∈ F. All Pj ∈ P and PIi do the following (using a new random value 〈r〉A):
(1) 〈r〉A is privately opened as r, r̃ to PIi .
(2) Let cr be the commitment of 〈r〉A on FBulletin. PIi checks that cr = pc(r, r̃). If not, the protocol is aborted.
(3) PIi broadcasts m = x− r to all Pj and FBulletin.
(4) All players locally compute 〈x〉A = 〈r〉A +m. Assign a new idx to 〈x〉A.

Compute: If Initialize has been executed and inputs for all input wires of C have been assigned, evaluate C gate
per gate as follows:
Add: For two values 〈x〉A, 〈y〉A with IDs idx, idy:

(1) Let idz be a fresh ID. Each party locally computes 〈z〉A = 〈x〉A + 〈y〉A and assigns idz to it. The
commitments are excluded from the computation.

Multiply: Multiply two values 〈x〉A, 〈y〉A with IDs idx, idy, using the multiplication triple (〈a〉A, 〈b〉A, 〈c〉A).
Let idz be a fresh ID.
(1) The players calculate 〈ε〉A = 〈x〉A − 〈a〉A, 〈ρ〉A = 〈y〉A − 〈b〉A. The commitments are excluded from the

computation.
(2) The players publicly reconstruct ε, ρ, ε̃, ρ̃ and send these values to FBulletin.
(3) Each player locally calculates 〈z〉A = 〈c〉A + ρ〈a〉A + ε〈b〉A + ερ and assigns the ID idz to it. The

commitments are excluded from the computation.
Output: The parties open the output 〈y〉A. Let a1, . . . , at be the values opened.

(1) All parties compute r ← ΠMacCheck(a1, . . . , at, ã1, . . . , ãt). If r 6= 0 then stop.
(2) All parties open the output 〈y〉A towards FBulletin.
(3) All parties compute s← ΠMacCheck(y, ỹ) If s 6= 0 then stop. Otherwise output y.

Audit:
(1) If the Output step was not completed, output no audit possible.
(2) Run Audit for FOffline. If it returns accept then continue, otherwise output no audit possible.
(3) We follow the computation gates of the evaluated circuit C in the same order as they were computed. For

the i-th gate, do the following:
Input: Let 〈r〉A be the opened value and idx be the ID of input x. Set cidx = pc(m, 0) · c, where c is the

commitment in 〈r〉A and m is the opened difference.
Add: The parties added 〈x〉A with idx and 〈y〉A with idy to 〈z〉A with idz. Set cidz = cidx · cidy .
Multiply: The parties multiplied 〈x〉A with idx and 〈y〉A with idy (using the auxiliary values
〈a〉A, 〈b〉A, 〈c〉A, 〈ε〉A, 〈ρ〉A with their respective IDs). The output has ID idz.

(3.1) Set cidz = cidc · c
ρ
ida
· cεidb

· pc(ε · ρ, 0).

(3.2) Check that cidx · c−1
ida

= pc(ε, ε̃,) and cidy · c−1
idb

= pc(ρ, ρ̃,). If not, output reject.
(4) Let y be the output of Output and cy be the commitment for the output value 〈y〉A.

If cy = pc(y, ỹ) then output accept y.
If cy 6= pc(y, ỹ) then output reject.

Fig. 7: ΠOnline: Protocol for the online phase of auditable MPC.
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3.3 The online phase

The online phase of our protocol is presented in Fig. 7. To create the transcript, every party puts all values
it ever sends or receives onto FBulletin (except for the private reconstruction of input values)8.

During the Initialize step of Π, the parties set up the secret-shared MAC key α, generate the parameters
g, h of the commitment scheme as well as correlated randomness for the computation. Each input party PIi
is allowed during Input to submit a value to the computation, where a random value is secretly opened
to it. It can then check that the commitment on it is correct, and blind its input using this opened value.
Observe that this is the only point in the online phase (excluding Audit) where a party actually checks a
commitment pc(·, ·).

Compute uses the linearity of the 〈·〉A-representation to perform linear operations on the shared values,
and multiplies two representations using the multiplication triples from the preprocessing using the circuit
randomization technique. Again, we do not check if reconstructed values actually open the commitments
correctly – this is only done by PA in the Audit phase. In Output a result of the computation will be
provided, where we check the MACs of the 〈·〉S-representations using the protocol in Fig. 5. This is to provide
resilience in case of a dishonest majority.

In Audit the auditor PA will first examine if the output of the offline phase is correct. If so, then he
will follow the computation gate by gate as it was done by P1, . . . ,Pn, where PA checks every opened 〈·〉A-
representation against the value on FBulletin. This will be done until the commitment of 〈y〉A, the result of
the computation, is reached, which is checked for correctness as well.

4 Security of the Online Phase

We will now prove security for the construction from the previous section in the UC framework, which implies
that ΠOnline fulfills the auditable correctness requirement from Def. 1.

Theorem 1. In the FOffline,FBulletin,FCommit-hybrid model with a random oracle H, the protocol ΠOnline im-
plements FOnline with computational security against any static adversary corrupting all parties except PA if
the DLP is hard in the group G.

Observe that we will use a programmable RO in the simulator, but this is only for technical reasons as
it generates a suitable CRS. This can be replaced by sampling the CRS in the offline phase.

Proof. We prove the above statement by providing two simulators SOnNormal,SOnFull. While the first (Fig. 8)
will be used if at least one party is honest, the second (Fig. 9) takes care of the fully malicious setting.

At least one honest party. The simulator runs an instance of ΠOnline with the players controlled by A and
simulated honest parties. For Initialize, Input, Add, Multiply it performs the same steps as in ΠOnline,
only that it uses a fixed input 0 for the simulated honest parties during Input. Since every set of at most
n − 1 shares of a value is uniformly random and does not reveal any information about the shared secret,
this cannot be distinguished from a real transcript.

During Output, we adjust the shares of one simulated honest party to agree with the correct output y
from FOnline: the simulator obtained the result y′ of the simulated computation, hence it can adjust the share
of a simulated honest party. Moreover, it also adjusts the MAC share as depicted in SOnNormal using the MAC
key α provided by FOffline. Since for each y there exists only one ỹ that opens the commitment 〈〈y〉〉 correctly
and we set y′i, ỹ

′
i such that the reconstructed value matches it, this is perfectly indistinguishable. This also

holds for the γ(·)-MACs. By the information-theoretic hiding of the 〈〈·〉〉-scheme indistinguishability follows.
Observe that in the ideal world, the simulator aborts in Output if any of the values opened by the dishonest
parties was inconsistent, whereas ΠOnline aborts if ΠMacCheck fails. This happens with probability at most 2/p
and is therefore negligible in κ due to Lemma 1.

8This does not break the security, because this is the same information that an A receives if he corrupts n − 1
parties.
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Simulator SOnNormal

Initialize:
(1) Set up FBulletin and start a local instance Π of ΠOnline with which the dishonest parties will communicate.

Moreover, for all Pi ∈ P \ P̂ simulate an honest party.
(2) Run a copy of FOffline, with which the dishonest parties and the simulated honest parties communicate

through the simulator.
(3) Send (Init, C,F) for each Pi ∈ P̂ to FOnline.

(4) Sample a generator g ∈ G at random, choose s
$← Z∗|G| and set h = gs. Set the random oracle H to output

the two generators g, h ∈ G. Then run this protocol step as in ΠOnline.
(5) Send (Init,F,G, l) for all simulated Pi. Record the α used by FOffline.
(6) Send (Input, n′I) and (Triple, n′M ) as in ΠOnline for all simulated Pi.

Input: PIi inputs a value xi.
If PIi is honest then follow ΠOnline for a default input value xi = 0.
If PIi is dishonest then extract the input value xi from Π and send (Input,PIi , idx, xi) for PIi and

(Input,PIj , idx, ?) for all PIj ∈ I \ Î to FOnline.

Compute: Set cheated = ⊥. If Initialize has been executed and inputs for all nI input gates of C have been
provided, evaluate C gate per gate as follows:
Add: Follow the steps of Add in ΠOnline.
Multiply: Follow the steps of Multiply in ΠOnline. If A makes the dishonest parties send shares that do not

open to the correct opening as expected, set cheated = >.
Output: Send (Compute) to FOnline. Obtain the output y from FOnline. Simulate ΠOnline as follows:

(1) Generate correct shares for the simulated honest parties for Π:
(1.1) Let Pi be a simulated honest party and y′ be the output of the simulated protocol. Set 〈y′〉A =

(〈y′〉S, 〈ỹ′〉S, c = pc(y′, ỹ′)).
(1.2) For Pi set new shares as follows:

y′i = y′i + (y − y′) and γ(y)′i = γ(y)′i + α(y − y′).

We have s 6= 0, so s−1 mod p exists. Hence we can choose

ỹ = (y′ − y + s · ỹ′)/s and ỹ′i = ỹ′i + (ỹ − ỹ′) and γ(ỹ)′i = γ(ỹ)′i + α · (ỹ − ỹ′).

(2) Follow the protocol ΠOnline to check the MACs according to Step (1) of Output. If the dishonest
parties provide incorrect γi in ΠMacCheck then set cheated = >.

(3) If cheated = > then let FOnline deliver ⊥ to the honest parties and stop.
(4) Send the shares of the simulated honest parties of the output 〈y′〉A to FBulletin, i.e. the additive shares

y′i, ỹ
′
i. If A does not provide correct shares of 〈y′〉A for all dishonest parties, then set cheated = >.

(5) Run ΠMacCheck as in ΠOnline. If the dishonest parties send incorrect γi then set cheated = >.
(6) If cheated = > then let FOnline deliver ⊥ to the honest parties and stop. Else output y.

Audit: Run Audit as in ΠOnline with the malicious players. Then invoke Audit in FOnline and output reject if
it is the output of FOnline. If not, reveal what FOnline outputs.

Fig. 8: SOnNormal: Simulator for the protocol ΠOnline, honest minority.

If moreover A decides to stop the execution, then SOnNormal will forward this to the ideal functionality
and A will not receive any additional information, as in the real execution. During the Audit phase, we also
do exactly the same as in the protocol, except when FOnline outputs reject but ΠOnline outputs accept
y. This means that A replaced the output y, but ΠMacCheck passed successfully. This breaks Lemma 1 as
mentioned before.

Fully malicious setting. The intuition behind SOnFull is that we let A send arbitrary messages during the
online phase. But since all messages for FOffline go through SOnFull, we extract the used inputs after the fact
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Simulator SOnFull

Initialize:
(1) Set up FBulletin and start a local instance Π of ΠOnline with which the dishonest parties will communicate.

Set the flag cheated = ⊥.
(2) Run a copy of FOffline, with which the dishonest parties communicate through the simulator. Record the

α used by FOffline during Initialize.

Input: PIi inputs a value xi.
If PIi is honest record it as it is sent by FOnline.
If PIi is dishonest then compute xi from m on FBulletin and 〈r〉A from the recorded outputs of FOffline. Then

send the input computed from it to FOnline.

Compute: If Initialize has been executed and inputs for all input gates of C have been provided, evaluate C
gate per gate as follows:
Add: Follow the steps of Add in ΠOnline.
Multiply: Follow the steps of Multiply in ΠOnline. If A makes the dishonest parties send shares that do not

open to the correct opening as expected, set cheated = >.

Output:
(1) Send (Compute) to FOnline.
(2) Follow the protocol ΠOnline of Output. If ΠOnline aborts or cheated = >, then set y∗ = ⊥, send it to
FOnline and abort.

(3) If all parties reconstruct an incorrect value y∗ then input this value into FOnline.
Audit: Run Audit as in ΠOnline with the malicious players. Then invoke Audit in FOnline and output reject if

it is the output of FOnline. If not, reveal what FOnline outputs.

Fig. 9: SOnFull: Simulator for the protocol ΠOnline, fully malicious.

which we then can use with FOnline. Observe that, since we cannot guarantee privacy, no inputs must be
substituted. In comparison to the honest-minority setting, we let the simulator in the ideal world not abort
in Output if any of the values sent by the dishonest parties was inconsistent, because A has the MAC key
α anyway and can therefore generate correct 〈·〉S-representations.

During Audit, we run the protocol ΠOnline also in the simulator. The difference between both is the
output of Audit in both worlds. Assume that FOnline outputs reject while ΠOnline outputs accept y.
Then A replaced the output y with another value y∗ (and also ỹ∗) that must open the commitment 〈〈y〉〉
correctly. But in Step (3) of Compute, the simulator already obtained y such that pc(y, ỹ) = pc(y∗, ỹ∗) for
some ỹ, and one can hence compute s = logg(h). Assuming A achieves this with non-negligible advantage
ε then we can use A to compute arbitrary logarithms with essentially the same advantage by adjusting the
programmable RO to output the DLP instance we want to break (the reduction may have to use the random
self-reducibility of the DLP to generate an instance that A can break).

5 Offline Phase

We will now provide an implementation of FOffline, that in particular allows to have an audit for the offline
phase. For the implementation, we use a somewhat homomorphic encryption scheme (SHE) which we will
now introduce.

5.1 Somewhat Homomorphic Encryption

A threshold somewhat homomorphic encryption scheme H = (KG,Enc,Dec,⊕,⊗) has a message space F,
randomness distribution χ, and we represent ciphertexts known to all parties with the notation
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[[x]] := Encpk(x). In addition, H has a predicate

correct : {0, 1}n(λ) × {0, 1}n(λ) × {0, 1}n(λ) × {0, 1}n(λ) → {0, 1}
(pk, c, x, r) 7→ correct(pk, c, x, r),

that maps to 1 if pk
$← KG(1λ), x ∈ F, r $← χ and c ← Encpk(x, r), but otherwise indicates that c can be

correctly decrypted after certain operations. This is needed to verify that a ciphertext c, even if generated
by a malicious party, fulfills certain criteria. We will later call a ciphertext c correct if the above predicate
correct evaluates to true.

The binary operators ⊕,⊗ then guarantee that, if correct evaluates to 1 on [[x]], [[y]],

Decsk([[x+ y]]) = Decsk([[x]])⊕ Decsk([[y]]) and Decsk([[x · y]]) = Decsk([[x]])⊗ Decsk([[y]]).

For our purposes, these homomorphic operations only need to support evaluation of circuits with poly-
nomially many additions and multiplicative depth 1, which in practice will be reflected by correct.

Meaningless Keys. The proof of security of the offline phase of [20] relies on an additional property of the
cryptosystem, namely the availability of meaningless keys. Note that this holds for schemes that are used as
H, such as e.g. BGV [9].

Definition 5. The scheme H has the meaningless keys property if there exists an algorithm KG that outputs
a meaningless public key, pk, such that for pk← KG(1λ), pk← KG(1λ) and any message x:

Enc(pk, x)
s
≈ Enc(pk, 0)

pk
c
≈ pk,

where the distributions are taken over the randomness of KG,KG.

In addition, we require the following interactive protocols that will be used for the preprocessing.

Functionality FKeyGenDec

Key generation:
(1) Compute (pk, sk)← H.KG(1λ).

(2) Let A choose skj for each Pj ∈ P̂.

(3) Generate shares ski for all Pi ∈ P \ P̂ consistent with sk, (skj)j∈P̂ .

(4) Send (pk, ski) to each honest Pi and pk to each Pj ∈ P̂. Store (pk, sk).

Distributed decryption:
(1) Upon receiving (Decrypt, pk, [[c]]) from all parties check whether there exists a shared key pair (pk, sk). If

not, return ⊥.
(2) Compute m← H.Decsk([[c]]) and send m to A. Upon receiving m∗ ∈ F∪{⊥} from A, send (Result,m∗) to

all players.

Designated decryption:
(1) Upon receiving (Decrypt, pk, [[c]],Pi) from all parties, check whether there exists a shared key pair (pk, sk).

If not, return ⊥. Compute m← H.Decsk([[c]]).

(2) If Pi ∈ P̂ then send (Result,m) to Pi.
(3) Else, wait for an m∗ ∈ F ∪ {⊥} from A. If m∗ ∈ F send (Result,m+m∗) to Pi, else send (Result,⊥).

Fig. 10: FKeyGenDec: Ideal functionality for distributed key generation and decryption with potential error.
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Zero-Knowledge proof of plaintext knowledge. Towards being able to use H in a distributed setting we assume
that there exists a protocol ΠZKPoPK called a zero-knowledge proof of plaintext knowledge between a prover

P1 and a verifier P2 that, for (pk, sk)
$← KG(1λ) has the following properties:

Correctness: If P1 generates a ciphertext c honestly as c← Encpk(x, r) for x ∈ F, r $← χ and provides these
x, r to ΠKeyGen, then the protocol outputs 1 with overwhelming probability.

Soundness: If P1 generated c such that ΠZKPoPK outputs 1 with high probability, then there exists a method
to extract (x′, r′) by rewinding P1 such that correct(pk, c, x′, r′) = 1.

Zero-Knowledge: P2 learns nothing about x, r from ΠZKPoPK, except for the result of the evaluation of
correct.

Such a protocol is called honest-verifier zero-knowledge if it fulfills the above requirements when P2’s choices
are not controlled by A. We will indeed require that ΠZKPoPK is honest-verifier zero-knowledge: in our
preprocessing protocols, all parties will sample the verifier’s messages with the coin-tossing functionality
FRand and the proofs are verified by all parties. This guarantees that the messages sent by the verifier are
indeed honestly generated, and at least one party either generates the proof correctly or acts as a verifier.

Distributed key generation and decryption. The distributed key generation protocol outputs a public key pk
to all parties, and a secret key share ski to each Pi. The distributed decryption protocol then allows the
parties to decrypt a public ciphertext so that all parties obtain the output.

The original SPDZ scheme used a distributed decryption protocol as modeled in Fig. 10, and assumed
that the key generation was e.g. implemented using another MPC protocol. This distributed decryption
protocol has the disadvantage that the resulting m may not be the correct decryption, and a check for
correctness of the result must be employed.

Cryptosystems that can be used to instantiate H are for instance the Ring-LWE-based BGV scheme
[9,10] as well as the more recent matrix-based cryptosystems like the GSW scheme [25,11].

5.2 Zero-Knowledge proofs

We first give a very simple and inefficient zero-knowledge proof for the following relation

RCTC =

 (a,w)

a = (c1, c2, d1, . . . , d`, pk) ∧w = (x1,x2, r1, r2)∧
c1 = Encpk(x1, r1) ∧ c2 = Encpk(x2, r2)∧

correct(pk, c1,x1, r1) ∧ correct(pk, c2,x2, r2)∧{
dk = pc(x1[k],x2[k])

}
k∈[`]

 ,

which can be found in Fig. 11. It combines two Σ protocols that simultaneously prove knowledge of two
ciphertexts and shows that their plaintexts are the messages that P1 committed to.

The protocolΠZKCom is correct due to the linearity ofH and the commitment scheme9 and because P1 only
outputs transcripts that fulfill correct. Soundness follows due to the standard soundness of Σ protocols which
allows us to extract a witness and because e was chosen from a large enough space so it is computationally
infeasible for P1 to forge an accepting transcript. Zero-knowledge follows trivially in the programmable
random oracle model.

Proposition 1. The protocol ΠZKCom is a non-interactive zero-knowledge proof of knowledge for the relation
RCTC using the programmable RO H.

Note that this simple proof can easily be made more efficient using the techniques from [16], where one
has to adjust the choice of the challenge e accordingly.

9Note that we cheated a little, because mj
i comes from a larger interval than what the message space of the

commitment scheme is. One first has to reduce mj
i to the appropriate interval, but we left this out for simplicity.
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Protocol ΠZKCom

The input to the protocol are two ciphertexts c1 = Encpk(x1, r1), c2 = Encpk(x2, r2) where x1,x2 ∈ F` as well as
{dk}k∈[`].

(1) For j ∈ [λ], P1 samples

mj
1,m

j
2

$← E(F`) and sj1, s
j
2

$← E(χ) and
{
bjk = pc(mj

1[k],mj
2[k])

}
k∈[`]

.

(2) P1 computes [[mj
i ]]← Encpk(mj

i , s
j
i ) for i ∈ {1, 2}.

(3) P1 computes

e← H
({

[[mj
1]]||[[mj

2]]||{bjk}k∈[`]
}
j∈[λ]

||c1||c2||{dk}k∈[`]
)

where e ∈ {0, 1}λ.
(4) For i ∈ {1, 2}, j ∈ [λ], k ∈ [`] P1 computes

αji = mj
i + e[j] · xi and βji = sji + e[j] · ri.

(5) Output (
[[mj

1]], [[mj
2]],
{
bjk

}
k∈[`]

,αj1,α
j
2, β

j
1, β

j
2

)
j∈[λ]

if the transcript leaks no informationa about x1,x2, r1, r2, otherwise go to Step (1).
(6) P2 computes

[[αji ]]← Encpk(αji , β
j
i ) and e′ ← H

({
[[mj

1]]||[[mj
2]]||{bjk}k∈[`]

}
j∈[λ]

||c1||c2||{dk}k∈[`]
)
.

(7) P2 checks for i ∈ {1, 2}, j ∈ [λ], k ∈ [`] that
(7.1) [[αji ]] = [[mj

i ]]⊕ e
′[j] · c1,

(7.2) correct(pk, [[αji ]],α
j
i , β

j
i ) = 1,

(7.3) pc(αj1[k],αj2[k]) = bjk · d
e′[j]
k .

If one of the checks fails then P2 outputs reject, otherwise accept.

aSuch a check highly depends on the cryptosystem H and we leave it out here. Such a check should be successful
for honest instances with probability 1− 1/poly(λ).

Fig. 11: ΠZKCom: NIZK proof for the relation RCTC .

5.3 Resharing plaintexts among parties

In order to compute the secret-shared MAC, we compute the product of the shared value and the secret
MAC key α using H and reshare the result. To perform this resharing the protocol Reshare as depicted in
Fig. 12 is used.

The following statements about Reshare can easily be verified:

Proposition 2. Assuming H and FBulletin, then Reshare on input [[m]] has the following properties in the
ROM:

(1) If each Pi honestly follows the protocol, then Pi obtains a share mi such that m =
∑
imi. For each

Pi 6∈ P̂ the share mi is uniformly random.
(2) Assuming all the NIZKs are correct but the parties act maliciously, then [[m′]] is a correct H ciphertext

such that m′ =
∑
imi and each Pi knows the share mi.

Both statements hold with probability that is overwhelming in λ.

The procedure in Reshare is sufficient as long as no commitments are involved in the resharing. To add
them, we introduce the procedure ComReshare which can also be found in Fig. 12.
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Procedure Reshare: The input to the procedure is [[m]].

(1) Each Pi samples ri
$← F`. We set r =

∑n
j=1 rj .

(2) Each Pi computes and broadcasts [[ri]]← Enc(ri) to all parties and FBulletin together with a NIZK-version
of ΠZKPoPK.

(3) The players compute [[r]] =
⊕n

i=1[[ri]], set [[m+ r]] = [[m]]⊕ [[r]] and check the ZKPoPKs. If they are not
correct, then they abort.

(4) The players decrypt [[m+ r]] to δ using FKeyGenDec.
(5) All players set [[m′]]← Encpk(δ, 0)⊕ (

⊕n
i=1 [[−ri]]).

(6) P1 computes m1 = δ − r1 and outputs ([[m′]],m1). Each other player Pi sets mi = −ri and outputs
([[m′]],mi).

Procedure RandShareCom: Sample ` random commitments plus ciphertexts encrypting their opening. Let def
be a flag.

(1) Each Pi samples ri, r̃i
$← F`. We denote r =

∑n
j=1 rj and r̃ =

∑n
j=1 r̃j .

(2) Depending on the flag def:
if def = ⊥: Each Pi computes and broadcasts [[ri]]← Enc(ri), [[r̃i]]← Enc(r̃i) to all parties and FBulletin.
if def = >: Each Pi computes [[ri]] ← Enc(ri), [[r̃i]] ← Enc(r̃i) and commits to them using FCommit. In a

next step, each Pi opens the commitment to all parties and FBulletin.
(3) For each k ∈ [`], each party Pi publishes 〈〈ri[k]〉〉 = pc(ri[k], r̃i[k]) on FBulletin and together with a proof

using ΠZKCom that RCTC holds for

a = ([[ri]], [[r̃i]], 〈〈ri[1]〉〉, . . . , 〈〈ri[`]〉〉, pk) .

(4) Each Pi checks that the proofs are valid. If not, then abort.
(5) The players locally compute

[[r]] =

n⊕
i=1

[[ri]] and [[r̃]] =

n⊕
i=1

[[r̃i]] and

{
〈〈r[k]〉〉 =

∏
i∈[n]
〈〈ri[k]〉〉

}
k∈[`]

.

(6) Output [[r]], [[r̃]], {〈〈r[k]〉〉}k∈[`].

Procedure ComReshare: The input to the procedure is [[m]].
(1) Compute

(
[[r]], [[r̃]], {〈〈r[k]〉〉}k∈[`]

)
← RandShareCom(>).

(2) Set [[m+ r]] = [[m]]⊕ [[r]].
(3) The players decrypt [[m+ r]] using FKeyGenDec to obtain δ.
(4) All players set [[m′]]← Encpk(δ, 0)⊕ (

⊕n
i=1 [[−ri]]).

(5) P1 sets m1 = δ − r1 and each other Pi sets mi = −ri. Moreover, each Pi sets m̃i = −r̃i.
(6) For each k ∈ [`] compute 〈〈m′[k]〉〉 = pc((δ)[k], 0) ·Πi∈[n]〈〈ri[k]〉〉−1.
(7) Each Pi outputs ([[m′]], [[r̃]],mi, m̃i, 〈〈m′[1]〉〉, . . . , 〈〈m′[`]〉〉).

Fig. 12: Procedures Reshare, RandShareCom and ComReshare that reshare a ciphertext, generate a random
ciphertext plus commitment and reshare a ciphertext with commitments.

Proposition 3. Assuming H, FBulletin and a group G where the DLP is hard, then ComReshare has the
following properties in the ROM:

(1) If each Pi honestly follows ComReshare, then Pi obtains mi, m̃i such that m =
∑
imi, m̃ =

∑
i m̃i. For

each Pi 6∈ P̂ these shares are uniformly random. Moreover, each Pi obtains 〈〈m[k]〉〉 = pc(m[k], m̃[k]).

(2) If all NIZKs are correct, [[m′]], [[r̃]] are correct ciphertexts, each Pi has shares mi, m̃i such that m′ =∑
imi, r̃ =

∑
i m̃i and 〈〈m′[k]〉〉 = pc(m′[k], r̃[k]).

Both statements hold with probability that is overwhelming in λ.
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5.4 Checking the correctness of the output

Whenever ciphertexts must be decrypted in the protocol the functionality FKeyGenDec is used. This means
that A will be able to influence the outcome of the decryption process, and we hence have to check the
output for correctness. While (according to FOffline) this is ok for the secret-shared MACs, the functionality
requires that multiplication triples should be correct. A procedure to check this is given in Fig. 13.

Procedure DataCheck

The input to the procedure are triples t1, . . . , t2k We put the triples into the checking and evaluation vectors C
and O. For a vector of triples C, we want to access all ith 〈·〉A-representations in vector form as C(i).

(1) Let C := (t1, . . . , tk) and O := (tk+1, . . . , t2k).
(2) The parties use H to generate the joint random vector t ∈ Fk. As seed s they use the public transcript of

GenTriples.
(3) Calculate

γ = t�O(1)−C(1) and ∆ = O(2)−C(2),

then open γ and ∆ towards all players and FBulletin.
(4) Each party evaluates

v = t�O(3)−C(3)−∆�C(1)− γ �C(2)−∆� γ
and commits to its share of v using FCommit. Check if the commitments hold. If not, then abort.

(5) Each party broadcasts its opening value of the commitment to its share of v and then locally reconstructs v.
(6) If v = 0 then output O (also check that the commitments open to the correct values). Otherwise abort.

Fig. 13: DataCheck: Procedure to check the validity of triples.

Lemma 2. In the ROM, the test DataCheck is correct and an adversary corrupting up to n− 1 parties can
pass the test DataCheck for k triples, out of which at least one is not correct, with probability at most k/|F|.
If |P̂| = n then this holds if one tests the commitents of the 〈·〉A-representations in Step (6).

Proof. Let us consider two triples (a, b, c) ∈ F3 and (x, y, z) ∈ F3. For t · (a · b− c) = (x · y − z) with t
$← F,

the following cases can happen:

(1) (a, b, c) correct, (x, y, z) not: the adversary has no chance to win.
(2) (a, b, c) not correct, (x, y, z) correct: there exists only one t ∈ F to satisfy the equation, namely t = 0.

The adversary can only win with probability 1/|F|.
(3) both not correct: there is only one t ∈ F such that the equation holds, hence winning probability is

1/|F|.

If A cheats during this process and t is chosen uniformly at random, then he can cheat for every pair of
triples with probability at most 1/|F| as explained above. The result then follows from a union bound over
all k instances.

5.5 The offline phase

The overall protocol ΠOffline which describes the full offline phase can be found in Fig. 15. We now give a
brief, informal outline of its idea which is based on the procedures that were described before.

During Initialize the parties will generate a key pair for the encryption scheme H as well as a random
MAC key α (also in encrypted form) and parameters g, h for the commitment scheme. Input uses the
procedure GenRandom from Fig. 14 which generates some random 〈·〉A-representations. Therefore, the parties
sample uniformly random encryptions together with commitments to the values. They then reshare the
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These procedures generate l input values or triples at a time. [[α]] is a ciphertext where every plaintext item equals
the MAC key α.

Procedure GenRandom:
(1) Compute

(
[[r]], [[r̃]], {〈〈r[k]〉〉}k∈[`]

)
← RandShareCom(⊥).

(2) Compute γr,i ← Reshare(er ⊗ [[α]]), γ(r̃)i ← Reshare([[r̃]]⊗ [[α]]).
(3)

(
(ri[k], γr,i[k]) , (r̃i[k], γ(r̃)i[k]) , (〈〈r[k]〉〉)

)
are now the components of 〈r[k]〉A for Pi.

Procedure GenTriples:
(1) Compute

([[a]], [[ã]], {〈〈a[k]〉〉}k∈[`])← RandShareCom(⊥),

([[b]], [[b̃]], {〈〈b[k]〉〉}k∈[`])← RandShareCom(⊥).

(2) The parties compute ea·b ← ea⊗eb and invoke ComReshare(ea·b). As a result, each party Pi obtains shares
ci, c̃i and all parties obtain a ciphertext ec, [[c̃]] as well as commitments {〈〈c[k]〉〉 = pc(c[k], c̃[k])}k∈[`].

(3) The parties compute

Reshare(ea ⊗ [[α]]) and Reshare([[ã]]⊗ [[α]]) to obtain 〈a〉A,

Reshare(eb ⊗ [[α]]) and Reshare([[b̃]]⊗ [[α]]) to obtain 〈b〉A,
Reshare(ec ⊗ [[α]]) and Reshare([[c̃]]⊗ [[α]]) to obtain 〈c〉A.

(4) Output the triples 〈a〉A, 〈b〉A, 〈c〉A.

Fig. 14: Procedures GenRandom and GenTriples to generate random 〈·〉A-representations and multiplication
triples.

product of these values with the MAC key α. In order to generate multiplication triples, Triples follows
a similar pattern but additionally computes a product of the random encryptions and reshares it with
commitments10. In comparison to Input we here additionally have to check that the generated triples are
valid multiplication triples.

Audit similarly as in ΠOnline follows the computation. In addition it ensures that the following properties
hold:

(1) All encrypted values and commitments have zero-knowledge proofs.
(2) All zero-knowledge proofs are correct.
(3) Linear operations on commitments are carried out correctly.
(4) The procedure DataCheck was executed correctly and the multiplicative property holds.
(5) All opened commitments are indeed correctly opened.

The protocol ΠMacCheck is not used in the preprocessing in DataCheck, as we directly check for correct openings
using the commitments. This is to simplify the protocol.

6 Security of the Offline Phase

In this section, we will give a proof of security of the offline phase.

Theorem 2. Let H be a somewhat homomorphic cryptosystem. Then ΠOffline implements FOffline with compu-
tational security against any static adversary corrupting at most all parties in the (FKeyGenDec,FCommit,FBulletin)-
hybrid model with a RO H if the DLP is hard in G.

10The MACs have no commitment so the normal PReshare algorithm is sufficient. In comparison, if we reshare the
product in a multiplication triple, then we have to take care that we generate a proper commitment for the output
of the procedure.
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Protocol ΠOffline

We define 1 ∈ F` to be the vector that is 1 in every coordinate.

Initialize:
(1) The parties use FKeyGenDec to generate a public key pk and a shared private key sk.
(2) Use the random oracle H with the session ID and the CRS as input to choose two generators g, h ∈ G.
(3) Each Pi generates a private αi ∈ F. Set α =

∑n
j=1 αj .

(4) Each Pi computes and broadcasts [[αi]] = Enc(1 · αi) to each party and FBulletin.
(5) Each player Pi uses the NIZK version of ΠZKPoPK to prove that [[αi]] is a correct ciphertext and a diagonal

element.
(6) Each player checks the zero-knowledge proofs from all other parties. If one is not correct, then abort.
(7) All players compute [[α]] =

⊕
−i = 1n[[αi]].

Input: Generate nI random values, where ` divides nI :
(1) Run (〈r1〉A, . . . , 〈r`〉A)← GenRandom(`) nI/` times.
(2) Return 〈r1〉A, . . . , 〈rnI 〉A.

Triples: Generate nM triples where ` divides nM :
(1) Run (t1, . . . , t`)← GenTriples(`) 2 · nM/` times.
(2) (t1, . . . , tnM )← DataCheck(t1, . . . , t2·nM ).
(3) Return t1, . . . , tnM .

Audit: If Compute was executed successfully, do the following together with FBulletin:
(1) Obtain all ids and messages on FBulletin.
(2) For every encryption [[i]] and commitment 〈〈j〉〉, check whether there exists a transcript of ΠZKCom or

ΠZKPoPK that guarantees its correctness. Otherwise return reject.
(3) For every transcript of ΠZKCom or ΠZKPoPK, check whether the values for each instance are on FBulletin.

Otherwise return reject.
(4) Run the verifier part for each transcript of ΠZKCom, ΠZKPoPK. If the verifier rejects, return reject.
(5) For each value 〈a〉A that was generated with GenRandom,GenTriples, check whether its commitment can

be obtained from the commitments to the shares as in GenRandom,GenTriples. If not, return reject.
(6) Run DataCheck on the commitments of the triples simulating the invocation of H. If one of the triples

that were returned by Compute does not open to 0, return reject.
(7) Check for every opened value r with randomness r̃ and commitment c whether c = pc(r, r̃). If not, return

reject.
(8) Return accept.

Fig. 15: ΠOffline: Protocol that performs the preprocessing for auditable MPC.

Proof. Similar to the online phase we again split the simulator in two: SOffFull in Fig. 16 handles the fully
malicious case, and SOffNormal (Figures 17,18) the setting where |P̂| < n.

Fully malicious setting. In the fully malicious setting, we do not have to simulate any honest party. Moreover,
the only output that Z ever obtains from FOffline is in the Audit step as in every other step, no honest party
interacts with the functionality (except PA).

We want to catch the adversary if he does something not according to the protocol, which means that he
can be caught during Audit. We therefore check if the transcript is well-formed (meaning legitimately comes
from a ΠOffline interaction). Additionally, S decrypts every ciphertext and checks whether the ciphertext
fulfills correct or the representation is in RCTC instead of verifying the NIZKs. By the definition of H and
Prop. 1 this is computationally indistinguishable from correct proofs using ΠZKPoPK, ΠZKCom. It also checks
whether the decrypted product of the multiplication triples was indeed decrypted correctly. An abort for
wrong decryption of triples will happen in Audit due to DataCheck with all but negligible probability. Hence
the output of SOffFull is computationally indistinguishable from that of ΠOffline.
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Simulator SOffFull

Initialize:
(1) The simulator starts a local copy of FKeyGenDec, FBulletin, FCommit as well as the random oracle H. Set the

flag cheated = ⊥.
(2) Send (Init,F,G, `) to FOffline in the name of all dishonest parties.
(3) The parties use FKeyGenDec as in Π to generate a public key pk and shares of a secret key sk for all parties.

The simulator obtains pk, sk.
(4) Let the parties perform Step (2) to Step (6). If the proofs are not correct, stop the execution of Initialize

here. Otherwise, decrypt all [[αi]] to obtain αi.
(5) Send the αi to FOffline.

Input:
(1) Wait for the transcript of Π for all instances of Input between the dishonest parties to be finished.
(2) If the transcript is not well-formed then aborta.
(3) For each instance of ΠZKPoPK check whether the ciphertext [[x]] fulfills correct. If not, then set cheated = >.
(4) For each instance of ΠZKCom check if [[x]], [[x̃]], 〈〈x〉〉 fulfills the RCTC relation. If not, then set cheated = >.
(5) For each instance of Input in the transcript call Input on FOffline. Send uniformly random values as inputs

for each Pi. If cheated = > then send a random ∆c 6= (1, . . . , 1), else send ∆c = (1, . . . , 1).

Triples:
(1) Wait for the transcript of Π for all instances of Triples between the dishonest parties to be finished.
(2) If the transcript is not well-formed then abort.
(3) For each instance of ΠZKPoPK check whether the ciphertext [[x]] fulfills correct. If not, then set cheated = >.
(4) For each instance of ΠZKCom check whether [[x]], [[x̃]], 〈〈x〉〉 fulfills the RCTC relation. If not, then set

cheated = >.
(5) For each call of ComReshare check if the correct value was announced as decrypted value of the product.

If not, then set cheated = >.
(6) For each instance of Triples in the transcript call Triples on FOffline. Send uniformly random values as

inputs for each Pi. If cheated = > then send a random ∆c 6= (1, . . . , 1), else send ∆c = (1, . . . , 1).

Audit:
(1) Query FOffline with (Audit). Return the value of FOffline to the requesting party.

aBy that we mean that the publicly available ciphertexts and opened values on FBulletin follow from ΠOffline.

Fig. 16: SOffFull: Simulator for the protocol ΠOffline, fully malicious case.

At least one honest party. The simulator will generate shares for the triples that are uniformly random, and
use the decryption key to fit these shares to the commitments that FOffline outputs for the honest parties.
Hence, the values of the dishonest parties are consistent with those values that the honest parties obtain and
are indistinguishable. If A cheats during the decryption, then the simulator will always abort in DataCheck,
which happens with essentially the same probability as the abort of DataCheck according to Lemma 2.
Observe that if the check fails, then S makes FOffline abort which is consistent with the protocol. The other
case in which S aborts is when a ciphertext is not correct or a tuple ([[a]], [[ã]], 〈〈a〉〉) does not fulfill RCTC . By
the assumption that ΠZKPoPK is an honest-verifier zero-knowledge proof and Prop. 1 the additional aborts
do only appear with probability negligible in λ.

The simulator will only output ` triples but can easily be generalized to the arbitrary case. As in [20] one
can then use the availability of a lossy key generation algorithm KG to show that SOffFull can work without
using the decryption key. The rewinding of the NIZKs to obtain witnesses in ΠOffline is not a problem, since
our protocol is not round-based (in a multi-round protocol, the extractor has to simulate previous rounds as
the oracle query used in the proof may have happened in a previous round) and we can use the extraction
due to [26].
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Simulator SOffNormal (part 1)

Initialize:
(1) The simulator starts a local copy of FKeyGenDec, FBulletin, FCommit as well as the random oracle H. Set

cheated = ⊥.
(2) For each Pi ∈ P \ P̂ simulate an honest party in a simulated protocol instance ΠOffline with the dishonest

parties.
(3) Send (Init,F,G, `) to FOffline in the name of all Pi ∈ P̂.
(4) The parties use FKeyGenDec as in Π to generate a public key pk and shares of a secret key sk for all parties.

The simulator obtains pk, sk.
(5) Let the parties perform Step (2) to Step (6). Decrypt the [[αi]] from the dishonest parties. If the ciphertexts

are not formed according to correct then abort. Otherwise, use the αi and compute α =
∑
i αi.

Audit:
(1) Query FOffline with (Audit). Return the value of FOffline to the requesting party.

SReshare: The simulator runs PReshare with the dishonest parties, but additionally does the following:
– In Step (2), it decrypts all ciphertexts er,i to obtain r̃i. It moreover checks whether these fulfill correct, if

not then abort.
– In Step (4), it obtains δ′ from the protocol and δ using the secret key to decrypt [[m+ r]]. It then saves

∆γ = δ′ − δ and γ(r)i = −ri for each Pi ∈ P̂ for later.

SRandShareCom: The simulator runs RandShareCom(⊥) with the dishonest parties , but additionally does the
following:

– In Step (1) obtain the commitment ci for each Pi ∈ P \ P̂ from FOffline. Sample each ri
$← F` and set r̃i

such that ci = pc(ri, r̃i) using the trapdoor.

– In Step (2) decrypt [[ri]], [[r̃i]] obtained from Pi ∈ P̂ and send them to FOffline.
– In Step (3) check whether the relation RCTC holds. If not, then abort.

Input: For each instance of GenRandom:
(1) Use SRandShareCom where the ci come from Step (1) of Input in FOffline.

(2) If SRandShareCom does not abort, send ri, r̃i for each Pi ∈ P̂ to FOffline.

(3) Simulate the instances of ASpdzRep using the above inputs using SReshare. Input the ∆γ , γ(r)i for Pi ∈ P̂
to FOffline.

Fig. 17: SOffNormal: Simulator for the protocol ΠOffline, honest minority.

7 Summary and Open Problems

In this paper, we described how to formally lift MPC into a setting where all servers are malicious. We
outlined how this concept can then be securely realized on top of the SPDZ protocol. Though our approach
can also be implemented for other MPC protocols, we focused on SPDZ since, even as an publicly auditable
scheme, its online phase is very efficient. We note that our protocol would also work for Boolean circuits,
but this would introduce a significant slowdown (since the MACs must then be defined as elements of an
extension field over F2, which leads to a significant overhead). It is an interesting future direction to design
an efficient auditable protocol optimized for Boolean circuits or circuits over fields with small characteristic.

With respect to online voting, there exist stronger degrees of auditability than we presented. An example
is the notion of universal verifiability (see e.g. [36,31]) where the auditor must not know the output of the
computation. We also do not provide accountability (see e.g. Küsters et al. [39]), and leave it as an open
question whether similar, efficient protocols can be achieved in this setting.

We leave a working implementation of our scheme as a future work. As our protocol is very similar in
structure to the original SPDZ, it should be possible to implement it easily on top of the existing codebase
of [18].
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Simulator SOffNormal (part 2)

SComReshare: The simulator runs ComReshare with the dishonest parties. If P1 ∈ P̂ then do the following:
– Commit to uniformly random ciphertexts using FCommit in Step (2) of RandShareCom.

– Use the simulated FCommit to obtain rj , r̃j for Pj ∈ P̂. Send these to FOffline and obtain ci for the Pi ∈ P\P̂.

– For each Pi ∈ P \ P̂ set r̃i such that c−1
i = pc(ri, r̃i) using the trapdoor.

– Afterwards, open the commitments of each honest Pi using FCommit as encryptions ri, r̃i. In Step (3) send
commitments c−1

i for each honest Pi.
– Follow the protocol. Compute δ′ ← Decsk([[m+ r]]). If δ′ 6= δ then set cheated = >.

If P1 ∈ P \ P̂ then do the following:
– Commit to uniformly random ciphertexts using FCommit in Step (2) of RandShareCom.

– Use the simulated FCommit to obtain rj , r̃j for Pj ∈ P̂. Send these to FOffline and obtain ci for the Pi ∈ P\P̂.

– For each Pi ∈ P \ P̂, i 6= 1 set r̃i such that c−1
i = pc(ri, r̃i) using the trapdoor. For P1 choose δ

$← F`
and set r1 = δ −m− (

∑
j∈[n]\{1} rj) where m is a decryption of the input [[m]] to the procedure. Then

set r̃1 such that c−1
1 = pc(r1 − δ, r̃1) using the trapdoor.

– Afterwards, open the commitments of each honest Pi using FCommit as encryptions ri, r̃i. In Step (3) send
commitments c−1

i for each honest Pi, i 6= 1 and c−1
1 · pc(δ, 0)−1.

– Follow the protocol. Compute δ′ ← Decsk([[m+ r]]). If δ′ 6= δ then set cheated = >.

Triples: For the first ` triples do the following:
(1) In Step (1) of GenTriples use SRandShareCom where the ci come from Step (1) of Triple in FOffline. If

SRandShareCom does abort, then abort.
(2) In Step (2) use [[m]] = [[a · b]] and run SComReshare where we send ai, bi, ri, ãi, b̃i, r̃i for each Pi ∈ P̂ to
FOffline. If SComReshare does abort, then abort.

(3) Simulate the instances of ASpdzRep for using the above inputs using SReshare. Input the ∆γ , γ(z)i for all

6 instances for Pi ∈ P̂ to FOffline.
For the second ` triples by just run the protocol GenTriples normally for each simulated honest party, except
for abort when a check for correct or RCTC fails. If in ComReshare the decrypted value δ differs from the
decryption of [[m+ r]] then set cheated = >.
Now simulate DataCheck as follows:
(1) Run DataCheck honestly until Step (6).
(2) Abort in Step (6) if DataCheck aborts or if cheated = >.

Fig. 18: SOffNormal: Simulator for the protocol ΠOffline, honest minority, continued.
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A A Generic Solution

We now argue that it is possible to securely implement FOnline using generic tools, namely a “strong” semi-
honest OT protocol in the sense that the protocol should be secure even if the adversary tampers with
the corrupted parties internal tapes (but follows the protocol honestly), and universally composable non-
interactive zero-knowledge proofs of knowledge(UC-NIZKPoKs) in the CRS model.

First of all, note that UC-NIZKPoKs trivially implement an auditable functionality: if the CRS and the
proof are posted on the bulletin board, then the auditor (i.e., anyone) can run the verifier algorithm and
double-check the output of the verifier.

Several notions of “strong” semi-honest protocols have been used in recent works – see Remark 1 in [28]
or the notion of “semi-malicious” in [8]. In all notions different requirements of security still hold when the
adversary can tamper with the randomness of otherwise semi-honest parties.

In our setting, we need an OT protocol that is still secure even if the adversary tampers with the random
tape of one of the parties, and in addition the protocol should still be correct even if the adversary tampers
with the random tape of both parties. Here security is defined as the usual notion of indistinguishability
of the joint distribution of the view of the corrupted party and the outputs of all parties (including the
honest ones) between a real execution of the protocol and a simulated one. The correctness requirements
can similarly be defined, but we only require that indistinguishability should hold w.r.t. the output of the
computation.

Note that in the case where there is at least one honest party, any semi-honest protocol can be turned
into one that gives full security (not only correctness) when the adversary tampers with the randomness
of the corrupted parties. The transformation goes as follows: at the beginning of the protocol Pi receives
a random string from all other parties and redefines his random tape as the XOR of its original random
tape and the strings obtained externally. As long as one party is honest, Pi’s random tape will be uniformly
distributed. However it is easy to see that this transformation does not work when all parties are corrupted.

Fortunately many “natural” OT protocols, such as [2], are still correct even when the adversary tampers
with the randomness of all parties. Then we can construct an “auditable” GMW-protocol against active
adversaries using such an OT protocol and NIZKPoK.

The protocol proceeds as follows: the input parties PI1 , . . . ,PIm share their inputs using an n− 1-out-of-n
secret sharing scheme and produce commitments to all of their shares. They publish the commitments on
the bulletin board and send one share to each server Pj . Those commitments should be binding even if all
parties (including the input parties) are corrupted. This can be achieved by using e.g. a commitment scheme
where the receiver does not send any message to the sender.
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Now the computing parties P1, . . . ,Pn engage in an execution of the GMW-protocol using the strongly-
correct OT and prove that all their messages are well formed using the NIZKPoK. If there is at least one
honest party, this protocol can be shown to be secure following the GMW-protocol (the only step missing
is the “coin-flipping into the well” but this is taken care by the fact that the OT protocol enjoys “strong”
security against semi-honest corruptions). In the audit phase PA checks all the NIZKs on the bulletin board
and accepts y if they do and rejects if any NIZK verification fails. As the OT protocol is guaranteed to be
correct even when all parties use bad randomness but follow the protocol, the auditor only outputs accept
y if this is the correct output.

B Efficiency

The practical efficiency of the offline and audit phase of our protocol crucially depends on how fast com-
mitments can be computed and checked. We now discuss the efficiency of our approach and present a few
optimizations.

B.1 Asymptotic efficiency

In terms of asymptotic efficiency, ΠOnline is as efficient as the SPDZ protocol. The number of local field
operations and sent values increases by a modest factor of two, plus some additional work for each input-
providing party (to check whether the commitment is correct).

To be more precise, we have to distinguish between the field operations in F and the group operations
in G. In the standard setting, where each party provides O(1) inputs and O(1) output values are jointly
computed, and where the number of gates in our circuit is upper-bounded by |C|, all operations of the online
phase (Input, Add, Multiply, Output) together can be performed by each player doing at most O(n · |C|)
field operations. Assuming that we use Pedersen commitments to implement FCommit in practice, we obtain
an extra O(n · log p) group operations during Input and Output. In terms of network load, each party sends
or receives O(n · |C|) field elements over the network during the Input phase and while the computation is
carried out, and O(n) elements from F and G during Output.

Concerning the Audit phase of the protocol (we exclude FOffline from the discussion), we observe that
the strategy of it is to follow the computation with the commitments. The number of operations in F is
O(n · |C|), which is comparable to the online phase. In addition, the algorithm performs the gate operations
on commitments and checks whether every opening of a commitment was correct – this in total requires
O((n+ |C|) · log p) group operations.

B.2 Towards a faster offline phase

Generating the commitments for 〈·〉A-representations can be made faster using preprocessing as in [12,30].
Moreover, it is possible to reduce the total number of commitments (introducing a moderate slowdown during
the online phase) as follows: instead of computing one commitment per value, one can also use s pairwise
distinct generators g1, . . . , gs ∈ F together with just one randomness parameter, where generator gi is used
to commit to the ith value.

A representation (x1, . . . , xt, x̃, g
x1
1 · · · g

xt
t h

x̃) of t values in parallel is component-wise linear, and mul-
tiplications can also be performed as before (now for multiple elements in parallel). We observe that the
computation of a commitment with many generators can be substantially faster than computing all com-
mitments individually. This optimization, similar to [19], works for a large class of circuits. In order to use
this optimization, one also has to precompute permutations between the representations which must then be
used during the online phase. This leads to a moderate slowdown during the evaluation.
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B.3 Tweaks for the audit phase

The audit process, as explained in the protocol ΠOnline, basically consists of (i) performing linear operations
on commitments and (ii) checking whether they open to the correct values. Whereas we see no approach to
speed up the first part, we will address the second one using a well-known technique from [6].

Let c1, . . . , ct ∈ G be the commitments and let x1, . . . , xt, x̃1, . . . , x̃t be the values that should open them.
We want to establish that ∀i ∈ [t] : ci = gxihx̃i . The idea is to compute a random linear combination of
all commitments, and thus to check all of them at once. Therefore, choose the coefficients of the random
combination from the interval 0, . . . , 2κ − 1. Now computing such a random linear combination will yield a
false positive with probability ≈ 2−κ, but we can adjust the error probability and make it independent of
the field description size log |F|. This also yields less computational overhead, as we only have to raise group
elements to at most 2κth powers. The algorithm looks as follows:

(1) Sample a
$← {0, . . . , 2κ − 1}t uniformly at random.

(2) Check that
∏
i c

a[i]
i =

∏
i(g

xihx̃i)a[i] = g
∑

i a[i]xih
∑

i a[i]x̃i .

Bellare et al. show in [6] that this algorithm fails to correctly verify with probability 2−κ.
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