
Cryptanalysis of GOST R Hash Function

Zongyue Wanga, Hongbo Yub,∗, Xiaoyun Wangb

aKey Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan

250100, China
bDepartment of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Abstract

GOST R is the hash function standard of Russia. This paper presents some cryptanalytic results on GOST
R. Using the rebound attack technique, we achieve collision attacks on the reduced round compression
function. Result on up to 9.5 rounds is proposed, the time complexity is 2176 and the memory requirement
is 2128 bytes. Based on the 9.5-round collision result, a limited birthday distinguisher is presented. More
over, a method to construct k collisions on 512-bit version of GOST R is given which show the weakness of
the structure used in GOST R. To the best of our knowledge, these are the first results on GOST R.

Keywords: Hash Function, GOST R, Rebound Attack, Multi-Collision

1. Introduction

Hash functions are taking important roles in cryptography and have been used in many applications,
e.g., digital signatures, authentications and message integrity. Since the break of MD5 and SHA-1 [1, 2],
cryptographers have been searching for secure and efficient hash functions. Developed from GOST, GOST
R is the hash function standard of Russia [3]. Similar as the structure of Whirlpool [4], it also uses an
AES-like block cipher in its compression function.

Rebound attack is a freedom degrees utilized technique which can be applied to find collisions in both
permutation based and block cipher based hash constructions. This technique is first proposed by Mendel
et al. to achieve collision attacks on reduced Whirlpool and Grøstl [5]. It aims to find a pair of values that
follows a pre-determined truncated differential efficiently. The searching procedure is divided into two phase:
the inbound phase and the outbound phase. In inbound phase the attacker makes full use of the available
degrees of freedom and generates sufficiently many paired values that satisfy the truncated differential path
of the inbound phase as starting points. The subsequent outbound phase tests these starting points in order
to find paired values that satisfy the truncated differential path of the outbound phase.

Giving better results on Whirlpool, Lamberger et al. improved this technique in [6]. Available degrees
of freedom of the key schedule are used to extended the inbound phase of the rebound attack by up to
two rounds. The best result of [6] is near-collision attack on 9.5 rounds of the compression function with
a complexity of 2176. And this result is further turned into the first distinguishing attack for the full 10
round compression function of Whirlpool. At the same time, Gilbert et al. bring in Super-Sbox technique
to rebound attack in [7] where two rounds of AES-like permutations were viewed as a layer of Super-Sbox.
Besides, the rebound technique can also be applied to analysis AES and AES-like block ciphers [8, 9] as well
as ARX ciphers [10]. Recently, using techniques adapted from the rebound attack, Duc et al. constructed
differential characteristics on Keccak in [11].

In contrary to finding collisions for hash functions, Joux proposed a method to construct multicollisions
in [12]. He argued that for iterated hash functions, to find a multicollisions is not even harder than finding

✩supported by 973 Project (Grant 2013CB834205), NSF of China (No.61133013) and Tsinghua Initiative Scientific Research
Program (No.20111080970)

∗corresponding author

Preprint submitted to Information Processing Letters May 8, 2013

rebound_gost_r.tex
Click here to view linked References

http://ees.elsevier.com/ipl/viewRCResults.aspx?pdf=1&docID=6712&rev=0&fileID=66958&msid={B02BAE8D-2BA0-45FD-87D1-7FF0F87A419B}


ordinary collisions. This method can be applied to generally analyze the security of the hash function
structure.

1.0.1. Our Contributions

As the similarity between GOST R and Whirlpool, the rebound techniques used in [6] to analyze
Whirlpool can also applied to GOST R. However, GOST R replace of the ShiftRows operation in AES-
based designs with the matrix transposition. We show that this difference brings more weakness.

In this paper, we present the first analysis on GOST R. More precisely, by applying the rebound attack
techniques similar as in [6], we give collision attacks on 4.5, 5.5, 7.5 and 9.5 rounds GOST R compression
function respectively. Our collision attacks on GOST R compression function are summarized in Table1.
Then we show that the result of 9.5 rounds can be further converted to a 10-round distinguisher. In addition,
we give a method to construct multicollisions on full 512-bit version of GOST R. This result shows that the
structure used in GOST R is not an ideal one.

Table 1: Summary of results for GOST R compression function. The complexity in brackets refer to modified attacks using a
precomputed table taking 2128 time/memory to set up

rounds complexity time/memory type source
4.5 264/216 collision Sect.3.3
5.5 264/264 collision Sect.3.4
7.5 2128/216 collision Sect.3.5
9.5 2240/216(2176/2128) collision Sect.3.6

1.0.2. Outline of the Paper

The paper is organized as follows: In section 2, we briefly describe the GOST R hash function. Then
we illustrate rebound attack in detail in section 3; a limited birthday distinguisher is given in section 4.
In section 5, we present the method of constructing multicollisions. Finally, in section 6, we conclude this
paper.

2. The GOST R hash function

GOST R is the Russian hash function standard [3]. It accepts message block size of 512 bits and
produces a hash value of 512 or 256 bits. A l-bits message is first padded into a multiple of 512 bits.
The bit ’1’ is appended to the end of the message, followed by 512 − 1 − (l mod 512) zero bits. Let
M = Mt ‖ Mt−1 ‖ · · · ‖ M1 be a t-block message (after padding) which is represented in big endian form.
As illustrated in Fig.1, the computation of H(M) can be described as follow:

Figure 1: The GOST R hash function

h0 = IV, N = 0, Σ = 0 (1)

2



hj = gN (hj−1,Mj), N = N ⊞ 512, Σ = Σ⊞Mj for 0 < j < t (2)

ht = gN (ht−1,Mt), N = N ⊞ (l mod 512), Σ = Σ⊞Mt (3)

ht+1 = g0(ht, N) (4)

H(M) = g0(ht+1,Σ) (5)

where IV is a predefined initial value and ’⊞’ means addition operation in the ring Z2512 . gN(h,m) is the
compress function of GOST R which contains a 512 bits block cipher and is calculated as

gN(h,m) = E(L ◦ P ◦ S(h⊕N),m)⊕ h⊕m (6)

The block cipher E used in GOST R is a variant of AES which update an 8 × 8 state1 of 64 bytes and
round key in 12 rounds. In one round, the state is updated by the round transformation ri as follow:

ri ≡ X [ki+1] ◦ L ◦ P ◦ S

The round transformation is detailed as:

• the non-linear layer S applied an S-Box to each byte of the state independently.

• the byte permutation P transpose the state matrix.

• the linear transformation L is specified by the right multiplication with the 64× 64 matrix A over the
field GF (2) for each row of the state independently.

• the key addition X [ki+1] XOR the round key ki+1 to the state

The round key ki is update as

ki = L ◦ P ◦ S(ki−1 ⊕ Ci−1) for 1 < i ≤ 13

where Ci are constants in GOST R and k1 is initialized by k1 = L ◦ P ◦ S(hj−1 ⊕N).
After the last round of the state update transformation, the output value of the block cipher E, the

previous chaining value hj−1 and the message Mj are xored together as the output of the compress function.
We denote the resulting state of round transformation ri by Ri+1, and the intermediate states after S,

P and L by RS
i , R

P
i and RL

i , respectively. The initial state R1 = M1 ⊕ k1.

3. Rebound Attack on GOST R Compression Function

The rebound attack is a hash function analyzing technique which was first proposed by Mendel et al.
in [5] to attack round-reduced Grøstl and Whirlpool. The main idea of this technique is to construct a
differential trail using the available degrees of freedom to fulfill the low probability part. Usually, it consists
of an inbound phase with a match-in-the-middle part as well as a subsequent probabilistic outbound phase.

With the help of rebound technique, we give collisions on 4.5 and 5.5 rounds of the GOST R compression
function. Further more, by using the available degrees of freedom from the key schedule as in [6], we improve
the results to collisions on 7.5 and 9.5 rounds.

1The state is also 64× 64 over the field GF (2)

3



3.1. The Original Rebound Attack

In rebound attack, the block cipher or permutation of a hash function used in the compression function
is divided into three sub-parts. Let E be a block cipher, then E = Efw ◦ Ein ◦ Ebw. The rebound attack
works in two phases:

• Inbound phase: this phase start with several chosen input/output differences of Ein which are
propagated through linear layer forward and backward. Then one generate all possible actual value
pairs that satisfy the difference by matching the differences though a single Sbox layer. These actual
value pairs are the starting points for the outbound phase.

• Outbound phase: Compute the matches of inbound phase both forward and backward direction
though Efw and Ebw to obtain the desire collisions or near-collisions. Usually, Efw and Ebw have a
low probability so that one has to repeat the inbound phase to obtain more starting points.

3.2. Preliminaries for the Rebound Attack

Before describing the rebound attack on GOST R, we briefly give some properties of its linear transfor-
mation L and S-box in the compress function.

• Difference Propagation in L: Since L is a linear transformation, a certain input difference of L leads
to a certain output difference. As L acts on each row of the state independently, the output difference
of a determined row is only affected by the input difference of that row. For only one active byte in a
row, it always leads to eight active bytes propagating forward or backward through L, regardless the
position of the active byte.

• Differential Properties of S: Given a, b ∈ {0, 1}8, the number of solutions to the equation

S(x)⊕ S(x⊕ a) = b (7)

can only be 0,2,4,6,8 and 256, which occur with frequency 38235, 22454, 4377, 444, 25 and 1, respec-
tively. On average, for a random given differential (a, b), one expects to find one value as a solution.
And a 256×256 input/output difference table can help us to find solutions with negligible computation.

3.3. Collision Attack on 4.5-Round GOST R Compression Function

In this section, we will describe the application of rebound attack on the GOST R compression function
reduced to 4.5 rounds. The core of the attack is a 4-round differential trail, which has the following sequence
of active S-boxes:

8
r1−→ 8

r2−→ 64
r3−→ 8

r4−→ 8

Figure 2: A schematic view of the attack on 4.5 rounds of GOST R compression function. Black state bytes are active.

In the rebound attack, we first split the block cipher E into three sub-ciphers E = Efw ◦ Ein ◦ Ebw.
As shown in Fig.2, the most expensive part of the differential trail is covered in the inbound phase. The
available degrees of freedom are used to guarantee the differential trail in Ein holds.

4



3.3.1. Inbound Phase.

In the first step of the inbound phase, we start with 8-byte active differences at both RP
2 and RL

3 , and
propagate forward and backward to R3 and RS

3 respectively (see Fig.2). As the difference propagation
property of L described in Sect.3.2, we get a fully active state at both R3 and RS

3 .
In the second step of the inbound phase, we perform match-in-the-middle on the S layer of r3 in order

to find a matching input/output difference. As indicated in Sect.3.2, we expect to find a solution on average
for a given differential trail. Note that there are in total 2128 different differential trails, we can get at most
2128 actual values for R3 and RS

3 . As k3 can be any value, the maximum number of the starting points is
2128+512 = 2640.

3.3.2. Outbound Phase.

In the outbound phase, we use the starting points produced in inbound phase and compute these values
backward and forward. As shown in Fig.2, the differences at RP

2 and RL
3 lead differences only in the first

column of R1 and RP
5 respectively.

One can easily construct a collision on the compression function of GOST R reduced to 4.5 rounds using
the values generate in above step. As h′ = m ⊕ E(k,m) ⊕ h, for the same h and k, the same differences
for m and E(k,m) always lead to a collision. For a pair of values generated in the outbound phase, the
differences is equal for m and E(k,m) with probability of 2−64. So we have to generate about 264 starting
points to construct a collision. The time complexity is about 264. Since we only need to store a 256× 256
input/output differences table for S-box, the memory requirement is only 216 bytes.

3.4. Collision Attack on 5.5-Round GOST R Compression Function

Using the Super-Sbox technique [7], we can improve the 4.5-round result by adding one round to the
inbound phase. This turns out to an attack on 5.5-round GOST R compression function. The outbound
phase of the attack is same as that of the 4.5-round attack and the new sequence of active S-boxes is:

8
r1−→ 8

r2−→ 64
r3−→ 64

r4−→ 8
r5−→ 8

As shown in Fig.3, the values in every row of RS
4 is only affected by the corresponding column of R3. In

Figure 3: Inbound phase of the attack on 5.5 rounds GOST R compression function.

other words, given a pair of values of a column in R3, as k4 is known to us, we could calculate the values of
the corresponding row in RS

4 . So we can take the permutation of every column of R3 to the corresponding
row of RS

4 as a Super-Sbox. For every Super-Sbox, randomly given a input and output difference, we suppose
to find an actual value on average.

In the following, we give the collision attack for 5.5 rounds in detail:

3.4.1. Inbound Phase.

The inbound phase of rebound attack for 5.5 rounds GOST R is described as follows:

1. Start with a 8-active-bytes difference at the first column RP
2 and propagate forward to R3.

2. For every independent Super-Sbox, knowing its input difference, go though all the 264 pairs of input
value and compute the Super-Sbox forward. This provides 264 output differences values. For every
difference reached, store the appropriate pairs of input that led to it. This phase requires about 264

operations and memory.

5



3. For every 8-byte differences of RL
4 , propagate backward to RS

4 . Check whether for all Super-Sbox, this
difference is presented in the storage above.

We can choose different differences at RP
2 to obtain more actual values that satisfy the differences. For a

input difference of RP
2 , we suppose to find about 264 starting points.

3.4.2. Outbound Phase.

The outbound phase is the same as the 4.5-round attack where we need 264 starting points. So the time
complexity and memory requirement of finding a 5.5 rounds collision are both 264.

3.5. Collision Attack on 7.5-Round GOST R Compression Function

We can improve the 4.5-round results by adding 3 rounds to the inbound phase by using the degrees of
freedom from the key schedule as in [6]. The basic idea is dividing the inbound phase into two subphases.
These two subphases can be connected later by making full use of the degrees of freedom in key schedule.
As a result, we obtain a collision attack on the compression function of GOST R reduced to 7.5 rounds.

For the improved inbound phase, we use the following sequence of active bytes:

8
r1−→ 64

r2−→ 8
r3−→ 8

r4−→ 64
r5−→ 8

The inbound phase is again split into two subphases in order to find inputs following the differential trail
(Fig.4). In the first subphase, we apply match-in-the-middle for rounds 1-2 and 4-5. And in the second
subphase, we connect the active values of state between r2 and r4 using the degrees of freedom by changing
the value of round key.

Figure 4: The inbound phase of collision attack on 7.5 Rounds GOST R compression function

3.5.1. Inbound Subphase 1.

In this subphase, we do match-in-the-middle for both rounds 1-2 and 4-5, which can be summarized as
follows:

1. Rounds 1-2:

(a) Start with a 8-active-byte difference at the first column of R3 and propagate it backward to RS
2 .

(b) For every differences with 8 active bytes at the first column of RP
1 , propagate them forward to R2.

As there are in total 264 different differences for RP
1 , we could get 264 differences for R2. After

match-in-the-middle, these differences lead to about 264 actual values. However, we could do the
match for each row independently and get 28 actual values for a row. So the time complexity of
generating 264 actual values for which the differential trail holds is only 28 round transformations.

2. Rounds 4-5: Do the same as in rounds 1-2.

Now, we get 264 candidates for RS
2 as well as R5 after the first subphase of the attack with a time complexity

of about 29 round transformations.

6



3.5.2. Inbound subphase 2.

In the second subphase, we have to connect the differences of RS
2 and the differences of R5 as well as

the actual values by using the degree of freedom in key schedule. This means we need to solve the following
equation:

X [k5]LPSX [k4]LPSX [k3]LP (RS
2 ) = S5 (8)

with
k4 = LPS(k3 ⊕ C3) (9)

k5 = LPS(k4 ⊕ C4) (10)

For the 264 candidates for RS
2 and 264 candidates for R5, with the 512 degrees of freedom of k3, k4 and k5,

we expect to find 264 solutions. Since LP (RS
2 ) = RL

2 and (X [k5])
−1 = X [k5], we can rewrite (8) as follows:

LPSX [k4]LPSX [k3](R
L
2 ) = X [k5]R5 (11)

As we can always change the order of P and S and

P−1L−1X [k5]R5 = X [P−1L−1(k5)]P
−1L−1(R5) (12)

X [P−1L−1(k5)] = X [S(k4 ⊕ C4)] (13)

we get the following equation:

SX [k4]LSPX [k3](R
L
2 ) = X [S(k4 ⊕ C4)]P

−1L−1(R5) (14)

Take R∗

2 = P (RL
2 ), k

∗

3 = P (k3), k
∗

4 = S(k4⊕C4) and T = P−1L−1(S5), the equation above can be rewritten
as follows:

SX [k4]LSX [k∗3](R
∗

2) = X [k∗4 ](T ) (15)

Solving the above equation is equivalent to connect the differences and values of RS
2 and R5. We describe

the method used in solving the equation in the following.

Figure 5: Inbound subphase 2 of collision attack on 7.5 Rounds GOST R compression function

Since the difference of RL
2 and RS

4 is fixed due to inbound subphase 1, the difference of R∗

2 and T is also
fixed. And the 264 values for state RS

2 and R5 generated in subphase 1 directly lead to 264 values for R∗

2

and T respectively. Now we can solve (15) for every row independently as illustrated in Fig.5, which can be
summarized as follows:

1. Compute the 8-byte-difference and the 264 values of R∗

2 from RS
2 and compute the 8-byte-difference

and corresponding 264 values for T from R5. We only need to compute and store a row of the values
for R∗

2 as well as T because we can do the solving row-by-row. The time and memory complexities of
this step are both 29 instead of the 265.

2. For all 264 values of the first row of R∗

3, repeat the following step:

(a) As the difference of R∗

3 is known, for the chosen value for the first row of R∗

3, forward compute
the values for the first row of RL

3 and the difference for the first row of R4.

(b) After doing match-in-the-middle for the difference of the first row of R4 and RS
4 , we expect to

find a solution of the first row of R4. Since the first row of values of RL
3 is known to us, we can

further compute the value of the first row of k4.

7



(c) Compute the first row of k∗3 , R
∗

2, R
S
4 and T . Since for the first row of both R∗

2 and RS
4 we have

about 264 values, we expect to find a match on both sides. In other words, we have now connected
both the values and differences of the first row.

3. In this step, we connect the values of rows 2-8 for the matched R∗

2 and T in the above step. For every
row independently, exhaustively search over all 264 key values in k∗3 of corresponding row. Note that
we want to connect 64 bit values and test 264 key vales, we expect to always find a solution.

After all the steps, we have obtained 264 matches connecting R∗

2 and T . In other words, we get 264 starting
points for the outbound phase. The time complexity is about 2128 round transformation while the memory
requirement is about 216 bytes. On average, we expect to find a starting point with time complexity of
264. Step 3 can be omitted by implying a lookup table of size 2128. With the help of the lookup table, we
expect to find a starting point with average complexity of 1. However, the time complexity of building the
lookup table is 2128 and memory requirement is 2128 bytes. Note that there are 264 differences for R3 and
264 differences for RS

4 . For a fixed pair of differences of R3 and RS
4 , we expect to find 264 starting points.

Thus in total, we could generate at most 2192 starting points for outbound phase.

3.5.3. Outbound Phase.

The outbound phase of the 7.5-round attack is the same as that of 4.5 rounds. The collision attack on
7.5 rounds use the following sequence of active bytes:

8
r1−→ 8

r2−→ 64
r3−→ 8

r4−→ 8
r5−→ 64

r6−→ 8
r7−→ 8

The time complexity of finding a collision for 7.5 rounds compression function of GOST R is about 264+64 =
2128 and the memory requirement is 216 bytes.

3.6. Collision Attack on 9.5-Round GOST R Compression Function

Although we can get at most 2192 starting points, the outbound phase of 7.5 rounds attack requires only
264 ones. We can extend the outbound phase by adding one round at the beginning and one round at the
end to construct a collision attack on 9.5 rounds. This collision attack use the following sequence of active
bytes:

8
r1−→ 1

r2−→ 8
r3−→ 64

r4−→ 8
r5−→ 8

r6−→ 64
r7−→ 8

r8−→ 1
r9−→ 8

In the following, we will describe the outbound phase of the 9.5 rounds collision in detail.

Figure 6: A schematic view of the attack on 9.5 rounds GOST R compression function.

3.6.1. Outbound Phase.

In contrast to the outbound phase for 7.5 rounds, we use truncated differentials here. After the inbound
phase, the generated values lead the 8-byte-difference of R3 and R8 as shown in Fig.6. For both direction,
we want to fulfill a 8 → 1 truncated differential trail. The probability of the truncated differential trail is
2−56. The 1-byte difference of R2 and R9 will always result in 8 active bytes for both R1 and R10. So the
probability of outbound phase is 2−112. Hence we have to generate 2112 times more starting points.

Since a collision on the compression function reduce to 9.5 rounds require the same differences in m and
RP

10, we have to generate in total 2112+64 = 2176 starting points. As described in Sect.3.5, we expect to find
a staring points with time complexity of 264. So the time complexity of finding a 9.5 rounds collision is
about 264+176 = 2240 and the memory requirement is 216 bytes. By using a lookup table with 2128 entries,
the time complexity is about 2176 while the memory requirement is 2128 bytes.

8



4. Limited-Birthday Distinguisher for 10 Rounds

In this section, we present a limited-birthday distinguisher for the compression function of GOST R
reduced to 10 rounds.

Produced by Gilbert et.al. in [7], the limited-birthday distinguisher can be summarized as follow: for a
random function which perform a b-bit permutation, mapping an input difference from a subspace of size I
to an output difference from a subspace of size J requires only max{

√

2b/J, 2b/(I ·J)} calls to the function2.
By applying L and X [k11] to previous result on 9.5 rounds, we extend the differential trail to 10 rounds.

Even though R11 is fully active in terms of truncated differentials, the differences in R11 still belong to a
subspace of dimension at most 64. Since the input differences of the compression function is in a subspace of
size 264, the output differences belong to a subspace of 2128. For a random function, we need 2512−(64+128) =
2320 computations to map this kind of input/output differences. But for the compression function reduced to
10 rounds, the time complexity is only 2176 with a 216 requirement of memory or 2128 with a 2128 requirement
of memory. The time complexity required for the compression function is much less than that for a random
function. This property can be used to distinguish 10-round GOST R compression function from random
function.

5. Multi-collision on GOST R Hash Function

Now, we consider the security of the structure of GOST R hash function. For this kind of structure, we
give a method to construct a k-collision. The time complexity is much lower than constructing a k-collision
for an ideal structure. In other words, we prove that this kind of structure is not an ideal one.

For an ideal hash function with n-bits output, the time complexity to find a pairwise collision is about
2n/2 while 2n×(k−1)/k to find a k(multi)-collision. However, basing on the pairwise collisions, Joux proposed a
method to construct 2t-collisions with complexity of only t×2n/2 for the iterated structure at Crypto’04 [12].
As shown in Fig.7, the attacker first generate t different pairwise collisions {(B1, B

∗

1), (B2, B
∗

2 ), . . . , (Bt, B
∗

t )}.
Then, the attacker can directly output 2t-collision of the form (b1, b2, . . . , bt) where bi is one of the two blocks
Bi and B∗

i . �� �� �� � ��	
−
�� ��� �� ��� �� ��� �� ���

Figure 7: Joux’s 2t-collision construction. The 2t messages are of the form (b1, b2, . . . , bt) where bi is one of the two blocks Bi

and B∗

i

Although the structure of GOST R is not an iterated one, we could also construct a k-collision for it.
The method is described as follows:

1. As shown in Fig.8, generate 2t messages which lead to a same value at ht:

(a) Let h0 be equal to the initial value IV of GOST R.

(b) For i from 1 to t do:

• Find Bi and B∗

i such that gN(hi−1, Bi) = gN (hi−1, B
∗

i ) where Bi and B∗

i are both of the
form 0256 ‖ {0, 1}256. Since there are in total 2256 this kind of messages, we suppose to find
a collision using generalized birthday paradox [13].

• Pad and output 2t messages of the form (b1, . . . , bt) where bi is in one of the two blocks Bi

and B∗

i .

2Without lose of generality, we assume that I ≤ J

9



2. From the 2t messages generated in step 1, try to find k collisions in Σ and output these k messages.
Note that all 2t messages have the same value of N , these k messages always lead to a k-collision of
GOST R hash function. ! "# $% & '()

−*+ ,
+-. /012 3455 6

−789:;< =>? @A BCD EF GHI JK LMN O PQRS TU V
−

WXYZ
Figure 8: A schematic view of construct k collisions of GOST R.

Since all message blocks in step 1 of the form 0256 ‖ {0, 1}256 and Σ = b1 ⊞ b2 ⊞ . . . ⊞ bt, there are at
most log2 t+ 256 significant bits in Σ. Under an ideal model, step 2 needs 2(log2 t+256)×(k−1)/k messages to
construct k collisions of Σ which require the following inequality, where k, t ∈ Z+:

t < 2256 (16)

k ≥ 3 (17)

2(log
t

2
+256)×(k−1)/k ≤ 2t (18)

Solving the above inequality we get
176 ≤ t ≤ 2256

and

{

3 ≤ k ≤ (logt2 +256)/(logt2 +256− t) , 176 ≤ t ≤ 264
k ≥ 3 , t ≥ 265

In other words, for t-block messages where 176 ≤ t ≤ 2256, we can find a k-collision of GOST R hash
function with only 2(log2 t+256)×(k−1)/k computations. This time complexity is much less than that of finding
a k-collision for an ideal hash function structure.

6. Conclusion

In this paper, we presented some cryptanalytic results of GOST R. By applying rebound attack technique,
we first explained our attack on 4.5 rounds of GOST R compression function. This result was further
improved to 5.5 rounds by using super-Sbox technique. Then, degrees of freedom in key schedule were
used to achieve attacks on 7.5 rounds and 9.5 rounds. More over, using the result of 9.5-round attack, we
presented a 10-round distinguisher for the compression function of GOST R. At the end of this paper we
presented a method to construct k collisions of GOST R hash function which show the weakness of the
structure used in GOST R.

References

[1] X. Wang, H. Yu, How to Break MD5 and Other Hash Functions, in: Advances in Cryptology–EUROCRYPT 2005,
Springer, 2005, pp. 19–35.

[2] X. Wang, Y. L. Yin, H. Yu, Finding Collisions in the Full SHA-1, in: Advances in Cryptology–CRYPTO 2005, Springer,
2005, pp. 17–36.

[3] V. Dolmatov, Gost R 34.11-94: Hash function algorithm.
[4] P. Barreto, V. Rijmen, The Whirlpool Hashing Function, in: First open NESSIE Workshop, Leuven, Belgium, Vol. 13,

2000, p. 14.

10



[5] F. Mendel, C. Rechberger, M. Schläffer, S. S. Thomsen, The Rebound Attack: Cryptanalysis of Reduced Whirlpool and
Grøstl, in: Fast Software Encryption, Springer, 2009, pp. 260–276.

[6] M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, M. Schläffer, Rebound Distinguishers: Results on the Full Whirlpool
Compression Function, in: Advances in Cryptology–ASIACRYPT 2009, Springer, 2009, pp. 126–143.

[7] H. Gilbert, T. Peyrin, Super-sbox Cryptanalysis: Improved Attacks for AES-like Permutations, in: Fast Software Encryp-
tion, Springer, 2010, pp. 365–383.

[8] O. Dunkelman, N. Keller, A. Shamir, Improved Single-Key Attacks on 8-Round AES-192 and AES-256, in: Advances in
Cryptology-ASIACRYPT 2010, Springer, 2010, pp. 158–176.

[9] F. Mendel, T. Peyrin, C. Rechberger, M. Schläffer, Improved Cryptanalysis of the Reduced Grøstl Compression Function,
Echo Permutation and AES Block Cipher, in: Selected Areas in Cryptography, Springer, 2009, pp. 16–35.

[10] D. Khovratovich, I. Nikolić, C. Rechberger, Rotational Rebound Attacks on Reduced Skein, in: Advances in Cryptology-
ASIACRYPT 2010, Springer, 2010, pp. 1–19.

[11] A. Duc, J. Guo, T. Peyrin, L. Wei, Unaligned Rebound Attack: Application to Keccak, in: Fast Software Encryption,
Springer, 2012, pp. 402–421.

[12] A. Joux, Multicollisions in Iterated Hash Functions: Application to Cascaded Constructions, in: Advances in Cryptology–
CRYPTO 2004, Springer, 2004, pp. 306–316.

[13] D. Wagner, A Generalized Birthday Problem, in: Advances in Cryptology–CRYPTO 2002, Springer, 2002, pp. 288–304.

11


