
Masking and Leakage-Resilient Primitives:
One, the Other(s) or Both?

Sonia Beläıd1,2, Vincent Grosso3, François Xavier-Standaert3

1 École Normale Supérieure, 45 rue dUlm, 75005 Paris.
2 Thales Communications & Security, 4 Avenue des Louvresses, 92230 Gennevilliers.

3 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.

Abstract. Securing cryptographic implementations against side-channel
attacks is one of the most important challenges in modern cryptography.
Many countermeasures have been introduced for this purpose, and ana-
lyzed in specialized security models. Formal solutions have also been pro-
posed to extend the guarantees of provable security to physically observ-
able devices. Masking and leakage-resilient cryptography are probably
the most investigated and best understood representatives of these two
approaches. Unfortunately, claims whether one, the other or their com-
bination provides better security at lower cost remained vague so far. In
this paper, we provide the first comprehensive treatment of this impor-
tant problem. For this purpose, we analyze whether cryptographic im-
plementations can be security-bounded, in the sense that the time com-
plexity of the best side-channel attack is lower-bounded, independent of
the number of measurements performed. Doing so, we first put forward a
significant difference between stateful primitives such as leakage-resilient
PRGs (that easily ensure bounded security), and stateless ones such as
leakage-resilient PRFs (that hardly do). We then show that in practice,
leakage-resilience alone provides the best security vs. performance trade-
off when bounded security is achievable, while masking alone is the so-
lution of choice otherwise. That is, we highlight that one (x)or the other
approach should be privileged, which contradicts the usual intuition that
physical security is best obtained by combining countermeasures.

Besides, our experimental results underline that despite defined in ex-
actly the same way, the bounded leakage requirement in leakage-resilient
PRGs and PRFs imply significantly different challenges for hardware de-
signers. Namely, such a bounded leakage is much harder to guarantee for
stateless primitives (like PRFs) than for statefull ones (like PRGs). As a
result, constructions of leakage-resilient PRGs and PRFs proven under
the same bounded leakage assumption, and instantiated with the same
AES implementation, may lead to different practical security levels.



1 Introduction

Masking is a frequently considered solution to improve security against side-
channel attacks [5, 19]. A large number of papers investigated its application to
smart card implementations of the AES (e.g. [17, 37, 53, 55]). It essentially ran-
domizes all the sensitive variables in a cryptographic device, by splitting them
into d shares, and performs all computations on these shares afterwards. The
resulting process is expected to improve physical security since if the masking
scheme is carefully implemented (i.e. if the leakages of all the shares are indepen-
dent), higher-order moments of the leakage distribution have to be estimated to
reveal key-dependent information. It has been shown that the number of mea-
surements needed to perform a successful DPA (Differential Power Analysis)
increases exponentially with the number of shares (see, e.g. [44, 59]).

One limitation of masking is that (as most countermeasures against side-
channel attacks [30]) it “only” reduces the amount of information leakage, at
the cost of sometimes strong performance overheads [20]. Another line of work,
next denoted as leakage-resilient cryptography, followed a complementary ap-
proach and tried to make the exploitation of this information more difficult (e.g.
computationally). For this purpose, the main assumption is that the information
leakage per iteration is limited in some sense. When applied in the context of
symmetric cryptography, most instances of leakage-resilient constructions rely
on re-keying strategies for this purpose, as first suggested by Kocher [27]. Ex-
amples of primitives include Pseudo-Random Generators (PRGs) [12, 15, 41, 57,
58, 64, 65] and Pseudo-Random Functions (PRFs) [1, 10, 15, 34, 58, 64].

The topic of leakage resilience has given rise to quite animated debates in
the cryptographic community. Several assumptions have been proposed, and the
quest for models that adequately capture physical reality is still ongoing (see [57]
for a recent discussion). Yet, and independent of the relevance of the proofs ob-
tained within these models, a more pragmatic problem is to find out the security
levels of leakage-resilient constructions in front of standard side-channel adver-
saries (i.e. the same as the ones considered in security evaluations for masking).
That is, are these primitives useful to help cryptographic designers to pass cur-
rent certification procedures (e.g. EMVco [14] or Common Criteria [7])?

Unfortunately, claims in one or the other direction remained vague so far. The
main reason is that, as hinted by Bernstein in a CHES 2012 rump session talk,
substantiated answers require to consider both security and performances [3],
i.e. two qualities that are generally hard to quantify. In this paper, we aim to
contribute to this issue and provide tools allowing to determine the best way
to reach a given security level in different (software and hardware) scenarios,
within the limits of what empirical evaluations can provide. For this purpose,
we will consider the AES-based PRG and PRF illustrated in Figures 1 and 2,
respectively. For every key ki, the PRG produces a key ki+1 and N -1 strings
yi1, y

i
2, . . . , y

i
N−1, both obtained by encrypting N public plaintexts pij with ki.



Fig. 1. Stateful leakage-resilient PRG with N = 2 (left) and N = 256 (right).

As for the PRF, we use the tree-based construction from Goldreich, Gold-
wasser and Micali [18], where each step incorporates log2[N ] input bits and gen-
erates ki+1 = AESki(p

i
j). Following [34], the last stage is optionally completed

by a whitening step, in order to limit the data complexity of attacks targeting
the PRF output to one (e.g. when using large N values, typically).

Fig. 2. Stateful leakage-resilient PRF with N = 2 (left) and N = 256 (right).

Quite naturally, there is a simple security versus efficiency tradeoff for both
types of constructions. In the first (PRG) case, we produce a 128-bit output
stream every N

N−1 AES encryptions. In the second (PRF) case, we produce a

128-bit output every 128
log(N) AES encryptions (+1 if output whitening is used).

The details of these primitives are not necessary for the understanding of this
work. The only important feature in our discussions is that the PRG construction
is stateful while the PRF one is stateless. As a result, the PRG limits the number



of measurements that a side-channel adversary can perform with the same key,
while the PRF limits his data complexity (i.e. the number of plaintexts that can
be observed). In practice, it means that in this latter case, the same measurement
can be repeated multiple times, e.g. in order to get rid of the physical noise
through averaging. As already discussed by Medwed et al. in [34], Section 3, this
may lead to significant difference in terms of security against DPA.

In order to compare and combine these two primitives with masking, we
investigate whether they can lead to security-bounded implementations, i.e. im-
plementations such that the time complexity of the best side-channel attack
remains bounded independent of the number of measurements performed by the
adversary. Doing so, we first show that the stateful leakage-resilient PRG in
Figure 1 naturally leads to such implementations. By contrast, this guarantee is
harder to reach with (stateless) leakage-resilient PRFs such as in Figure 2. The
tweaked construction proposed in [34] (that takes advantage of hardware paral-
lelism) is in fact the only security-bounded PRF we found in our experiments.
Next, we put forward that better security at lower cost is obtained by using the
leakage-resilient PRG alone (i.e. without masking), while masking alone is the
most efficient solution for improving the security of stateless primitives whenever
the implementations cannot be security-bounded. Therefore, our results under-
line that both masking and leakage-resilient primitives can be useful ingredients
in the design of physically secure designs. But they also lead to the counterintu-
itive observation that sometimes (in fact, frequently), these solutions are better
used separately, hence contradicting the usual intuition that security against
side-channel attacks is best obtained via a combination of countermeasures.

Admittedly, these results are only obtained for a set of side-channel attacks
that are representative of the state-of-the-art. Hence, positive observations such
as made for the tweaked construction in [34] are not proven: they only indicate
that the cryptanalysis of such schemes may be hard with current knowledge.
In the same lines, the differences between leakage-resilient PRGs and PRFs do
not contradict their proofs: they only indicate that the (crucial) assumption of
bounded leakage can imply different challenges for hardware designers. Hence,
instantiating these primitives with the same AES implementation can lead to
different security levels (even if the same N value is used in both cases).

2 Methodology & limitations

The main goal of this paper is to provide sound techniques to evaluate how
leakage-resilient PRGs/PRFs and masking combine. In this section, we provide
a brief description of the methodology we will use for this purpose, and underline
its limitations. The two main components, namely performance and security
evaluations, are detailed in Sections 3 and 4, and then combined in Section 5.
Our proposal essentially holds in five steps that we detail below.

1. Fix the target security level. In the following, we will take the AES Rijndael
with 128-bit key as case study. Since a small security degradation due to



side-channel attacks is unavoidable, we will consider 120-bit, 100-bit and
80-bit target security levels for illustration. We do not go below 80-bit keys
since it typically corresponds to current short-term security levels [9].

2. Choose an implementation. Given a cryptographic algorithm, this essentially
corresponds to the selection of a technology and possibly a set of counter-
measures to incorporate in the designs to evaluate. In the following, we will
consider both software and hardware implementations for illustration, since
they lead to significantly different performance and security levels. As for
countermeasures, different types of masking schemes will be considered.

3. Evaluate performances / extract a cost function. Given an implementation,
different metrics can be selected for this purpose (such as code size, RAM, or
cycle count in software and area, frequency, throughput or power consump-
tion in hardware). Both for software and hardware implementations, we will
use combined functions, namely the “code size × cycle count” product and
the “area / throughput” ratio. While our methodology would be perfectly
applicable to other choices of metrics, we believe they are an interesting
starting point to capture the efficiency of our different implementations. In
particular for the hardware cases, such metrics are less dependent on the
serial vs. parallel nature of the target architectures (see [26], Section 2).

4. Evaluate security / extract the maximum number of measurements. This cen-
tral part of our analysis first requires to select the attacks from which we
will evaluate security. In the following, we will consider the “standard DPA
attacks” described in [31] for this purpose. Furthermore, we will investigate
them in the profiled setting of template attacks (i.e. assuming that the ad-
versary can build a precise model for the leakage function) [6]. This choice
is motivated by the goal of approaching worst-case evaluations [56]. Based
on these attacks, we will estimate the security graphs introduced in [61], i.e.
compute the adversaries’ success rates in function of their time complexity
and number of measurements. From a given security level (e.g. 120-bit time
complexity), we will finally extract the maximum number of measurements
per key tolerated, as can be bounded by the PRG construction1.

5. Compute a global cost metric (possibly with an application constraint). In
case of security-bounded implementations, the previous security evaluation
can be used to estimate how frequently one has to “re-key” within a leakage-
resilient construction. From this estimate, we derive the average number of
AES encryptions to execute per 128-bit output. By multiplying this number
with the cost function of our performance evaluations, we obtain a global
metric for the implementation of an AES-based design ensuring a given se-
curity level. In case of security-unbounded implementations, re-keying is not
sufficient to maintain the target security level independent of the number of
measurements performed by the adversary. So the cost functions have to be
combined with an application constraint, stating the maximum number of
measurements that can be tolerated to maintain this security level.

1 Not the PRF which, as previously mentioned, can only bound the data complexity.



Quite naturally, such a methodology is limited in the same way as any perfor-
mance and security evaluation. From the performance point-of-view, our inves-
tigations only apply to a representative subset of the (large) set of AES designs
published in the literature. Because of place constraints, we first paid atten-
tion to state-of-the-art implementations and countermeasures, but applying our
methodology to more examples is naturally feasible (and desirable). A very sim-
ilar statement holds for security evaluations. Namely, we considered standard
DPA attacks as a starting point, and because they typically correspond to the
state-of-the-art in research and evaluation laboratories. Yet, cryptanalytic pro-
gresses can always appear2. Besides, countermeasures such as masking may rely
on physical assumptions that are difficult to compare rigorously (since highly
technology-dependent), as will be detailed next with the case of “glitches”.

Note that these limitations are to a large extent inherent to the problem we
tackle, and our results also correspond to the best we can hope in this respect.
Hence, more than the practical conclusions that we draw in the following sections
(that are of course important for current engineers willing to implement physi-
cally secure designs), it is the fact that we are able to compare the performance
vs. security tradeoffs corresponding to the combination of leakage-resilient con-
structions with masking that is the most important contribution of this work.
Indeed, these comparisons are dependent on the state-of-the-art implementations
and attacks that are considered to be relevant for the selected algorithm.

3 Performance evaluations

In this section, we provide our performance evaluations for unprotected and
masked AES designs. As previously mentioned, we will consider both software
and hardware examples for this purpose. In this context, the main challenge
is to find implementations that are (reasonably) comparable. This turned out
to be relatively easy in the software case, for which we selected a couple of
implementations in 8-bit microcontrollers, i.e. typical targets for side-channel
analysis. By contrast, finding implementations in the same technology turns out
to be more challenging in hardware: transistor sizes have evolved from (more
than) 130µm to (less than) 65ηm over the last 15 years (i.e. the period over which
most countermeasures against side-channel attacks have been proposed). Hence,
published performance evaluations for side-channel protected designs are rarely
comparable. Yet, we could find several designs in a recent FPGA technology,
namely the Xilinx Virtex-5 devices (that are based on a 65ηm process).

The performances of the implementations we will analyze are summarized in
Table 1. As previously mentioned, our software cost function is the frequently
considered “code size × cycle count” metric, while we use the “area / through-
put” ratio in the hardware (FPGA) case. As for the countermeasures evaluated,
we first focused on the higher-order masking scheme proposed by Rivain and

2 For example, the algebraic side-channel attacks introduced in [49, 50], while some-
what unrealistic for now, would certainly lead to different security levels.



Table 1. Performance of some illustrative AES implementations.

Software (8-bit) code size cycle cost physical
Implementations (bytes) count function assumptions

Unprotected [13] 1659 4557 7.560 -
1-mask Boolean [53] 3153 129 · 103 406.7 glitch-sensitive
1-mask polynomial [20, 45] 20 682 1064 · 103 22 000 glitch-resistant
2-mask Boolean [53] 3845 271 · 103 1042 glitch-sensitive

FPGA (Virtex-5) area throughput cost physical
Implementations (slices) (enc/sec) function assumptions

Unprotected (128-bit) [48] 478 245·106
11

21.46 -

1-mask Boolean (128-bit) [48] 1462 100·106
11

160.8 glitch-sensitive

Threshold (8-bit) [36] 958 170·106
266

1499 glitch-resistant

Prouff at CHES 2010, which can be considered as the state-of-the-art in soft-
ware [53]. We then added the CHES 2011 polynomial masking scheme of Prouff
and Roche [45] (and its implementation in [20]), as a typical example of “glitch-
resistant” solution relying on secret sharing and multiparty computation (see
the discussion in the next paragraph). A similar variety of countermeasures is
proposed in hardware, where we also consider an efficient but glitch-sensitive
implementation proposed in [48], and a threshold AES implementation that is
one of the most promising solutions to deal with glitches in this case [36]. Note
that this latter implementation is based on an 8-bit architecture (rather than a
128-bit one for the others). So although our cost function is aimed at making
comparisons between different architectures more reflective of the algorithms’
and countermeasures’ performances, more serial implementations as this one
generally pay a small overhead due to their more complex control logic.

Physical assumptions and glitches. As explicit in Table 1, countermeasures
against side-channel attacks always rely on a number of physical assumptions.
In the case of masking, a central one is that the leakage of the shares manip-
ulated by the target implementation should be independent of each other [22].
Glitches, that are transient signals appearing during the computations in certain
(e.g. CMOS) implementations, are a typical physical default that can cause this
assumption to fail, as first put forward by Mangard et al. in [32]. There are two
possible solutions to deal with such physical defaults: either by making explicit
to cryptographic engineers that they have to prevent glitches at the physical
level, or by designing countermeasures that can cope with glitches.

Interestingly, the first solution is one aspect where hardware and software
implementations significantly differ. Namely, while it is usually possible to ensure
independent leakages in masked software, by ensuring a sufficient time separation
between the manipulation of the shares, it is extremely difficult to avoid glitches
in hardware [33]. Yet, even in hardware it is generally expected that the “glitch
signal” will be more difficult to exploit by adversaries, especially if designers pay



attention to this issue [35]. In this context, the main question is to determine the
amplitude of this signal: if sufficiently reduced in front of the measurement noise,
it may turn out that a glitch-sensitive masked implementation leads to improved
security levels (compared to an unprotected one). Since this amplitude is highly
technology-dependent, we will use it as a parameter to analyze the security of
our hardware implementations in the next sections. Yet, we recall that it is a safe
practice to focus on glitch-resistant implementations when it comes to hardware.
Besides, we note that glitches are not the only physical default that may cause
the independent leakage assumption to be contradicted in practice [42, 51].

4 Security evaluations

We now move to the core of our analysis, namely the security evaluation of dif-
ferent implementations. For this purpose, we first need to discuss the type of
security evaluation we will conduct, which can be viewed as a tradeoff between
generality and informativeness. That is, one ideally wants to reach general con-
clusions in the sense that they are independent of the underlying device tech-
nology. A typical solution for this purpose is to evaluate the “security order” of
a countermeasure, as defined by Coron et al. [8]. Informally, the security order
corresponds to the largest moment in the leakage probability distributions that
is key-independent (hence from which no information can be extracted). For
example, an unprotected implementation can be attacked by computing mean
values (i.e. first-order moments) [28]. By contrast, the hope of masking is to
ensure that adversaries will have to estimate higher-order moments, which is ex-
pected to increase the data complexity required to extract information, as first
shown by Chari et al. [5]. Evaluating the order is interesting because under the
independent leakage assumption mentioned in the last section, it can be done
based on the mathematical description of a countermeasure only. Of course, the
informativeness of such an abstract evaluation is limited since (1) it indeed does
not allow testing whether the independent leakage assumption is fulfilled, and (2)
even if this assumption is fulfilled, there is no strict correspondance between the
security order and the security level of an implementation (e.g. measured with
a probability of success corresponding to some bounded complexities). This is
because already for masking (i.e. the countermeasure that aims at increasing
the security order), and even if independent leakages are observed in practice,
the actual complexity of a side-channel attack highly depends on the amount of
noise in the measurements. And of course, there are also countermeasures that
simply do not aim at increasing the security order, e.g. shuffling [21].

One appealing way to mitigate the second issue is to perform so-called “sim-
ulated attacks”. This essentially requires to model the leakage corresponding
to different sensitive operations in an idealized implementation. For example,
a usual approximation is to consider that all the intermediate values during
a cryptographic computation (such as the S-boxes inputs and outputs for a
block cipher) leak the sum of their Hamming weight and a Gaussian distributed



noise [30]. It is then possible to accurately estimate the evaluation metrics pro-
posed in [56] (i.e. mutual information, success rate, guessing entropy) from these
mathematically generated leakages. Furthermore, one can use the noise variance
as a security parameter and analyze its impact on the time and data complexity
of successful attacks. Quite naturally, such an alternative still does not solve the
first issue (i.e. the independent leakage assumption), for which the only possibil-
ity is to evaluate the real measurements of an actual implementation, in a given
technology. This latter solution is admittedly the most informative, but also the
least general, and is quite intensive for comparison purposes (since it requires to
have access to source codes, target devices and measurement setups for all the
designs to evaluate). Interestingly, it has been shown that simulated attacks can
be quite close to real ones in the context of standard DPA and masking [59]. So
since our goal is to show that there exist realistic scenarios where leakage-resilient
PRGs/PRFs and masking are useful ingredients to reach a given security level
at the lowest cost, we will use this type of evaluations in the following.

Note finally that performing simulated attacks could not be replaced by com-
puting explicit formulae for the success rate such as, e.g. [16, 52]. Indeed, these
formulae only predict subkey (typically key bytes) recoveries while we consider
security graphs for full 128-bit master keys. Beside, they are only applicable to
unprotected devices so far, and hardly capture masked implementations and the
effect of key-dependent algorithmic noise as we will consider next.

4.1 Evaluation setups

We will consider two types of setups in our evaluations: one for software, one for
hardware. As illustrated in Figure 3 in the case of a Boolean-masked S-box im-
plementation with two shares, the main difference is that the software performs
all the operations sequentially, while the hardware performs them in parallel. We

Fig. 3. Simulated leaking implementations. Left: software, right: hardware.



will further assume that the leakage of parallel operations is summed [40]. As pre-
viously mentioned, we will illustrate our analyses with a Hamming weight leakage
function. Additionally, we will consider a noise variance of 10, corresponding to
a Signal-to-Noise Ratio of 0.2 (as defined in [29])3. This is a typical value, both
for software implementations [11] and FPGA measurement boards [25].

Let us denote the AES S-box as S, a byte of plaintext and key as xi and ki
(respectively), the random shares used in masking as rji (before the S-box) and

mj
i (after the S-box), the Hamming weight function as HW, the bitwise XOR

as ⊕, the field multiplication used in polynomial masking as ⊗, and Gaussian-
distributed noise random variables N j

i . From these notations, we can specify the
list of all our target implementations as summarized in Table 2.

A couple of observations are worth being underlined as we now discuss.

First, and as already mentioned, the main difference between software and
hardware implementations is the number of exploitable leakage samples: there is
a single such sample per plaintext in hardware while there are 16×(Nm+1) ones
in software (with Nm the number of masks). Next, we only considered glitches in
hardware (since it is generally possible to ensure independent leakage in software,
by ensuring a sufficient time separation between the manipulation of the shares).
We assumed that “first-order glitches” can appear in our Boolean-masked FPGA
implementation, and modeled the impact of the mask as an additive binomial
noise in this case. We further assumed that the amplitude of this first-order signal
was reduced according to a factor f . This factor corresponds to the parameter
used to quantify the amplitude of the glitches mentioned in the previous section.
Note that this modeling is sound because the complexity of a first-order DPA
only depends on the value of its SNR (which is equivalent to correlation and
information theoretic metrics in this case, as proven in [31]). So even leakage
functions deviating from the Hamming weight abstraction would lead to similar
trends. Since the threshold implementation in [36] guarantees the absence of first-
order glitches, we only analyzed the possibility of second-order glitches for this
one, and modeled them in the same way as just described (i.e. by considering the
second mask M2

i as an additive binomial noise, and reducing the amplitude of
the second-order signal by a factor f). Third, the chosen-plaintext construction
of [34] is only applicable in hardware. Furthermore, we only evaluated its impact
for the unprotected implementation, and the 1-mask Boolean one with glitches.
As will become clear in the next section, this is because the data complexity
bound to 256 (that is the maximum tolerated by design in this case) is only
relevant when successful side-channel attacks occur for such small complexities
(which was only observed for implementations with first-order signal).

For convenience, we denoted each implementation in our experiments with
three letters. The first one corresponds to the type of scenario considered, i.e.
with Known (K) or carefully Chosen (C) plaintexts. The second one indicates

3 The SNR corresponds to ratio between the signal variance (that equals 2 for the
Hamming weights of uniformly distributed 8-bit values) and the noise variance.



T
a
b
le

2
.

L
is

t
o
f

o
u
r

ta
rg

et
im

p
le

m
en

ta
ti

o
n
s.

R
e
f.

8
-b

it
so

ft
w
a
re

le
a
ka
ge

fu
n
ct
io
n

(∀
i
∈

[1
;1

6
])

gl
it
ch
es

co
n
st
ru
ct
io
n

K
S
U

U
n
p
ro

te
ct

ed
[1

3
]

L
i

=
H
W

(S
(x

i
⊕

k
i
))

+
N

i
n
o

K
P

K
S
B

1
1
-m

a
sk

B
o
o
le

a
n

[5
3
]

L
1 i

=
H
W

(S
(x

i
⊕

k
i
)
⊕

M
i
)

+
N

1 i
,
L

2 i
=

H
W

(M
i
)

+
N

2 i
n
o

K
P

K
S
P

1
1
-m

a
sk

p
o
ly

n
o
m

ia
l

[2
0
,4

5
]

L
1 i

=
H
W

(S
(x

i
⊕

k
i
)
⊕

M
i
⊗

P
0
)

+
N

1 i
,

n
o

K
P

L
2 i

=
H
W

(S
(x

i
⊕

k
i
)
⊕

M
i
⊗

P
1
)

+
N

2 i

K
S
B

2
2
-m

a
sk

B
o
o
le

a
n

[5
3
]

L
1 i

=
H
W

(S
(x

i
⊕

k
i
)
⊕

M
1 i
⊕

M
2 i
)

+
N

1 i
,

n
o

K
P

L
2 i

=
H
W

(M
1 i
)

+
N

2 i
,
L

3 i
=

H
W

(M
2 i
)

+
N

3 i

R
e
f.

V
ir
te

x
-5

F
P
G
A

le
a
ka
ge

fu
n
ct
io
n

(s
u
m

ov
er

1
≤

i
≤

1
6
)

gl
it
ch
es

co
n
st
ru
ct
io
n

K
H

U
U

n
p
ro

te
ct

ed
(1

2
8
-b

it
)

[4
8
]

L
=

∑ [H
W

(S
(x

i
⊕

k
i
))

]
+

N
n
o

K
P

C
H

U
U

n
p
ro

te
ct

ed
(1

2
8
-b

it
)

[4
8
]

L
=

∑ [H
W

(S
(x
⊕

k
i
))

]
+

N
n
o

C
P

K
H

B
1

1
-m

a
sk

B
o
o
le

a
n

(1
2
8
-b

it
)

[4
8
]

L
=

∑ [H
W

(S
(x

i
⊕

k
i
)
⊕

M
i
)

+
H
W

(M
i
)]

+
N

n
o

K
P

K
H

B
∗ 1

1
-m

a
sk

B
o
o
le

a
n

(1
2
8
-b

it
)

[4
8
]

L
=

∑ [H
W

(S
(x

i
⊕
k
i
))

f
+

H
W

(M
i
)]

+
N

1
st

-o
rd

er
K

P

C
H

B
∗ 1

1
-m

a
sk

B
o
o
le

a
n

(1
2
8
-b

it
)

[4
8
]

L
=

∑ [H
W

(S
(x

⊕
k
i
))

f
+

H
W

(M
i
)]

+
N

1
st

-o
rd

er
C

P

K
H

T
2

T
h
re

sh
o
ld

(8
-b

it
)

[3
6
]

L
=

∑ [H
W

(S
(x

i
⊕

k
i
)
⊕

M
1 i
⊕

M
2 i
)

+
H
W

(M
1 i
)

+
H
W

(M
2 i
)]

+
N

n
o

K
P

K
H

T
∗ 2

T
h
re

sh
o
ld

(8
-b

it
)

[3
6
]

L
=

∑ [H
W

(S
(x

i
⊕
k
i
)⊕

M
1 i
)+

H
W

(M
1 i
)

f
+

H
W

(M
2 i
)]

+
N

2
n
d
-o

rd
er

K
P



whether we are in a Software (S) or Hardware (H) case study. The third one
corresponds to the type of countermeasure selected, i.e. Unprotected (U), 1- or
2-mask Boolean (B1, B2), 1-mask Polynomial (P1) and 2-mask threshold (T2).
The additional star signals finally reflect the presence of (first-order or second-
order) glitches. For example, KHB∗1 is an AES design protected with a 1-mask
Boolean scheme, implemented in an imperfect hardware leading to first-order
glitches, and analyzed in the context of known (uniform) plaintexts.

4.2 Template attacks and security graphs

Given the leakage functions defined in Table 2, a template attack first requires
to build a leakage model. In the following, and for each byte of the AES master
key, we will consider Gaussian templates for unprotected implementations, and
Gaussian mixtures for masked implementations. Let us denote the probability
density function of a Gaussian distribution taken on input z, with mean µ (resp.
mean vector µ) and variance σ2 (resp. covariance matrix Σ) as N (z|µ, σ2) (resp.
N (z|µ, Σ)). This notation directly leads to models of the form:

Pr
model

[ki|li, xi] =
N (li|µki,xi

, σki,xi
)∑

k∗
i ∈K
N (li|µk∗

i ,xi , σk∗
i ,xi))

, (1)

Pr
model

[ki|l, xi] =
N (l|µki,xi

, σki,xi
)∑

k∗
i ∈K
N (l|µk∗

i ,xi
, σk∗

i ,xi
))
, (2)

for (software and hardware) unprotected implementations and:

Pr
model

[ki|l1i , l2i , xi] =

∑
m∗

i∈M
N (l1i , l

2
i |µki,xi,m∗

i
, Σki,xi,m∗

i
)∑

k∗
i ∈K

∑
m∗

i∈M
N (l1i , l

2
i |µk∗

i ,xi,m∗
i
, Σk∗

i ,xi,m∗
i
)
, (3)

Pr
model

[ki|l, xi] =

∑
m∗

i∈M
N (l|µki,xi,m∗

i
, σki,xi,m∗

i
)∑

k∗
i ∈K

∑
m∗

i∈M
N (l|µk∗

i ,xi,m∗
i
, σk∗

i ,xi,m∗
i
)
, (4)

for (software and hardware) masked implementations with two shares. The for-
mula naturally extends to more shares, by just adding more sums over the masks.
Note that in these models, all the noise (including the algorithmic one in hard-
ware implementations) is captured by the Gaussian distribution4. Given these
models, the template adversary will accumulate information on the key bytes
ki, by computing products of probabilities corresponding to multiple plaintexts.
Doing so and for each key byte, he will produce lists of 256 probabilities corre-
sponding each possible candidate k̃i, defined as follows:

pk̃i
=

q∏
j=1

Pr
model

[k̃i|L(j), x
(j)
i ], (5)

4 While algorithmic noise is generated with a binomial distribution in our experiments
(as mentioned in the previous subsections), it is closely approximated by a normal
one, since combined with enough (simulated) physical noise that is Gaussian.



with the leakage vector L(j) respectively corresponding to l
(j)
i (resp. l(j)) in the

context of Equ. 1 (resp. Equ. 2) and l
1,(j)
i , l

2,(j)
i (resp. l(j)) in the context of

Equ. 3 (resp. Equ. 4) The number of measurements is given by q in Equ. 5. Next
and for each target implementation, we will repeat 100 experiments. And for each
value of q in these experiments, use a rank estimation algorithm to evaluate the
time complexity needed to recover the full AES master key [61]. Eventually, we
will build “security graphs” where the attack probability of success is provided
in function of a time complexity and a number of measurements.

Iterative DPA against constructions with carefully chosen plaintexts.
Note that while standard DPA attacks are adequate to analyze the security of
unprotected and masked implementations in a known-plaintext scenario, their
divide-and-conquer strategy hardly applies to the PRF in [34], with carefully-
chosen plaintexts leading to key-dependent algorithmic noise. This is because the
(maximum 256) constants cj used in this proposal are such that all 16 bytes are
always identical. Hence, a standard DPA will provide a single list of probabilities,
containing information about the 16 AES key bytes at once. In this case, we
additionally considered the iterative DPA described in this previous reference,
which essentially works by successively removing the algorithmic noise generated
by the best-rated key bytes. While such an attack can only work under the
assumption that the adversary has an very precise leakage model in hand, we
use it as a representative of worst-case attack against such a construction.

4.3 Experimental results

For illustration, the security graph of the AES implementation KHB1 is given in
Figure 4, where we additionally provide the maximum number of measurements
tolerated to maintain security levels corresponding to 2120, 2100 and 280 time
complexity. All the implementations in Table 2 have been similarly evaluated
and the result of these experiments are in Appendix A, Figures 8 to 13. Note
that in the aforementioned case of iterative DPA (Appendix A, Figure 14), the
adversary recovers the AES key bytes but still has to find their position within
the AES state, which (roughly) corresponds to 16! ≈ 244 possibilities [2].

5 Security vs. performance tradeoffs

We now combine the results in the previous sections to answer our main ques-
tion. Namely, what is the best way to exploit masking and/or leakage-resilient
primitives to resist standard DPA in hardware and software implementations?

5.1 Leakage-resilient PRGs

Let M be the maximum number of measurements tolerated to maintain a given
security level for one of the implementations in section 4. The re-keying in
leakage-resilient PRGs is such that it is exactly this number M that is lim-
ited by design (i.e. the value N in Figure 1 bounds M for the adversary), hence



Fig. 4. Security graph for the Boolean-masked hardware implementation KHB1.

directly leading to security-bounded implementations. The global cost metric we
use in this case can be written as M

M−1× cost function, where the first factor
corresponds to the average number of AES encryptions that are used to produce
each 128-bit output string, and the second one is the cost function of Table 1.

A comparison of different leakage-resilient PRG implementations in software
(i.e. based on different unprotected and protected AES implementations) is given
in Figure 5 for 80-bit and 120-bit security levels (the results for 100-bit security
are in Appendix A, Figure 15, left). The main observation in this context is that
the straightforward implementation of the PRG with an unprotected AES design
is the most efficient solution. This is mainly because moving from the smallest M
value (i.e. M = 2, as imposed by the 120-bit security level in the unprotected case
- see Figure 8-left) to large ones (e.g. M > 1000 for masked implementations)
can only lead to a gain factor of 2 for the global cost metric, which is not justified
in view of the performance overheads due to the masking. For a similar reason
(i.e. the limited interest of increasing M), the global cost metric is essentially
independent of the target security level in the figure. In other words, there is
little interest in decreasing this security level since it leads to poor performance
improvements. The hardware implementations in Appendix A, Figures 15-right
and 16 lead to essentially similar intuitions, as also witnessed by the limited
impact of decreasing the amplitude of the glitch signal with the f factor (see the
KHB∗1 and KHT∗2 implementations for which f = 10 in the latter figures).

5.2 Leakage-resilient PRFs

Security-unbounded implementations. Let us now consider (stateless) leak-
age-resilient PRFs. As already mentioned, those constructions only bound the
adversary’s data complexity. The main observation in this case is that if random
plaintexts are considered, such implementations can only be security-unbounded
(with the slight cautionary note that we give below). This fact can be easily
explained when the PRF is instantiated with an unprotected software imple-
mentation of the AES. What happens then is that the adversary can repeat



Fig. 5. LR-PRGs in software. 80-bit (left) and 120-bit (right) security.

his measurements to get rid of the physical noise, and consequently move from
the security graph of Appendix A, Figure 8-left to the one of Appendix A, Fig-
ure 13-right. Such a “repeating” attack is exactly the one already mentioned
in [34] to argue that bounded data complexity is not enough to bound (compu-
tational) security. In fact, it similarly applies to masked implementations. The
only difference is that the adversary will not average his measurements, but
rather combine them as in Equation 5. This is because given a leakage function,
e.g. the Hamming weight one that leads to 9 distinguishable events, the distri-
bution of the measurements in a masked implementation will lead to the same
number of distinguishable events: the only difference is that more sampling will
be necessary to distinguish them (see the appendices in [60] for a plot of these
distributions). So if the number of measurements is not bounded, attacks with
low time complexities as in Appendix A, Figure 13 right will always exist.

One important consequence is that using the PRF construction in this con-
text is essentially useless for all the AES implementations we consider in this pa-
per. The only way to maintain a target security level for such stateless primitives
is to limit the number of measurements by putting a constraint on the lifetime of
the system. And this lifetime will be selected according to the maximum number
of measurements tolerated that can be extracted from our security graphs, which
now highly depends on the countermeasure selected. In other words, we can only
evaluate the cost function and the security level attained independently in this
case, as illustrated in Figure 6 for our software instances (the 100-bit security
level is again given in Appendix A, Figure 17-left). Here, we naturally come
back to the standard result that Boolean (resp. polynomial) masking increases
security at the cost of performance overheads that are roughly quadratic (resp.
cubic) in the number of shares. Note that the security level of the 1-mask poly-
nomial scheme is higher than the 2-mask Boolean one for the noise variance we
consider, which is consistent with the previous work of Roche and Prouff [54].
Similar conclusions are obtained with hardware implementations (Appendix A,
Figure 17-right and Appendix A, Figure 18), for which the impact of glitches
is now clearly visible. For example, a factor f = 10 essentially multiplies the
number of measurements by f for the Boolean masking with first-order glitches,
and f2 for the threshold implementation with second-order glitches.



Fig. 6. LR-PRFs in software with KP. 80-bit (left) and 120-bit (right) security.

Cautionary note. The statement that stateless leakage-resilient PRFs can only
be security unbounded if known plaintexts are considered essentially relates to
the fact that repeated measurements allow removing the effect of the noise and
the masks in a leaking implementation. Yet, this claim should be slightly miti-
gated in the case of algorithmic noise in hardware implementations. Indeed, this
part of the noise can only be averaged up to the data complexity bound that is
imposed by the PRF design. Taking the example of our hardware implementa-
tions where all 16 S-boxes are manipulated in parallel, the SNR corresponding
to algorithmic noise can be computed as the ratio between the variance of a
uniformly distributed 8-bit values’s Hamming weight (i.e. 2) and the variance of
15 such values (i.e. 30). Averaging this noise over M plaintexts will lead to SNRs
of 1

15/M , which is already larger than 17 if M = 256 (i.e. a noise level for which

the security graph will be extremely close to the worst case one of Appendix A,
Figure 13-right). So although there is a “gray area” where a leakage-resilient
PRF implemented in hardware can be (weakly) security-bounded, these con-
texts are of quite limited interest because the will imply bounds on the data
complexity that are below 256, i.e. they anyway lead to less efficient solutions
than the tweaked construction that we investigate in the next subsection.

Security-bounded implementations. As just discussed, stateless primitives
hardly lead to security bounded implementations if physical and algorithmic
noise can be averaged - which is straightforwardly feasible in a known plaintext
scenario. The tweaked construction in [34] aims at avoiding such a weakness
by preventing the averaging of the algorithmic noise, thanks to the combined
effect of hardware parallelism and carefully chosen plaintexts leading to key-
dependencies in this noise. Since only the physical noise can be averaged in
this case, the bounded data complexity that the leakage-resilient PRF guar-
antees consequently leads to security-bounded implementations again. This is
illustrated both by the standard DPAs (such as in Appendix A, Figures 10-right
and 12-left) and the iterative attacks (such as in Appendix A, Figure 13) that can
be performed against this PRF5. As in Section 5.1, we extracted the maximum

5 As previously mentioned, there is an additional 16! ≈ 244 time complexity implied
in the iterative DPA attacks, corresponding to the enumeration of a permutation
over the 16 AES key bytes that is necessary to test each key candidate.



data complexity D from these graphs, and produced as global cost metric:⌈
128

blog2(D)c

⌉
× cost function,

where the first factor corresponds to the (rounded) average number of AES en-
cryptions needed to produce a 128-bit output, and the second one is the cost
function of Table 1. A comparison of our different leakage-resilient PRFs in-
stantiated with a hardware implementation of the AES and chosen plaintexts is
given in Figure 7. Here again, we observe that the most efficient solution is to
consider an unprotected design. Interestingly, we also observe that for the un-
protected AES, the iterative attack is the worst case for the 80-bit security level
(where it forces the re-keying after 97 plaintexts vs. 256 for the standard DPA),
while the standard DPA is the worst-case for the 120-bit security level (where
it forces the re-keying after 10 plaintexts vs. 37 for the iterative attack). This
nicely fits the intuition that iterative attacks become more powerful as the data
complexity increases, i.e. when the additional time complexity corresponding to
the enumeration of a permutation over 16 bytes becomes small compared to the
time complexity required to recover the 16 AES key bytes (unordered).

Fig. 7. LR-PRFs in hardware with CP. 80-bit (left) and 120-bit (right) security.

6 Conclusion

The results in this work essentially show that masking and leakage-resilient
constructions hardly combine constructively. For (stateful) PRGs, our experi-
ments indicate that both for software and hardware implementations, a leakage-
resilient design instantiated with an unprotected AES is the most efficient solu-
tion to reach any given security level. For stateless PRFs, they rather show that
a bounded data complexity guarantee is (mostly) ineffective in bounding the
(computational) complexity of the best attacks. So implementing masking and
limiting the lifetime of the cryptographic implementation is the best solution
in this case. Nevertheless, the chosen-plaintext tweak proposed in [34] is an in-
teresting exception to this conclusion, as it leads to security-bounded hardware
implementations for stateless primitives that are particularly interesting from



an application point-of-view, e.g. for re-synchronization, challenge-response pro-
tocols, . . . Beyond the further analysis of such constructions, their extension
to software implementations is an interesting scope for further research. In this
respect, the combination of a chosen-plaintext leakage-resilient PRF with the
shuffling countermeasure in [62] seems promising, as it could “emulate” the key-
dependent algorithmic noise ensuring security bounds in hardware.

Acknowledgements. F.-X. Standaert is an associate researcher of the Belgian
Fund for Scientific Research (FNRS-F.R.S.). Work funded in parts by the Euro-
pean Commission through the ERC project 280141 (CRASH) and the European
ISEC action grant HOME/2010/ISEC/AG/INT-011 B-CCENTRE project.

References

1. Michel Abdalla, Sonia Beläıd, and Pierre-Alain Fouque. Leakage-resilient symmet-
ric encryption via re-keying. In Bertoni and Coron [4], pages 471–488.

2. Sonia Beläıd, Fabrizio De Santis, Johann Heyszl, Stefan Mangard, Marcel Med-
wed, Jorn-Marc Schmidt, Francois-Xavier Standaert, and Stefan Tillich. Towards
fresh re-keying with leakage-resilient PRFs: Cipher design principles and analysis.
Cryptology ePrint Archive, Report 2013/305, 2013. http://eprint.iacr.org/.

3. Daniel J. Bernstein. Implementing “practical leakage-resilient cryptography”.
CHES 2012 Rump Session Talk, Leuven, Belgium, September 2012.

4. Guido Bertoni and Jean-Sébastien Coron, editors. Cryptographic Hardware and
Embedded Systems - CHES 2013 - 15th International Workshop, Santa Barbara,
CA, USA, August 20-23, 2013. Proceedings, volume 8086 of Lecture Notes in Com-
puter Science. Springer, 2013.

5. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Wiener [63], pages 398–
412.

6. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2523 of
Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

7. Common Criteria Portal. http://www.commoncriteriaportal.org/.
8. Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel crypt-

analysis of a higher order masking scheme. In Paillier and Verbauwhede [38], pages
28–44.

9. Cryptographic Key Length Recommendation. http://www.keylength.com/.
10. Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-resilient pseudorandom functions

and side-channel attacks on feistel networks. In Tal Rabin, editor, CRYPTO,
volume 6223 of Lecture Notes in Computer Science, pages 21–40. Springer, 2010.

11. François Durvaux, Mathieu Renauld, François-Xavier Standaert, Löıc van Olde-
neel tot Oldenzeel, and Nicolas Veyrat-Charvillon. Efficient removal of random
delays from embedded software implementations using hidden markov models. In
Stefan Mangard, editor, CARDIS, volume 7771 of Lecture Notes in Computer Sci-
ence, pages 123–140. Springer, 2012.

12. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In
FOCS, pages 293–302. IEEE Computer Society, 2008.



13. Thomas Eisenbarth, Zheng Gong, Tim Güneysu, Stefan Heyse, Sebastiaan In-
desteege, Stéphanie Kerckhof, François Koeune, Tomislav Nad, Thomas Plos,
Francesco Regazzoni, François-Xavier Standaert, and Löıc van Oldeneel tot
Oldenzeel. Compact implementation and performance evaluation of block ci-
phers in ATtiny devices. In Aikaterini Mitrokotsa and Serge Vaudenay, editors,
AFRICACRYPT, volume 7374 of Lecture Notes in Computer Science, pages 172–
187. Springer, 2012.

14. Europay Mastercard Visa. http://www.emvco.com/.
15. Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical leakage-

resilient symmetric cryptography. In Prouff and Schaumont [46], pages 213–232.
16. Yunsi Fei, Qiasi Luo, and A. Adam Ding. A statistical model for dpa with novel

algorithmic confusion analysis. In Prouff and Schaumont [46], pages 233–250.
17. Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater. Thwarting higher-

order side channel analysis with additive and multiplicative maskings. In Preneel
and Takagi [43], pages 240–255.

18. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions (extended abstract). In FOCS, pages 464–479. IEEE Computer Society,
1984.

19. Louis Goubin and Jacques Patarin. Des and differential power analysis (the ”du-
plication” method). In Çetin Kaya Koç and Christof Paar, editors, CHES, volume
1717 of Lecture Notes in Computer Science, pages 158–172. Springer, 1999.

20. Vincent Grosso, François-Xavier Standaert, and Sebastian Faust. Masking vs.
multiparty computation: How large is the gap for the AES? In Bertoni and Coron
[4], pages 400–416.

21. Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart card
implementation resistant to power analysis attacks. In Jianying Zhou, Moti Yung,
and Feng Bao, editors, ACNS, volume 3989 of Lecture Notes in Computer Science,
pages 239–252, 2006.

22. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, 2003.

23. Thomas Johansson and Phong Q. Nguyen, editors. Advances in Cryptology - EU-
ROCRYPT 2013, 32nd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceed-
ings, volume 7881 of Lecture Notes in Computer Science. Springer, 2013.

24. Antoine Joux, editor. Advances in Cryptology - EUROCRYPT 2009, 28th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479 of Lecture
Notes in Computer Science. Springer, 2009.

25. Toshihiro Katashita, Akashi Satoh, Katsuya Kikuchi, Hiroshi Nakagawa, and
Masahiro Aoyagi. Evaluation of DPA characteristics of sasebo for board level
simulation. In Sorin Huss and Werner Schindler, editors, proceedings of COSADE
2010, 4 pages, Darmstadt, Germany, February 2011.

26. Stéphanie Kerckhof, François Durvaux, Cédric Hocquet, David Bol, and François-
Xavier Standaert. Towards green cryptography: A comparison of lightweight ci-
phers from the energy viewpoint. In Prouff and Schaumont [46], pages 390–407.

27. Paul C. Kocher. Leak resistant cryptographic indexed key update. US Patent
6539092.

28. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Wiener [63], pages 388–397.



29. Stefan Mangard. Hardware countermeasures against DPA ? a statistical analysis of
their effectiveness. In Tatsuaki Okamoto, editor, CT-RSA, volume 2964 of Lecture
Notes in Computer Science, pages 222–235. Springer, 2004.

30. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007.

31. Stefan Mangard, Elisabeth Oswald, and François-Xavier Standaert. One for all -
all for one: unifying standard differential power analysis attacks. IET Information
Security, 5(2):100–110, 2011.

32. Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel leakage of
masked cmos gates. In Alfred Menezes, editor, CT-RSA, volume 3376 of Lecture
Notes in Computer Science, pages 351–365. Springer, 2005.

33. Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully attack-
ing masked AES hardware implementations. In Rao and Sunar [47], pages 157–171.

34. Marcel Medwed, François-Xavier Standaert, and Antoine Joux. Towards super-
exponential side-channel security with efficient leakage-resilient PRFs. In Prouff
and Schaumont [46], pages 193–212.

35. Amir Moradi and Oliver Mischke. Glitch-free implementation of masking in modern
FPGAs. In HOST, pages 89–95. IEEE, 2012.

36. Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES. In
Paterson [39], pages 69–88.

37. Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen. A
side-channel analysis resistant description of the AES S-Box. In Henri Gilbert
and Helena Handschuh, editors, FSE, volume 3557 of Lecture Notes in Computer
Science, pages 413–423. Springer, 2005.

38. Pascal Paillier and Ingrid Verbauwhede, editors. Cryptographic Hardware and
Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria,
September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer
Science. Springer, 2007.

39. Kenneth G. Paterson, editor. Advances in Cryptology - EUROCRYPT 2011 - 30th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lec-
ture Notes in Computer Science. Springer, 2011.

40. Eric Peeters, François-Xavier Standaert, Nicolas Donckers, and Jean-Jacques
Quisquater. Improved higher-order side-channel attacks with FPGA experiments.
In Rao and Sunar [47], pages 309–323.

41. Krzysztof Pietrzak. A leakage-resilient mode of operation. In Joux [24], pages
462–482.

42. Thomas Popp, Mario Kirschbaum, Thomas Zefferer, and Stefan Mangard. Eval-
uation of the masked logic style mdpl on a prototype chip. In Paillier and Ver-
bauwhede [38], pages 81–94.

43. Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28
- October 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer Science.
Springer, 2011.

44. Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A
formal security proof. In Johansson and Nguyen [23], pages 142–159.

45. Emmanuel Prouff and Thomas Roche. Higher-order glitches free implementation
of the AES using secure multi-party computation protocols. In Preneel and Takagi
[43], pages 63–78.



46. Emmanuel Prouff and Patrick Schaumont, editors. Cryptographic Hardware and
Embedded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings, volume 7428 of Lecture Notes in Computer
Science. Springer, 2012.

47. Josyula R. Rao and Berk Sunar, editors. Cryptographic Hardware and Embedded
Systems - CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 -
September 1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer Science.
Springer, 2005.

48. Francesco Regazzoni, Wang Yi, and François-Xavier Standaert. FPGA implemen-
tations of the AES masked against power analysis attacks. In Sorin Huss and
Werner Schindler, editors, proceedings of COSADE 2011, pp 56-66, Darmstadt,
Germany, February 2011.

49. Mathieu Renauld and François-Xavier Standaert. Algebraic side-channel attacks.
In Feng Bao, Moti Yung, Dongdai Lin, and Jiwu Jing, editors, Inscrypt, volume
6151 of Lecture Notes in Computer Science, pages 393–410. Springer, 2009.

50. Mathieu Renauld, François-Xavier Standaert, and Nicolas Veyrat-Charvillon. Al-
gebraic side-channel attacks on the AES: Why time also matters in DPA. In
Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes in
Computer Science, pages 97–111. Springer, 2009.

51. Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina
Kamel, and Denis Flandre. A formal study of power variability issues and side-
channel attacks for nanoscale devices. In Paterson [39], pages 109–128.

52. Matthieu Rivain. On the exact success rate of side channel analysis in the gaussian
model. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors, Se-
lected Areas in Cryptography, volume 5381 of Lecture Notes in Computer Science,
pages 165–183. Springer, 2008.

53. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of
AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume
6225 of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

54. Thomas Roche and Emmanuel Prouff. Higher-order glitches free implementation
of the AES using secure multi-party computation protocols extended version .
Cryptology ePrint Archive, Report 2011/413, 2011. http://eprint.iacr.org/.

55. Kai Schramm and Christof Paar. Higher order masking of the AES. In David
Pointcheval, editor, CT-RSA, volume 3860 of Lecture Notes in Computer Science,
pages 208–225. Springer, 2006.

56. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Joux [24], pages 443–461.

57. François-Xavier Standaert, Olivier Pereira, and Yu Yu. Leakage-resilient symmetric
cryptography under empirically verifiable assumptions. In Ran Canetti and Juan A.
Garay, editors, CRYPTO (1), volume 8042 of Lecture Notes in Computer Science,
pages 335–352. Springer, 2013.

58. François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater, Moti
Yung, and Elisabeth Oswald. Leakage resilient cryptography in practice. In
Ahmad-Reza Sadeghi and David Naccache, editors, Towards Hardware-Intrinsic
Security, Information Security and Cryptography, pages 99–134. Springer, 2010.

59. François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt
Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard. The world is
not enough: Another look on second-order DPA. In Masayuki Abe, editor, ASI-
ACRYPT, volume 6477 of Lecture Notes in Computer Science, pages 112–129.
Springer, 2010.



60. Francois-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt
Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard. The world is not
enough: Another look on second-order DPA. Cryptology ePrint Archive, Report
2010/180, 2010. http://eprint.iacr.org/.

61. Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert. Security
evaluations beyond computing power. In Johansson and Nguyen [23], pages 126–
141.

62. Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive study
with cautionary note. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT,
volume 7658 of Lecture Notes in Computer Science, pages 740–757. Springer, 2012.

63. Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science. Springer,
1999.

64. Yu Yu and François-Xavier Standaert. Practical leakage-resilient pseudorandom
objects with minimum public randomness. In Ed Dawson, editor, CT-RSA, volume
7779 of Lecture Notes in Computer Science, pages 223–238. Springer, 2013.

65. Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practi-
cal leakage-resilient pseudorandom generators. In Ehab Al-Shaer, Angelos D.
Keromytis, and Vitaly Shmatikov, editors, ACM Conference on Computer and
Communications Security, pages 141–151. ACM, 2010.



A Additional figures

Fig. 8. DPA-based security graphs for KSU (left) and KSB1 (right).

Fig. 9. DPA-based security graphs for KSB2 (left) and KSP1 (right).

Fig. 10. DPA-based security graphs for KHU (left) and CHU (right).



Fig. 11. DPA-based security graphs for KHB1 (left) and KHB∗
1/f = 1 (right).

Fig. 12. DPA-based security graphs for CHB∗
1/f=1 (left) and KHT2 (right).

Fig. 13. DPA-based security graphs for KHT∗
2/f=1 (left) and repeating attacks (right).

Fig. 14. Iterative DPA-based security graphs for CHU (left) and CHB∗
1/f = 1 (right).



Fig. 15. LR-PRGs in software (left) and hardware (right). 100-bit security.

Fig. 16. LR-PRGs in hardware. 80-bit (left) and 120-bit (right) security.

Fig. 17. LR-PRFs in software (left) and hardware (right) with KP. 100-bit security.

Fig. 18. LR-PRFs in hardware with KP. 80-bit (left) and 120-bit (right) security.


