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Abstract. While password-authenticated key exchange (or PAKE) protocols have been deeply studied, a server
corruption remains the main threat, with many concrete cases nowadays. Verifier-based PAKE (or VPAKE) protocols,
initially called Augmented-PAKE, have been proposed to limit the impact of any leakage. However, no satisfactory
security model has ever been proposed to quantify the actual security of a protocol in the standard model. The
unique model proposed so far is an ideal functionality in the universal composability (UC) framework, but is only
meaningful in idealized models.
In this paper, we first formally define some properties for the transform (password hashing) applied to the password
for the storage on the server-side, for an efficient VPAKE use. A tight one-wayness is required to prevent improved
password searches. We then enhance the Bellare-Pointcheval-Rogaway game-based model for PAKE to VPAKE
protocols, in such a way that it allows a VPAKE protocol to be secure in the standard model. In addition, we show
how to further extend this model to handle non-uniform and related passwords, both in case of PAKE and VPAKE.
Finally, we propose very efficient constructions of password hashing and VPAKE protocols, which are nearly as
efficient as the best PAKE protocols to date.
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1 Introduction

Outsourced applications require strong user authentication in order to guarantee fine-grained access-control. In
such situations, authenticated key exchange (AKE) protocols proved to be quite important. Since the seminal
Diffie-Hellman paper [DH76] with the first key exchange protocol, though without any authentication, many
variants have been proposed with various additional authentication means. The most classical one is the
certificate-based authentication, that uses signatures, as in SSL and TLS. However, this relies on a public-key
infrastructure to register and certify public keys. Unfortunately, such secure certification processes are not
always available or reliable.

For a human being, the most convenient1 authentication means is definitely a simple password which can
be easily memorized, and which does not require anything else to be checked. This scenario has first been
proposed by Bellovin and Merritt [BM92] in 1992, with the famous Encrypted Key Exchange (EKE) protocol.
However, as it has been recently illustrated (50 million LivingSocial passwords stolen in April 2012, more
than 6 million LinkedIn passwords stolen in June 2012, or data, including passwords, for millions of Adobe
customers stolen earlier October 2013, and more recently in May 2014, many, if not all, passwords of the
148 million of eBay active accounts), servers can be hacked and the authentication means stolen. When the
passwords are stored in clear on the server, this can be dramatic, especially since users often use related
passwords (if not the same) for many providers. To overcome this issue, Bellovin and Merritt also proposed
the Augmented EKE protocol [BM93], where the server just stores a means, called a verifier, to verify that
the client used the correct password, but not the password itself. Verifiers are usually hash values of passwords
with a salt. This limits the impact of leakage of information on the server side, since, while it does not prevent
off-line dictionary attacks, it forces the adversary to spend a lot of time to learn many passwords. This gives
enough time for letting the users renew their passwords.
? CNRS – UMR 8548 and INRIA
1 At least, that is the most reasonable (and widespread) option nowadays. Smartcards are not common (for website authen-
tication) and need to be carried with you every time you need to authenticate, while biometrics authentication is even less
widespread and has its own problems (e.g., biometrics cannot be changed in case of corruption of server).
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Of course, even when the server is never compromised, security is always limited when authentication
relies on such a low-entropy secret, as a password: an attacker can make as many attempts as he wants with
various passwords until he finds the correct one. This is the so-called on-line dictionary attack, which cannot
be avoided. Usual passwords have a quite small entropy and thus the number of trials before finding the
correct password might not be so high. But the impact can be limited by refusing connection attempts after
a few failures or by increasing the waiting time before a new attempt. As a consequence, with appropriate
restrictions, on-line dictionary attacks can be mitigated. Therefore, if we do not consider server compromise,
we are left with the problem of designing password-authenticated key exchange (PAKE) protocols guaranteeing
that on-line dictionary attacks are the best attacks an adversary can mount. This means that an active attack
should not help him to eliminate more than one password from the list of potential passwords, and a passive
attack should not leak any information at all.

If we want in addition to mitigate server compromise, which seems nowadays very important, then the
server should only store verifiers for passwords and not the passwords themselves. Such protocols are called
verifier-based password-authenticated key exchange (VPAKE) protocols. For security, a first requirement is
that extracting a password should take a computation time linear in the number of possible passwords, when
passwords are uniformly distributed. This corresponds to the time of the trivial off-line dictionary attack.

1.1 Contributions

In this paper, we essentially deal with VPAKE protocols in the standard model.
Our first main contribution is a new model for VPAKE, based on the BPR security model, with the real-

or-random flavor (Sections 2 and 3). Contrary to the model in [GMR06], this model does not directly imply
the use of an idealized model. In this new model, we define the notion of password hashing (Section 2) which
formalizes the way in which a verifier can be computed from a password. More precisely, to ensure strong
security in case of server compromise, we introduce the notion of tight one-wayness which says that extracting
a password for one verifier chosen among a set of verifiers should take nearly as long as hashing 2β passwords,
where β is the min-entropy of the password distribution.

This rules out naive hashing, where the verifier is just a deterministic hash of the password. Indeed, in
such a case, the adversary could find a password of one verifier in time 2β/n if he gets n verifiers. For a server
with hundreds of thousands of accounts, this would enable the adversary to quickly find the password of an
account, and so to enter into the system and make huge damage. On the other hand, our stronger notion of
password hashing offers an optimal security with regards to this kind of attacks: the time an adversary will
take to find out a valid password is 2β . Assuming a strict password policy to ensure reasonable min-entropy
β, this would give enough time to the company to change all passwords or disable all accounts.

As an additional contribution, we extend our VPAKE model to deal with related passwords, which is a more
realistic use case for PAKE, since humans often use related passwords for various servers. We also show that all
our constructions meet this stronger security notion. This model can be simplified to get the first PAKE model
dealing with related passwords, not in the UC framework. And PAKE from the Gennaro and Lindell [GL06]
(GL) framework, which were proven secure in the BPR model, are actually secure in our stronger model, with
possibly related passwords. The GL framework is currently one of the most efficient way of constructing PAKE
in the standard model.

Our second main contribution is to propose two constructions of password hashing (Sections 2.3 and 5.2).
They are algebraic, in the sense that they can easily be used with Smooth Projective Hashing Functions
(SPHFs). Therefore, they nicely fit in the GL framework, and in Section 4, we show how to build a VPAKE
from these password hashing schemes. Our constructions based on the first password hashing come in two
flavors: one-round and two-round. Both are very competitive even with the most efficient PAKE protocols so
far: the one-round version only requires the server to send two more group elements than the best one-round
PAKE so far [BBC+13c] (based on the framework of Katz and Vaikuntanathan [KV11]), while our two-round
version even outperforms the GL framework (using a folklore improvement) and needs only three more group
elements than the PAKE of Groce and Katz [GK10] (the most efficient BPR PAKE so far, also in two rounds).
Computation complexities are also similar, and security assumptions are the same (plain DDH), assuming the
tight one-wayness of the underlying password hashing scheme.
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We highlight that, while the tight one-wayness of our proposed password hashing schemes is proven in
idealized models (random oracle model and/or generic group model), the resulting VPAKE protocols (Section 4)
are proven secure in the standard model, assuming the tight one-wayness of the underlying password hashing
scheme. In other words, we can consider the tight one-wayness of the underlying password hashing schemes
as assumptions. Justifying these assumptions using idealized models is a classical and reasonable approach
in practice. Furthermore, it appears to be an open problem to construct (not necessarily algebraic) password
hashing, with proven tight one-wayness under classical assumptions such as factorization, DDH, or collision-
resistance.

We would like to point out that the proofs of tight one-wayness of our two password hashing schemes are
actually quite challenging, due to the use of a strong notion of security for password hashing. In addition,
they may be of independent interest. For example, one of our constructions involves multilinear maps in a
similar way as in [BR13], but with a new proof technique in the generic model because of the tight reduction
required for proving the complexity of an off-line dictionary attack. As just said, it is indeed not enough to
prove the one-wayness of the hashing, but we additionally require the inversion to be at least linear in the
number of passwords (tight one-wayness).

1.2 Related Work

Password-Authenticated Key Exchange (PAKE). PAKE protocols have been introduced by Bellovin
and Merritt [BM92]. Bellare, Pointcheval and Rogaway [BPR00] proposed the first game-based security model
(BPR), and several security results have been proven: EKE in the ideal-cipher model [BCP03], and then
in the random-oracle model [BCP04,AP05]. Katz, Ostrovsky and Yung [KOY01] designed the first efficient
scheme (KOY), provably secure in the standard model, later generalized by the Gennaro and Lindell (GL)
framework [GL03], using Smooth Projective Hash Functions (SPHFs).

A major issue in the BPR model is the find-then-guess game instead of a real-or-random game. While
they are polynomially equivalent [BDJR97] using an hybrid technique, this polynomial loss can make a huge
difference in the password-based setting where the success probability of an adversary is not negligible but
linear in 2−β , with β the bit-length of the passwords, or the min-entropy. Another drawback of the BPR
security model is the assumption on the password distribution: passwords are assumed to be independently and
sometimes uniformly distributed, whereas humans use biased distributions, and definitely related passwords.
In this paper, we overcome both these drawbacks by introducing a model that deals with related passwords,
and with the real-or-random flavor [AFP05] with a tight bound on the success probability of the adversary.

In 2005, Canetti et al. [CHK+05] already managed to solve these two drawbacks by providing a model
in the UC framework [Can01]. They extended the GL framework, making use of smooth projective hash
functions [CS02], to construct efficient concrete schemes. More constructions have thereafter been proposed,
with adaptive security and/or in only one round [ACP09, KV11, BBC+13c, ABB+13]. However, due to the
strong requirements of the UC framework, these schemes are much less efficient than those secure in the BPR
framework (such as [GL06,BBC+13c]) and even less efficient than our first VPAKE construction.

Verifier-Based Password Authenticated Key Exchange (VPAKE). Regarding VPAKE, while many
protocols have been designed and informally analyzed, no game-based security model has been proposed so
far, but just an ideal functionality in the UC framework [GMR06] with a generic conversion (the so-called
Ω-method). However, to model an off-line dictionary attack, after a server corruption, an ideal query (the
OfflineTestPwd query) is made available to the adversary. This ideal query enables to count the number of
passwords tested off-line, as the TestPwd ideal query enables to count the number of passwords tested via
an on-line dictionary attack (in UC-PAKE and UC-VPAKE). Unfortunately, because of that OfflineTestPwd
query, such a functionality can only be realized in an idealized model, such as the random oracle, ideal cipher
or generic model. Actually, the generic construction proposed by the authors is in the random-oracle model.

Subsequent Paper of Kiefer and Manulis [KM14]. In a recent paper [KM14], Kiefer and Manulis build
upon a previous version of our paper and show how to register the verifier to the server without revealing the
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password but still enforcing a given password policy via zero-knowledge proofs to ensure that passwords are
strong enough.

While this is a nice contribution, we should point out that their password hashing is not tightly one-
way (or tightly pre-image resistant) as claimed. Indeed, they do not hash the password through a random
oracle, but directly convert it to an integer via a “structure-preserving map”, for their zero-knowledge proofs
to work. This makes possible to invert their hashing algorithm using a variant of the Pollard’s kangaroo
method described in [MT09]. More precisely, let G be a cyclic group of prime order p, and let g and h be two
generators. The hash value of a password π (seen as an integer in {0, . . . , N} using their structure-preserving
map) is (H1, H2) ∈ G2, with H1 = gsP and H2 = gsP πhsH , where sP is an unknown scalar in Zp, and sH is a
public salt in Zp. Recovering π can then be done in (2 + o(1))

√
N group operations by computing the discrete

logarithm of H2/h
sH in base H1, which is much less than N/2 group operations required by brute-force.

We remark that our VPAKE scheme using our password hashing based on multilinear maps in Section 5
would certainly work with the construction in [KM14] and so would provide the first (though inefficient)
VPAKE scheme with a tight one-way password hashing and a way to enforce password policy without revealing
passwords.

2 Password Hashing

2.1 Notations

In this paper, the quality of an adversary A against a security notion sec is measured by his success or
his advantage in certain experiments Expsec or games Gsec, denoted by Succsec(A,K) and Advsec(A,K) =
2 · Succsec(A,K)− 1 respectively, where K is the security parameter. We denote by negl(K) a quantity which
is O(1/Kk) for any k ≥ 1 and we denote by $← the outcome of a probabilistic algorithm or the sampling from
a uniform distribution. Finally, {0, 1}n is the set of bit-strings of length n, or n-bit-strings. If x ∈ {0, 1}n is
such a bit-string, x[i] denotes the i-th bit of x.

2.2 Definitions

A password hashing scheme formalizes the way the salt and the hash value are generated in order to allow
password verification on a server, so that the values stored on the server-side leak as little information as
possible on the password. Basically, the hash value (or verifier) results from a one-way process on a salt
and the password. And we expect the inversion to require a time that is provably lower-bounded by a linear
function of the size of the dictionary, or 2β with β the min-entropy of the distribution.

Without salt, extracting a password from a set of N verifiers, would only require to perform 2β/N hashing,
instead of 2β . That would be very dangerous in case of corruption of an authenticating PAKE server in a big
company for example, where there are 105 to 106 employees, and getting access to any account of any employee
may have disastrous consequences.

We may then wonder why not using the login as the salt. This would be very practical in our VPAKE
scheme, because the salt could be used by the client when generating his first flow to the server, while if the
salt is unpredictable, this would be impossible. However, doing so is also very dangerous. First, it enables an
attacker to easily check if a user uses the same password in two (corrupted) databases or in the same database
at two different time periods. Second, it allows the creation of rainbow tables for specific logins such as “root”
or “administrator”. All in all, as NIST recommends in [TBBC10], salts have to be unpredictable and to contain
at least 128 randomly generated bits. This constraint is implicitly enforced by our definition (if the security
parameter is set to 128 bits).

Password Hashing Scheme. It is defined by six algorithms:
– Setup(1K, 1n) is a probabilistic algorithm which takes as input the security parameter K and the bit-length
n ≤ K of the password, and outputs parameters param;
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– PSalt(param) is a probabilistic algorithm which takes as input the parameters param and outputs a salt s
in some set S (depending on param); we just require that checking that some bit-string is in S or not can
be done in polynomial time (in K);

– PPreHash(param, π) is a deterministic algorithm which takes as input the parameters param and a password
π ∈ {0, 1}n, and outputs a pre-hash value P ;

– PHash(param, s, π) is a deterministic algorithm which takes as input the parameters param, a salt s and a
password π, and outputs a hash value H;

– PTSalt(param) is a probabilistic algorithm which takes as input the parameters param and outputs a salt s
in the set S (depending on param), together with a trapdoor ts corresponding to s;

– PTCheck(param, s, ts, P,H) is a deterministic algorithm which takes as input the parameters param, a salt
s, a trapdoor ts (associated to s), a pre-hash value P , and a hash value, and outputs 1 if there exists a
password π such that PPreHash(param, π) = P and PHash(param, s, π) = H.

For convenience, we will sometimes omit param as argument.
The PPreHash, PTSalt and PTCheck algorithms might look artificial, but they will help to move the alge-

braic part of the hashing in the PHash algorithm. This will allow the use of SPHFs, as in the GL framework.
More precisely, thanks to PPreHash, proving that a commitment or an encryption of a pre-hash value cor-
responds to some hash value, can be done “algebraically”, as it is needed in the GL framework. This would
not be the case, for example, if the pre-hash was just the password and the hash is SHA-256 of the password
and the salt. In this paper, the PPreHash algorithm either corresponds to the identity function (P = π),
or is used to make the password random-looking by applying a random oracle. In a lot of cases, the hash
value can be computed directly from the pre-hash value P (hence the name pre-hash), ts is not used and
PTCheck(param, s, ts, P,H) just computes the hash value from P and s and check if it is H.

Basically, we then want the tight one-wayness property to ensure that given a set of hash values, it is
hard to find a pre-hash value of any of the corresponding passwords, i.e., a pre-hash value passing the check
PTCheck. This is slightly stronger than finding a real password.

Remark 1. We chose to forbid PPreHash to use the salt s. Otherwise, since the salt s is not memorizable by
the client, this would require the server to send the salt to the client at the beginning of our generic VPAKE
protocol in Section 4.3, in an additional flow. In practice, since a VPAKE protocol is usually initiated by a
client, this would add another pre-flow from the client to the server, which would make a four-round protocol.

Remark 2. We could extend our definition to handle randomized pre-hashing and hashing algorithms PPreHash
and PHash, by adding other algorithms aiming at checking that some hash value corresponds to a given
password. We do not do it to keep the model simple, as our constructions do not need it. We note that is
somehow what Kiefer and Manulis did in [KM14].

Remark 3. Our definition supposes passwords are n-bit-strings. This is often not the case in practice, if
passwords are ASCII strings containing only alphanumeric characters. But it is possible to encode such ASCII
strings into n-bit-strings, with n close to the logarithm of the number of such strings. Note that we will not
require uniform distribution, but use the min-entropy of the passwords.

Security Properties. In addition to correctness, in order to be applied in VPAKE, a password hashing
scheme has to satisfy four security properties (all of them, except the last one, are statistical):
– Correctness. For any parameter param $← Setup(1K, 1n), any password π, if (s, ts)

$← PTSalt(param), P ←
PPreHash(param, π), and H ← PHash(param, s, π), then PTCheck(param, s, ts, P,H) = 1;

– Salt indistinguishability. For any parameter param
$← Setup(1K, 1n), the distribution of s, when s

$←
PSalt(param) is the same as the distribution of s, when (s, ts)

$← PTSalt(param);
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Initialize(1K, 1n)

param
$← Setup(1K, 1n)

T ← []
i← 0
return param

Hash()

π̃
$← D

(s, ts)
$← PTSalt(param)

H ← PHash(param, s, π̃)
T [i]← (s, ts, H) ; i← i+ 1
return (s,H)

TCheck(i, P )
(s, ts, H)← T [i]
return PTCheck(param, s, ts, P,H)

Finalize(i, P )
(s, ts, H)← T [i]
return PTCheck(param, s, ts, P,H)

Fig. 1. Game Gone-way for the one-wayness of password hashing schemes

– Second pre-image resistance. There exists a negligible function2 ε in K such that, for any password π ∈
{0, 1}n, and any (unbounded) adversary A:

Advsnd(A,K) := Pr
[
param

$← Setup(1K, 1n) ; (s, ts)
$← PTSalt(param, π) ; P ← PPreHash(param, π) ;

P ′
$← A(param, P, s) : P 6= P ′ and PTCheck(param, s, ts, P ′,PHash(param, s, π)) = 1

]
≤ ε(K);

– Entropy preservation. There exists a negligible function ε in K such that, for any password distribution D
of min-entropy β (not necessarily samplable in polynomial time), and any (unbounded) adversary A:

Adventropy(A,K) := Pr
[
param

$← Setup(1K, 1n) ; (s,H)
$← A(param) ; π

$← D :

s ∈ S and H = PHash(param, s, π)
]
≤ 2−β + ε(K)

– Pre-hash entropy preservation. There exists a negligible function ε in K such that, for any password distri-
bution D of min-entropy β (not necessarily samplable in polynomial time), and any adversary A running
in polynomial time in K:

Advpre-entropy(A,K) := Pr
[
param

$← Setup(1K, 1n) ; P
$← A(param) ; π

$← D :

P = PPreHash(param, π)
]
≤ 2−β + ε(K)

– Tight one-wayness. “Inverting” PHash (by inverting, we mean recovering a valid pre-hash value) takes ap-
proximately as long as evaluating 2β times the function PHash, on average (i.e., brute-forcing the password),
up to some small multiplicative constant, where β denotes the min-entropy of the password distribution D.
More precisely, let us consider the game Gone-way of Figure 1. The oracle Initialize first generates parame-
ters and sends them back to the adversary A. Then the adversary A asks queries to the oracle Hash to get
the hash values of some random passwords (and with random salts), as many times as it wants. He also has
access to an oracle TCheck to check whether he guessed correctly the pre-hash value of some hash value.
At the end of the game, the adversary A has to call the oracle Finalize with a pre-hash guess for one of
the hash values (and the corresponding salt) output by Hash. If the guess is correct, he wins. Notice that
TCheck is similar to Finalize, except the latter ends the game.
The password hashing scheme is tightly one-way, if for any adversary A running in time at most t, for any
password distribution D of min-entropy β:

Succone-way(A, q,K) .
t

2β · tPHash
+ negl(K),

where tPHash is the time of the algorithm PHash and “.” means less than up to some small multiplicative
constant.

We insist on the fact that, in the latter security game, the adversary can query the Hash oracle as many times
as he wants and that it should not help him to go faster than brute-force. In practice, this means that the
2 We do not use the notation negl here and in the two following properties, as we do want to insist on the fact that the same
bound has to hold for all passwords and all distributions D for the other properties. In other words, we want the bound to be
“uniform”.
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adversary just wants to find one password among a huge list of verifiers, and not only a specific one. This is
enough for him to enter into the system and to make huge damages. This is the reason why salts are required:
without salt, PHash evaluation would then target all the hash values.

The first three security properties are actually (at least implicitly) expected for all hash functions, and
are always straightforward in our case. Intuitively, they ensure that, if a password π is chosen according to
some password distribution D of min-entropy β, then the adversary cannot find the hash value of π (entropy
preservation), or a pre-hash value corresponding to the hash value of π (second pre-image resistance and
pre-hash entropy preservation) with probability significantly more than 2−β . The technical part will be to
design a scheme that satisfies the tight one-wayness, and to prove it! In addition, for our best protocols, we
will need password hashing schemes that admit SPHFs, to be compatible with the GL framework, the most
efficient known so far without random oracles. Let us remind that avoiding idealized models is our main goal.
This will require PHash to satisfy some algebraic properties.

Idealized Models. Due to the strict constraints on running time of adversaries in the tight one-wayness
definition, it seems really hard, if not impossible, to prove it under “classical” assumptions, such as DDH. That
is why we make use of idealized models, where the running time of the adversary is replaced by the number
of queries to some oracle.

For example, in the random oracle model, instead of considering the running time t of the adversary and
the time tPHash of a call to PHash, we consider qH the number of adversarial queries to the random oracle
and qPHash the number of queries to the random oracle performed by PHash itself. It seems fair to consider
that if we instantiate the random oracle by a hash function such as SHA-256, in a tightly one-way hashing
password scheme for the number of queries to the random oracle, we would get a tightly one-way hashing
password scheme (for the original definition). This definition in the random oracle model can be extended to
other idealized models such as the generic group model, in which case we use the number of queries to the
group law instead of the time.

We point out that, as explained in Section 1.1, the generic group model and the random oracle model are
only used to prove the tight one-wayness of our password hashing schemes, or more precisely, to show that
the tight one-wayness of our schemes are reasonable assumptions. For our VPAKE construction, we will never
use directly these idealized models, but only suppose that the underlying password hashing scheme is tightly
one-way.

2.3 Construction Based on Random Oracles

A Naive Password Hashing Scheme. Let us first exhibit a trivial construction using a random oracle H
with values in {0, 1}2K. For this construction, param = 1K, PSalt(param) and PTSalt(param) output a random
salt s ∈ S = {0, 1}2K (ts = ⊥), P = PPreHash(π) = π, H = PHash(s, π) = H(s, π), and PTCheck(s, ts, P,H)
just check whether H(s, P ) = H. Let us show that this scheme is a password hashing scheme for any n ≤ K:
– Correctness and salt indistinguishability are trivial.
– Second pre-image resistance. For any password π ∈ {0, 1}n and any salt s, the probability there exists

another password π′ ∈ {0, 1}n such that H(s, π) = H(s, π′) is less than 2n/22K ≤ 1/2K, since H has values
in {0, 1}2K, so the second pre-image resistance statistically holds.

– Entropy preservation. We remark that in the entropy preservation experiment, if the adversary makes qH
queries to the random oracle, the probability of a collision is less than q2H/2

2K. Let us now suppose that
there are no collision. We denote by s the salt and by H the hash value returned by the adversary. Let
π

$← D. Two situations appear:
• either H is not an answer to any pair (s, x) asked by the adversary to the random oracle. Then, either

(s, π) has been asked by the adversary to the random oracle, in which case H(s, π) 6= H, or (s, π) has
never been asked to the random oracle, and so H(s, π) is a random string in {0, 1}2K and is equal to H
with probability 1/22K;
• or H is the answer to H(s, x). Then, the probability that π = x, is at most 2−β , and if π 6= x, the

probability H(s, π) = H is at most 1/22K, as in the second case above.
Therefore, we get Adventropy(A,K) ≤ 2−β + (q2H + 1)× 2−2K.
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– Pre-hash entropy preservation. It is trivial since PPreHash is the identity function.
– Tight one-wayness. We remark that the procedure TCheck can be easily simulated and is not useful. Then,

the probability that two salts created by Hash are equal is less than q2Hash/2
2K (with qHash the numbers

of queries to Hash). When there is no collision, each random oracle query enables to check at most one
password for only one salt returned by Hash (or in other words for one index i of the array T in the game
Gone-way). So we have Succone-way(A,K) ≤ qH × 2−β + q2Hash × 2−2K, because each password appears with
probability at most 2−β .

An Algebraic Password Hashing Scheme. Unfortunately, the previous construction seems hard to be used
in a VPAKE scheme, or at least, we will not be able to use it within our GL approach (see Section 4.3), because
PHash has no algebraic property and so seems not compatible with any SPHF. Let us now introduce another
construction which is used later in one of our VPAKE schemes. Let param = (G, g) with G a (multiplicative)
cyclic group of order p (a prime number with more than 2K bits) and g a generator of G, and let H be a
random oracle with values in Zp. Then PSalt(param) just picks a random a ∈ S = G \ {1} and outputs s = a,
while P = PPreHash(π) = gH(π) and H = PHash(a, π) = aH(π). Finally, PTSalt(param) picks a random scalar
ts ∈ Z∗p and outputs (s = a = gts, ts), and PTCheck(s, ts, P,H) checks that P ts = H.

We could have chosen a simpler construction where P = H(π). In that case, ts could have been ⊥. But
this would have yield less efficient VPAKE construction, because we would need to encrypt P bit-by-bit.

Let us now prove the security of the construction:
– Correctness and salt indistinguishability are straightforward.
– Second pre-image resistance. For any passwords π, π′ ∈ {0, 1}n and any salt s = a ∈ S, if PHash(a, π) =

PHash(a, π′), aH(π) = aH(π′) and so H(π) = H(π′), since a is a generator of order p. Hence PPreHash(π) =
PPreHash(π′) = gH(π), and the second pre-image resistance holds perfectly.

– Entropy preservation and pre-hash entropy preservation. The entropy preservation and the pre-hash entropy
preservation can be proven exactly as the entropy preservation for the previous scheme, except H(s, x) and
H(s, π) are replaced by sH(x) and sH(π) for entropy preservation, and by H(x) and H(π) for pre-hash
entropy preservation.

– Tight one-wayness. To prove this property, counting the queries to the random oracle is not sufficient: to
illustrate the difficulty of the proof, let us suppose D is the uniform distribution over {0, 1}n. Then, for
µ = d2n/2e, the adversary can query H on µ arbitrary passwords π′1, . . . , π′µ ∈ {0, 1}n to get µ values
H(π′1) = π̂′1, . . . ,H(π′µ) = π̂′µ ∈ Zp and do µ requests to Hash and gets µ salts s1, . . . , sµ and µ hash values
H1 = PHash(s1, π1), . . . ,Hµ = PHash(sµ, pwµ). Then with constant probability, there is a collision between
the set {π1, . . . , πµ} and the set {π′1, . . . , π′µ}, and so there exists i, j such that, PHash(si, π

′
j) = Hi. This

attack breaks the one-wayness with only about 2n/2 queries to the random oracle. But one can remark that
such an adversary makes about µ2 ≈ 2n evaluations of PHash(si, πj), and thus 2n exponentiations.
In Appendix C.1, we prove that any adversary has to do at least about 2β operations in the generic group
model, for any n such that 24n+1 < p (i.e., n . K/2), where β is the min-entropy of the distribution of the
passwords. This proves the tight one-wayness since the cost of evaluating PHash is one exponentiation and
one evaluation of the random oracle (which is anyway faster). This result can be seen as an extension of
Theorem 2 from [Sch01]. However, we give the full proof in Appendix C.1 because the original proof was
not rigorous enough for our purpose.

Remark 4 (on the use of the random oracle model). One may wonder whether it is possible to prove the tight
one-wayness, if H is just collision-resistant (and not modeled as a random oracle), since the random oracle is
not programmed here and is just used to ensure that the pre-hash values look random. Unfortunately, it is
impossible. For example, if we choose H to be the identity function (where passwords in {0, 1}n are seen as
integers in {0, . . . , 2n − 1}), then given a salt s and the hash value sH(π) = sπ of π, we can recover π in time
O(2n/2), using a variant of the Pollard’s kangaroo method described in [MT09]. Since the uniform distribution
D over {0, 1}n has min-entropy n, this means the tight one-wayness does not hold.

Remark 5 (on the use of the generic group model). We could avoid using the generic group model, and simply
rely on the DDH assumption in the random oracle model, if we would allow to use a salt s ∈ {0, 1}2K in
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PPreHash, by setting P = gH(s,π), and H = hH(s,π) for some other generator h. But as already explained,
this is not supported by our password hashing schemes, since it would require the server to send the salt to
the client at the beginning of our generic VPAKE protocol in Section 4.3, in an additional flow. Therefore we
preferred to forbid the use of a salt in PPreHash at the cost of relying on the generic model for this password
hashing scheme. Anyway, this variant where P depends on the salt would not yield a more efficient VPAKE
using our generic construction in Section 4 (and actually, it not only adds one round, but also require to add
a one-time signature to partially authenticate the flows, due to this additional round).

In Section 5, we present another password hashing scheme, that will make use of multilinear maps [GGH13].
While in practice this second password hashing scheme is way less efficient that our first hashing scheme, it is
interesting in theory as its proof of tight one-wayness only relies on the generic model, but not on the random
oracle model. Before describing it, we first provide our extension of the BPR model to VPAKE protocols,
then we describe our generic VPAKE protocol with the security analysis. Our SPHF-friendly password hashing
schemes will immediately fit within this framework.

3 Security Models

In this section, we introduce our new game-based security model for VPAKE protocols, associated with a
password hashing scheme. This is an extension of the BPR PAKE security model [BPR00], but with the
real-or-random flavor [AFP05]. We then improve it to handle related passwords.

3.1 A BPR-like Security Model

Let us consider a password hashing scheme PH = (Setup,PSalt,PPreHash,PHash,PTSalt,PTCheck).

Users and Passwords. In this model, we consider a list of Q pairs of matching client-server. Clients are
denoted by C ∈ C and servers are denoted by S ∈ S. Each client C ∈ C holds a password πC , while each
server S ∈ S holds a random salt sS

$← PSalt(param) and a hash value HS = PHash(param, sS , πS) of some
password πS . Without lost of generality, we suppose that each client C is paired with a server S, and that for
each matching pair (C, S), πC = πS . For the sake of simplicity, each client or server appears exactly in one
pair. We point out that this is not a restriction of the model, and that it is possible to execute the protocol
between a client C and a server S which are not matching.

Protocol Execution. The adversary A can create several concurrent instances U i of each user U ∈ C ∪ S,
and can interact with them via the following oracle queries:
– Execute(Ci, Sj): this query models a passive attack in which the adversary eavesdrops on honest executions

between a client instance Ci and a server instance Sj . The output of this query consists of the messages
that are exchanged during an honest execution of the protocol between Ci and Sj (i.e., the transcript of
the protocol);

– Send(U i, U ′j ,m): this query models an active attack, in which the adversary may intercept a message and
modify it, create a new message, or simply replay or forward an existing message, to the user instance U ′j

in the name of the user instance U i. The output of this query is the message that U ′j would generate after
receiving m. A specific message Start can be sent to a client, in the name of a server, to initiate a session
between this client and this server.

– Corrupt(S): this query models the server corruption. The output of this query is the salt sS and the hash
value HS . Any client Ci with password πS is said to have his password hash corrupted.

Since our goal is to limit damages in case of server corruption, we do not consider client corruption queries,
and thus do not deal with forward secrecy, but we discuss it later.
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Partnering. Before actually defining the secrecy of the session key, and thus implicit authentication, we need
to introduce the notion of partnering: Two instances are partnered if they have matching transcripts, which
means that for one user its view is a part of the view of the other user. One should note that the last flow can
be dropped by the adversary, without letting the sender know. The sender of this last flow thus thinks that
the receiver got the message and still computes the session key.

Security. To actually define the semantic security of a VPAKE scheme, the adversary A has access to a
challenge oracle Test(U i), available many times, in the real-or-random flavor. It slightly differs from original
definitions [BPR00, AFP05], since clients and servers are paired in our model, whereas in previous models
there was a unique global server with specific common passwords with every client. A random bit b is chosen
at the beginning of the game G, and Test queries for some user instance U i are then answered as follows:
– if no session key has been computed by U i, the output is ⊥;
– if U i is a partnered client instance whose password hash has been corrupted, the output is ⊥ (as the

adversary can trivially simulate the server in this case);
– if a Test query has already been ask to U i, the output is the same as for the previous query;
– if a Test query has been ask to U i’s partner (if he has any), then if they are matching client-server, the

output is the same as for the previous partner’s query, whereas if they are not matching, the output is a
random session key;

– otherwise, return the session key of U i if b = 1, and a random session key if b = 0.
At the end of the game, the adversary A has to output a bit b′. The success probability Succ of A is the
probability that b′ = b, while its advantage is defined by Adv = 2 · Succ− 1. This characterizes his ability to
distinguish random keys from real keys in all non-trivial cases. This is the reason why all the trivial cases (for
which the adversary may already know the answer), the Test query is answered by real values or previously
sent values.

A VPAKE could be considered secure if the advantage of any adversary A, running in time t, in the previous
experiment is upper-bounded by:
– qs × 2−β + negl(K), if the adversary did not ask a Test-query for a server with a corrupted password hash,

and who received at least one flow generated by the adversary;
– qs × 2−β + Advone-way(B,K) + negl(K), otherwise, for some adversary B running in time about at most t,
where qs is the number of active sessions (handled with Send-queries) and passwords of each matching pair
(C, S) is chosen independently according to some distributionD (samplable in polynomial time) of min-entropy
β. Intuitively this means that to win, the adversary either has to corrupt a server and do a brute-force attack
to find the pre-hash value or the password from the hash value stored in the server (the term Advone-way in
the second bound), or has to do an on-line dictionary attack, which only enables him to test one password
per session (the term qs × 2−β in both bounds).

Remark. In the BPR model [BPR00], there was an additional Reveal-query which outputs the actual session
(as the Test-query does in the real and trivial cases). But it has been proven in [AFP05] that multi-Test-
queries with or without Reveal-queries are equivalent.

PAKE security. If we consider the previous model with the trivial (insecure) password hashing scheme,
where salts are ⊥ and PHash(param,⊥, π) = π, we get back to the real-or-random variant of the BPR security
model [AFP05]. This stronger model seems to be satisfied by the GL construction.

3.2 Related-Password Model and Forward-Secrecy

Note that the main differences of the BPR-model [BPR00] with the UC-model [CHK+05] are possible relations
between passwords with non uniform distributions and the forward-secrecy.

The latter can easily be handled by adding another query: Corrupt(C), which models the client corruption.
The output of this query is the password πC . The aim of forward secrecy is that even knowing a password
should not help to distinguish previous session keys from random keys. As a consequence, for corrupted
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clients and their matching partners, Test-queries are answered with the actual session keys (but only after
the client corruption, since keys established before should remain random-looking). We do not modify Test-
query answers in case of server corruption since we are still dealing with VPAKE schemes. Applying the same
modification would annihilate the role of the password hashing.

More concretely, the client corruption query allows to show that all the previous keys remain secure even in
case of the password-corruption, and the server corruption query allows to express the quality of the password
hashing scheme.

For related and non-uniform passwords, instead of supposing that passwords of each pair (C, S) are chosen
independently according to some distributionD. We now choose all passwords from a complex joint distribution
D over ({0, 1}n)Q (samplable in polynomial time), where Q is a bound on the number of possible matching
pairs (C, S).

We remark that we cannot set β to be the minimum min-entropy of the password of one client Ci, according
to D, because it is possible that the password π1 of C1 is equal to the password π2 of C2, in which case the
adversary could corrupt C1, get π1 = π2 and use it to win the game. More subtly, we recall that the adversary
can make two non-matching players (C, S) to play together and know whether they used the same password
or not. Therefore, we could imagine a distribution D where the i-th bit of the password π0 of client C0 is 1
if and only is the password π2i of C2i is the same as the password π2i+1 of C2i+1. Then, just by executing
protocols between C2i and S2i+1 (assuming matching pairs are of the form (Cj , Sj)), the adversary can get all
the bits of π0 and win the game. These attacks are unavoidable.

That is why, in our related-password model, we need to take into account, not the entropy β of each
password π, but the remaining min-entropy after all the corruption queries and the equality queries. An
equality query between two passwords πi and πj is performed by the adversary when he makes a Test-query
on a client instance Ci′i (with password πi) and a server instance Sj

′

j which are partnered and between which the
protocol was executed honestly (either directly with an Execute query, or via Send queries without alteration
of messages).

We say that an adversary A preserves a min-entropy of β, when for any random tape r of A:

− log2 max
(πC)C∈({0,1}n)Q

Pr
(π′C)C

$←D

(π′C) = (πC)

∣∣∣∣∣∣
corruption and equality queries of A with random tape
r are the same and give the same results when pass-
words are (π′C) and when passwords are (πC)

 ≥ β
We then say that a VPAKE protocol is secure even with related passwords, and provides forward-secrecy, if
the advantage of any adversary A, running in time t, and preserving min-entropy of β, is upper-bounded by:
– qs × 2−β + negl(K), if the adversary did not ask a Test-query to a server with a corrupted password hash,

and who received at least one flow generated by the adversary;
– qs × 2−β + Advone-way(B,K) + negl(K), otherwise, for some adversary B running in time about at most t.

PAKE: as above, using the trivial password hashing scheme, we get a security model for PAKE that handles
related passwords. This stronger model is satisfied by a variant3 of the GL construction, as shown in Section 4.3.

4 VPAKE Constructions

Since the GL framework, with SPHFs, is the unique approach to build efficient PAKE protocols secure in the
standard model, we follow this path to propose generic VPAKE constructions using SPHFs.

4.1 Tools

Smooth Projective Hash Functions. Projective hash function families were first introduced by Cramer
and Shoup [CS02]. Here we use the formalization from [BBC+13c]: Let X be the domain of these functions
and let L be a certain subset of this domain (a language). A key property of these functions is that, for words
c in L, their values can be computed by using either a secret hashing key hk or a public projection key hp but
with a witness w of the fact that c is indeed in L:
3 Actually, we could prove the security of the original GL construction (with related passwords) by making slight changes in our
proof.
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– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L, c) derives the projection key hp, possibly depending on the word c;
– Hash(hk, L, c) outputs the hash value from the hashing key, for any word c ∈ X;
– ProjHash(hp, L, c, w) outputs the hash value from the projection key hp, and the witness w, for a word
c ∈ L.

On the one hand, the correctness of the SPHF assures that if c ∈ L with w a witness of this fact, then
Hash(hk, L, c) = ProjHash(hp, L, c, w). On the other hand, the security is defined through the smoothness,
which guarantees that, if c 6∈ L, Hash(hk, L, c) is statistically indistinguishable from a random element, even
knowing hp.

Note that HashKG and ProjKG can just depend partially on L (i.e., can only depend on a superset L′),
and not at all on c: we then note HashKG(L′) and ProjKG(hk, L′, c). In addition, if HashKG and ProjKG do not
depend on c and verify a slightly stronger smoothness property (called adaptive smoothness, which holds even
if c is chosen after hp), we say the SPHF is a KVSPHF. Otherwise, it is said to be a GLSPHF. See [BBC+13c]
for details on GLSPHF and KVSPHF and language definitions.

Encryption Scheme. A labeled public-key encryption scheme is defined by three algorithms:
– KG(1K) generates a key pair: a public key pk and a secret key sk;
– Enc`(pk, x; r) encrypts the message x under the key pk and the label `, and using the random coins r;
– Dec`(sk, c) decrypts the ciphertext c with the label ` using the secret key sk.
In this paper, we consider IND-CPA (without label) and IND-CCA (with labels) encryption schemes [BDPR98].

4.2 Intuitive Framework

Intuitive Framework. Basically, if we restrict ourselves to password hashing schemes, our constructions
work as follows. When a client C wants to authenticate to a server S, it sends a commitment of the pre-hash
value PC = PPreHash(param, πC) of his password πC while the server sends a commitment of the hash value
HS corresponding to the client’s password, together with the salt sS used for computing this hash value. Using
this salt sS , the client can compute the hash value HC = PHash(param, sS , πC). If the client and the server are
compatible and honest, HC = HS . Then SPHFs are used to ensure that the server committed to HS = HC and
the client committed to a pre-hash value PC such that there exists πC satisfying PPreHash(param, πC) = PC
and PHash(param, sS , πC) = HS .

Link with LAKE. Our construction can roughly be seen as a particular case of a LAKE (Language Au-
thenticated Key Exchange) [BBC+13a], which is an extension of a PAKE where each player knows a private
information (like a password), a word, and a language. The key exchange is successful if private information
is the same and if the word of each player is in the language of the other player. In our case, the private
information is the hash value HS = HC , and the server does not hold any word and the client holds a word
PC = PPreHash(param, πC) ∈ {P | ∃π ∈ {0, 1}n, PPreHash(param, π) = P and PHash(param, sS , π) = HS}.

However, if we actually base our construction on existing LAKE constructions such as [BBC+13a,BBC+13c,
ABB+13], we cannot directly compose these LAKEs with a password hashing scheme, because these construc-
tions have not been proven under strong enough models for our purpose. More precisely, the original UC
model of LAKE in [BBC+13a] does not support corruption (of the server private information as in our BPR-
like model), while the BPR-like model of LAKE in [BBC+13c] does not compose easily. In addition, in our
case, we have to take care of the fact that a malicious server can send a malicious salt sS , which was not taken
into account in these previous models4.

However, it seems that using any of the constructions mentioned above should work. Since in this paper,
we are not interested in UC-secure schemes, our generic VPAKE scheme in Section 4.3 is based on a two-round
variant of the LAKE construction in [BBC+13c], using a KVSPHF and a GLSPHF instead of two KVSPHFs.
4 In these previous models, there is a public information which can be used as a salt, but it is supposed that both users agree
on it, while in our case, the server chooses it. The client has even no way to verify that the server always uses the same salt,
between two executions of the protocol, since the client only knows the user’s password.
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Client C (πC)
CRS:

(param, pk1, pk2)
Server S (sS , HS)

PC ← PPreHash(param, πC)

hkC
$← HashKG(L) ; hpC ← ProjKG(hpC , L,⊥)

`C = (C, S, hpC) ; rC
$← ; cC ← Enc`C1 (pk1, PC ; rC)

C, S, hpC , cC−−−−−−−−−−−→ `C = (C, S, hpC)

hkS
$← HashKG(L′) ; hpS ← ProjKG(hpS , L

′, cC)

HC ← PHash(param, sS , πC) sS , hpS , cS←−−−−−−−−−−− rS
$← ; cS ← Enc2(pk2, HS ; rS)

A′C ← ProjHash(hpS , L
′
(sS ,HC), (`C , cC), (πC , rC)) A′S ← ProjHash(hpC , LHS , cS , rS)

AS ← Hash(hkC , LHC , cS) AC ← Hash(hkS , L
′
(sS ,HC), (`C , cC))

KC ← A′C ×AS KS ← A′S ×AC

Fig. 2. Generic two-round VPAKE Construction

Replacing a KVSPHF by a GLSPHF often makes the protocol more efficient by reducing the amount of data
exchanged, but also makes the protocol two-round instead of one-round. We also provide a one-round version
of our protocol later in the paper.

4.3 Generic Two-Round Construction

Construction. Let us consider a labeled IND-CCA encryption scheme (KG1,Enc1,Dec1), an IND-CPA one
(KG2,Enc2,Dec2), and a password hashing scheme PH = (Setup,PSalt,PPreHash,PHash). Let us suppose we
have a GLSPHF and a KVSPHF (respectively) for the two following families of languages:

L′(s,H) = {(`, c) | ∃π,∃r, c = Enc`1(pk1,PPreHash(param, π); r) and H = PHash(param, s, π)}

LH = {c | ∃r, c = Enc`2(pk2, H; r)},

with param, pk1 and pk2 global parameters in the common reference string CRS, generated as follows: param $←
Setup(1K, 1n), (sk1, pk1)

$← KG1(1
K) and (sk2, pk2)

$← KG2(1
K); and with s ∈ S and H a hash value of

some password π. We also suppose the HashKG and ProjKG for L′(s,H) and LH do not depend on H. In
other words, they just work for L′ = {(`, c) | ∃r, ∃P, c = Enc`1(pk1, P ; r)} ⊃ L′(s,H) (for any s,H) and
L = {c | ∃r, ∃H, c = Enc2(pk2, H; r)} ⊃ LH . Then our two-round construction is depicted in Figure 2, where
× is a commutative operation between hash values such that if A is a uniform hash value (independent of B),
A×B is uniform (often hash values live in a group and × is just the group law).

This scheme is secure in our BPR-like model for VPAKE, with forward-secrecy, related passwords, and
static corruptions (where the adversary is only allowed to corrupt a client C or a server S of some matching
pair (C, S) when no instance of C nor S is involved in an execution of the protocol). Achieving security against
static corruptions is already quite challenging [GK10]. This security proof is similar to the one in [BBC+13c]
and can be found in Appendix C.3.

One-Round Variant. If both SPHFs are KVSPHFs, then the previous protocol is actually one-round (after
a slight modification on labels5): the two flows can be sent simultaneously. The proof of security is a slight
variant of the previous proof, using the same ideas as in [KV11]. However, in this case, both encryption
schemes have to be IND-CCA.

PAKE Variants. If we consider the previous model with the trivial (insecure) password hashing scheme,
where salts are ⊥ and PHash(param,⊥, π) = π, the one-round generic protocol is exactly the one of Katz
and Vaikuntanathan [KV11], while the two-round generic protocol is a folklore (improved) variant of the GL
framework [GL06] (where one-time signatures are no more required since the protocol is 2-round instead of
3-round, and the server encryption scheme is only IND-CPA instead of IND-CCA).

It is worth mentionning that our proof also shows that these constructions are secure with related pass-
words, which was not known, up to now.
5 Namely, `C = (C, S, hpC) and `S = (C, S, hpS), with two IND-CCA labeled-encryption schemes.
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4.4 Instantiations and Comparison

In this section we briefly show how to instantiate this generic scheme with our password hashing schemes.
It indeed applies to the algebraic password hashing scheme presented in Section 2.3, but also to the one we
introduce in the next section that makes use of multilinear maps, without random oracles. To instantiate our
generic scheme, we just need to choose IND-CPA and IND-CCA encryption schemes and to construct SPHFs for
the languages LH and L′(s,H). Details can be found in Appendix B, due to lack of space.

Instantiation with our Algebraic Password Hashing Scheme of Section 2.3. For the two-round
version, we use the labeled Cramer-Shoup encryption scheme for Enc1 and ElGamal for Enc2, while for the
one-round version, we use the labeled Cramer-Shoup encryption scheme for Enc1 and Enc2. One the one hand,
in the two-round version, the client sends 5 group elements (4 for cC and 1 for hpC) and the server sends 5
groups elements (2 for cS , 1 for the salt sS , and 2 for hpS). This is a total of 10 groups elements, just three
more than the most efficient PAKE in the BPR model [GK10]. On the other hand, in the one-round version,
the client sends 6 group elements (4 for cC and 2 for hpC) and the server sends 8 group elements (4 for cS ,
1 for the salt sC , and 3 for hpS). This is a total of 12 group elements, just two more than the most efficient
one-round PAKE in the BPR model [BBC+13c]. So even compared to PAKE, our VPAKE is very competitive.

Compared to the other VPAKE constructions in the standard model (assuming the tight one-wayness of
the underlying password hashing scheme), our construction outperforms both in term of rounds, namely 1 or 2
(compared to at least 3), and in term of communication complexity: some previous such constructions consist
in a classical PAKE with the verifier followed by a zero-knowledge proof (e.g., Schnorr-like as in [ACP05]) that
the client knows the password associated to the verifier; some other constructions just require a much higher
communication complexity and a high (≥ 3) number of rounds by design (e.g., [CCGS10] and [BBC+13a]).
Last but not least, our protocols are formally proven secure within a new security model, that is the first one
allowing provably secure protocols in the standard model.

Instantiation with our Password Hashing with Multilinear Maps of Section 5.2. We only propose
the two-round protocol since no efficient KVSPHF seem to exist. The encryption scheme Enc1 is the labeled
Cramer-Shoup encryption scheme for vectors as recalled in Appendix B.1, and the encryption scheme Enc2 is
the ElGamal encryption scheme.

The security of all our instantiations directly comes from the security of our password hashing schemes
(proven in the generic group model and in the generic multilinear group model) and of the security of the
generic scheme. We remark that if we assume the security of our password hashing schemes or if we prove
them without any idealized models, which could be done under non-standard assumptions, our instantiations
would be secure in the standard model.

5 Multilinear Maps

5.1 Multilinear Maps and Graded Rings

In the following, we use an idealized version of asymmetric multilinear maps with the notations intro-
duced in [BBC+13b]. Very roughly, an n-graded ring is just the extension of an asymmetric bilinear map
(p,G1,G2,GT , e) from 2 groups (G1 and G2), to n groups, denoted by Ge1 , . . . ,Gen . Contrary to asymmetric
bilinear groups, the group law is denoted by ⊕ instead of ·, and the pairing operation is denoted by ·�· instead
of e(·, ·). As for asymmetric bilinear groups, there are some restrictions on the operands for �. For the sake
of simplicity, graded rings are supposed to be of prime order p, even if, in reality, it is not exactly the case.
Formal definitions of graded rings and a discussion on their implementation can be found in Appendix A.1.

5.2 Construction of a Password Hashing System

Let us now introduce a completely algebraic construction based on multilinear maps. Before showing our actual
construction, let us first give some failed attempts at constructing a password hashing scheme in a cyclic group,
to show that constructing such a fully algebraic password hashing scheme is not as straightforward as it may
seem.
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Failed Attempts. Let G be a cyclic group. A first straightforward (incorrect) construction would be, for
PSalt(param) to output a random salt s = a ∈ S = G \ {1} and for PHash(a, π) to output H = aπ (where
π ∈ {0, 1}n is seen as an integer in {0, . . . , 2n − 1}). But, as explained in Remark 4, a baby-step giant-step
algorithm or a variant of the Pollard’s kangaroo method described in [MT09] enables to invert this function
with about 2n/2 group operations which is far lower than 2n.

A second idea would be to use n group elements (a1, . . . , an) ∈ Gn as salt s and to set H = a
π[1]
1 · · · aπ[n]n .

But the baby-step giant-step algorithm still works here.

Construction Based on Multilinear Maps. Let us now consider an (n+1)-graded ring G, and let (ai,b)i,b
(with 1 ≤ i ≤ n and b ∈ {0, 1}) be random non-zero group elements with ai,b ∈ Gei \ {0}. Parameters
are param = (G, (ai,b)i,b). A salt is a random non-zero group element s ∈ S = Gen+1 \ {0}, while P =
PPreHash(π) = π and H = PHash(s, π) = a1,π[1] � · · · � an,π[n] � s. Since P = π, no trapdoor ts is needed,
and PTCheck(s,⊥, P,H) just checks whether PHash(s, π) = H. This construction can actually be seen as
a particular case of the construction of Brakerski and Rothblum in [BR13] without wildcards, and with an
additive salt s. However the security proof does not follow from [BR13] as their proof is not tight as we
understand it. Our proof is in the generic graded ring model.
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A Graded Rings

A.1 Graded Rings

Let us first recall the notion of graded ring introduced in [BBC+13c], restricted to the “asymmetrical” case.
Such graded rings are a generalization of asymmetric bilinear groups and can be used as a practical abstraction
of asymmetrical multilinear maps coming from the framework of Garg, Gentry and Halevi [GGH13].

Indexes Set. Let us consider a finite set of indexes6 Λ = Zτ2 ⊂ Nτ . In addition to considering the addition
law + over Λ, we also consider Λ as a bounded lattice, with the two following laws:

sup(v,v′) = (max(v1,v
′
1), . . . ,max(vτ ,v

′
τ )) inf(v,v′) = (min(v1,v

′
1), . . . ,min(vτ ,v

′
τ )).

We also write v < v′ (resp. v ≤ v′) if and only if for all i ∈ {1, . . . , τ}, vi < v′i (resp. vi ≤ v′i). Let
0̄ = (0, . . . , 0) and > = (1, . . . , 1), be the minimal and maximal elements. Finally, let ei be the i-th vector of
the canonical base of Λ (ei = (0, . . . , 0, 1, 0, . . . , 0)).
6 In the original definition in [BBC+13c], the authors consider more general sets Λ.

http://eprint.iacr.org/2003/032.ps.gz
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Graded Ring. The τ -graded ring over a commutative ring R is the set G = Λ×R = {[v, x] |v ∈ Λ, x ∈ R},
where Λ = Zτ2 , with two binary operations (⊕,�) defined as follows:
– for every u1 = [v1, x1], u2 = [v2, x2] ∈ G: u1 ⊕ u2 := [sup(v1,v2), x1 + x2];
– for every u1 = [v1, x1], u2 = [v2, x2] ∈ G: u1 � u2 := [v1 + v2, x1 · x2] if v1 + v2 ∈ Λ, or ⊥ otherwise, where
⊥ means the operation is undefined and cannot be done.

We remark that � is only a partial binary operation and we use the following convention: ⊥⊕ u = u⊕⊥ =
u � ⊥ = ⊥ � u = ⊥, for any u ∈ G ∪ {⊥}. Let also Gv be the additive group {u = [v′, x] ∈ G |v′ = v} of
graded ring elements of index v. We will make natural use of vector and matrix operations over graded ring
elements.

A.2 Cyclic Groups and Asymmetric Bilinear Groups

Let us now show that cyclic groups and asymmetric bilinear groups of order p can be seen as graded rings
over R = Zp:

Cyclic groups: τ = 1. More precisely, elements [0, x] of index 0 correspond to scalars x ∈ Zp and elements
[1, x] of index 1 correspond to group elements gx ∈ G.

Asymmetric bilinear groups (p,G1,G2,GT , e, g1, g2): τ = 2. More precisely, we can consider the following
map: [(0, 0), x] corresponds to x ∈ Zp, [e1, x] corresponds to gx1 ∈ G1, [e2, x] corresponds to gx2 ∈ G2 and
[(1, 1), x] corresponds to e(g1, g2)x ∈ GT .

Notations. We have chosen an additive notation for the group law in Gv. On the one hand, this a lot easier
to write down generic things, but, on the other hand, it is a bit cumbersome for bilinear groups to use additive
notations. When we provide an example with a bilinear group (p,G1,G2,GT , e), we use multiplicative notation
· for the law in G1, G2 and GT , and additive notation + for the law in Zp, as soon as it is not too complicated.
Therefore, for any x, y ∈ Zp, u1, v1 ∈ G1, u2, v2 ∈ G2 and uT , vT ∈ GT , we have:

x⊕ y = x+ y x� y = x · y = xy

u1 ⊕ v1 = u1 · v1 = u1v1 x� u1 = ux1

u2 ⊕ v2 = u2 · v2 = u2v2 x� u1 = ux1

uT ⊕ vT = uT · vT u1 � u2 = e(u1, u2) x� uT = uxT .

A.3 Assumptions

Let us recall the DDH (in cyclic groups) and the SXDH (in asymmetric bilinear groups) assumptions before
introducing the GXDH assumption, which can be seen as an extension of these previous assumptions to graded
rings.

Definition 6 (Decisional Diffie-Hellman Assumption (DDH)). Let G be a multiplicative cyclic group
of order p, and let g be a generator of G. The DDH assumption says that, when we are given (ga, gb, gc) ∈ G3,
with a, b $← Zp, it is hard to decide whether c = ab (a DH tuple) or c $← Zp (a random tuple).

Definition 7 (Symmetric External DDH Assumption (SXDH)). Let (p,G1,G2,GT , e) be an asymmet-
ric bilinear group. The SXDH assumption says that the DDH is hard in G1 and in G2.

Definition 8 (Graded External DDH Assumption (GXDH)). Let G be a τ -graded ring. The GXDH
assumption says that the DDH is hard in each Gei (for i = 1, . . . , τ). In other words, for i = 1, . . . , τ , when
we are given (g, a� g, b� g, c� g) with g a generator of Gei and a, b

$← R, it is hard to decide whether c = ab

(a DH tuple) or c $← R (a random tuple).
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A.4 Candidate Instantiations of Graded Rings with τ > 2

We do not know any exact construction of graded rings for τ > 2. However, Garg, Gentry and Halevi proposed
a generalization of graded rings7 in a seminal paper [GGH13], called graded encoding schemes, where each
element may have multiple encodings. In addition, they proposed an approximate instantiation of graded
encoding schemes based on ideal lattices, where encodings are noisy and noise increases at each operation.

Unfortunately their construction does not suit our purpose because the GXDH assumption does not hold.
That is why we use the construction of Coron, Lepoint and Tibouchi [CLT13] over the integers instead (denoted
CLT). Let us now list all differences between ideal graded rings and the CLT construction, and show how to
adapt our schemes and proofs.

Multiple Encodings. The first difference is the fact that in CLT, each element has multiple encodings.
This is actually not a problem at all in our case, since the CLT construction also provides a way to test
the equality of two elements and a way to extract a canonical representation of any element (such that the
canonical representation of a random element is random).

Noise. In CLT, encodings are noisy, and noise increases after each operation. Parameters have to be chosen
accordingly and the initial noise has to be small enough, as already explained in [BR13] for example.

Base Ring R 6= Zp and Sampling. Contrary to what we suppose in the core of the paper, the base ring
R is not Zp but a direct product Zg1 × · · · × Zgn with g1, . . . , gn distinct unknown primes of size at least 2K.
In addition, it is only possible to sample random elements in R; using some specific element and inverting
elements is not possible. This is not a problem for our constructions, since we always sample random elements
from Zp, and we could replace Zp by R.

It remains to show that the security still holds when elements are chosen in R instead of Zp and with
the above restrictions. This is slightly more involved and is not done very thoroughly. But the main idea is
to remark that a random element x in R is such that x mod gi is a generator of Zgi for all i, with high
probability.

B Instantiations

In this appendix, we show the details of the two instantiations of our generic two-round VPAKE from Sec-
tion 4.4, after recalling the labeled Cramer-Shoup encryption scheme of vectors and of bit-strings, which is
the encryption scheme used in our VPAKE instantiations.

B.1 Labeled Cramer-Shoup Encryption of Vectors

Encryption of Vectors. For some of our VPAKE constructions, we use a variant of the Cramer-Shoup
encryption scheme for vectors of m messages, with randomness reuse [BBS03], when m > 1 (of course, when
m = 1, this is the usual Cramer-Shoup). This scheme has already been used in [BBC+13c]. Let G be a cyclic
group of order p, with two independent generators g and h. The secret decryption key is a random vector
sk = (x1, x2, y1, y2, z1, . . . , zm)

$← Z4+m
p and the public encryption key is pk = (g, h, c = gx1hx2 , d = gy1hy2 ,

f1 = gz1 , . . . , fm = gzm , HCS), where HCS is randomly chosen in a collision-resistant hash function family HCS

(actually, second-preimage resistance is enough). For a message-vector M = (Mi)i=1,...,m ∈ Gm, the multi-
Cramer-Shoup encryption is defined as m-MCS`pk(M ; r) = (u = gr, v = hr, e1 = f r1 ·M1, . . . , em = f rm ·Mm,

w = (cdθ)r), where θ = HCS(`, u, v, e1, . . . , em). Such a ciphertext C = (u, v, e1, . . . , em, w) is decrypted by
Mi = ei/u

zi , after having checked the validity of the ciphertext, w ?= ux1+θy1vx2+θy2 . This multi-Cramer-Shoup
encryption scheme, denoted MCS, is IND-CCA under the DDH assumption.

We remark that a public key for the labeled Cramer-Shoup scheme for vectors of m messages can also be
used to encrypt fewer messages (by ignoring the useless fi’s). In addition, if IND-CPA is enough, we can use
the ElGamal scheme (with randomness reuse in case of vector encryption), which drops v and w, we name it
the Multi-ElGamal encryption scheme, denoted MEG.
7 Actually graded rings were inspired from their graded encoding scheme.
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Encryption of Bit-Strings. The above encryption scheme can be used to encrypt bit-strings x ∈ {0, 1}|p|,
just by encrypting the vector (gx[1], . . . , gx[|p|]).

Extension to Asymmetric Graded Rings. The above encryption schemes can be trivially used in asym-
metric graded rings, by replacing G by Gv for any index v. The scheme is IND-CCA secure as long as the DDH
holds in Gv.

B.2 Instantiation Based on Random Oracles

For this instantiation we propose two variants: one in two rounds and one in one-round. The second one
slightly less efficient but still very practical. Both instantiations work in a cyclic group G of order p.

Let pk1 = (g1, h1, c1, d1, f1) be a public key for the labeled Cramer-Shoup encryption scheme (of vector of
size 1), let pk2 = (g2, f2) be a public key for the ElGamal encryption scheme, and let param = (G, g) (with g
another generator of G) be the parameters of the password hashing scheme in Section 2.3.

We could actually use g1 = g2 and f1 = f2, and the proof would still work. But for the sake of clarity, we
do not do it here.

Two-Round Instantiation. For this instantiaion Enc1 is the Cramer-Shoup encryption scheme, while Enc2
is the ElGamal encryption scheme.

Using notations of the generic two-round scheme in Section 4.3, we then have:
cC = Enc`1(pk1, PC ; rC)

= (uC = grC1 , vC = hrC , eC = f rC · PC , wC = (cdθC )rC ),

with θC = HCS(`C , uC , vC , eC), and PC = gH(πC) the pre-hash value of the client password πC ; and
cS = Enc2(pk, P ; rS)

= (uS = grS , eS = f rS ·HS)

with HS = s
H(πS)
S the hash value of the password πS and sS the salt.

It remains to construct a KVSPHF for
L′(s,H) = {(`, c) | ∃r, ∃π, Enc1[`](pk,PPreHash(param, π); r) and PHash(param, s, π) = H}

= {(`, c = (u, v, e, w)) | ∃r ∈ Zp, ∃π̂ ∈ Zp, u = gr1, v = hr1, e = f r1 · gπ̂, w = (cdθ)r and sπ̂ = H}
with θ = HCS(`, u, v, e) and a GLSPHF for

LH = {c | ∃r, Enc2(pk, H; r) = c}

=
{
c = (u, e)

∣∣∣ ∃r ∈ Zp, u = gr2, e = hr2 · gπ̂2 }
}
.

KVSPHF for LH . LH is just the language of ElGamal ciphertext of some given value H. Such an SPHF was
already proposed in [CS02]. Let us just recall how to write this SPHF in the generic framework introduced
in [BBC+13c], as a warm-up for the following SPHFs.

We use the following matrices:

Γ =
(
g f
) λ = r

λ · Γ = (gr2, f
r
2 )

Θ(C) = (u, e)

With hk = (η, β)
$← Z5

p, we get hp = (gη2h
β
2 ) ∈ G2. We remark that this KVSPHF does not need to use H in

HashKG nor in ProjKG, which is required for the generic scheme.

GLSPHF for L′(s,H). For this SPHF, we use the following matrices:

Γ =

(
g1 h1 f1 1 (c1d

θ
1)

1 1 g1 s 1

) λ = (r,H(π))

λ · Γ = (gr1, h
r
1, f

r
1g
H(π)
1 , sH(π), (cdθ)r)

Θ(C) = (u, v, e,H,w).

With hk = (η, ν, α, β, µ)
$← Z5

p, we get hp = (hp1 = gη1h
ν
1f

α
1 (c1d

θ
1)
µ, hp2 = gα1 s

β) ∈ G2.
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One-Round Instantiation. This is the same as the two-round instantiation except the encryption scheme
Enc2 for the server is also IND-CCA and is labeled, and the two SPHFs have to be KVSPHF. Let us just construct
the two SPHFs we need.

KVSPHF for LH . LH is just the language of Cramer-Shoup ciphertext of some given value H. In [BBC+13c],
the authors already introduced a KVSPHF for this exact language. The projection key hp contains two group
elements.

KVSPHF for L′(s,H). Notice we cannot use the same SPHF as for the two-round instantiation because it is only
a GLSPHF (hp depends on θ which depends on the ciphertext c). For this SPHF, we thus use the following
matrices:

Γ =

g1 1 h1 f1 1 c1
1 g1 1 1 1 d1
1 1 1 g1 s1 1

 λ = (r, rθ,H(π))

λ · Γ = (gr1, g
rθ
1 , h

r
1, f

r
1g
H(π)
1 , s

H(π)
1 , (cdθ)r)

Θ(C) = (u, uθ, v, e,H,w).

With hk = (η1, η2, ν, α, β, µ)
$← Z6

p, we get hp = (hp1 = gη11 h
ν
1f

α
1 c

µ
1 , hp2 = gη21 d

µ
1 , hp3 = gα1 s

β) ∈ G3.

B.3 Instantiation Based on Multilinear Maps

For this instantiation, we only have a two-round instantiation. Current construction methods seem to generate
an exponential blow-up in n for the size of a projection key hp for a KVSPHF for L′s,H , except if the client
encrypts some additionnal values (such as a1,π[1] � · · · � ai,π[i]) but this is out of the scope of this article.

Let G be a (n + 2)-graded ring of order p, with n the password length. Let ge1 , . . . , gen+2 and hn+2 be
generators of Ge1 , . . . , Gen+2 and Gen+2 , respectively. We set gv =

⊙
i∈v gei a generator of Gv, and we write

g0 = gen+2 and h0 = gen+2 .
Let pk0 = (g0, h0, c0, d0, f1, . . . , fn, HCS) be the public key of the labeled Cramer-Shoup encryption scheme

in Gen+2 for vectors of size n. This public key implicitely defines a public key for the labeled Cramer-Shoup
encryption for elements in G>: pk> = (g> = g0�g′, h> = h0�g′, c> = c0�g′, d> = d0�g′, f> = f1�g′, HCS),
with g′ = gv a generator of Gv, with v = >− en+2 = (1, . . . , 1, 0). This implicitely derived public key is used
by the server to encrypt HS , while the initial public key is used by the client to encrypt its password πC .

Let param = (G, (ai,b)i,b) be the parameters of the password hashing scheme in Section 2.3 (for this scheme
the last dimension en+2 is just ignored, which does not change anything).

Using notations of the generic two-round scheme in Section 4.3, we then have:
cS = Enc2(pk0, HS ; rS) = 1-MEGpk>((HS); rS)

= (uS = rS � g>, eS = rS � f> ⊕HS � g0),
and:

cC = Enc`C1 (pk1, πC ; rC) = |p|-MCS`Cpk0
((πC [i]� g0)i; rC)

= (uC = rC � g0, vC = rC � h0, (eC,i = rC � f1,i ⊕ πC [i]� g0)i, wC = rC � (c0 ⊕ (θC � d0))).
with θC = HCS(`C , uC , vC , (eC,i)i). The dependance between the keys used in cC and CS is not a problem in
the proof.

Let us now construct the SPHFs.

KVSPHF for LH . This one is identical to the one for the two-round instantiation based on random oracles.

GLSPHF for L′(s,H). This SPHF can be separated in two parts:
– one for proving that the ciphertext cC contains Cramer-Shoup encryption of a vector of group elements
X1 = gx10 , . . . , Xn = gxn0 , with x1, . . . , xn ∈ {0, 1},

– one for proving that if we set x = x1 + 2x2 + · · ·+ 2n−1xn, then H = PHash(param, s, x), or in other words,
H = a1,x1 � · · · � an,xn � s.

The first part can be handled as in the two-round instantiation based on random oracles, i.e., as in the SPHF
for blind signature scheme in [BBC+13c]. The second part uses the matrices detailed on Figure 3.

To see why this works, we first remark that, due to the first part of the SPHF, if we write u = r � g0, we
are sure that, for all i, ei = r� fi ⊕ xi � g0, with xi ∈ {0, 1}, and so εi = r� ηi ⊕ (xi � ai,1 ⊕ (1− xi)� ai,0),
in other words, εi = r � ηi ⊕ ai,xi . So, the SPHF just checks that s� a1,x1 � · · · � an,xn = H.
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Γ =



g0 η1

0g0 	u 	ε2
g0 η2

g0 	u 	ε3
g0 η3

0
. . .

g0 	u 	εn − 1
g0 ηn − 1

g0 	u 	εn
g0 ηn


Θ(c) = (s� u, s� ε1, 0, 0, . . . , 0, H � g0)

λ = (r � s, s� a1,π[1], r � s� a1,π[1],
s� a1,π[1] � a2,π[2], r � s� a1,π[1] � a2,π[2], . . . ,
s� a1,π[1] � · · · � an−2,π[n−2], r � s� a1,π[1] � · · · � an−2,π[n−2],

s� a1,π[1] � · · · � an−1,π[n−1], r � s� a1,π[1] � · · · � an−1,π[n−1]),

with εi = ei � ai,1 ⊕ (g0 	 ei)� ai,0 and ηi = fi � (ai,1 	 ai,0).

Fig. 3. Matrices for the GLSPHF for L′(s,H) (second case)

C Proofs

C.1 Security of our Password Hashing Scheme Based on Random Oracles

In this section, we prove the tight one-wayness of our password hashing based on random oracles.

Case with Only One Hash Query and no TCheck. Let us first consider the case with only one query
Hash and no query TCheck. For that purpose, let us first prove the following theorem, which is an extension
of Theorem 2 from [Sch01]. We point out that our result is slightly stronger than [MMN06, Theorems 2 and 3],
because the bound is tighter and the adversary only needs to recover gπ̂ and not π̂.

Theorem 9. Let G be a cyclic group of order p, and g a generator of G. Let DH be the uniform distribution
over the functions from {0, 1}n to Zp and let D be a polynomially samplable distribution over {0, 1}n of
min-entropy at least β. Then, if p− 2n > 22n

√
p, for any adversary A making at most t group operations8:

Pr
[
H $← DH ; s

$← G ; π̃
$← D ; π̂ ← H(π) ; H ← sπ̂ ; AH(s,H) = gπ̂

]
≤ 4t− 3

2β
+

22n

p
+

3

p
+
t(t− 1)

2p
.

We remark that the condition p− 2n > 22n
√
p is verified for any n such that 24n+1 < p, and that 22n

p ≤
1√
p ≤

2−K (for any cyclic group in which the discrete logarithm problem is K-bit hard, because of generic attacks).
The last term t(t−1)

2p just comes from the fact the adversary ouputs gπ̂ instead of π̂, and is always negligible.

Remark 10. This theorem may seem slightly useless since the adversary A anyway obviously has to make
about 2−β queries to H to solve the problem. But often such queries are faster than group operations and as
already mentionned in Section 2.3, this does not work with multiple Hash queries, while counting the number
of group operations still works.

The proof is inspired by the proof of Schnorr in [Sch01] but is given entirely, for the sake of completeness
and rigor. We remark that the bound is not as tight as the one obtained by Schnorr, but this is sufficient for
our purpose.
8 More precisely, making at most t oracle queries in the generic group models, which is stronger in our case. Precise definition
of oracle queries are given in the proof.



22

Exp0
H $← DH
s

$← G
π̃

$← D
π̂ ← H(π̃)
H ← π̂ � s
π̂′ ← A⊕,�(H, s,H)
if π̂′ = π̂ then

return 1
else

return 0

Exp1
H $← DH
s

$← G
π̃

$← D
π̂ ← H(p̃w)
H ← π̂ � s
π̂′ ← A⊕

′,�′
(H, s,H)

if ∃i 6= j,Q′i = Q′j then
return 1 . Event E

else if π̂′ = π̂ then
return 1

else return 0

Exp2
H $← DH
s

$← G
π̃

$← D
π̂ ← H(π̃)
H ← π̂ � s
π̂′ ← A⊕

′,�′
(H, s,H)

if π̂ = 0 or s = 1G or H not injective then
return 0

else if ∃i 6= j,Q′i = Q′j then
return 1 . Event E

else if π̂′ = π̂ then
return 1

else return 0

Exp3
H $← DH
s

$← G
π̃

$← D
π̂ ← H(π̃)
H ← π̂ � s
π̂′ ← A⊕

′,�′
(H, s,H)

if π̂ = 0 or s = 1G or H not injective then
return 0

else if ∃i 6= j,Q′i = Q′j then
return 0 . Event E

else if π̂′ = π̂ then
return 1

else return 0

Fig. 4. Experiments for Theorem 9

Proof. Let us first suppose the adversary has to return π̂ and not gπ̂, and that g is not known to the adversary.
First of all, let us use an additive notation (as for graded rings): for any x ∈ Zp and u, v ∈ G: x� u = ux,

u⊕ v = u · v. Let us also suppose that t < 2n−1, since the bound is trivial to prove otherwise (because β ≤ n
and so (4t− 4)/2β > 1).

In the generic group model, each element is represented by a random string and operations ⊕ and � are
performed by two oracles9. t is the number of oracle queries.

Let us write Exp0 the experiment implicitely considered in the theorem and depicted in Figure 4. The
probability considered in the theorem (we want to bound) is just SuccExp0 . The adversary queries to the
oracles ⊕ and � can be seen as polynomials:

Qi := xi � s	 yi �H,

with unknowns s and H, and coefficients xi and yi (1 ≤ i ≤ t).
Let Q′i be the polynomial Qi where H is replaced by π̂� s = sπ̂. Let us then consider the experiment Exp1

which is similar to Exp0 except that the oracles return an independent random string for each distinct Qi, as
if H and s were independent (the resulting oracles are denoted ⊕′ and �′ in Figure 4), and, except that, at
the end, we make the adversary win the experiment if Qi 6= Qj but Q′i = Q′j . In other words, we make the
adversary win, if Qi and Qj are not formally equal but become equal when H is replaced by π̂ � s. This is
called the event E. ⊕′ and �′ return the same string for two (formally) equal polynomials and in the sequel,
we suppose, without loss of generality, that all polynomials Qi are formally distinct.

If the event E does not happens Exp1 and Exp0 are identical, and otherwise, the adversary always wins in
Exp1. Clearly:

SuccExp0 ≤ SuccExp1 . (1)

9 One oracle for ⊕ would be sufficient since x�u can be computed using ⊕. But allowing direct calls to the � oracle strengthens
our theorem. Actually, we can even allow direct calls to an oracle able to compute expressions of the form x� s	 y �H (x, y
being inputs of this oracle).
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Let us now consider the experiment Exp2 which is similar to Exp1, except we abort (the adversary loses)
when π̂ = 0 or s = 1G or H is not injective. We have:

SuccExp1 − SuccExp2 ≤
2

p
+

22n

p
, (2)

since Pr [ π̂ = 0 or s = 1G ] ≤ 2/p and the probability that H is not injective is:

Pr
[
∃π 6= π′, H(π) = H(π′)

]
≤ 2n(2n + 1)

2

1

p
≤ 22n

p
.

Let us now consider the experiment Exp3 which is similar to Exp2, except that when the event E happens,
the adversary loses the experiment. Clearly, we have:

SuccExp3 ≤ 2−β, (3)
the probability of success of A in Exp3 is at most 2−β , since H is injective and the password is not used in
this game (except to define the event E, but this is done at the end of the experiment and is not known to
the adversary), and so the adversary may only guess the password.

Let us now bound SuccExp2 − SuccExp3 . The two experiments are identical except when two polynomials
Qi and Qj (i 6= j) are equal when H is replaced by sπ̂. This happens if and only if (xi − xj) = (yi − yj)π̂.
If (xi − xj) = (yi − yj)π̂, yi 6= yj otherwise xi = xj and Qi = Qj (as polynomials), and this case is already
excluded. Let S = {xi−xjyi−yj | i 6= j} and T = S ∩ H({0, 1}n), where xi−xj

yi−yj is arbitrarily set to 0 if yi = yj .
Then, from the adversary point of view, Exp0 and Exp1 are distinct only if π̂ ∈ S. Since π̂ ∈ H({0, 1}n) this
is equivalent to π̂ ∈ T . Since H is injective, this happens with probability at most |T |/2β , with |T | the size of
the set T . Therefore, we have10:

SuccExp2 − SuccExp3 ≤
|T |
2β
. (4)

It remains to bound |T |. Let us first give a quick summary of the proof, before giving the details. First
of all, there are at most t(t + 1)/2 values xi−xj

yi−yj , so |T | ≤ |S| ≤ t(t + 1)/2. But this bound is not sufficient
here. To get a better bound, we will bound the number M of sets H({0, 1}n) such that there exists some set
S (defined by some (xi, yi)) such that T = H({0, 1}n)∩S has size at least m = 4t− 4. More precisely, we will
show that M is negligible compared to the number of sets H({0, 1}n) (which is

(
p
2n

)
). This will prove that

with high probability over the choice of H, any set T (defined by some set S, itself defined by a sequence of
(xi, yi)) contains at most 4t− 4 elements, which concludes the proof.

Here are the details. We first remark that S is defined by the sequence of t distinct pairs (xi, yi). Further-
more, if the xi’s and yi’s are replaced by x′i = λxi+x′ and y′i = λyi+y′ (with λ ∈ Zp \{0} and x′, y′ ∈ Zp), the
x′i’s and y

′
i’s yield the same set S as the xi’s and yi’s. So there are at most p2(p2− 1) · · · (p2− t)/((p− 1)p2) ≤

p2t−3 sets S.
Since H is injective, the set H({0, 1}n) is a random set of 2n (distinct) elements in Zp. Therefore there are(

p
2n

)
such sets. Let us now count the number M of such sets H({0, 1}n) such that there exists a set S (defined

by some xi’s and yi’s) such that T = H({0, 1}n)∩ S has size at least m (m will be chosen later in the proof).
This number M is at most the number of sets S times the number of subsets of size m of S times the number
of subsets of Zp of size 2n −m:

M ≤ p2t−3
( t(t+1)

2

m

)(
p

2n −m

)
.

And so, using the inequality k! ≥ ek/kk for any positive integer k, the probability that S′ has at least m
elements is at most:

M(
p
2n

) ≤ p2t−3 · ( t(t+1)
2

m

)
·
(

p
2n−m

)(
p
2n

)
≤ p2t−3 · (t(t+ 1)/2)m

m!
· (2n)!

(2n −m)!
· 1

(p− (2n −m+ 1)) · · · (p− 2n)

≤ p2t−3 · (t(t+ 1))m · em

2m ·mm
· 2nm · 1

(p− 2n)m
≤ p2t−3 ·

(
t(t+ 1) · e · 2n

2 ·m · (p− 2n)

)m
10 This equation is not rigorous and is informal since T depends on the actual execution the experiment, and so is not well

defined. But this gives the idea why it is important to try to bound |T |.
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If we take m = 4t− 4, since t ≤ 4t− 4 (for t ≥ 2, but for t = 1 no collision is possible) and t+ 1 ≤ 2n−1, we
get:

M(
p
2n

) ≤ p2t−3 · ( t(t+ 1) · e · 2n

2(4t− 4) · p− 2n

)4t−4
≤ p2t−3 ·

(
t

4t− 4
· e

4
· 2(t+ 1) · 2n

p− 2n

)4t−4

≤ p2t−3 ·
(

1 · 1 · 22n

p− 2n

)4t−4
≤ p2t−3 ·

(
1
√
p

)4t−4
≤ 1

p
,

where the last-but-one inequality comes from the fact p− 2n > 22n
√
p.

From Equation (4) (or more precisely, from an analysis of Exp2 and Exp3), we get:

SuccExp2 − SuccExp3 ≤
4t− 4

2β
+

1

p
, (5)

since either |T | is bounded by m = 4t − 4, in which case the adversary wins with probability at most m
2β
, or

|T | is not, but this happens only with probability at most 1
p . From Equations (1), (2), (5) and (3), we get:

SuccExp0 ≤
4t− 3

2β
+

22n−1

p
+

3

p
.

This concludes the proof, when the adversary has to return π̂ instead of gπ̂.
We can easily adapt the proof when the adversary can return gπ̂. The only difference is that polynomials

Qi also may contain a component in g:

Qi = zi � g ⊕ xi � s	 yi �H,
and we define Q′i to be the polynomials Qi when H is replaced by π̂ts�g, and s is replaced by ts�g, where ts is
the discrete logarithm of s. Everything works as before except the bound of SuccExp2−SuccExp3 , where we need
to bound the probability thatQ′i = Q′j (whileQi 6= Qj). IfQ′i = Q′j , we have: (zi−zj)+(yi−yj)ts = (xi−xj)tsπ̂.
Thus, we have two cases:
– either xi = xj , they we get (zi − zj) + (yi − yj)ts = 0, which happens with probability 1/(p− 1), since ts is

randomly chosen in Z∗p, and yi − yj 6= 0, otherwise zi = zj and Qi = Qj .
– or xi 6= xj , and our previous bound works.
So we just get to add an additive factor t(t−1)/(2p) to the previous bounds (since there are at most t(t−1)/2
pairs (Qi, Qj), with Qi 6= Qj). ut

Case with One Hash Queries. Let us just quickly deal with the case where the adversary has access to
a TCheck oracle. This oracle actually just allows the adversary to provide multiple possible answers P , in
a slight variant of the experiments Exp0, . . . ,Exp3 where only P = gπ̂ has to be provided instead of π̂. So
Equation (3) becomes:

SuccExp3 ≤ t2
−β,

since there are at most t possible values P the adversary can generate. So we just loses a term (t− 1)2−β in
the bound.

Case with Multiple Hash Queries. We suppose for the sake of simplicity that the adversary returns π̂
instead of gπ̂, and that there is no TCheck queries. Both these minor points can be handled as previously.

Let q be the number of Hash queries and let s1, . . . , sq and π̃1, . . . , π̃q be respectively the q salts and q
passwords chosen by Hash. Let π̂k = H(π̃k) and Hk = sπ̂kk .

The adversary queries to the oracles ⊕ and � can be seen as polynomials:

Qj :=

q⊕
k=1

xk,j � sk 	
q⊕

k=1

yk,j �Hk,

with unknowns sk and Hk, and coefficient xk,j and yk,j (1 ≤ j ≤ t and 1 ≤ k ≤ q).
Let us now consider the same experiments as in the case with only one Hash query: Q′j is now the

polynomial Qj where Hk has been replaced by π̂k � sk (for all k); and in Exp2 and Exp3, we abort when one
of the π̂k is 0 or one of the sk is 1G (which happens with probability at most 2q/p instead of 2/p).
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Everything works as before, except the bound on SuccExp2 − SuccExp3 (which was the core of the previous
proof). The two experiments are identical except when Q′j = Q′j′ for some j 6= j′ (event E). This happens
if and only if xk,j − xk,j′ = (yk,j − yk,j′)π̂k for all k. Let us now consider the graph whose nodes are the
polynomials Qj . There is an edge, labeled by a set Sj,j′ = {(kj,j′,1, π̂′j,j′,1), . . . , (kj,j′,q′ , π̂′j,j′,q′)}, with 1 ≤
kj,j′,1 < · · · < kj,j′,q′ ≤ q and π̂′j ∈ Zp, between Qj and Q′j , with j 6= j′, if:

Qj 	Q′j′ =
⊕

(k,π̂′)∈Sj,j′

((xk,j − xk,j′)− (yk,j − yk,j′)π̂′)� sk;

in other words, if Q′j = Q′j′ when π̂′j,j′,i = π̂kj,j′,i for all i = 1, . . . , q′, in which case we say that Sj,j′ is
compatible with (π̂k). We remark that SuccExp2−SuccExp3 is the probability that some Sj,j′ is compatible with
(π̂k).

Let us first handle the case when some non-singleton label Sj,j′ is compatible with (π̂k). There are at most
t(t + 1)/2 distinct Sj,j′ , and the probability that (π̂k) is compatible with a set Sj,j′ containing at least two
elements is at most 2−2β . So this first case arrives with probability at most t(t+1)

22β+1 .
Let us now only consider singleton labels Sj,j′ and remove all edges with non-singleton labels in the

previous graph. This graph represents the possible collisions (on the Q′j ’s) involving only one Hash query.
More precisely, if we set:

Si := {π̂′ | there exists an edge labeled {(i, π̂′)} in the graph}

the event E happens either for some non-singleton label Sj,j′ (case already handled) or when π̂i ∈ Si for some
i. The graph may not be connected. In each connected component C of this graph, we chose an arbitrary
node Qj∗C and replace every polynomial Qj in C by Qj −Qj∗C (and update accordingly the xk,i’s and yk,i’s).
We also remove all connected components with only one node. Let Q be the set of remaining polynomials. All
these modifications do not change the sets Si, and, in addition, we have:

Si ⊆ S′i :=

{
xi,j − xi,j′
yi,j − yi,j′

∣∣∣∣ (Qj , Qj′) ∈ Q2 and yi,j 6= yi,j′

}
,

and each set S′i actually corresponds to the set S in the proof for one Hash query, for the polynomials
Ri,j = xi,j � si	 yi,j �Hi (for all j such that π̂j ∈ Q). Let Qi = {Ri,j | Qj ∈ Q} and ti = |Qi| be the number
of distinct polynomials Ri,j . For the sequel, we suppose ti ≥ 1 for all i, without loss of generality (since we
can always ignore the ones with ti = 0, this only makes the number of queries q smaller).

It remains now to prove two points:

1. with probability at least t
p over the choice of H, no set Qi yields a set T ′i := S′i∩H({0, 1}n) of size greater

than 4ti − 4;
2. (t1 − 1) + · · ·+ (tq − 1) ≤ t.

Indeed, if π̂i ∈ Si, then π̂i ∈ T ′i , and π̂i are distributed according to a distribution of min-entropy β (because
H is supposed to be injective here). Therefore, the probability that π̂i ∈ T ′i is at most (4ti − 4)/2β when
|T ′i | ≤ 4ti − 4, and:

SuccExp2 − SuccExp3 ≤
t(t+ 1)

22β+1
+

q∑
i=1

4ti − 4

2β
+
t

p
≤ t2

22β
+

4t

2β
+
t

p
.

Since a success probabiblity is at most 1, and since t ≥ 2β implies (4t− 4)/2β ≥ 1, we get:

SuccExp2 − SuccExp3 ≤
5t

2β
+
t

p
.

Finally, we have:

SuccExp0 ≤
5t

2β
+

22n

p
+
t+ 2q

p
.

It remains to prove our two points. The first point comes directly from the union bound over all the
possible sizes of Qi and the previous proof: from the previous proof, the probability of any set of at most t′

polynomials yield a corresponding set T ′ of size greater than 4t′ − 4 is at most 1
p , therefore the probability
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that there exists some 1 ≤ t′ ≤ t and some set of at most t′ polynomials verifying the above property is at
most: t

p .
To prove the second point, let us show that in any connected component C with c vertices, there are at

most c − 1 distinct tuples (i, xi,j , yi,j) 6= (i, 0, 0) (for Qj ∈ C). Let the depth of a node Qj be the distance
between the previously arbitrarily selected node Qj∗C (now equal to 0 since all Qj ’s have been replaced by
Qj − Qj∗C ) and the node Qj . We prove by recursion on d ≥ 0 that there are at most cd − 1 distinct tuples
(i, xi,j , yi,j) 6= (i, 0, 0) for Qj ∈ C of depth at most d, where cd is the number of nodes of depth at most d.
The only node of depth 0 is Qj∗C and for all i, (i, xi,j∗C , yi,j

∗
C

) = (i, 0, 0), so the property is true for d = 0.
Let us suppose the property true for d and prove it for d + 1: each node Qj of depth d + 1 is such that
there exists an edge Sj,j′ = {(i, π̂′)} between Qj and some node Qj′ of depth d; and so for all i′ 6= i,
(i′, xi′,j , yi′,j) = (i′, xi′,j′ , yi′,j′). Therefore each node Qj adds at most one new distinct (i, xi,j , yi,j) 6= (i, 0, 0),
and there are at most cd − 1 + (cd+1 − cd) = cd+1 − 1 distinct (xi,j , yi,j) 6= (0, 0) for Qj ∈ C of depth at most
d (since there are cd+1− cd nodes of depth d+ 1). This concludes the proof that in any connected component
C with c vertices, there are at most c− 1 distinct tuples (i, xi,j , yi,j) 6= (i, 0, 0) (for Qj ∈ C).

Since there are t nodes, there are at most t− 1 distinct tuples (i, xi,j , yi,j) 6= (i, 0, 0) for Qj ∈ Q a node of
the graph, and since there are q distinct tuples (i, xi,j , yi,j) = (i, 0, 0), in total, there are at most t−1+q ≤ t+q
distinct tuples (i, xi,j , yi,j). Finally, as t1 + · · ·+ tq is at most this number of distinct pairs:

t1 + · · ·+ tq ≤ t+ q,

and:
(t1 − 1) + · · ·+ (tq − 1) ≤ t.

C.2 Security of our Password Hashing Scheme Based on Multilinear Maps

In this section, we prove our password hashing scheme based on multilinear maps (Section 5.2) is secure in
the generic graded ring model.

Statistical properties.
– Correctness and salt indistinguishability are straightforward.
– Second pre-image resistance and entropy preservation. For any pair of distinct passwords (or pre-hash values)
P = π and P ′ = π′, the probability (over the choice of (ai,b)) that a1,π[1]�· · ·�an,π[n] = a1,π′[1]�· · ·�an,π′[n]
is 1/(p−1), because there exists i such that π[i] 6= π′[i] and ai,π[1] and ai,π′[i] are independent and uniformly
random in Gei \ {0}. Therefore, with probability at least n(n+1)

2(p−1) , the function π ∈ {0, 1}n 7→ a1,π[1] � · · · �
an,π[n] is injective, and so is π 7→ PHash(s, π) (for s ∈ S). Hence, the second pre-image resistance and the
entropy preservation are verified statistically.

– Pre-hash entropy preservation. It is trivial since PPreHash is the identity function.

Tight one-wayness. First, we remark that this property cannot be proven as in [BR13], because their
proof is not tight as we understand it, since the security model is quite different. We therefore need to do a
completely new proof from scratch, which is also of independent interest.

In the generic graded ring model, each element is represented by a random string, and operations ⊕ and
� are performed by two oracles. Our goal in the proof is to be able to show that we can simulate these oracles
without knowing the real passwords, and that the adversary’s advantage at distinguishing the real oracles
and the simulated ones is at most t/2n, with t the number of queries to the oracles (or multilinear group
operations).

Let us assume that (ai,b)i,b are random group elements such that ai,b ∈ Gei , without the restriction ai,b 6= 0.
This new distribution of (ai,b)i,b is statistically indistinguishable from the original one. Let π̃1, . . . , π̃q be the
q = qHash passwords used in the q queries to Hash, and let s1, . . . , sq and H1, . . . ,Hq be the associated
salts and hash values respectively. The passwords π̃1, . . . , π̃q are independently drawn from a distribution
D of min-entropy β. The basic idea is to remark that the adversary queries to the oracles can be seen as
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polynomials:

Qj :=
⊕

k=1,...,q
I⊂{1,...,n}, π∈{0,1}n

(
γk,j,I,π �

⊙
i∈I

ai,π[i] � sk

)
⊕

⊕
k=1,...,q

(γj,k,H �Hk) ,

with unknowns (ai,b)i,b, (sk)k and (Hk)k, and with coefficients (γj,k,I,π)j,k,I,π and (γj,k,H)j,k. To simulate the
oracles, we just return an independent random string for each of these polynomials, as if all the Hk’s, the sk’s
and the ai,b’s were independent. We just need to return the same random string for two equal polynomials,
which can be done as in [BR13], by testing whether the difference between two polynomials is 0 or not, by
evaluating it at some random point.

From now on, we can assume that all the previous polynomials are formally distinct. To prove that our
simulation is indistinguishable from the real oracles, it remains to show that, with probability at most t×2−β ,
all these polynomials are still distinct, when Hk is replaced by a1,π̃k[1] � · · · � an,π̃k[n] � sk.

Case q = 1. Let us first focus on the case q = 1 and consider the graph whose nodes are the polynomials Qj .
There is an edge labeled π between Qj and Qj′ with j 6= j′ if and only if Qj 	 Qj′ = cj,j′ � (a1,π[1] � · · · �
an,π[n] � s1 	 H1) with cj,j′ a non-zero constant, i.e., when Qj and Qj′ would be equal if H1 were the hash
value of π. We remark that, with high probability, the adversary can distinguish the simulated oracles from
the real oracles if and only if the real password π̃1 labels an edge of this graph. Since π̃1 is never used, the
adversary’s advantage is approximatively at most m/2β , with m the number of distinct labels in the edges of
the graph.

To bound this number of distinct labels, we first arbitrarily remove edges in such a way that there remains
only one edge per distinct label in the initial graph (and thus all edges have distinct labels). Let us now
proceed by contradiction: we assume there is a cycle Qj1 , . . . , Qj` , Qj`+1

= Qj1 with edges with distinct labels
π1, . . . , π` in this new graph. We get:

0 =
⊕̀
u=1

Qju 	Qju+1 =
⊕̀
u=1

cju,ju+1 � (a1,πu[1] � · · · � an,πu[n] � s1 	H1),

which is obviously impossible since all the labels π1, . . . , π` are distinct and so all the monomials a1,πk[1] �
· · · � an,πk[n] � s1 (for k = 1, . . . , `) are distinct. Therefore, the new graph has no cycle and so its number
of edges (and so its number m of labels) is at most its number of nodes, which is at most the number
of polynomials, and so at most the number t of oracle queries or group operations. Thus, the adversary’s
advantage is approximatively at most t/2β .

Case q ≥ 2. Let us now analyse the case q ≥ 2 and show that the adversary’s advantage is approximatively
at most 2t/2β , in all cases.

Let us consider the graph whose nodes are the polynomials Qj . There is an edge, labeled by a set Sj,j′ =
{(kj,j′,1, πj,j′,1), . . . , (kj,j′,q′ , πj,j′,q′)}, with 1 ≤ kj,j′,1 < · · · < kj,j′,q′ ≤ q and πj,j′,i ∈ {0, 1}n, between Qj and
Qj′ with j 6= j′ if

Qj 	Qj′ =
⊕

(k,π)∈Sj,j′

cj,j′,k � (a1,π[1] � · · · � an,π[n] � sk 	Hk),

with cj,j′,k a non-zero constant (for all k = 1, . . . , q′); or in other words, if Qj and Qj′ would be equal if Hk is
computed correctly (Hk = a1,π̃k[1]�· · ·�an,π̃k[n]�sk) and πj,j′,i = π̃kj,j′,i for all i = 1, . . . , q′, in which case we
say that Sj,j′ is compatible with (π̃k)k. We remark that, with high probability, the adversary can distinguish
the simulated oracles from the real oracles, if and only if one label Sj,j′ of the graph is compatible with (π̃k)k.

Let us now bound the number of distinct singleton labels. For that, we can use exactly the same proof
as the one used to bound the number of labels in the case q = 1. We can indeed consider the graph where
all edges with non-singleton labels are removed and where we arbitrarily remove edges in such a way there is
only one edge per distinct label in the initial graph.

Let us now proceed by contradiction: we assume there is a minimal cycle Qj1 , . . . , Qj` , Qj`+1
= Qj1 with

edges of labels {(k1, π1)}, . . . , {(k`, π`)} in this new graph. We get:

0 =
⊕̀
u=1

(Qju 	Qju+1) =
⊕̀
u=1

cju,ju+1 � (a1,πu[1] � · · · � an,πu[n] � sku 	Hku)
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which is impossible since all labels (k1, π1), . . . , (k`, π`) are distinct and so all the monomials a1,πu[1] � · · · �
an,πu[n]� sku (for u = 1, . . . , `) are distinct. Therefore, the new graph has no cycle and the number of distinct
singleton labels is at most t.

Let mk be the number of distinct singleton labels of the form {(k, ·)} and m′ the number of distinct
non-singleton labels. From the previous analysis, m1 + · · · + m` ≤ t. In addition, m′ cannot be more than
the maximum number of edges in a graph with t nodes, and is thus less than t2. In addition, for any non-
singleton label Sj,j′ , the probability that Sj,j′ is compatible with (π̃k)k is 2−2β . Therefore, the probability for
the adversary to win is at most:

m1

2β
+ · · ·+ m`

2β
+
m′

22β
≤ t

2β
+

t2

22β
.

Since a probability is never greater than 1 and since t ≥ 2β implies t/2β ≥ 1, the probability for the adversary
to win is at most 2t/2β .

C.3 Security of the Generic Two-Round VPAKE

This proof is close to the proof from [GL03]. However, due to the fact our model is slightly stronger and takes
care of the case where two incompatible users are partnered, we need to be a little more careful. We also
consider forward-secrecy and related-passwords as modeled in Section 3.2.

The proof consists in proving that the real attack game Greal = G0 is indistinguishable from an ideal one
Gideal, where the actual passwords are never used by the simulator before any corruption, or the end of the
game.

Let us consider a polynomial time adversary A, that wins (success) when its guess b′ is equal to the
challenge bit b. The proof is done by a series of games Gi, and Advi(A,K) = 2 · Succi(A,K) − 1 is the
advantage of A in the game Gi. For the sake of simplicity K is often implicit in this proof. In particular,
negl = negl(K).

We recall that the adversary can only statistically corrupt users, i.e., it can corrupt a password or password
hash when no instance of the associated players is involved in an execution of the protocol.

We separate Send queries in three types:
– Send0(Si, Cj , Start) queries which enable an adversary to ask Cj to initiate the protocol with Si and which

return the first flow for Cj and Si.
– Send1(Ci, Sj ,m) queries which enable an adversary to send the first flow for Ci and Sj and which return

the second flow answered back by Sj ;
– Send2(Si, Cj ,m) queries which enable an adversary to send the second flow for Cj and Si and which return

nothing but set the session key K of Si.

Game G1: We first modify the way the salts are generated: we now use PTSalt instead of PSalt, so that we
know a trapdoor ts for any salt s. Under salt indistinguishability, we have |AdvG1(A)− AdvG0(A)| = 0.

Game G2: Next, we modify the way Execute queries between two compatible users are answered. Since the
hashing keys are known, we compute the common session key as

K = KS = KC = Hash(hkS , L
′
(sS ,HS)

, cC)× Hash(hkC , LHS , (`S , cS)),

which does not change anything thanks to the correctness of the SPHFs. In addition, we replace cS and cC
by encryptions of the dummy password 0. This is indistinguishable from G0 under the IND-CPA property
of the encryption schemes, for each Execute query. Using a classical hybrid technique, one thus gets
|AdvG2(A)− AdvG1(A)| ≤ negl.

Game G3: We modify again the way Execute queries between two compatible users are answered: we replace
the common session key by a truly random value. Since the languages are not satisfied, the smoothness
guarantees indistinguishability: |AdvG3(A)− AdvG2(A)| ≤ negl.

Game G4: We now modify the way Execute between two incompatible users are answered: we replace both
session keys

KC = ProjHash(hpS , L
′
(sS ,HS)

, cC , rC)× Hash(hkC , LHS , (`S , cS))

KS = Hash(hkS , L
′
(sS ,HS)

, cC)× ProjHash(hpC , LHS , (`S , cS), rC)
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(for the client and the server) by two independent truly random values. Thanks to the smoothness of
the SPHFs, Hash(hkC , LHS , (`S , cS)) and Hash(hkS , L

′
(sS ,HS)

, cC) are (close to) completely independent
random values. And we have |AdvG4(A)− AdvG3(A)| ≤ negl.

Game G5: We modify again the way Execute queries between two incompatible users are answered: we
replace cS and cC by encryptions of the dummy password 0. This is indistinguishable under the IND-CPA
property of the encryption schemes, for each Execute query. Using a classical hybrid technique, one thus
gets |AdvG5(A)− AdvG4(A)| ≤ negl.

Game G6: We modify now the way we answer the Send1 queries, by using a decryption oracle, or alterna-
tively knowing the decryption key. More precisely, when a message (hpC , cC) is sent, in the name of some
client instance Ci and to some server instance Sj , if the password hash HS of S is corrupted, we answer
honestly (using sS and HS) and compute the session key honestly. Otherwise, three cases can appear:
– the message has been generated (altered) by the adversary, then we first decrypt the ciphertext to get

the pre-hash value P used be the adversary:
• if PTCheck(param, sS , tsS , P,HS) = 1 with sS the salt, tsS its trapdoor, and HS the hash value of

the server S, then we choose the session key K =⊥; if later the adversary ask the session key via a
Test-query, we stop the simulation and let it win;
• otherwise, we choose the session key K at random;

– it is a replay of a previous flow sent by the simulator, then, in particular, we know the hashing key
hkC associated with hpC , and we compute the session key K using the hashing key hkC instead of hpC
together with the random coins used in the ciphertext cS (cC being sent as answer to the Send1 query).

The change in the first case can only increase the advantage of the adversary, while the change in the
second case is indistinguishable under the smoothness of the GLSPHF (and thanks to the correctness of
PTCheck which ensures that if it outputs 0, the word is outside the language of the SPHF) and thus
only increases the advantage of the adversary by a negligible term. The change in the third case does not
change the advantage of the adversary. Therefore, we have: AdvG5(A) ≤ AdvG6(A) + negl.

Game G7: We remark that we do not need to know the random coins used by the ciphertexts cS generated in
response to a Send1 query, in the previous game, when the password hash of the server S is not corrupted.
So, in this case, we can simply encrypt the dummy password 0 instead of the correct password πS in
all ciphertexts cS , generated as responses to Send1 queries. This is indistinguishable under the IND-CPA
property of the encryption scheme Enc2: |AdvG7(A)− AdvG6(A)| ≤ negl.

Game G8: We now modify the way the Send2 queries are answered, similarly to what we have done for
the Send2 queries in G8. More precisely, when a message (s, hpS , cS) is sent, in the name of some server
instance Si and to some client instance Cj , if the password πC of C has been corrupted, we answer
honestly (using πC) and compute the session key honestly. Otherwise, four cases can appear:
– the message is not a message generated by S (via a Send1 query) after receiving the first flow (hpC , cC)

sent by Cj (via a Send0 query), then we first decrypt the ciphertext to get the hash value H used be
the adversary:
1. if H = PHash(param, s, πC) (i.e., if the password πC is compatible with (s,H)) then we choose

the session key K =⊥; if later the adversary ask the session key via a Test-query, we stop the
simulation and let it win;

2. otherwise, we choose the session key K at random;
– if it is such a message from some Si′ , then Cj is partnered with Si′ :

3. if S and C are compatible, we set the session key of Cj equal to the one already computed by Si′ ;
4. otherwise, we choose a random session key K.

The change in the first case can only increase the advantage of the adversary, while the changes in the
second and fourth cases are indistinguishable under the smoothness of the KVSPHF and thus only increase
the advantage of the adversary by a negligible term. The change in the third case does not change the
advantage of the adversary. Therefore, we have: AdvG7(A) ≤ AdvG8(A) + negl.

Game G9: In G8, we remark that we do not need to know the random coins used by the ciphertext cC
generated in response to a Send0 query, when the password of the client C is not corrupted. So, we can
simply encrypt the dummy password 0 instead of the correct password πC in all ciphertexts cC , generated
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as responses to Send0 queries. This is indistinguishable under the IND-CCA property of the encryption
scheme Enc1: |AdvG9(A)− AdvG8(A)| ≤ negl.

Game G10: We now modify the way we answer the Send1 queries for replayed messages. More precisely,
when a message (hpC , cC) is replayed by the adversary, we choose the session key K at random (except
when the password πC of C was corrupted, in which case the flow is honestly generated and the session
key too). This is indistinguishable, since in this case, cC is an encryption of the dummy password 0 and,
thanks to the smoothness of the KVSPHF, the hash value of cC under hkS looks completely random (given
only hpS): |AdvG10(A)− AdvG9(A)| ≤ negl.
We remark that, in this game, all session keys returned by the Test queries are completely independent
and random (except for partnered compatible users, for which they are equal).

In this last game, the simulator does not use the passwords, and so no information leaks except in case of
corruption. We also remark that the adversary wins only:

1. if it sends a flow to a server S (with non corrupted password hash), from which the simulator extracts a
valid pre-hash P , such that PTCheck(param, sS , tsS , P,HS) = 1; and if the adversary makes a Test-query
for that session (see G6)

2. or if it sends a flow to a client C, from which the simulator extracts a valid hash value H, such that
H = PHash(param, s, πC), where s may be chosen by the adversary (see G8); and if the adversary makes
a Test-query for that session (see G6)

If passwords are chosen independently at random from a distibution D of min-entropy β (i.e., not in the related-
password model), and if no corruption occurs, then, for each flow, the first event happens with probability at
most 2−β + negl thanks to the second pre-image property (which ensures that P = PPreHash(param, πS) with
πS the password used to generate the hash value HS of the server S) and the pre-hash entropy preservation
(which ensures that finding this P knowing nothing about πS nor HS cannot be done with probability more
than 2−β +negl). And the second event also happens with probaiblity at most 2−β +negl for each flow, thanks
to the entropy preservation.

So finally, with no corruption and independently chosen passwords, the probability of the adversary to win
this last game (and also the original game) is at most:

qs × 2−β + negl(K)

with qs the number of active sessions (sessions for which the adversary has sent a non-honestly-generated
flow).

Now, if we allow client and server corruptions and if the the adversary never does a Test-query for a
client with a corrupted password hash, everything is as above. Otherwise, in addition to the cases above, the
adversary wins if we can extract from its flow to a server S with corrupted password hash HS , a valid pre-hash
P for HS . But then we can construct an adversary B against the tight one-wayness of the password hashing
such that

qs × 2−β + Advone-way(B,K) + negl(K).

In case of related passwords, everything is similar as above, except the min-entropy of each password is
computed differently (see Section 3.2).
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