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Abstract

We remark that the structure of bilinear groups of a large composite order (at least 1024

bits) could make group operation inefficient and lose the advantages of elliptic curve cryptog-

raphy which gained mainly from smaller parameter size. As of 2013, the longest parameter

recommended by NIST for elliptic curves has 571 bits. From the practical point of view, such

an algebraic structure is unlikely applicable to cryptographic schemes.
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1 Introduction

The use of elliptic curves in cryptography was suggested independently by N. Koblitz [4] and V.

Miller [6] in 1985. It is well-known that the advantages of elliptic curve cryptography are mainly

gained from smaller parameter size. It is generally accepted that a 160-bit elliptic curve key provides

the same level of security as a 1024-bit RSA key [3].

Weil pairing plays a key role in elliptic curve cryptography. In 1993, Menezes, Okamoto and

Vanstone [7] suggested to use Weil pairing to reduce elliptic curve logarithms to logarithms in a finite

field. In 2001, Boneh and Franklin [2] proposed a fully functional identity-based encryption scheme

based on Weil pairing. Since then, an abundance of research has been published on the efficient

implementation of these pairings (modified Weil pairing, Tate pairing), as well as cryptographic

schemes using bilinear pairings. Except the general restrictions on the domain parameters for an

elliptic curve E over a finite field Fq, these bilinear pairings require that the underlying groups
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should be of prime order n (> 2160) so that the ECDLP is resistant to all known attacks, such

as Pohlig-Hellman attack, Pollard’s rho attack. Thus, it is necessary that the cardinality #E(Fq)

should be divisible by a sufficiently large prime n.

In 2005, Boneh, Goh and Nissim [1] introduced the subgroup decision problem over bilinear

groups of a large composite order n so that it supports a homomorphic public key encryption. They

assume that it is hard to decide if an element in a subgroup, without knowing the factorization of

n. Since then, researchers have proposed some cryptographic schemes [5, 10, 11] based on subgroup

decision problem. It seems that the algebraic structure (bilinear groups of a large composite order)

facilitates the security arguments of these protocols [5, 10, 11].

In this note we would like to stress that bilinear groups of a large composite order (at least

1024 bits) could make group operation very slow. So far, there are no testing reports on this topic.

From the practical point of view, such an algebraic structure is unlikely applicable to cryptographic

schemes although it facilitates to design some complicated cryptographic protocols.

2 Bilinear groups of composite order

Let G be a group generation algorithm that takes security parameter 1λ as input and outputs tuple

(p, q,G,G1, e) where p and q are distinct primes, G and G1 are cyclic groups of order n = p q, and

e : G×G→ G1 is a non-degenerate bilinear map, i.e., it satisfies: (i) bilinear: for ∀ g1, g2 ∈ G and

∀ a, b ∈ Z, e(ga1 , gb2) = e(g1, g2)
a b; (ii) non-degenerate: for generator g of G, e(g, g) generates G1.

Let Gp and Gq denote the subgroups of G of order p and q, respectively. Then G = Gp × Gq.

If g is a generator of G, then gq and gp are generators of Gp and Gq, respectively. Let gp and gq

denote the generators of Gp and Gq, respectively. For all random elements hp ∈ Gp and hq ∈ Gq,

We have

e(hp, hq) = 1

because e(hp, hq) = e(gap , g
b
q) for some integers a, b, and e(gap , g

b
q) = e(gq a, gp b) = e(g, g)p q a b = 1 for

some generator g in G.

We here stress that the subgroup decision assumption over a bilinear group G requires a large

composite order n so that it is resistant to all known factoring methods.
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3 Boneh-Goh-Nissim homomorphic encryption

In 2005, Boneh, Goh and Nissim [1] introduced the subgroup decision problem over bilinear groups

of a large composite order n so that it supports a homomorphic public key encryption. We now

relate the scheme as follows.

KeyGen(τ): Given a security parameter τ ∈ Z+, run G(τ) to obtain a tuple (q1, q2,G,G1, e).

Let n = q1q2. Pick two random generators g, u
R← G and set h = uq2 . Then h is a random generator

of the subgroup of G of order q1. The public key is PK = (n,G,G1, e, g, h). The private key is

SK = q1.

Encrypt(PK,M): Assume the message space consists of integers in the set {0, 1, · · · , T} with

T < q2. To encrypt a message m using public key PK, pick a random r
R← {0, 1, · · · , n − 1} and

compute

C = gmhr ∈ G.

Output C as the ciphertext.

Decrypt(SK,C): To decrypt a ciphertext C using the private key SK = q1, observe that

Cq1 = (gmhr)q1 = (gq1)m

Let ĝ = gq1 . To recover m, it suffices to compute the discrete log of Cq1 base ĝ. Since 0 ≤ m ≤ T

this takes expected time Õ(
√
T ) using Pollard’s lambda method.

Extension: The authors [1] pointed out that anyone can multiply two encrypted messages once

using the bilinear map. Set g1 = e(g, g) and h1 = e(g, h). Then g1 is of order n and h1 is of

order q1. Also, write h = gαq2 for some (unknown) α ∈ Z. Suppose there are two ciphertexts

C1 = gm1hr1 ∈ G and C2 = gm2hr2 ∈ G. To build an encryption of the product m1 ·m2 mod n

given only C1 and C2, do: 1) pick a random r ∈ Zn, and 2) set C = e(C1, C2)h
r
1 ∈ G1. Then

C = e(C1, C2)h
r
1 = e(gm1hr1 , gm2hr2)hr1 = gm1m2

1 hm1r2+r2m1+αq2r1r2+r
1 = gm1m2

1 hr̃1 ∈ G1

where r̃ = m1r2 + r2m1 + αq2r1r2 + r is distributed uniformly in Zn as required. Thus, C is a

uniformly distributed encryption of m1m2 mod n, but in the group G1 rather than G. Note that

the system is still additively homomorphic in G1.
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4 On the large parameters in Boneh-Goh-Nissim homomorphic

encryption

In Ref.[1] the authors remark that the Boneh-Goh-Nissim homomorphic encryption resembles the

Paillier [9] and the Okamoto-Uchiyama [8] encryption schemes. But it is flawed. The Paillier

system is constructed over a multiplicative subgroup of integers modulo n2, where n = p q, p, q are

two large primes. The Okamoto-Uchiyama encryption is constructed over a multiplicative group

over ring Z/nZ, where n = p2q, p, q are two large primes. Unlike the Paillier system and the

Okamoto-Uchiyama encryption, the Boneh-Goh-Nissim encryption is constructed over a bilinear

group G of a large composite order n = q1q2, where q1, q2 are two large primes so as to prevent the

adversary from factoring n.

Let E be an elliptic curve defined over Fq. The number of points in E(Fq), denoted by #E(Fq),

is called the order of E over Fq. Hasse’s theorem provides tighter bounds for #E(Fq).

Theorem 1 (Hasse) Let E be an elliptic curve defined over Fq. Then

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q.

So far, bilinear groups used in cryptographic protocols are derived only from elliptic curves.

To construct a bilinear group with a large composite order n, it requires a large q by the Hasse

theorem. If n is of 1024 bits, then the parameter q should be of more bits. As we mentioned

before, in classical elliptic curve cryptograph it requires that the parameter q is about of 160 bits.

Apparently, a large parameter q (at least 1024 bits) makes group operation inefficient and loses the

advantages of elliptic curve cryptograph gained mainly from smaller parameter size.

Remark. As we know, a homomorphic encryption enables “computing with encrypted data”.

It is a useful tool for secure protocols. The Boneh-Goh-Nissim encryption solves the problem of

constructing ‘doubly homomorphic’ encryption schemes where one may both ‘add and multiply’.

The multiplicative homomorphism was due to properties of bilinear maps and the knowledge of

factoring the order n. Although the Boneh-Goh-Nissim encryption is somewhat impractical, it an-

swered the long standing open question about ‘doubly homomorphic’ encryption. It seems difficult

to rule out its theoretical importance.
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