
Universally composable privacy preserving finite
automata execution with low online and offline

complexity?

Peeter Laud and Jan Willemson

Cybernetica AS

Abstract. In this paper, we propose efficient protocols to obliviously
execute non-deterministic and deterministic finite automata (NFA and
DFA) in the arithmetic black box (ABB) model. In contrast to previous
approaches, our protocols do not use expensive public-key operations,
relying instead only on computation with secret-shared values. Addi-
tionally, the complexity of our protocols is largely offline. In particular,
if the DFA is available during the precomputation phase, then the online
complexity of evaluating it on an input string requires a small constant
number of operations per character. This makes our protocols highly
suitable for certain outsourcing applications.
Keywords. Finite automata, secure multiparty computation, arithmetic
black box

1 Introduction

Finite automata (FA) are among the most often used algorithmic tools for an-
alyzing textual data. They are used in filtering spam, recognizing malware, ge-
netic analysis, log mining, etc. Often, these applications make use of data with
various owners, having certain expectations of privacy (e.g. genetic microdata
may reveal the subject’s medical condition, network log items may show secu-
rity vulnerabilities, etc.). Hence, the problem of executing finite automata in a
privacy-preserving manner is highly relevant.

Usually, the execution of the FA does not comprise the whole algorithm
for a particular task. E.g. in spam filtering, the automata are used to recog-
nize whether the e-mail message matches certain signatures. Afterwards, these
matchings are suitably weighted and combined to decide whether the message
was spam or not. Hence the result of privacy-preserving FA execution should be
obtained in a manner that is easily usable by further secure computation algo-
rithms — we need composable protocols for FA execution (as well as for other
algorithmic tasks that are used in the application).

? The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 284731
(Usable and Efficient Secure Multiparty Computation, UaESMC), and from the
European Regional Development Fund through the Estonian Center of Excellence
in Computer Science, EXCS.

In the setting of secure multiparty computation, the composability is well-
captured by the notion of the arithmetic black box (ABB) [9, 22]. It is an ideal
functionality that stores the data items that we wish to keep private and performs
computations with them. It is realized with the help of suitable cryptographic
protocols. Higher-level protocols use the protocols of ABB as their subprotocols.
To prove the security of the higher-level protocol, it is sufficient to consider its
execution together with the ideal ABB-functionality.

In this paper, we are considering algorithms for FA execution where the
description of the FA, as well as the input string have been stored in the ABB.
As the result of the algorithm, the information about the reached state(s) of the
automaton is also stored in the ABB. During the computation, no information
about the input string (except its length) nor the FA (except the number of its
states) is leaked outside the ABB.

Without security considerations, the execution of a DFA is trivial — at each
step, read the next state of the automaton from the transition table, using the
current state and the next character of the input string. Inside the ABB, this is
complicated due to the lack of an efficient privacy-preserving look-up operation.
In this paper, we consider DFA execution algorithms making use of only such
operations that are typically provided in an efficient manner by ABB implemen-
tations.

NFAs have the same expressive power as DFAs, but they can offer consider-
ably smaller size of the automata. However, this efficiency comes with a price
of a more complicated execution paradigm. Generally, the subsequent states are
not uniquely determined and this non-uniqueness is classically implemented by
using backtracking. However, backtracking and other constructions with com-
plex control flow are inefficient to implement on ABB; our proposal is based on
different ideas [21].

For certain tasks, it is possible to partition the necessary computations into
the offline part — these that can be done without knowing the actual inputs —,
and the online part — these that require the inputs. To increase the responsive-
ness of algorithm implementations, one tries to minimize the online computations
by structuring the algorithm in such a way that more computations can be per-
formed off-line. In case of FA execution, it makes sense to consider even three
stages of input availability — offline, FA-only, and online. In the FA-only stage,
the description of the automaton is already available for the computation, but
the input string is still missing. This naturally corresponds to certain practi-
cal settings, e.g. spam filtering, where the filters are known before the e-mail
messages to which they are applied.

There are applications where the input string is private, but the description
of the FA is “public” — known to all parties implementing the ABB. The out-
sourcing of spam filtering into the cloud can be one of such applications. Here
the service provider sets up the multiparty computation for realizing the ABB,
deploying the servers implementing the ABB at different cloud providers and
providing them all with the descriptions of filters. The customers upload their
e-mail messages to the ABB and receive back their classification, with no sin-

2

gle server learning the contents of the messages. The DFA execution algorithms
presented in this paper are extremely well suited for the use in these settings,
rapidly returning answers while preserving the privacy of the customers against
subsets of servers.

Our contribution For a DFA with m states over an alphabet with n characters,
we propose an execution algorithm in the ABB model, processing the input
string character-wise and performing (1 + o(1))mn ABB multiplications in the
offline stage, (1 + o(1))mn ABB multiplications in the FA-only stage and only a
single ABB multiplication in the online stage (all these costs are per character
of the input string). If the DFA description is public, then the FA-only stage
has zero computational cost. Also, for a particular ABB, the cost of offline stage
can be reduced to O(

√
mn). For a different ABB, all computations of the FA-

only stage may be moved to the on-line stage without increasing the cost of
the latter. As usual, the additions and public linear combinations of private
values are considered to have zero execution cost due to being local operations
in all implementations. The online performance of this protocol exceeds all other
protocols in the state of the art, all of which perform at least O(m + n) online
work (computation and/or communication; whichever is the bottleneck for the
particular method) per character. Also, we stress that our protocol works in the
ABB model, making DFA execution usable as a subprotocol in protocols for
more complex tasks.

As a separate contribution, we also propose private execution algorithm for
the NFAs. In case the automaton description is also captured in the ABB, its
online complexity is m(mn+m+ 1) multiplications in 3 rounds per input char-
acter. If the description of the automaton is public, these complexities drop to
m(m+ 1) and 2, respectively. In both cases, the amount of required precompu-
tation is O(m logm) per input character.

Interestingly, the protocols in this paper are the first information-theoretically
secure protocols for FA execution, if an information-theoretically secure ABB is
used. All previous protocols have used cryptographic constructions (encryption)
that rely on computational hardness assumptions for security.

To the best of our knowledge, this paper presents the first protocol for secure
NFA execution.

Structure of the paper We review work related to privacy-preserving DFA exe-
cution in Sec. 2, describe the necessary preliminaries and notation in Sec. 3, and
present our basic DFA protocol in Sec. 4. In Sec. 5 we show how to reduce the
complexity of the offline phase. Sec. 7 compares the performance of our protocol
with the protocols constructed from generic building blocks with good asymp-
totic complexity. As the last part of the contribution, Sec. 8 presents our private
NFA execution protocol. Finally, we draw the conclusions in Sec. 9.

3

2 Related work

The possibility of secure multiparty computation SMC in general has been known
for a long time [25, 14]. Unfortunately, the generic protocols resulting from these
possibility results are too inefficient in practice for anything but the simplest
functionalities.

The question of privacy-preserving DFA execution seems to have been first
considered by Troncoso-Pastoriza et al. [23]. In their setting, there are two par-
ties, one of them (Alice) knowing the DFA description, while the other one (Bob)
knows the input string. I.e. they were not considering the ABB model. During the
computation, the current state of the DFA is additively shared between these
two parties (modulo m). Rotations of this table combined with homomorphic
encryptions of the shares of the current state and an oblivious transfer allow
parties to learn the shares of the next state. The protocol has been improved
in several ways by Blanton and Aliasgari [1]. Beside reducing the complexity,
they also adapt the protocol for the ABB model. Through a clever reshaping of
the transition table, they are actually able to get the communication complexity
down to O(

√
mn) per character of the input string. Their techniques resem-

ble those of private information retrieval (PIR) protocols using homomorphic
encryption [17]; we believe that through a more thorough application of these
techniques, the complexity per character might even be lowered to O(log2mn).
Nevertheless, we are not pursuing these avenues of research here, as the constant
hidden inside the O-notation makes these protocols less efficient than our pro-
tocols (which do not use expensive public-key operations) for realistic problem
sizes.

Troncoso-Pastoriza et al.’s protocol has been adapted to malicious setting
by Gennaro et al. [11], using zero-knowledge protocols to force honest behaviour
of parties. Malicious setting is also considered by Wei and Reiter [24]. They
propose two-party (called “client” and “server”) protocols in the ABB model
that are secure against the malicious behaviour of the server party. Similarly to
the protcols in this paper, they treat the DFA transition table as a polynomial
over some field. All protocols described so far make heavy use of homomorphic
encryption, some of them also requiring some extra properties [4].

Garbled circuits originally proposed by Yao [25] can be adapted for DFA
execution [10, 19]. In these protocols, the party knowing the transition table δ
constructs and garbles “δ-gates”, connected sequentially. The party with the
input string executes the circuit and learns the last state of the DFA or some
property of it.

3 Preliminaries

In this work, a deterministic finite automaton (DFA) over the alphabet Σ is a
tuple A = (Q, δ, q0), where Q is the set of states, q0 ∈ Q the starting state of the
automaton, and δ : Q×Σ → Q the transition table. Given a string s = a1 · · · a` ∈
Σ∗, the DFA A maps s to the state δA(s) = δ(· · · (δ(δ(q0, a1), a2) · · ·), a`). Com-
pared to usual definition of DFA, we have left out the set of accepting states

4

from the structure of a DFA, and consider the function δA : Σ∗ → Q as the
behaviour of A; this is also computed by our protocol. This omission is justified
by our work in the ABB model, as the computation can continue from the last
state reached by the DFA in any manner deemed necessary by the designer of
the whole system.

Similarly, a nondeterministic finite automaton (NFA) over the alphabet Σ
is a tuple A = (Q, δ, q0), with Q and q0 meaning the same as before, and δ :
Q × Σ → P(Q) being the transition table (here P(Q) is the set of subsets of
Q). We can extend δ to sets of states — δ(Q, a) =

⋃
q∈Q δ(q, a) for Q ⊆ Q and

a ∈ Σ. Given a string s = a1 · · · a` ∈ Σ∗, the NFA A maps s to the set of states
δA(s) = δ(· · · (δ(δ({q0}, a1), a2) · · ·), a`).

The arithmetic black box is an ideal functionality FABB. It allows its users
(a fixed number p of parties) to securely store and retrieve values, and to per-
form computations with them. When a party sends the command store(v) to
FABB, where v is some value, the functionality assigns a new handle h (sequen-
tially taken integers) to it by storing the pair (h, v) and sending h to all parties.
If a sufficient number (depending on implementation details) of parties send
the command retrieve(h) to FABB, it looks up (h, v) among the stored pairs
and responds with v to all parties. When a sufficient number of parties send
the command compute(op;h1, . . . , hk; params) to FABB, it looks up the values
v1, . . . , vk corresponding to the handles h1, . . . , hk, performs the operation op
(parametrized with params) on them, stores the result v together with a new
handle h, and sends h to all parties. In this way, the parties can perform com-
putations without revealing anything about the intermediate values or results,
unless a sufficiently large coalition wants a value to be revealed. In this paper,
we use the functionality FABB to implement privacy-preserving FA execution.

The existing implementations of ABB are based on either secret sharing [7,
2, 5] or threshold homomorphic encryption [9, 15]. Fully homomorphic encryp-
tion [13] may also be used to implement ABB in a conceptually very simple way,
but with prohibitively slow performance. Depending on the implementation, the
ABB offers protection against a honest-but-curious, or a malicious party, or a
number of parties (up to a certain limit). E.g. the implementation of the ABB
by Sharemind [2] consists of three parties, providing protection against one
honest-but-curious party.

Typically, the ABB performs computations with values v from some ring R.
The set of operations definitely includes addition/subtraction, multiplication of
a stored value with a public value (this operation motivates the params in the
compute-command), and multiplication. Even though all algorithms can be ex-
pressed using just these operations, most ABB implementations provide more
operations (as primitive protocols) for greater efficiency of the implementations
of algorithms on top of the ABB. In all ABB implementations, addition, and mul-
tiplication with a public value occur negligible costs; hence they’re not counted
when analyzing the complexity of protocols using the ABB. Other operations
may require a variable amount of communication (in one or several rounds)
between parties, and/or expensive computation. The ABB can execute several

5

operations in parallel; the round complexity of a protocol is the number of com-
munication rounds all operations of the protocol require, when parallelized as
much as possible.

It is common to use JvK to denote the value v stored in the ABB. The notation
Jv1K op Jv2K denotes the computation of v1 op v2 by the ABB (translated to a
protocol in the implementation of FABB).

4 Basic protocol for DFA execution

Our basic protocol combines the idea to consider the transition table δ of the
DFA as a polynomial over a field F [24] with a method to move offline most of
the computations for polynomial evaluation in the ABB [18]. Both ideas have
been slightly improved and expanded here.

We have a DFA A = (Q, δ, q0) with |Q| = m, working over the alphabet Σ
with |Σ| = n. Let F be a finite field with at least mn + 1 elements; moreover,
let Q ⊆ F, Σ ⊆ F and let γ ∈ F be such, that (q, a) 7→ γq + a is an injective
mapping from Q×Σ to F\{0}.

There exists a polynomial f : F → F, such that f(γq + a) = δ(q, a) for all
q ∈ Q and a ∈ Σ; this polynomial has the degree of at most mn − 1. There
exist Lagrange interpolation coefficients λiqa with 0 ≤ i ≤ mn − 1, q ∈ Q,
a ∈ Σ, depending only on m and n (i.e. these coefficients are public), such that

f(x) =
∑mn−1
i=0 cix

i, where ci =
∑
q∈Q

∑
a∈Σ λiqaδ(q, a).

Let our ABB work with values from the field F. In this case, there exists a
protocol for generating a uniformly random element of F inside the ABB (denote:

JrK $← F), and for generating a uniformly random non-zero element of F together

with its inverse (denote: (JrK, Jr−1K) $← F∗). These protocols require a small
constant number of multiplications on average [6]. Using these subprotocols,
Algorithm 1 gives the protocol for executing the DFA A on an `-character string.
Note that all inputs to the algorithm (except for the sizes m, n and `, which
are public) are stored inside the ABB. Its result, the state of the DFA JqlK after
processing ` characters is similarly stored inside the ABB.

Correctness First we note that the polynomial f(x) =
∑mn−1
j=0 cjx

j satisfies
the equality f(γq + a) = δ(q, a) due to the construction of cj in the DFA-only

stage and the definition of the coefficients λjqa. We also note that the values rji
constructed in the offline stage are indeed the j-th powers of the values ri.

We can now easily show that the value qi computed by the on-line loop is
equal to the state of the DFA A after processing the characters a1, . . . , ai. For
i = 0, this claim trivially holds. If it holds for i− 1, then it also holds for i:

qi =

mn−1∑
j=0

zji yij =

mn−1∑
j=0

(γqi−1 + ai)
jr−ji cjr

j
i = f(γqi−1 + ai) = δ(qi−1, a) .

6

Algorithm 1: DFA execution protocol

Data: DFA components Jδ(q, a)K and Jq0K, where q ∈ Q, a ∈ Σ.
Data: Characters of the input string Ja1K, . . . , Ja`K.
Result: Last state Jq`K in ABB.

1 offline processing

2 foreach i ∈ {1, . . . , `} do
3 (JriK, Jr−1

i K) $← F∗

4 for j = 2 to mn− 1 do Jrji K← JriK · Jrj−1
i K

5 DFA-only processing

6 foreach j ∈ {0, . . . ,mn− 1} do JcjK←
∑
q∈Q

∑
a∈Σ λjqaJδ(q, a)K

7 foreach i ∈ {1, . . . , `}, j ∈ {0, . . . ,mn− 1} do JyijK← JcjK · Jrji K
8 online processing

9 for i = 1 to ` do
10 JziK← (γJqi−1K + JaiK) · Jr−1

i K
11 zi ← retrieve(JziK)
12 JqiK←

∑mn−1
j=0 zji JyijK

Privacy Except for computing zi, al operations in Alg. 1 are performed either
inside the ABB, or with public values. Hence all guarantees provided by the
ABB against certain kinds of attacks involving certain coalitions of parties carry
directly over to Alg. 1, if there weren’t the computations involving the values
zi. Regarding the values zi — they do not leak anything about the inputs to
the algorithm, because each of them is a product of a non-zero secret value
with a uniformly randomly distributed non-zero value. Hence zi is also a uni-
formly randomly distributed element of F∗. As independent values r−1i are used
for computing different zi, the different zi-s are mutually independent as well.
Regarding the correctness of the use of zi-s in further computation — as these
values become known to all parties, we can be sure that in the computation of
qi, correct zi is used.

Complexity It is straightforward to count the number of operations Alg. 1 per-
forms. In the offline stage, we perform mn − 2 multiplications per character of
the input string. We also generate one random invertible element together with
its inverse, this generation costs the same as a couple of multiplications [6] (in
the ABB of Sharemind [3], the random number generation is free, while verify-
ing that it is invertible and computing the inverse takes one multiplication, with
the probability of the element being rejected being equal to 2/|F|). The round
complexity of this computation is also O(mn), which would be bad for online
computations, but, in our opinion, does not matter for computations where la-
tency is unimportant. We note that the offline phase could be performed in
O(1) rounds [6] at the cost of increasing the number of multiplications a couple
of times. In the DFA-only stage, we perform a number of multiplications with
constants λjqa; we count these operations as free. We also perform mn− 1 mul-

7

tiplications per character in order to compute JyijK (no multiplication is needed
to obtain Jyi0K). But if the DFA description had been public, then the values cj
would have been public, too, and the values JyijK would have been linear combi-

nations of Jrji K with public coefficients. In this case, the DFA-only stage would
have contained no costly operations at all. In the online stage, the only costly op-
eration is the computation of JziK, which takes a single multiplication of private
values. Also, the retrieveoperation has the complexity similar to a multiplication
in most implementations of the ABB.

5 Improving offline performance

We will now consider the ABB implementation of Sharemind [3] and show how
it can be leveraged to speed up the offline stage of Alg. 1, the goal of which was
to compute Jv2K, . . . , JvkK from JvK and k ∈ N. Let us give a short overview of
the relevant protocols in Sharemind.

The Sharemind ABB is realized by three parties, offering protection against
passive attacks by one of the parties. The ABB stores elements of some ring R;
a value v ∈ R is stored in the ABB as JvK = (JvK1, JvK2, JvK3) ∈ R3 satisfying
JvK1+JvK2+JvK3 = v, where the share JvKi is kept by the i-th party Pi. Messages
depending on these shares are sent among the parties, hence it is important
to rerandomize JvK before each use. The resharing protocol [3, Algorithm 1]
(repeated here as Alg. 5 in Appendix A) is used for this rerandomization. We
note that in this algorithm, the generation and distribution of random elements
can take place offline. Even better, only random seeds can be distributed ahead
of the computation and new elements of R generated from them as needed. Hence
we consider the resharing protocol to involve only local operations and have the
cost 0 in our complexity analysis.

Sharemind’s multiplication protocol [3, Algorithm 2] (repeated as Alg. 6 in
Appendix A) is based on the equality (JuK1 + JuK2 + JuK3)(JvK1 + JvK2 + JvK3) =∑3
i,j=1JuKiJvKj . After the party Pi has sent JuKi and JvKi to party Pi+1 (here and

subsequently, all party indices are modulo 3), each of these nine components of
the sum can be computed by one of the parties. We see that in order to perform
one multiplication in Sharemind, six elements of R have to be sent from one
party to another. All these can be done in parallel. The multiplication protocol
is secure against one honest-but-curious party [3, Theorem 2].

We see that sometimes the multiplication or a series of multiplications can be
performed more efficiently. To compute Ju2K from JuK, only JuKi has to be sent
from Pi to Pi+1. To compute (Juv1K, . . . , JuvnK) from JuK and (Jv1K, . . . , JvnK), we
start n copies of the multiplication protocol, but the shares JuKi have to be sent
only once. The security of the protocol is not affected by such optimizations.

Alg. 1 requires the ring R to be a field F. In computing (Jv2K, . . . , JvkK)
from JvK, more substantive optimizations are possible if we take F to be of
characteristic 2. In this case, the cardinality of F is a power of 2 and the equality
1 + 1 = 0 holds. We note that squaring a value in the ABB now requires only
local operations: (x1 + x2 + x3)2 = x21 + x22 + x23 if the characteristic of F is 2.

8

Similarly, if parties Pi have sent the share JvKi to parties Pi+1 (as they do in
lines 2&4 of Alg.6), then they have also sent the shares Jv2

n

Ki for all n ∈ N. The
algorithm for computing the powers of JvK up to JvkK is given as Alg. 2.

Algorithm 2: Computing (Jv2K, . . . , JvkK) from JvK
Data: k ∈ N and the value JvK, where v ∈ F, char F = 2
Result: Values Ju0K, . . . , JukK, where uj = vj

q ← dlog
√
k + 1e

Ju0K← (1, 0, 0)
Ju1K← Reshare(JvK)
Party Pi sends Ju1Ki to party Pi+1

for j = 2 to 2q − 1 do
if j is even then

Party Pi computes JujKi ← Juj/2K2i and JujKi−1 ← Juj/2K2i−1

else
Party Pi computes

JtKi ← Ju1Ki · Juj−1Ki + Ju1Ki · Juj−1Ki−1 + Ju1Ki−1 · Juj−1Ki
JujK← Reshare(JtK)
Party Pi sends JujKi to party Pi+1

// At this point, Pi knows Ju0Ki, . . . , JujKi, Ju0Ki−1, . . . , JujKi−1

foreach j ∈ {2q, . . . , k} do
Let (r, s) ∈ {0, . . . , 2q − 1}, such that 2qr + s = j
Party Pi computes JtKi ← JurK2

q

i · JusKi + JurK2
q

i · JusKi−1 + JurK2
q

i−1 · JusKi
JujK← Reshare(JtK)

Correctness For j < 2q, the values vj in the ABB are computed as vj = (vj/2)2

(if j is even) or vj = v · vj−1 (if j is odd). We note that all necessary shares for
computing these values are available to the parties. If j ≥ 2q then vj is computed
as vj = (vr)2

q ·vs, where 2qr+s = j. Because char F = 2, the shares of (vr)2
q

are
just the shares of vr, squared q times. This squaring can be performed locally.
Again, all shares are available to the parties that need them.

Privacy Similarly to the multiplication protocol, each party knows at most two
out of the three shares of JvjK, for each j. The last share is a uniformly randomly
distributed element of F.

In the second loop of Alg. 2, all JujK are rerandomized. In the first loop, the
values JujK are not rerandomized for even j. This rerandomization is unnecessary,
because of the locality of the computation. We note that all values sent to other
parties result from the Reshare protocol.

Complexity The second loop of Alg. 2 has only local computation (recall that
Reshare is counted as requiring local computation only). In the first loop, the
iterations with odd index j incur the communication of three elements of F, while

9

the iterations with even j incur no communication. The first loop has at most
d2
√
k + 1e iterations, hence the communication is at most 3d

√
k + 1e elements

of F.
If we use Sharemind’s representation of values in ABB, Alg. 2 in place of

the offline stage of Alg. 1, and if the DFA description is public, i.e. known to
all parties implementing the ABB, then the total offline communication (per
character) of executing a m-state DFA on a string over an alphabet of size n is
at most 3d

√
mne(dlog(m+1)e+dlog(n+1)e) = 3

√
mn log(mn)+o(1) bits. Here

we have assumed that the states of the DFA are encoded as bit-strings 1, . . . ,m
of length dlog(m+ 1)e, while the characters of the alphabet are encoded as bit-
strings 1, . . . , n of length dlog(n + 1)e. In this way, a suitable γ exists and the
elements of F are encoded as bit-strings of length dlog(m+ 1)e+ dlog(n+ 1)e.

With Sharemind’s protocols, the online communication (per character of the
input string) is 12 elements of F, distributed equally between the multiplication
and the retrieve-operation.

6 Improving FA-only / online performance

A different kind of optimization is possible if the ABB implementation is based
on Shamir’s secret sharing [20] and using the multiplication protocol of Gen-
naro et al. [12], which is the case for e.g. VIFF [7] or SEPIA [5]. Using this

implementation, the computation of a scalar product J
∑k
i=1 aibiK from the val-

ues Ja1K, . . . , JakK and Jb1K, . . . JbkK stored inside the ABB has the same cost as
performing a single multiplication of stored values.

Hence the following modification of the DFA execution algorithm, presented
as Algorithm 3 will have the same offline and online complexity as the original
algorithm, but perform no costly operations during the FA-only stage.

7 Performance comparison

Private Information Retrieval (PIR) protocols can be adapted to compute δ(q, a)
with asymptotically better communication complexity, if the description of δ is
public. A PIR protocol allows the client to query for a specific element in server ’s
database, without the server learning the index of that element. In our setting,
the ABB would be the client, while the server’s computations can be executed
in the public. Each character of the input string would need one instance of the
PIR protocol to be executed on the transition table δ.

Lipmaa’s communication-efficient PIR protocol [17] internally uses the homo-
morphic cryptosystem by Damg̊ard and Jurik [8]. Its encryption and decryption
are usually not considered to be part of the set of operations offered by ABB,
but they are often readily available (also in Sharemind) using the threshold
version of this cryptosystem. The PIR protocol requires the communication
of O(k log2(mn)) bits per query, where mn is the number of elements in the
database and k is the size of the RSA-modulus N of the cryptosystem.

10

Algorithm 3: DFA execution protocol

Data: DFA components Jδ(q, a)K and Jq0K, where q ∈ Q, a ∈ Σ.
Data: Characters of the input string Ja1K, . . . , Ja`K.
Result: Last state Jq`K in ABB.

1 offline processing

2 foreach i ∈ {1, . . . , `} do
3 (JriK, Jr−1

i K) $← F∗

4 for j = 2 to mn− 1 do Jrji K← JriK · Jrj−1
i K

5 DFA-only processing

6 foreach j ∈ {0, . . . ,mn− 1} do JcjK←
∑
q∈Q

∑
a∈Σ λjqaJδ(q, a)K

7 online processing

8 for i = 1 to ` do
9 JziK← (γJqi−1K + JaiK) · Jr−1

i K
10 zi ← retrieve(JziK)
11 foreach j ∈ {0, . . . ,mn− 1} do J(rizi)jK = zji Jr

j
i K

12 JqiK←
∑mn−1
j=0 JcjK · J(rizi)jK

To have a valid comparison of the PIR-protocol based DFA execution and
our protocols, we have to estimate the constant hidden in the O-notation for
the PIR protocol’s query complexity, particularly when implemented on top of
Sharemind. Per character, the query belongs to the domain of δ, its size is
α = dlog(mn)e bits. The single bits of the query must be available, hence we
assume that the current pair (q, a) is stored as α separate bits in the ABB.
In the PIR protocol, the client encrypts all bits, resulting in α ciphertexts of
size 2k, 3k, . . . , (α + 1)k bits, respectively. In Sharemind’s ABB, each of the
three parties implementing it may encrypt its share of each bit; these ciphertexts
can be combined using the homomorphic properties of the encryption scheme.
To minimize the communication, we let two parties send their ciphertexts to
the third party that will then perform the operations of the server in the PIR
protocol. In this case, the total number of communicated bits for the client’s
message in the PIR protocol is 2(2k + 3k + · · ·+ (α+ 1)k) = α(α+ 3)k.

The third party, performing the operations of the server in the PIR proto-
col, combines these ciphertexts to a multiply encrypted ciphertext of the query
result. This ciphertext must be decrypted using the decryption protocol of the
threshold cryptosystem; this causes significant extra communication. To simplify
our analysis, let us not estimate the communication costs of these operations,
but only compare the total cost of our proposed protocol (per character of the
input string) — ≈ 3

√
mn log(mn) — with the communication costs for produc-

ing just the client’s message in the PIR protocol — (log2(mn)+3 log(mn))k. For
acceptable level of security, we have to take k ≥ 1024. In this case, our protocol
has less communication if mn ≤ 108. We are unlikely to have DFA larger than
that in real applications.

11

8 NFA execution

Due to their non-deterministic nature, NFAs are more complicated to handle in a
secure manner. We see that even though the NFA execution starts from a single
state, after the intermediate steps it can generally be in a subset of states. In
order to account for this, we will use characteristic vectors of the intermediate
sets Qi = δA(a1 · · · ai) to represent them (using the notation of Sec. 3). Let
qi = (qi0, q

i
1, . . . , q

i
m−1) be a binary vector, where qij = 1 iff the state qj ∈ Qi.

As Q0 = {q0}, we have q0 = (1, 0, . . . , 0). Subsequent qi-s will depend both
on the given automaton A and the string s. Namely, in order to determine qi

from qi−1, δ and ai, we can compute

qij =
∨

q∈Qi−1

[qj ∈ δ(q, ai)] =

m−1∨
k=0

qi−1k &[qj ∈ δ(qk, ai)] (1)

for all the components qij of the characteristic vector qi.
The exact complexity of computing (1) in the ABB depends on which com-

ponents of the NFA execution problem need to be private. Even if the au-
tomaton itself is public and only the string s is private, the characteristic vec-
tors qi (for i > 0) still need to be protected. However, in order for the term
qi−1k &[qj ∈ δ(qk, ai)] to evaluate to 1, there has to exist a transition from qk to
qj (even if we do not know whether its label matches ai or not). Hence, from
equation (1) we can leave out all the terms for which there is no such transition.
If the NFA has to be private, no such omission is possible.

In order to determine efficiently whether qj ∈ δ(qk, ai), we need an efficient
representation of δ as well. We will represent it as a look-up table δ : Q×Q→
P(Σ), where ai ∈ δ(qk, qj) iff qj ∈ δ(qk, ai). To encode subsets of Σ, we will once
again use characteristic vectors; let S ⊆ Σ be encoded by vector s = (s1, . . . , sn)
where si = 1 iff the corresponding σi ∈ S. The characteristic vectors in the
look-up table δ may be private or public depending on whether A needs to be
protected or not. Note that if we have for some qk and qj that δ(qk, qj) = ∅,
then in the case of public automaton the respective term may be omitted from
equation (1).

In order to execute NFA on the (private) string a1 · · · a`, we also represent
the characters of the string using binary characteristic vectors a1, . . . ,a`, where
ai = (a1i , . . . , a

n
i) and aji = 1 iff ai = σj . As a result, the value of the predicate

qj ∈ δ(qk, ai) can be computed as a dot product δ(qk, qj) · ai. Assuming that
addition is free in the underlying secure computation platform (as it is in the case
of Sharemind), dot product requires n multiplications that can be performed
in parallel.

Next, computing the whole term qi−1k &[qj ∈ δ(qk, ai)] on equation (1) re-
quires an additional round of multiplication to add the conjunction with qi−1k .
Finally, we need to compute the disjunction over all the states where the tran-
sitions to qi might have come from. This can be accomplished by adding the
respective terms, comparing the result to 0 and inverting the comparison re-
sult [16]. Working in a suitable field, comparison to 0 may be implemented

12

using just one round of online multiplications using the protocol by Lipmaa and
Toft [18] (though some precomputation is necessary). These operations require
that the underlying ring R of the ABB is a field F with char F ≥ m+ 1.

The overall procedure of NFA execution is presented as Algorithm 4. The
algorithm is obviously private because only ABB operations are used and nothing
is declassified. The correctness of the algorithm follows from the discussions
above.

Algorithm 4: NFA execution protocol

Data: NFA components Jδ(qk, qj)K for all qk, qj ∈ Q, and Jq0K.
Data: Characteristic vectors of the characters of the input string Ja1K, . . . , Ja`K.
Result: Characteristic vector of the last set of achievable states Jq`K in ABB.

1 for i = 1 to ` do
2 foreach j ∈ {0, . . . ,m− 1} do
3 foreach k ∈ {0, . . . ,m− 1} do JtijkK = Jqi−1

k K · (Jδ(qk, qj)K · JaiK)
4 JpijK =

∑m−1
k=0 JtijkK

5 JqijK = 1− Jpij
?
= 0K

Complexity Computing the dot product Jδ(qk, qj)K · JaiK in line 3 requires n
parallel multiplications and the product with Jqi−1k K adds an additional multipli-
cation and another round. Altogether, this cycle requires m(n+1) private online
multiplications in two rounds.

Summation on line 4 can be performed by the parties without any commu-
nication, and the comparisons on 5 require one private online multiplication per
comparison, which can all be performed in parallel in one more round. Hence,
in order to process each of the input symbols, m(m(n+ 1) + 1) multiplications
in three rounds are needed. The overall online complexity of Algorithm 4 is
`m(m(n+ 1) + 1) multiplications in 3` rounds.

In case of the public automaton, the characteristic vectors δ(qk, qj) will be
public. Hence the dot product on line 3 will become a local operation performed
by the computing parties. As a result, the whole Algorithm 4 requires `m(m+1)
private multiplications in 2` rounds.

In both cases, the offline complexity consists of the precomputation to facil-
itate the fast online comparisons. According to [18], the amount of precompu-
tation required for one comparison is O(logm). Since we need to perform `m
comparisons, the total work needed in the offline phase is O(`m logm).

9 Conclusions

We have given the first ever algorithm for privacy-preserving NFA execution, as
well as fast algorithms for privacy-preserving DFA execution. All our algorithms

13

are composable and can be easily used as components in the design of larger
systems. In case of public FA, our DFA execution algorithms are the fastest for
reasonably-sized DFAs. In any case, our DFA execution algorithm has by far the
best online performance.

References

1. Marina Blanton and Mehrdad Aliasgari. Secure Outsourcing of DNA Searching
via Finite Automata. In Sara Foresti and Sushil Jajodia, editors, DBSec, volume
6166 of Lecture Notes in Computer Science, pages 49–64. Springer, 2010.

2. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for
fast privacy-preserving computations. In Sushil Jajodia and Javier López, editors,
ESORICS, volume 5283 of Lecture Notes in Computer Science, pages 192–206.
Springer, 2008.

3. Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applications. Int.
J. Inf. Sec., 11(6):403–418, 2012.

4. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas on Ci-
phertexts. In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer
Science, pages 325–341. Springer, 2005.

5. Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.
SEPIA: Privacy-preserving aggregation of multi-domain network events and statis-
tics. In USENIX Security Symposium, pages 223–239, Washington, DC, USA, 2010.

6. Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.
Unconditionally secure constant-rounds multi-party computation for equality, com-
parison, bits and exponentiation. In Shai Halevi and Tal Rabin, editors, TCC, vol-
ume 3876 of Lecture Notes in Computer Science, pages 285–304. Springer, 2006.

7. Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asyn-
chronous Multiparty Computation: Theory and Implementation. In Stanislaw
Jarecki and Gene Tsudik, editors, Public Key Cryptography, volume 5443 of Lecture
Notes in Computer Science, pages 160–179. Springer, 2009.

8. Ivan Damg̊ard and Mads Jurik. A Generalisation, a Simplification and Some Ap-
plications of Paillier’s Probabilistic Public-Key System. In Kwangjo Kim, editor,
Public Key Cryptography, volume 1992 of Lecture Notes in Computer Science, pages
119–136. Springer, 2001.

9. Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient multi-
party computation from threshold homomorphic encryption. In Dan Boneh, edi-
tor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 247–264.
Springer, 2003.

10. Keith B. Frikken. Practical Private DNA String Searching and Matching through
Efficient Oblivious Automata Evaluation. In Ehud Gudes and Jaideep Vaidya,
editors, DBSec, volume 5645 of Lecture Notes in Computer Science, pages 81–94.
Springer, 2009.

11. Rosario Gennaro, Carmit Hazay, and Jeffrey S. Sorensen. Text search protocols
with simulation based security. In Phong Q. Nguyen and David Pointcheval, edi-
tors, Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science,
pages 332–350. Springer, 2010.

12. Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified vss and fact-track
multiparty computations with applications to threshold cryptography. In PODC,
pages 101–111, 1998.

14

13. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, STOC, pages 169–178. ACM, 2009.

14. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority. In STOC, pages
218–229. ACM, 1987.

15. Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo
Wehrenberg. TASTY: tool for automating secure two-party computations. In CCS
’10: Proceedings of the 17th ACM conference on Computer and communications
security, pages 451–462, New York, NY, USA, 2010. ACM.

16. Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-Efficient Oblivious
Database Manipulation. In Proceedings of the 14th International Conference on
Information Security. ISC’11, pages 262–277, 2011.

17. Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In
Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao, editors, ISC, volume
3650 of Lecture Notes in Computer Science, pages 314–328. Springer, 2005.

18. Helger Lipmaa and Tomas Toft. Secure equality and greater-than tests with sublin-
ear online complexity. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska,
and David Peleg, editors, ICALP (2), volume 7966 of Lecture Notes in Computer
Science, pages 645–656. Springer, 2013.

19. Payman Mohassel, Salman Niksefat, Seyed Saeed Sadeghian, and Babak
Sadeghiyan. An Efficient Protocol for Oblivious DFA Evaluation and Applications.
In Orr Dunkelman, editor, CT-RSA, volume 7178 of Lecture Notes in Computer
Science, pages 398–415. Springer, 2012.

20. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
21. Ken Thompson. Regular Expression Search Algorithm. Commun. ACM,

11(6):419–422, 1968.
22. Tomas Toft. Primitives and Applications for Multi-party Computation. PhD thesis,

University of Aarhus, Denmark, BRICS, Department of Computer Science, 2007.
23. Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Utku Celik.

Privacy preserving error resilient DNA searching through oblivious automata. In
Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM
Conference on Computer and Communications Security, pages 519–528. ACM,
2007.

24. Lei Wei and Michael K. Reiter. Third-Party Private DFA Evaluation on Encrypted
Files in the Cloud. In Sara Foresti, Moti Yung, and Fabio Martinelli, editors,
ESORICS, volume 7459 of Lecture Notes in Computer Science, pages 523–540.
Springer, 2012.

25. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, pages 160–164. IEEE, 1982.

A Basic protocols of Sharemind

The rerandomization protocol of Sharemind is depicted as Alg. 5 and the mul-
tiplication protocol as Alg. 6. We have reordered some steps of the protocols in
order to have a grouping more relevant to the other algorithms in this paper.
All indices of the parties are modulo 3.

15

Algorithm 5: Resharing protocol JwK← Reshare(JuK) in Sharemind [3]

Data: Value JuK.
Result: Value JwK such that w = u and the components of JwK are independent

of everything else.

Party Pi generates ri
$← R, sends it to party Pi+1

Party Pi computes JwKi ← JuKi + ri − ri−1

Algorithm 6: Multiplication protocol in the ABB of Sharemind [3]

Data: Values JuK and JvK
Result: Value JwK, such that w = uv

1 Ju′K← Reshare(JuK)
2 Party Pi sends Ju′Ki to party Pi+1

3 Jv′K← Reshare(JvK)
4 Party Pi sends Jv′Ki to party Pi+1

5 Party Pi computes Jw′Ki ← Ju′Ki · Jv′Ki + Ju′Ki · Jv′Ki−1 + Ju′Ki−1 · Jv′Ki
6 JwK← Reshare(Jw′K)

16

