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Abstract. At Eurocrypt 2011, Wee presented a generalization of threshold public key encryption,
threshold signatures, and revocation schemes arising from threshold extractable hash proof systems. In
particular, he gave instances of his generic revocation scheme from the DDH assumption (which led to
the Naor-Pinkas revocation scheme), and from the factoring assumption (which led to a new revocation
scheme). We expand on Wee’s work in two directions:
(a) We propose threshold extractable hash proof instantiations from the “Extended Decisional Diffie-

Hellman” (EDDH) assumption due to Hemenway and Ostrovsky (PKC 2012). This in particular
yields EDDH-based variants of threshold public key encryption, threshold signatures, and revoca-
tion schemes. In detail, this yields a DCR-based revocation scheme.

(b) We show that our EDDH-based revocation scheme allows for a mild form of traitor tracing (and,
thus, yields a new trace-and-revoke scheme). In particular, compared to Wee’s factoring-based
scheme, our DCR-based scheme has the advantage that it allows to trace traitors.

Keywords: broadcast encryption, revocation scheme, traitor tracing, trace-and-revoke scheme, thresh-
old extractable hash proof system, extended decisional Diffie-Hellman.

1 Introduction

Broadcast encryption, revocation schemes, traitor tracing, and trace-and-revoke schemes. In
a broadcast encryption (BE) scheme [29], a sender is able to generate ciphertexts that only members of
a privileged set S ⊆ {1, . . . , N} of users — each given a long-lived user secret key — can decrypt. There
exists a large number of BE schemes under various assumptions and with various efficiency characteristics
(e.g., [8, 29, 33, 6, 17, 7, 21, 61, 2, 12, 34, 5, 27, 50, 59, 58, 15, 16]). In this work, we focus on revocation
schemes, which are a variant of BE schemes, where a set of revoked users (e.g., non-paying subscribers)
R = {1, . . . , N}\S is given as input to the encryption function. Revocation schemes proposed in the literature
are, e.g., [54, 52, 36, 23, 24, 74, 35, 73, 22, 49, 72, 42]. A particularly interesting property a cryptosystem in
the broadcast encryption setting can have is traceability [20], i.e., the ability to trace a “pirate” decryption
box back to the corrupted user(s), called traitor(s), who constructed it. Thus, traceability allows to identify a
traitor (or a coalition of traitors). Such schemes are called traitor tracing schemes and a variety of them was
proposed, e.g., [20, 55, 56, 48, 66, 67, 53, 11, 30, 60, 70, 44, 64, 45, 46, 51, 25, 19, 57, 68, 18, 28, 65, 1, 9, 13, 41].
The combination of revocation and traceability is an aspiring goal. We stress that combining these properties
is nontrivial (see [14, Section 4.1]). Nevertheless, there are schemes, e.g., [32, 54, 52, 69, 36, 23, 24, 47, 26, 14,
39, 31, 40, 4]1, which provide a solution for this problem. These schemes are called trace-and-revoke schemes.

Threshold extractable hash proof systems. In [72], Wee established threshold extractable hash proof
systems (TEHPS) as a generalization of extractable hash proof systems (EHPS) [71]. Applying the concept of
TEHPSs, Wee explains threshold public key encryption, threshold signatures, and revocation schemes from
the Decisional Diffie-Hellman (DDH), from the Computational Diffie-Hellman (CDH), and from the factoring
assumptions which — at least in the case of factoring — led to new cryptosystems. We expand the generic
view of [72] by providing a TEHPS from the “Extended Decisional Diffie-Hellman” (EDDH) assumption due
to Hemenway and Ostrovsky [37]. The EDDH assumption generalizes the DDH and Decisional Composite
Residuosity (DCR) assumptions. By our first result, we obtain threshold public key encryption, threshold
signatures, and revocation schemes from the EDDH assumption. In particular, our generic system extends
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the generic view of revocation schemes from [72] (recapped below) and, additionally, via our second result, it
yields a new trace-and-revoke scheme from the DCR assumption. (This is not known for the factoring-based
instance of [72] and we describe why this seems to be difficult to achieve in Wee’s setting.)

A generic revocation scheme. Recently, Wee [72] gave a very simple and elegant generic view of revo-
cation schemes. He explains and generalizes previous constructions (e.g., [54, 69]). The public key in these
constructions contains the coefficients of a secret polynomial f(x) = a0 + a1x+ · · ·+ atx

t “in the exponent”
as

ga0 , ga1 , . . . , gat .

Note that this allows to compute values gf(x) for arbitrary x. A ciphertext is of the form

C = (R, u, (uf(id))id∈R),

where R is a set of t revoked identities. (The uf(id) can be computed from pk , and using knowledge of an
exponent r with u = gr.) The corresponding encapsulated key2 is s = uf(0). Any user with identity id in
the system possesses a user secret key usk id = f(id). (Of course, 0 is not an allowed identity for a user.)
If id 6∈ R, then a user can derive a (t + 1)-st share uusk id = uf(id) and compute uf(0) through Lagrange
interpolation of the t + 1 values uf(id) (for id ∈ R ∪ {id}). Depending on the domain over which we are
working, and on how a “raw key” s = uf(0) is post-processed, this yields a revocation scheme from the DDH,
the CDH, or the factoring assumption. Note that although similar secret sharing techniques are common in
broadcast encryption, Wee’s scheme is particularly simple and appealing from a conceptual point of view.

Our first result: an EDDH-based TEHPS instance. By giving a slightly different generic view, we
extend the work of Wee to obtain threshold extractable hash proof instantiations from the extended decisional
Diffie-Hellman assumption. Concretely, the EDDH assumption works in a group G with subgroups G,H. It
states that, given g, gx, and gy, elements gxy are computationally indistinguishable from elements gxy · h,
where g ∈ G and h ∈ H are uniformly chosen, and x, y are uniform exponents. For G = H, we have the DDH
assumption, and if G = Z∗N2 , G = {xN | x ∈ Z∗N}, and H = 〈1 +N〉, we have the DCR assumption (where
N = PQ, for distinct odd primes P,Q of the same length). In particular, our first result yields EDDH-
based threshold encryption, signatures, and revocation schemes. We stress that the EDDH-based instances
use a potential stronger assumption (i.e., DCR) as opposed to Wee’s factoring-based schemes. Nevertheless,
to give a foreshadow, this slightly stronger assumption enables us — via our second result — to obtain a
new DCR-based trace-and-revoke scheme which, again, is not known to achieve from Wee’s factoring-based
scheme. Our revocation scheme is similar to the above generic scheme, but has ciphertexts

C = (R, u1, (uf(id)1 )id∈R, u2), (1)

for u1 ∈ G and u2 = u
f(0)
1 · h with h ∈ H. The shared key is extracted from h. Hence, instead of directly

using u
f(0)
1 as shared key, we use it to blind the actual key h. This is consistent with the EDDH assumption:

EDDH does not state that gxy looks random — it does state however that gxy can be used to blind an
H-element. The security analysis of this modified scheme is similar to the analysis of previous schemes.
The only difficulties arise out of the fact that the group order of G may not be known (e.g., in the case of
DCR). Hence, we must avoid inversion operations in the exponent. (Such inversion operations arise during
Lagrange interpolation of the polynomial f in the exponent.) More details about the technique we use to
avoid inversions in the exponent are given below.

Our second result: traceability of the EDDH-based revocation scheme. We prove that our EDDH-
based revocation scheme also supports a mild form of black-box traitor tracing. That is, we prove that any
pirate box produced by a coalition of T ≤ (t + 1)/2 corrupted users can be traced back to a user in
that coalition. Tracing requires only completely black-box access to the pirate box and works for imperfect
decryption boxes (where the box is allowed to decrypt well-formed ciphertexts invalidly down to some
threshold). Further, we allow adversarially chosen revoked sets R. Similar black-box tracing strategies in the
revocation setting were considered in previous works, e.g., in [69, 26]. But unlike in, e.g., [69], our tracing
algorithm works with imperfect pirate boxes that may even only work for an adversarially chosen set R of

2 Wee’s scheme actually is a key encapsulation mechanism, not a full encryption scheme. Hence, a ciphertext does
not encrypt a message, but only encapsulates a key that can be used to (symmetrically) encrypt a message.
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revoked users. The tracing model in [26] also considers imperfect decryption boxes and adversarially chosen
revoked users, but for a different scheme. (To achieve black-box traceability in the BE setting we note that
similar techniques are common, e.g., in [14].) However, we stress that our focus is on the generic view of
constructing trace-and-revoke schemes. Nevertheless, our tracing strategy is explained in more detail below.

More on the used techniques. To construct revocation schemes from the EDDH assumption — in which
the order of the subgroup G might not be known as opposed to Wee’s generic construction above — we use
a technique called “clearing the denominator” in the exponent. This tool was used before, but in different
scenarios to ours, e.g., in [63, 72, 3]. Hence, we can avoid Lagrangian coefficient inversion in the exponent
and are able to construct our EDDH-based revocation scheme. We focus on this construction in Section 3.
For traceability, consider random ciphertexts of the form

CRrnd = (R, u1, (uf(id)1 hzid )id∈R, u
f(0)
1 hz0) for uniform h ∈ H and zid , z0.

Under the EDDH assumption, such random ciphertexts are indistinguishable from real ones, even when
knowing a single user key usk id . In particular, a pirate box B decrypts random ciphertexts just as well as
real ones. However, the decryption of random ciphertexts depends highly on which user key usk id is used to
decrypt. Hence, to trace a pirate box B back to its creator, we can simply feed B with random ciphertexts
and compare B’s output with decryption results for various user keys. This strategy only works if the pirate
box B knows only one user key. If B knows, say, two different user keys, it can distinguish real from random
ciphertexts. (For instance, B could decrypt a given ciphertext under the two keys. If the decryptions do not
match, the ciphertext cannot be real. See [43] by Kiayias and Yung for a more general case and a formal
analysis.) Thus, we adapt our strategy by considering “semi-random ciphertexts” of the form

CR,Irnd = (R, u1, (uf(id)1 hf
′(id))id∈R, u

f(0)
1 hf

′(0))
for f ′(x) ∈ Zq[x] uniform
of degree ≤ t, but subject
to f ′(id) = 0 for id ∈ I.

(2)

Such ciphertexts are indistinguishable from real ones, even when knowing the user keys for I. However,
when using user keys for identities outside of I, then we will get a different, random result. Our tracing
strategy will hence make a guess for the set I of corrupted users, and confirm the guess by checking if B
decrypts ciphertexts CR,Irnd correctly. (Note that this is very similar to the “black-box confirmation” argument
defined by Boneh and Franklin [11].) The main challenge in our proof consists of handling the case when B
knows some, but not all user keys for I. In that case, we have to make sure that we output an identity in
I that surely corresponds to a traitor. Similar traceability strategies were already considered, e.g., in [11]
(but with a restriction on how the pirate box is built), and in [44, 18, 14] (for very different schemes). In the
revocation setting the tracing technique of Tzeng and Tzeng [69] also considers semi-random ciphertexts as
those from (2). However, the tracing algorithm of [69] assumes a pirate box with perfect decryption, and,
more importantly, has to choose the analog of the revoked set R from (2) by itself. Dodis, Fazio, Kiayias, and
Yung [26] consider imperfect pirate boxes and adversarially chosen revoked users in the revocation setting,
but for a different scheme. Again, we stress that the novelty of our work lies in the fact that we extend
Wee’s generic view of revocation schemes by providing an EDDH-based trace-and-revoke variant which, in
particular, generalizes (known) DDH-based and (new) DCR-based trace-and-revoke schemes.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}. Throughout the paper, k ∈ N denotes the security parameter.
For a finite set S, we denote by s ← S the process of sampling s uniformly from S. For a probabilistic
algorithm A, we write y ← A(x) for the process of running A on input x with uniformly chosen random
coins, and assigning y the result. If A’s running time is polynomial in k, then A is called probabilistic
polynomial-time (PPT). A function f : N → R is negligible if it vanishes faster than the inverse of any
polynomial (i.e., if ∀c∃k0∀k ≥ k0 : |f(k)| ≤ 1/kc). On the other hand, f is significant if it dominates the
inverse of some polynomial (i.e., if ∃c, k0∀k ≥ k0 : f(k) ≥ 1/kc).

(Binary) relations for hard search problems [71, 72]. Following the definition of (binary) relations
for hard search problems in [72], let Rpp be a family of binary relations, where pp is a public parameter. We
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assume the existence of two PPT algorithms: given the security parameter k in unary, SampP(1k) outputs
a public parameter pp together with a secret parameter sp, while SampR(1k, pp) outputs a binary relation
(u, s) ∈ Rpp such that given only u it is hard to find s. (To make random coins r explicit, we may write
SampR(1k, pp; r).) Concretely, we define the one-way property of binary relations for hard search problems
in the sense that with overwhelming probability over pp, for all u, there exists at most one s such that
(u, s) ∈ Rpp , and, given an adversary A that gets pp and u with (u, s) ← SampR(1k, pp), there exists an
efficiently computable generator Gpp such that, for all A,

AdvprgA (k) := Pr [A(pp, u,Gpp(s)) = 1]− Pr [A(pp, u,R) = 1] ,

with uniform R, is negligible in k.

Lagrange interpolation and Vandermonde matrices. Fix a field F and d + 1 values x0, . . . , xd ∈ F.
The Vandermonde matrix Vx0,...,xd

∈ F(d+1)×(d+1) is defined as

Vx0,...,xd
:=

1 x0 . . . x
d
0

...
...

. . .
...

1 xd . . . x
d
d

 .

It is easy to see that det(Vx0,...,xd
) =

∏
i<j(xj −xi); in particular, Vx0,...,xd

is invertible iff all xi are distinct.

We can evaluate a polynomial f(x) = a0 + a1x+ · · ·+ adx
d at x0, . . . , xd via

(f(x0), f(x1), . . . , f(xd))
> = Vx0,...,xd

· (a0, a1, . . . , ad)>.

Conversely, given values y0, . . . , yd ∈ F, we can via

(a0, a1, . . . , ad)
> = V −1x0,...,xd

· (y0, y1, . . . , yd)>

compute coefficients a0, . . . , an ∈ F of a polynomial f(x) = a0 + a1x + · · · + adx
d such that f(xi) = yi. It

will be useful to perform such matrix-vector multiplications “in the exponent,” where generally a matrix
M = (Mi,j) ∈ Fn×n is known, and a vector x = (xi) ∈ Fn is given in the form X = (Xi) = (gxi) for some
g. We will write

M ◦X := (Y1, . . . , Yn) with Yi :=

n∏
j=1

X
Mi,j

j .

If we write y = (yi) for the “exponent vector” with Yi = gyi , this achieves M · x = y.

The Extended Decisional Diffie-Hellman assumption. In [37], Hemenway and Ostrovsky introduced
the Extended Decisional Diffie-Hellman (EDDH) assumption. We say that the EDDH assumption holds for
group G and subgroups G,H ⊆ G iff

AdveddhG,H,D(k) := Pr
[
D(1k, ord(H), g, ga, gb, gab) = 1

]
− Pr

[
D(1k, ord(H), g, ga, gb, gabh) = 1

]
is negligible for any PPT distinguisher D, for uniform group elements g and h from G and H, respectively, for
uniform exponents a, b, and group order function ord. Additionally, we require that there exists a randomness
extractor Geddh

G,H such that Geddh
G,H(h) with uniform h ∈ H is pseudorandom. We note that the EDDH assumption

can be instantiated under the DDH and the DCR assumption. (We refer to [37] for further details.)

3 First result: an EDDH-based TEHPS instance

Threshold extractable hash proof systems. We first restate the definition of threshold extractable
hash proof systems (TEHPS) from [72], in which Wee explains several cryptosystems, i.e., threshold en-
cryption, threshold signatures, and revocation schemes as arising from TEHPSs for a hard search problem
with instances u and solution s (defined as above). For public key hk , we define a family of hash functions
Hhk , which take as input a tag tag and an instance u, and output a hash value Hhk (tag, u). A TEHPS
TEHPS = (Gen,Share,Pub,Priv,Ext) with tag space T consists of the following PPT algorithms:
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Setup. Given the security parameter k ∈ N, the threshold parameter t ∈ N, and system parameters (pp, sp)
(defined as above), Gen((pp, sp), 1k, 1t) generates a public key hk and a master secret key msk .

Key generation. Share(msk , tag), given the master secret key msk and a tag tag ∈ T , generates a user
secret key usk tag for tag tag.

Public evaluation. Pub(hk , tag, r), given a public key hk , a tag tag ∈ T , and random r, outputs a hash
value Hhk (tag, u), with (u, s) = SampR(1k, pp; r).

Private evaluation. Priv(usk tag, u), given a user secret key usk tag and an instance u, outputs a hash value
Hhk (tag, u).

Extraction. Ext(u, (tagi, τi)i∈[t+1]), given an instance u, t + 1 tags (tagi)i∈[t+1] ∈ (T )t+1, and t + 1 hash
values (τi)i∈[t+1], outputs a value s or ⊥.

For all k, t ∈ N and with overwhelming probability over all values (pp, sp)← SampP(1k), for all (hk ,msk)←
Gen((pp, sp), 1k, 1t), for all r, for all (u, s)← SampR(1k, pp; r), we require correctness, (t+1)-extraction, and
t-simulation:
Correctness. For all tag ∈ T , all usk tag ← Share(msk , tag), we require that Pub(hk , tag, r) = Hhk (tag, u) =

Priv(usk tag, u).
(t+ 1)-extraction. For all distinct tags (tagi)i∈[t+1] ∈ (T )t+1, and all hash values (τi := Hhk (tagi, u))i∈[t+1],

for s = Ext(u, (tagi, τi)i∈[t+1]), we require (u, s) ∈ Rpp .
t-simulation. For all distinct (tagi)i∈[t] ∈ (T )t, there exists a PPT algorithm SetupSim such that distribu-

tions of
ω = (hk , usk tag1 , . . . , usk tagt)

in the following are statistically close: i.e., we require that

{ω : (hk ,msk)← Gen((pp, sp), 1k, 1t), (usk tagi ← Share(msk , tagi))i∈[t]}
s
≈ {ω : (hk , usk tag1 , . . . , usk tagt)← SetupSim(pp, tag1, . . . , tagt)},

where
s
≈ denotes statistically indistinguishable.

A TEHPS for the EDDH relation. We now construct a new EDDH-based threshold extractable hash
proof system. As opposed to the DDH-based construction in [72], here, the group order of a subgroup G ⊆ G
may not be known (i.e., in the case of DCR). Hence, we must avoid inversion operations in the exponent.
We use a technique called “clearing the denominator” that, in a similar way, was used before but in different
scenarios; e.g., in [63, 72, 3]. Further, fix a commutative group G and a subgroup H ⊆ G of (known) order
n. We assume that a (proper) lower bound d on the smallest prime divisor of n is known. Let G ⊆ G be a
cyclic subgroup of (potentially unknown) order q and let K := [B] such that for x← K, the value x mod q is
statistically close to uniform. In that case we will sample an exponent x uniformly from [B], where B = B′ ·2k
for an upper bound B′ on q. (Such an upper bound B′ will always be known.) Further, we need to specify a
(binary) relation for the EDDH problem. Therefor, consider

Reddh
pp = {(u, s) ∈ ((G×G)×H) | u2 = usp1 s} ,

with u = (u1, u2) ∈ (G ×G), for uniform s ∈ H, uniform sp ∈ K. We set the public parameter pp to be
(n, g, gsp) and assume that we can sample g from G efficiently. Thus, sp and pp are efficiently samplable. (This
completes the description of the SampP algorithm for the EDDH relation.) For the second EDDH-relation
algorithm, we set SampR(1k, pp; r) to output

(u, s) := ((gr, (gsp)r · s), s),

for randomness r ∈ K and uniform s ∈ H. (This completes the description of SampR.) Further, we set
Gpp(s) := Geddh

G,H(s). Now, we are able to construct:

Construction 3.1 (EDDH-based TEHPS). Let a TEHPS TEHPSEDDH = (Gen,Share,Pub,Ext,Priv)
with tag space T := [min{d,B}] ⊂ Z, with d and B as above, be as follows:
Setup. Gen((pp, sp), 1k, 1t), with pp =: (n, g, gsp), chooses a polynomial

f(x) := sp + a1x+ · · ·+ atx
t
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over K, with uniform exponents ai, for i ∈ [t]. The output is the public key hk := (n, g̃, g̃sp , (g̃ai)ti=1),
with g̃ := gv, for uniform v ← K, and master secret key msk := (sp, (ai)

t
i=1). We fix a hash function

Hhk (tag, u) := u
f(tag)
1 , with u = (u1, u2) and some tag tag ∈ T . For randomness r ∈ K, we have

(u, s) = ((g̃r, g̃sp·r · s), s) = SampR(1k, (n, g̃, g̃sp); r). (Note that we re-randomize the g-elements of pp
here.)

Sharing. Share(msk , tag), for tag ∈ T , returns usk tag := f(tag).
Public evaluation. Given a public key hk , a tag tag ∈ T , randomness r ∈ K, Pub(hk , tag, r) computes

(
g̃sp ·

t∏
i=1

(g̃ai)
tagi )r (

=
(
g̃f(tag)

)r
= u

f(tag)
1 = Hhk (tag, u)

)
,

with (u, s) = SampR(1k, (n, g̃, g̃sp); r) as above.

Private evaluation. Given usk tag and u = (u1, u2), Priv(usk tag, u) outputs u
usktag

1 (= u
f(tag)
1 ).

Extraction. Ext(u, (tagi, τtagi)i∈[t+1]), given u = (u1, u2), tags (tagt+1)i∈[t+1] ∈ (T )t+1, and hash values

(τtagi)i∈[t+1], efficiently computes fractional Lagrangian coefficients Li(0) =
∏t+1
j=1,i6=j

−tagj
tagi−tagj ∈ Q

such that f(0) =
∑t+1
i=1 Li(0) · f(tagi) mod q. (Note that the Lagrangian coefficients can be computed

iff all tags (tagt+1)i∈[t+1] are distinct. If the tags are not distinct we output ⊥.) Now, for ∆ :=
lcm{

∏
i,j∈[t+1],i6=j(tagi − tagj) ∈ Z} the values ∆ · Li(0), for all i ∈ [t + 1], are integers. Thus, we

are able to extract and output the value

(( t+1∏
i=1

τ
∆Li(0)
tagi

)−1 · u∆2 )∆−1 mod n
.

(Note that n is always known.)

We now show correctness, (t+ 1)-extraction, and t-simulation of Construction 3.1.

Claim 3.2. For all t ∈ N, TEHPSEDDH from Construction 3.1 is correct, (t+ 1)-extractable, and t-simulat-
able.

Proof sketch. For all k, t ∈ N, with overwhelming probability over (pp, sp) ← SampP(1k), for all r, for all
(u, s) ← SampR(1k, (n, g̃, g̃sp); r), with u = (u1, u2), for all (hk ,msk) ← Gen((pp, sp), 1k, 1t), for all tags
tag ∈ T , all usk tag ← Share(msk , tag), we have:

Correctness. Correctness is easy to verify, i.e., Pub(hk , tag, r) = Hhk (tag, u) = Priv(usk tagi , u).

(t+ 1)-extraction. For all distinct tags (tagi)i∈[t+1] ∈ (T )t+1, all hash values (τi := Hhk (tagi, u))i∈[t+1](=

(u
f(tagi)
1 )i∈[t+1]), for ∆ and fractional Lagrangian coefficients Li(0) as above, Ext(u, (tagi, τtagi)i∈[t+1]) yields

(( t+1∏
i=1

τ
∆Li(0)
tagi

)−1 · u∆2 )∆−1 mod n (∗)
=
((
u
∆f(0)
1

)−1 · (usp1 · s)∆)∆−1 mod n

=
(
u−∆sp
1 · u∆sp

1 · s∆
)∆−1 mod n

= s.

Recall that all ∆·Li(0), for i ∈ [t+ 1], are integers and that we used Lagrangian interpolation in the exponent
in (∗). Thus, we obtain s such that (u, s) ∈ Reddh

pp .

t-simulation. For all distinct tags (tagi)i∈[t+1] ∈ (T )t+1, there exists a PPT algorithm SetupSim as follows:
Choose uniformly y1, . . . , yt ← K and set f(tagi) := yi, for i ∈ [t]. Further, set ĝ := gv, for uniform v ← K,
and set ĝf(0) := (gsp)v = ĝsp . Note, that this will uniquely define a polynomial f of degree ≤ t. Let ∆ be as
above but with tagt+1 = 0. That (implicitly) determines a vector

(∆a0, ∆a1, . . . ,∆at)
> := (∆ · V −1tagt+1,tag1,...,tagt) · (sp, y1, . . . , yt)

>.

(That is every ∆ai can be written as linear combination of the yi, with appropriate integer coefficients. Here,
again, we use ∆ to “clear the denominator” of V −1’s entries.) Subsequently, output (n, g̃, g̃a0 , g̃a1 , . . . , g̃at),
for g̃ := ĝ∆, and (usk tag1 , . . . , usk tagt) := (y1, . . . , yt). Thus, the distribution of the output of SetupSim and
and the distribution of (hk , (Share(msk , tagi))i∈[t]) are statistically indistinguishable. ut
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Now, by [72, Theorems 1, 2, 3], we derive semantically secure threshold public key encryption, existentially
unforgeable threshold signatures in the random oracle model, and semantically secure revocation schemes
from the hardness of the EDDH assumption which — at least in the revocation case — yields a new DCR-
based revocation scheme. We will now provide details about revocation schemes and recap from [72] how to
build them from TEHPSs.

Revocation schemes. Opposed to a broadcast encryption scheme, where a set of privileged users S ⊆
{1, . . . , N} (for number of users N ∈ N) is given as input to the encryption function, a revocation scheme
receives a set of revoked users R := {1, . . . , N} \ S as input instead. The system then guarantees that users
in {1, . . . , N} \ R are able to decrypt correctly while users in R cannot decrypt. We will not directly give a
construction of a revocation scheme; rather we will define a revocable key encapsulation mechanism which
canonically implies an revocation scheme, but allows for a simpler exposition.

Revocable key encapsulation mechanism. For simplicity, and following [72], we define the notion of a
revocable key encapsulation mechanism (RKEM). An RKEM with identity space ID consists of the following
PPT algorithms:
Setup. Gen(1k, 1t), given the security parameter k ∈ N and a revocation threshold t ∈ N, generates a public

key pk and a master secret key msk .
Key generation. Share(msk , id), given the master secret key msk and an identity id ∈ ID, generates a

user secret key usk id for identity id .
Encapsulation. Enc(pk ,R), given the public key pk and a subset R ⊆ ID that contains the identities of

up to t revoked users, outputs a ciphertext C and a corresponding key K.
Decapsulation. Dec(id , usk id , C), given an identity id , a corresponding user secret key usk id , and a cipher-

text C, outputs a key K.
For correctness, we require that for all k, t ∈ N, all (pk ,msk) ← Gen(1k, 1t), all set R ⊆ ID of up to t
identities, all (C,K) ← Enc(pk ,R), all identities id ∈ ID \ R, and all usk id ← Share(msk , id), we have
Dec(id , usk id , C) = K. We will not define security for RKEMs. We note that these notions can be defined
in a straightforward way, and the RKEMs based on TEHPSs from [72] can be proven secure in this sense.
(In fact, [72] only shows selective-identity security; we expect, however, that adaptive-identity security can
be achieved along the lines of Dodis and Fazio [24].) As mentioned before, an RKEM implies a revocation
scheme. That is, to build a revocation scheme from an RKEM, use the encapsulated key to symmetrically
encrypt the message to be broadcasted; analogously, use the decapsulated key for symmetrically decryption.

RKEMs from TEHPSs. Following [72], we recap the construction of an revocable key encapsulation
mechanism RKEM = (Gen,Share,Enc,Dec) with identity space ID := T from a threshold extractable hash
proof system TEHPS = (Gen′,Share′,Pub,Ext,Priv) with tag space T as follows:
Setup. Gen(1k, 1t), given security parameter k ∈ N and revocation threshold t ∈ N, samples (pp, sp) ←

SampP(1k) and outputs public-key-master-secret-key pair (pk ,msk) := Gen′((pp, sp), 1k, 1t).
Key extraction. Share(msk , id), for id ∈ ID, returns usk id ← Share′(msk , id).
Encapsulation. Enc(pk ,R), for public key pk and R ⊆ ID of size exactly t, chooses a random value r,

samples (u, s) ← SampR(1k, pk ; r), and computes τid := Pub(hk , id , r), for id ∈ R. The ciphertext is
given by C := (R, u, (τid)id∈R), the key is K := Gpk (s).

Decapsulation. Dec(id , usk id , C), with usk id and C as above, retrieves

s := Ext(u,R∪ {id}, (τid)id∈R,Priv(usk id, u))

and outputs K := Gpk (s).
Correctness is easy to verify. For semantic security, we point to [72, Theorem 3]. Hence, as a result, we derive
an EDDH-based revocation scheme.

4 Second result: ((t+1)/2, ε)-traceability of the EDDH-based RKEM instance

Trace-and-revoke schemes. A trace-and-revoke scheme connects the properties of a revocation scheme
and the benefits of a traitor tracing scheme. As mentioned before, combining these is nontrivial (see [14,
Section 4.1]). Following the tracing definitions in [11, 26, 18], we define traceability of an RKEM analogously.
(Note, this implicitly defines traceability of a revocation scheme due to the results of Section 3 and, thus, we
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Experiment ExptraceRKEM,Trace,A,ε(1k)

1t ← A(1k)
(pk ,msk)← Gen(1k, 1t)
(B,R)← AShare(msk,·)(pk)
id ← TraceB(·)(msk ,R)
if A has queried Share(msk , id)

or QB,R < ε return 0
return 1

Experiment Expsid-traceRKEM,Trace,A,ε(1k)

(1t, C)← A(1k)
(pk ,msk)← Gen(1k, 1t)
∀id ∈ C: usk id ← Share(msk , id)
(B,R)← A(pk , (usk id)id∈C)
id ← TraceB(·)(msk ,R)
if id ∈ C or QB,R < ε return 0
return 1

Fig. 1. Security experiments for traceability and sid-traceability of an RKEM.

derive a trace-and-revoke scheme.) Intuitively, we require an efficient algorithm Trace that can, from oracle
access to a stateless pirated box B, deduce the identity of at least one party that has been involved in the
construction of B. More concretely, suppose an adversary A corrupts a number of devices (i.e., obtains a
number of user keys usk id), and constructs a pirate box B. Suppose that B successfully decrypts ciphertexts
for an adversarially specified set R of revoked users. Then we want that Trace, given oracle access to B, can
deduce at least one of the identities id whose device A has corrupted. We will also define a relaxation of
traceability, dubbed sid-traceability, in which the adversary has to commit to corrupted identities in advance,
before even seeing the public key.

Definition 1 (Traceable/sid-traceable RKEM). We say that that an adversary A is T -valid if, in
experiment ExptraceRKEM,Trace,A (defined in Figure 1), it always chooses t ≥ T , it always outputs a set R of size
at most t, and it always makes at most T Share queries. (Note that this definition does not actually depend
on Trace, and that t is specified by A itself.) Furthermore, for given pk ,R, we define the quality of a pirate
box B output by A as

QB,R := Pr [B(C) = K | (C,K)← Enc(pk ,R)] .

An RKEM RKEM is (T, ε)-traceable if there exists a PPT algorithm Trace (that may depend on T and ε),
so that for every PPT T -valid A,

AdvtraceRKEM,A(k) := Pr
[
ExptraceRKEM,Trace,A,ε(k) = 1

]
is negligible. RKEM is (T, ε)-traceable under selective-identity attacks (short: (T, ε)-sid-traceable) if the
analogous statement holds with respect to

Advsid-traceRKEM,A(k) := Pr
[
Expsid-traceRKEM,Trace,A,ε(k) = 1

]
and Expsid-traceRKEM,Trace,A,ε, defined in Figure 1, in which A has to output an identity set C of corrupted users of
size at most t in advance.

From sid-traceability to traceability. There is a trivial (yet expensive) way to convert sid-traceable
RKEMs into traceable ones. Namely, we can simply guess the identities for which an adversary (adaptively)
requests user keys. Concretely:

Lemma 1 (sid-traceable ⇒ traceable). Let RKEM by a (T, ε)-sid-traceable RKEM with N identities.
If
(
N
T

)
is polynomial in k, then RKEM is also (T, ε)-traceable (with the same Trace algorithm). Concretely,

for every adversary A on RKEM’s traceability, there is an adversary A′ of roughly the same complexity on
RKEM’s sid-traceability, such that Advsid-traceRKEM,A′(k) ≥ AdvtraceRKEM,A(k)/

(
N
T

)
.

Proof sketch. First, A′ outputs a uniformly chosen subset C ⊆ ID of size T , and receives a public key pk
along with user keys usk id for id ∈ C. Then A′ internally simulates A, answering A’s Share queries using the
usk id . If A requests a user secret key for an identity id 6∈ C, then A′ fails. Otherwise, A′ relays A’s output
(B,R). Since A′ chooses C independently, the event that A′ fails is independent of A’s output. Besides, the
probability that A′ does not fail is at least 1/

(
N
T

)
, which is significant. ut
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Relation to our second result. Our second result (below) shows the ((t + 1)/2, ε)-sid-traceability of
an EDDH-based RKEM based on threshold extractable hash proofs. Our corresponding tracing algorithm
will have a runtime that is linear in

(
N
T

)
. Thus, in that case,

(
N
T

)
must be polynomial anyway, and the loss

in Lemma 1 seems acceptable.

More about our tracing strategy. We propose a tracing strategy that is similar to the tracing techniques
in the revocation setting given by [69, 26]. However, we stress that the tracing algorithm of [69] assumes a
pirate box with perfect decryption, i.e., ε = 1, and chooses the revoked set R by itself. The tracing mode
in [26] also considers imperfect decryption boxes, adversarially chosen revoked user sets, and, additionally,
allows of querying user secret keys adaptively. (This is possible since their scheme allows to change the
public key continuously even after the system setup.) Additionally, both, i.e., [69, 26], only address the DDH
setting. Nevertheless, we stress that the novelty of our work lies in the fact that we propose a new generic
view of trace-and-revoke schemes.

4.1 Warmup: (1, 2/3)-sid-traceability of the EDDH-based RKEM

We can now state our second result; i.e., we show the traceability of RKEMEDDH which is an EDDH-based
RKEM as defined and constructed in Section 3. (This immediately translates to an EDDH-based trace-and-
revoke scheme.) As a warmup, we first showcase the (1, 2/3)-sid-traceability of RKEMEDDH.

Informal proof strategy. To explain the overall idea of our tracing algorithm, observe that the decryption
of a ciphertext generated by Enc does not depend on which user key was used to decrypt. (This is necessary
for correctness.) Hence, we cannot expect that a pirate box B can be traced by feeding it valid ciphertexts
generated by Enc. Instead, we will feed B random ciphertexts of the form

CRrnd = (R, u1, (uf(id)1 hzid )id∈R, u
f(0)
1 hz0) for uniform h ∈ H and zid , z0. (3)

We will show that for such random ciphertexts, the result of the (honest) decryption depends on the identity
of the used user key usk id . Furthermore, a suitable reduction to the EDDH assumption will show that
honestly generated ciphertexts are indistinguishable from random ones. Hence, Trace can go through the
set of all possible identities id , and check how often B(CRrnd) coincides with Dec(id , usk id , C

R
rnd). In case B

outputs the same as Dec with probability close to 2/3, chances are that we have found the pirate identity.We
can formalize these claims:

Theorem 1 ((1, 2/3)-sid-traceability of RKEMEDDH). Assuming the EDDH assumption, we have that the
RKEM RKEMEDDH = (Gen,Share,Enc,Dec), with identity space ID, polynomial number N of identities, and
key derivation function G(s) = s, is (1, 2/3)-sid-traceable. The corresponding tracing algorithm Trace runs
for O(kN logN) steps, and makes O(k logN) oracle queries. Concretely, for every T -valid adversary A,
there is an EDDH adversary D, such that∣∣AdvtraceRKEM,A(k)

∣∣ ≤ O(2−k),

for all k that satisfy ∣∣∣AdveddhG,H,D(k)
∣∣∣ ≤ 1/9− εG,

for negligible εG.

Proof. The tracing algorithm. First, TraceB(·)(msk ,R) approximates for every identity id ∈ ID the
random quality

RQid
B,R := Pr

[
B(CRrnd) = Dec(id , usk id , C

R
rnd)
]
,

where the probability is over B’s random coins and random CRrnd as in (3). Concretely, say that for each
id 6∈ R, we check B(CRrnd) = Dec(id , usk id , C

R
rnd) for O(k · logN) independent values of CRrnd. Then a standard

argument (i.e., Hoeffding’s inequality and a union bound) shows that we obtain approximations R̃Q
id

B,R of

RQid
B,R, such that

for all id :
∣∣∣R̃Q

id

B,R − RQid
B,R

∣∣∣ < 1/9, (4)
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except with probability O(2−k). After having obtained all these R̃Q
id

B,R, Trace outputs an identity with

maximal R̃Q
id

B,R. The whole process takes O(Nk logN) steps and (if we re-use B-queries across different
identities) O(k logN) B-queries.

Why tracing works. To analyze Trace, consider an adversary A in the 1-sid-traceability experiment. We
assume without loss of generality that A always requests exactly one user key. Let id∗ be the corresponding
identity. Furthermore, we assume that the set R that A finally outputs contains exactly t identities, which
we denote by id∗1, . . . , id

∗
t . We finally assume id∗ 6∈ R. (If id∗ ∈ R, then any pirate box B that is able to

decrypt with non-negligible probability would contradict RKEMEDDH’s semantic security.) We denote by B
the pirate box that A eventually outputs.

Claim 4.2. There is a EDDH distinguisher D whose runtime is essentially that of the sid-traceability ex-
periment with A, such that

QB,R − RQid∗

B,R = AdveddhG,H,D(k). (5)

Proof. On challenge input n = ord(H), g, u1, g
y, Z = uy1h

b, where either b = 0 or b = 1, D runs the first
stage of the sid-traceability experiment to obtain 1t and C = {id∗} from A. It then constructs an RKEMEDDH

public key as follows. First, D re-randomizes its input to obtain t tuples

(gy1 , Z1 := uy11 h
bz1), . . . , (gyt , Zt := uyt1 h

bzt)

with gyi := (gy)αigβi and Zi := Zαiuβi

1 = uyαi

1 hbαiuβi

1 = uyi1 h
bαi , for i ∈ [t] and exponents αi, βi that are

(statistically close to) uniform modulo n and modulo q. Hence, the yi and zi := αi mod n, for all i, are
independently uniform. Now, choose an arbitrary set {id1, . . . , id t} ⊂ T of t distinct identities that does
not contain id∗ and sample y∗ ← K. We (implicitly) define f(x) := a0 + a1x + · · · + atx

t as the unique
≤ t-degree polynomial over K that satisfies f(id i) = yi, for i ∈ [t], and f(id∗) = y∗. Note that D cannot
directly compute f . However, D does know id∗ and all id i, as well as all ĝyi = ĝf(idi) and ĝy

∗
= ĝf(id

∗) (with
ĝ := gv, for uniform exponent v). Hence, for ∆ := lcm{

∏
i,j∈[t+1],i6=j(id i − id j) ∈ Z}, (with idt+1 := id∗), D

can compute

(ĝ∆a0 , . . . , ĝ∆at)> :=
(
∆ · V −1id1,...,idt,id∗

)
◦ (ĝy1 , . . . , ĝyt , ĝy

∗
)>

without modular inversion in the exponent. Thus, for g̃ := ĝ∆, D can set up a public key pk := (n, g̃, (g̃ai)ti=0)
for A, and run the next stage of the 1-sid-traceability experiment (using y∗ as a user key for identity id∗).
Now, D obtains a set R = {id∗1, . . . , id

∗
t } of t revoked identities and a pirate box B from A. Consider the

following (t+ 1)× (t+ 1)-matrix M = (Mi,j) over K given by

M := V(id∗1 ,...,id∗t ,id∗) · V
−1
(id1,...,idt,id∗)

, so that M ·


f(id1)

...
f(id t)
f(id∗)

 =


f(id∗1)

...
f(id∗t )
f(id∗)

 . (6)

Note that M only depends on (and can be computed efficiently from) the id i, the id∗i , and id∗. Furthermore,
since all respective identities in {id i}i ∪ {id∗} and {id∗i }i ∪ {id

∗} are distinct, M is invertible. Now, D
computes the vector

((Z ′1)∆, . . . , (Z ′t)
∆, (Z ′t+1)∆)> := (∆ ·M) ◦ (Z1, . . . , Zt, Zt+1)>, (7)

with Zt+1 := uy
∗

1 . With these t+ 1 values (Z ′i)
∆ and t+ 1 identities in {id∗i }i ∪ {id

∗}, we are able to obtain

(Z ′0)∆ := (u
f(0)
1 hf

′(0)·b)∆ through Lagrangian interpolation (without modular inversion in the exponent),
with implicitly defined ≤ t-degree polynomial f ′ such that f ′(id∗i ) = zi, for all i, and f ′(id∗) = 0. Intuitively,
f ′ is the “h-exponent” of the Zi, resp. Z ′i. Finally, D hands a ciphertext C := (R, u1, (Z ′1)∆, . . . , (Z ′t)

∆, (Z ′0)∆ ·
s) (with (Z ′0)∆ as above and (Z ′i)

∆ as in (7), for i ∈ [t], and uniform s ∈ H) to B to obtain a potential
decryption K. If K = Dec(id∗, y∗, C), then D outputs 1, else 0. This completes our description of D.
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We now turn to D’s analysis. First observe that when b = 0, Zi = uyi1 = u
f(idi)
1 for all i, then (6) implies

Z ′i = u
f(id∗i )
1 for all i. Hence, C is distributed exactly like an honest encryption Enc(pk ,R), and by correctness

of RKEMEDDH, we have

Pr
[
D(1k, n, g, u1, g

y, Z) = 1 | Z = uy1
]

= Pr [B(C) = K | (C,K)← Enc(pk ,R)]

= QB,R, (8)

Conversely, assume b = 1, we have Zi = uyi1 h
zi , for all i ∈ [t], and Zt+1 := uy

∗

1 . Consider the (implicitly)

defined degree-≤ t polynomial f ′ with f ′(id i) = zi for i ∈ [t] and f ′(id∗) = 0. In other words, Zi = uyi1 h
f ′(idi).

By the interpolation properties of M , this sets Z ′i = uyi1 h
f ′(id∗i ) and thus Z ′0 = u

f(0)
1 hf

′(0). The ciphertext

now includes t values (Z ′i)
∆ and a value (Z ′0)∆ · s, in which the uniform value s ∈ H blinds hf

′(0). That
means that, information-theoretically, the adversary sees t evaluations f ′(id∗i ) of a polynomial f ′ that has t
degrees of freedom (through the zi). Hence, D prepares a random ciphertext C distributed exactly as CRrnd
from (3). Thus,

Pr
[
D(1k, n, g, u1, g

y, Z) = 1 | Z = uy1h
]

= Pr
[
B(CRrnd) = Dec(id∗, usk id∗ , C

R
rnd)
]

= RQid∗

B,R. (9)

Taking (8) and (9) together shows (5) as desired. ut

Claim 4.2 essentially says that the pirate box B decrypts even malformed, random ciphertexts just as
decryption with the user key usk id∗ for the traitor identity id∗ would. It remains to prove that this decryption
really uniquely identifies the traitor id∗.

Claim 4.3. For any fixed pk , id∗,R, and any identity id ′ 6∈ R ∪ {id∗}, we have

RQid′

B,R ≤ 1−QB,R + εG, (10)

for negligible εG.

Proof. We will prove that for any pk , id∗,R, id ′ as above, we have that

Pr
[
Dec(id∗, usk id∗ , C

R
rnd) = Dec(id ′, usk id′ , C

R
rnd)
]

is negligible, (11)

where the probability is over a random CRrnd as in (3). From (11), we can deduce (10) by a union bound
on the events that B(CRrnd) = Dec(id∗, usk id∗ , C

R
rnd) and Dec(id∗, usk id∗ , C

R
rnd) 6= Dec(id ′, usk id′ , C

R
rnd). To

show (11), recall that (honest) decryption under secret key usk id∗ computes K through a Lagrange inter-
polation in the exponent and post-processing. In particular, observe that upon input a random ciphertext

CRrnd = (R, u1, (uf(id)1 hzid )id∈R, u
f(0)
1 hz0), decryption will output Geddh

G,H(hz0−f
∗(0)), for the unique degree-≤ t

polynomial f∗ with f∗(id) = zid , for id ∈ R and f∗(id∗) = 0. (We have f∗(id∗) = 0 since decryp-

tion uses uusk id∗
1 = uusk id∗

1 · h0 for interpolation.) Analogously, decryption under secret key usk id′ yields

Geddh
G,H(hz0−f

′(0)), for the unique polynomial f ′ with f ′(id) = zid , for id ∈ R and f ′(id ′) = 0. Since id∗ 6= id ′,

we have f∗(0) 6= f ′(0), except with probability 1/n. Thus, by the pseudorandomness of Geddh
G,H , it follows that

Geddh
G,H(hz0−f

∗(0)) 6= Geddh
G,H(hz0−f

′(0)),

except with negligible probability εG. This shows the claim. ut

Claim 4.3 upper bounds the probability that a decryption under the “wrong” identity yields the “right”
result by accident. In particular, if we take QB,R ≥ 2/3 in (10) and (5), we get

RQid∗

B,R − RQid′

B,R ≥ 1/3− AdveddhG,H,D(k)− εG for all id ′ 6∈ R ∪ {id∗}.
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For the approximations R̃Q
id

B,R of RQid
B,R computed by Trace, this implies

R̃Q
id∗

B,R − R̃Q
id′

B,R ≥ 1/9− AdveddhG,H,D(k)− εG for all id ′ 6∈ R ∪ {id∗}, (12)

with overwhelming probability over the approximations. In particular, (12) implies that id∗ maximizes R̃Q
id

B,R
for sufficiently large k. Hence, if QB,R ≥ 2/3, and AdveddhG,H,D(k) ≤ 1/9− εG, and all the approximations are
accurate in the sense of (4), then Trace outputs id∗. ut

4.4 General case: ((t + 1)/2, ε)-sid-traceability of RKEMEDDH

Why our tracing strategy for T = 1 does not work. First, observe that our concrete tracing strategy
from the proof of Theorem 1 fails if A requests multiple user keys. For instance, A could use multiple user keys
to distinguish valid from random ciphertexts (which would break Claim 4.2). Concretely, A could request
two keys usk id1

and usk id2
and let B first check if a given ciphertext decrypts to the same value under both

usk id1
and usk id2

. If the decryptions do not match, then B immediately fails. (Recall that our proof uses the
fact that random ciphertexts decrypt differently under different keys.) Such a box B would be useless to our
tracing algorithm Trace, since Trace feeds B only random ciphertexts. (See [43] for more details.)

How to adapt our strategy. A natural way to adapt our strategy — this essentially follows the “black-
box confirmation” argument from [11] — would seem as follows. Given a set I ⊆ ID of identities, we can
construct “semi-random ciphertexts” of the form

CR,Irnd = (R, u1, (uf(id)1 hf
′(id))id∈R, u

f(0)
1 hf

′(0))
for f ′(x) ∈ Zq[x] uniform
of degree ≤ t, but subject
to f ′(id) = 0 for id ∈ I.

(13)

We will also define the random quality RQI
B,R of a box B relative to a given revoked set R, and an identity

set I ⊆ ID:

RQI
B,R := Pr

[
B(CR,Irnd ) = Dec(id , usk id , C

R
rnd) for some id ∈ I

]
. (14)

Intuitively, ciphertexts CR,Irnd look consistent from the point of a pirate box that only knows user keys for
identities in I. Hence, our tracing strategy for a larger number T of traitors will be as follows. We iterate
over all

(
N
T

)
identity subsets I ⊆ ID of size T , and approximate RQI

B,R. If the approximation indicates

that RQI
B,R ≥ ε, then we have a candidate for the set C of traitors. Unfortunately, there may be many

candidates, and not all of them contain only traitors. To filter out one identity that surely is a traitor, we
remove identities from I, one at a time. If the quality RQI

B,R drops, we must have removed a traitor. (If the
removed identity was no traitor, then B would not have noticed.) Again, this tracing strategy is similar to
that of [11, 52, 44, 69, 26, 18]. More formally:

Theorem 2 (((t + 1)/2, ε)-sid-traceability of RKEMEDDH). Assuming EDDH, RKEMEDDH is (T, ε)-sid-
traceable for every T ≤ (t + 1)/2 for which

(
N
T

)
is polynomial, and every significant ε. The corresponding

tracing algorithm Trace runs for O(k
(
N
T

)
/ε2) steps, where N denotes the number of identities in the system.

Concretely, for every T -valid adversary A, there are adversaries D,E, F , such that∣∣AdvtraceRKEM,A(k)
∣∣ ≤ O(2−k),

for all k that satisfy

∣∣∣AdveddhG,H,D(k)
∣∣∣+

(
T∑
i=2

(
N

i

))
·
∣∣∣AdveddhG,H,E(k)

∣∣∣+ (N − T ) ·
∣∣∣AdveddhG,F (k)

∣∣∣ ≤ ε

3T
.

Proof. Fix T and ε = ε(k) as above.
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The tracing algorithm. First, TraceB(·)(msk ,R) iterates over all identity sets I ⊆ ID of size T and
approximates the random quality RQI

B,R (as defined in (14)). Again, a standard argument shows that with

O(k/ε2) B-queries for each I, we obtain approximations R̃Q
I

B,R such that

for all I:
∣∣∣R̃Q

I

B,R − RQI
B,R

∣∣∣ < ε

3T
, (15)

except with probability O(2−k). If no I with R̃Q
I

B,R > ε− ε/(3T ) is found, Trace halts with output “fail”.
Otherwise, let I = {id1, . . . , idT } be such an I, and write Ii := {id i, . . . , idT }. Now Trace approximates the
values RQIi

B,R (for 1 ≤ i ≤ T ) as in (15). Finally, Trace outputs id i for the smallest i that meets∣∣∣R̃Q
Ii

B,R − R̃Q
Ii+1

B,R

∣∣∣ > ε

T
(16)

(or idT if (16) holds for no i < T ).

Why tracing works. To analyze Trace, consider an adversary A in the (T, ε)-sid-traceability experiment.
We assume without loss of generality that A always requests a set C of exactly T user keys, and finally
outputs a set R = {id∗1, . . . , id

∗
t }, along with a pirate box B.

Our first claim essentially states that tracing does not output “fail” (except with small probability):

Claim 4.5. There is a EDDH distinguisher D whose runtime is essentially that of the sid-traceability ex-
periment with A, such that

QB,R − RQCB,R = AdveddhG,H,D(k). (17)

Proof sketch. We proceed as in the proof of Claim 4.2. First, D obtains C from A. Then D prepares a public
key pk and user keys (usk id)id∈C for A, and a ciphertext C for B, such that
– if b = 0, then C is an honest encryption, and
– if b 6= 0, then C is distributed as CR,Crnd .

(Note that Claim 4.2 can be seen as the special case C = {id∗}.) Finally, D outputs 1 if and only if
B(C) = Dec(id , usk id , C) for some id ∈ C. The analysis of D is analogous to that from Claim 4.2. ut

Next, we show that a pirate box B does not notice if we remove an identity id ′ 6∈ C from the set I in
CR,Irnd :

Claim 4.6. There is a EDDH distinguisher E whose runtime is essentially that of the sid-traceability ex-
periment with A, such that

RQI
B,R − RQ

I\{id′}
B,R =

(
T∑
i=2

(
N

i

))
· AdveddhG,H,E(k)

for all I ⊆ ID with
2 ≤ |I| ≤ T , and
every id ′ ∈ I \ C.

(18)

Proof sketch. E runs A to obtain C, and then guesses I and id ′ as above uniformly. Then, E prepares a
public key pk and a ciphertext C for A, such that
– D knows the user keys usk id for all id ∈ C ∪ I \ {id ′},
– if b = 0, then C is distributed as CR,Irnd , and

– if b 6= 0, then C is distributed as C
R,I\{id}
rnd .

This can be done analogously to the proof of Claim 4.2. We stress, however, that at this point, we use
that T ≤ (t + 1)/2 to fix the implicitly defined polynomial f at all id ∈ C ∪ I. Finally, D outputs 1
iff B(C) = Dec(id , usk id , C) for some id ∈ I \ {id ′}. The analysis of D is again analogous to that from
Claim 4.2, and (18) follows through an averaging argument. ut

Finally, we show that if tracing ends up with a singleton set I = {id} (such that the random quality
RQI
B,R still is high), then we must have id ∈ C.

Claim 4.7. There is a EDDH adversary D whose runtime is essentially that of the sid-traceability experi-
ment with A, such that

RQ
{id′}
B,R = (N − T ) · AdveddhG,H,D(k) for all id ′ ∈ ID \ (C ∪ R) (19)
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Proof sketch. D obtains C from A, and then guesses id ′ ∈ ID \ C uniformly. Then D interprets its EDDH

challenge as g, gf(0), u1, u
f(0)
1 hb, and forms a public key pk for A (with otherwise uniform and known f)

as in the proof of Claim 4.2. Now observe that the distributions CRrnd and C
R,{id′}
rnd are identical as soon as

id ′ 6∈ R. (To see this, note that a uniform f ′ subject to f ′(id ′) = 0 still has t degrees of freedom.) Hence,

D can generate a ciphertext C with u1 as above and u2 = u
f(0)
1 hbs for uniform s ∈ H and uniformly and

independently distributed τi. Regular decryption would decrypt C to Geddh
G,H(hbs) under usk id′ . So whenever

B(C) outputs K = Geddh
G,H(hbs), D can solve its own EDDH challenge (by comparing K to Geddh

G,H(s)), and
through an averaging argument, we obtain (19). ut

Finishing up. We can now put the pieces together and analyze the tracing algorithm Trace. Let us assume
that all approximations are suitably close in the sense of (15). Then, by Claim 4.5, and the assumption
about B, Trace will not output “fail” (except with negligible probability). Besides, every time Trace finishes
because (16) holds for an i, then Claim 4.6 (in contrapositive form) says that id i ∈ C really must be a traitor.

Finally, if no i < T meets (16), then RQ
{idT }
B,R must be significant. Claim 4.7 implies that then, idT ∈ C is a

traitor. ut

Potential generalizations of our tracing result. There are several dimensions in which one might
want to improve our tracing result. We will comment on how our result can be generalized (and when a
generalization seems problematic).

4.8 Potential generalizations of our tracing result

Full (instead of sid-)traceability. In case of a polynomial number of identities (which is necessary for
efficient tracing anyway), Lemma 1 immediately yields:

Corollary 1 (((t+ 1)/2, ε)-traceability of RKEMEDDH). Assuming EDDH, RKEMEDDH is (T, ε)-traceable
for every T ≤ (t+ 1)/2 for which

(
N
T

)
is polynomial, and every significant ε.

Generalization to Wee’s factoring-based broadcast encryption scheme. Wee [72] also constructs an
RKEM RKEMFact whose semantic security is based on the factoring assumption. (For convenience, we have re-
produced RKEMFact in Construction 4.9.) Conceptually, RKEMEDDH and RKEMFact are very similar. RKEMFact

works over a group QR+
N ⊆ Z∗N of size ϕ(N)/4 for a Blum integer N . In particular, ciphertexts are of the

form C = (R, u, (uf(id))id∈R) for some degree-≤ t polynomial f(x) = a0 + a1x+ · · ·+ atx
t ∈ Zϕ(N)/4[X] im-

plicitly given in the public key. With RKEMFact, however, we always have f(0) = a0 = 2−(t+1)k mod ϕ(N)/4.
Moreover, decryption of an honestly generated ciphertext yields BBSN (s) for the BBS pseudorandom gen-

erator [10] and s = u−2
k

. These modifications (compared to RKEMEDDH) enable a reduction to the factoring
assumption; however, they also have a number of other effects.

Specifically, given a potential raw key s, we can always check if s is the correct decryption of a (consistent)

ciphertext by checking if s2
k

= u holds. This also gives a way to distinguish completely random ciphertexts
CRrnd from honestly generated ciphertexts. (Random ciphertexts CRrnd yield uniform values s upon decryption,
which can be recognized.) This leads to problems during the proof of Claim 4.2. Hence, we do not even know
if Wee’s factoring-based scheme RKEMFact is (1, 2/3)-sid-traceable.

Now, we restate Wee’s construction based on the hardness of factoring. (Again, this construction is similar
to the EDDH-based construction RKEMEDDH.)

Construction 4.9 (Wee’s factoring-based RKEM [72]). Let RKEMFact be as follows:
Setup. Gen(1k, 1t) chooses a Blum integer N = PQ, along with a uniform generator g of the group QR+

N

of signed quadratic residues.3 Gen then chooses uniform exponents ai ∈ Zϕ(N)/4 (for i ∈ [t]) and sets

f(x) := 2−(t+1)k + a1x+ . . . atx
t mod ϕ(N)/4.

Output is pk := (N, g, (gai2
(t+1)k

)ti=1) and msk := (P,Q, (ai)
t
i=1).

3 If we write ZN = {−(N − 1)/2, . . . , (N − 1)/2}, and denote with JN ⊆ ZN all elements with Jacobi symbol 1,
then QR+

N = {|x| : x ∈ JN}. When letting x · y := |xy| for x, y ∈ QR+
N , then QR+

N is isomorphic to the group
QRN of quadratic residues modulo N . In particular, |QR+

N | = ϕ(N)/4. However, unlike QRN , QR+
N is efficiently

recognizable, which can be advantageous in some cases. See [38] for details and further references.
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Sharing. Share(msk , id), for id ∈ [
√
N/4], returns usk id := f(id) mod ϕ(N)/4.

Encapsulation. Enc(pk ,R) chooses an exponent4 r ← ZdN/4e, and computes

u := gr2
(t+1)k

, s := gr2
tk (

= u2
−k

= uf(0)·2
tk)
,

τid :=

(
g ·

t∏
i=1

(
gai2

(t+1)k
)idi

)r (
= uf(id)

)
.

(for id ∈ R). Ciphertext is C := (R, u, (τid)id∈R), and key is K := BBSN (s), where BBSN (s) is the BBS
pseudorandom generator [10] applied to s and modulo N .

Decapsulation. Dec(id , usk id , C), with usk id = f(id) and C as above, sets τid := uf(id)·2
(t+1)k

, and then

retrieves s := uf(0)·2
tk

from the τid through Lagrange interpolation in the exponent. Note that this
has to be done via a “gcd in the exponent” argument (see [62]), since decryption cannot compute the
fractional Lagrange coefficients directly. (This also explains the slightly tedious additional 2tk factor in
the exponent; we refer to [72] for details.)
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