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Abstract. In this paper, we revisit the private over-threshold data aggregation problem, and formally
define the problem’s security requirements as both data and user privacy goals. To achieve both goals,
and to strike a balance between efficiency and functionality, we devise a novel cryptographic construction
that comes in two schemes; a fully decentralized construction and its practical but semi-decentralized
variant. Both schemes are provably secure in the semi-honest model. We analyze the computational
and communication complexities of our construction, and show that it is much more efficient than the
existing protocols in the literature. Finally, we show that our basic protocol is efficiently transformed
into a stronger protocol secure in the presence of malicious adversaries, together with performance and
security analysis.
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1 Introduction

Of particular interest in many applications is the problem of computing the over-threshold elements,
elements whose count is greater than a given value, in a private manner. A typical application that
involves such primitive is network traffic distribution, where n network sensors need to jointly
analyze the security alert broadcasted by different sources in order to find suspect sites. In such an
application, and without losing generality, each of such sensors has a set of suspects and would like
to collaboratively compute the most frequent elements on each of these sets (e.g., the count greater
than κ, referred to as κ+) without revealing the set of suspects to other sensors with whom she
collaborates.

Let there be n users denoted by ui, 1 ≤ i ≤ n, and each of them have a private multiset Xi of
cardinality k. For simplicity, assume that the cardinality of each multiset is equal to each other.

Private κ+ Aggregation Problem Let ζ, κ ∈ N, and assume κ has been implicitly predefined
among all users. Then the problem at hand is defined as follows: Given n multisets of cardinality
k, find a set Z = {α1, . . . , αζ} ⊂ U =

⋃n
i=1 Xi such that (i) for all elements α ∈ U, if α has a

multiplicity greater than or equal to κ, then α ∈ Z, (ii) no polynomial-time algorithm can learn
any element other than the output of a κ+ protocol, and (iii) no polynomial-time algorithm should
know which output of the execution belongs to which user [23]. As pointed out in [19], using a
trusted third party (TTP) to achieve the end goal is impractical since it is hard to find such entity
in many settings. Also, using security multiparty computations (SMC) is impractical since they
are computationally expensive. A final approach is to use existing private set-operation protocols
such as [20,31], especially multiset union protocols. These protocols securely compute all elements
appearing in the union of input multisets at least τ times. However all of them fail to show the
distribution of the resulting elements.



Our Approach—Informal Descriptions The non-trivial part of κ+ protocols is that we should
satisfy two privacy requirements simultaneously: the data- and user-privacy.

From the literature, e-voting protocols have similar requirements. In these protocols, each ballot
is mixed with a shuffle scheme to remove linkability between voters and ballots. Thus when each
element in multisets is encrypted and shuffled using e-voting protocols, all encrypted elements
can be decrypted with hiding linkability. However, all non-κ+ elements also are revealed, which
violates privacy in our applications. Thus we demand a way to preserve privacy even when all
encrypted elements were decrypted.

For that we introduce an efficient function E that commutes with an underlying public-key
encryption Encpk(·) under a public key pk. We demand that: (i) for all s and for all pk,Es◦Encpk =
Encpk ◦ Es, and (ii) for all elements α, given Decsk(Encpk(Es(α))) no algorithm can efficiently
find α without s, where Dec(·) is a corresponding decryption algorithm. We call this notion double
encryption.

In conclusion, our main technique is to shuffle elements doubly encrypted. We need to remark
that shuffle schemes used in e-voting systems rely on the property that their underlying homomor-
phic encryption is re-randomizable, while it does not change the plaintexts of input ciphertexts
(e.g. [12,25,17,16]). Rather, in our protocols a double encryption scheme does not preserve the
plaintexts of input ciphertexts, but it still gives a way to recover the plaintexts.

Summary of Our Results We present a formal definition of private κ+ protocol and its security in
a fully decentralized system among n users over non-partitioned data. We refrain from using SMC
and construct an efficient private κ+ protocol which is both data- and user-private. In its efficiency,
our construction is comparable to [2], which achieves its efficiency by giving up the decentralized
model, and in its security guarantees is comparable to the work in [3], which is secure but expensive.
Our protocol has several desirable features as follows: (1) It hasO(n2k) computational complexity
where n is the number of users and k is the cardinality of each user’s set, assuming κ ≤ k, (2) It
has O(n2k) communication complexity, and (3) It has a linear round complexity in the number of
users. In real-world applications, n is much smaller than k, which further justifies the efficiency of
our protocol. It remains an open problem to devise a protocol with round complexity that does not
depend on the number of users.

Last but not least, we construct a stronger protocol for private over-threshold aggregation, where
“stronger” means the protocol is secure against malicious adversaries. Unfortunately, since there is
a tradeoff between security and complexity we have to pay more computation and communication
costs for a stronger security.

Organization In Section 2, we discuss the related work. In Section 3, we outline the preliminaries,
including double encryption, our formalism of κ+, and cryptographic primitives used in our pro-
tocol. In Section 4, we introduce our construction. In Sections 4.2 and 4.3 we analyze the security
and complexity of our work. In Section 5, we provide a full description of a κ+ protocol which
is secure in the malicious model and analyze its security in the simulation paradigm. Concluding
remarks are in Section 6.

2 Related Work

The related literature work is three directions: fully centralized, fully decentralized, and semi-
decentralized [23]. While the centralized schemes assume the existence of a trusted third party
(TTP), making them of less interest from a practical point of view, the fully decentralized schemes
utilize cryptographic primitives and protocols to replace the TTP. Finally, semi-decentralized schemes
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try to bridge the functional and security gap between the two other directions. As they are of partic-
ular relevance to our work, we limited our discussion to the decentralized and semi-decentralized
protocols.

Decentralized solutions replace the TTP with cryptographic constructions, which come in vari-
ous forms. One form is based on SMC, as in [3]. However, SMC’s inefficiency is its main drawback:
since it uses Yao’s garbled circuits [35], the computational resources required for ordinary data sizes
are overwhelmingly high. Furthermore, as the datasets become disjoint, the efficiency of such con-
struction decreases sharply. Burkhart and Dimitropoulos devised a construction in which the round
complexity is linear to the number of bits in the data elements [3]. However, due to using sketches
to improve its efficiency, the aggregate results are probabilistic. While computationally efficient,
the protocol has also a high round complexity. Kissner and Song [20] devised an over-threshold set
union protocol—where a threshold value τ is given in advance—to find all elements appearing in
the union of input multisets at least τ times. The protocol requires apriori knowledge of τ , although
operates in a decentralized manner. We compare it to our work in §4.3.

Semi-decentralized constructions, represented by the work of Applebaum et al. in [2], aim to en-
hance the efficiency of fully-decentralized instantiations by adding new entities: proxy and database
(DB). However the proxy and the DB are assumed to be semi-honest restricting the possibility of
coalition between proxy and DB. This allows obtaining a constant round protocol. While the authors
claim that both proxy and DB are expected to act as semi-honest, it might be a strong assumption
both theoretically and practically. Furthermore, their scheme extensively relies on oblivious trans-
fer (OT) [24], which is a very expensive public-key primitive since it may require two modular
exponentiations per invocation, and run for each bit of the user’s data element.

To sum up, Table 1 summarizes properties and the efficiency features of existing solutions com-
pared with our proposed protocol. Computational complexity is expressed in terms of the number
of multiplications over modulo p, and assuming that multisets have values less than the prime p.
Note that Applebaum et al.’s protocol requires both ElGamal encryption [9] and Goldwasser-Micali
encryption [14], but we assume that both encryption systems use the same size modulus.

Table 1. Summary and Comparison

Comm. Model Round Cpx Comp. Cpx Comm. Cpx

Ours Fully decentralized O(n) O(n2k log p) O(n2k log p)

[3] Fully decentralized O(n(n+ k log k) log p) O(n2k) O(n2k log p)

[2] Semi-decentralized O(1) O(nk log2 p) O(nk log p)

Data Aggregation Data aggregation is one of important technologies in distributed systems, en-
abling efficient utilization of resources. Thus many researchers in wireless and smart grid networks
have focused on data aggregation schemes [18,10,33,15,28,34,11,21,22,30]. However, data aggre-
gation is used in this paper differently. We consider data aggregation as a part of data and informa-
tion mining process where data is searched, gathered and presented in a report-based, summarized
format to achieve specific business objectives. In particular, we are interested in keeping privacy
during the whole process of data aggregation.

3 Preliminaries

Let us denote F (α) for the multiplicity (also known as frequency) of an element α in a multiset X
and F (X) for the collection of multiplicities for all elements in the multiset X—here the multiplicity
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F (α) of an element α refers to how many times the element appears in X. For n ∈ N, [1, n] denotes
the set {1, . . . , n}.

If A is a probabilistic polynomial-time (PPT) machine, we use a ← A to denote A which

produces output according to its internal randomness. If X is a set, then x $←− X is used to denote
sampling from the uniform distribution on X . We shall write

Pr[x1
$←− X1, x2

$←− X2(x1), . . . , xn
$←− Xn(x1, . . . , xn−1) : ϕ(x1, . . . , xn)]

to denote the probability that when x1 is drawn from a certain distribution X1, and x2 is drawn
from a certain distribution X2(x1), possibly depending on the particular choice of x1, and so on,
all the way to xn, the predicate ϕ(x1, . . . , xn) is true.

A function µ : N → R is negligible if for every positive polynomial p(·) there exists an in-
teger L such that µ(λ) < 1/p(λ) for all λ > L. Let X = {X(a, λ)}a∈{0,1}∗,λ∈N and Y =
{Y (a, λ)}a∈{0,1}∗,λ∈N be distribution ensembles. We say that X and Y are computationally indis-

tinguishable, which is denoted by X
c
≈ Y , if for every polynomial-time algorithm D there exists a

negligible function µ(·) such that (for every a ∈ {0, 1}∗ and λ ∈ N)

|Pr[D (X(a, λ)) = 1]− Pr[D (Y (a, λ)) = 1]| < µ(λ)

3.1 Definitions

We begin by reviewing the definitions of public-key encryption (PKE) [14].

Definition 1 (Public-key Encryption Scheme) E = (KG,Enc,Dec) is a public-key encryption
scheme if KG,Enc, and Dec are polynomial-time (PT) algorithms defined as follows:

– KG, given a security parameter λ, outputs a pair of keys (pk, sk), where pk is a public key and
sk is a secret key. We denote this by (pk, sk)← KG(1λ). The key pk also describes the plaintext
and ciphertext message spaces Mpk,Cpk respectively.

– Enc, given the public key pk and a plaintext m, outputs a ciphertext c encrypting m, which is
denoted by c← Encpk(m); and when we sometimes need to emphasize the randomness r used
for encryption, we denote this by c← Encpk(m; r).

– Dec, given the public key pk, secret key sk and a ciphertext message c, outputs a plaintext
m such that there exists randomness r for which c = Encpk(m; r); otherwise outputs ⊥. We
denote this by m← Decsk(c). We omit pk for simplicity.

E is said to be correct if m = Decsk(Encpk(m)), for any key-pair (pk, sk) ←− KG(λ) and any
m ∈Mpk. Furthermore, for E = (KG,Enc,Dec) and a PT adversary A = (A1,A2), we consider
the semantic security game defined as follows.

Definition 2 (Semantic Security) A public-key cryptosystem E = (KG,Enc,Dec) with a security
parameter λ is called semantically secure (or IND-CPA secure) if after the standard CPA game
being played with any PPT adversary A = (A1,A2), the advantage AdvcpaE,A(λ) is negligible in λ
for all sufficiently large λ, where:

AdvcpaE,A(λ) =

∣∣∣∣∣Prb,r
[
(pk, sk)←− KG(λ), (state,m0,m1)←− A1(pk),

c = Encpk(mb; r) : b←− A2(state,m0,m1, c)

]
− 1

2

∣∣∣∣∣ .
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We say that a public-key encryption scheme E = (KG,Enc,Dec) is homomorphic if the plain-
text message and ciphertext message spaces are groups Mpk and Cpk, respectively, and for any
plaintext messages m1,m2 ∈Mpk,

(pk,Encpk(m1),Encpk(m1) · Encpk(m2)) ≡ (pk,Encpk(m1),Encpk(m1 ·m2)) ,

where the binary operator (·) is carried out in the groups Mpk and Cpk, respectively, and the
encryptions of m1,m2 and (m1 ·m2) are independently random.

Relying on the PKE scheme does not achieve our security, so we propose a double encryption
scheme to aid that. A double encryption scheme is a pair of encryption schemes E = (KG,Enc,Dec)
and E = (G,E,D) such that Enc◦E = E◦Enc. Here E need to be deterministic to know a complete
distribution of multisets without revealing their elements.

Definition 3 (Double Encryption) Let E = (KG,Enc,Dec) be a PKE scheme defined as above
with (pk, sk) ← KG(1λ) and a plaintext message space (resp., ciphertext message space) Mpk

(resp., Cpk). A pair (E ,E) is called double encryption if there exists a triple of PT computable
functions, E = (G,E,D), that satisfies the following properties:

– A probabilistic function G(1λ) takes as input a parameter λ, and outputs (s, s′) s.t. ∀s, s′ and
∀m ∈Mpk, m = Ds′(Es(m)), E and D are deterministic.

– ∀pk, s, ∀m ∈Mpk, Encpk(Es(m)) = Es(Encpk(m)) up to the randomness of Encpk(·).
– ∀ c ∈ Enc(m), Es(m) = Decsk(Es(c)).

We observed that a double encryption scheme is necessary but not sufficient for constructing a
secure over-threshold protocol. For that, we consider a shuffle scheme. We argue that double en-
cryption and shuffle are a necessary and sufficient condition for a secure over-threshold aggregation
protocol.

A shuffle of a list of ciphertexts e1, . . . , en is a newly updated set of a list of ciphertexts
e′1, . . . , e

′
n with the same plaintexts in permuted order. We require that a shuffle scheme be veri-

fiable to prove the correctness of the shuffle. We follow the definition given by Nguyen et al. [26].

Definition 4 (Shuffle) Let E = (KG,Enc,Dec) be a public-key encryption scheme defined as in
Definition 1. A shuffle is a pair of PT algorithms (E ,Shuffle) defined as:

– Shuffle: given a public key pk, a list of ciphertexts (e1, . . . , en) and a random permutation π
on [1, n], the shuffle outputs a list of ciphertexts (e′1, . . . , e

′
n).

The Shuffle is said to be correct if ∀i ∈ [1, n] there exists i such that Decsk(ei) = Decsk
(
eπ(i)

)
.

Then we say that a shuffle (E ,Shuffle) is verifiable if there exists a proof system (P, V ) such
that, given a public key pk, a list of input ciphertexts (e1, . . . , en) and a list of output ciphertexts
(e′1, . . . , e

′
n), it proves that Shuffle is correct.

Now we are ready to define an over-threshold aggregation protocol and sometimes abbreviate it
by κ+ protocol. Throughout the paper, we use Σn to denote the set of all permutations on [1, n]. A
κ+ protocol consists of five computable (in PT) algorithms, (Setup, DEncrypt, Shuffle, Aggregate,
Reveal), over a double encryption (E ,E), which are explained as follows:

• (pk, sk, s, s′)← Setup(1λ): The setup algorithm takes as input a security parameter λ, and
outputs the public and secret parameters by invoking (pk, sk)← KG(1λ) and (s, s′)← G(1λ).

• (Es(c1), . . . , Es(cn))← DEncrypt(pk, s, c1, . . . , cn): DEncrypt takes as input system param-
eters (pk, s) and a list of ciphertexts (c1, . . . , cn), and produces a list of doubly encrypted
ciphertexts (Es(c1), . . . , Es(cn)).
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•
(
Es(cπ(1)), . . . , Es(cπ(n))

)
← Shuffle(π,Es(c1), . . . , Es(cn)): Shuffle chooses a random per-

mutation π ∈ Σn and shuffles the doubly encrypted ciphertexts (Es(c1), . . . , Es(cn)), and
then outputs the mixed list.

• (Es(α1), . . . , Es(αζ))← Aggregate
(
pk, sk,Es

(
cπ(1)

)
, . . . , Es

(
cπ(n)

))
: Aggregate takes as

input a pair of keys (pk, sk) and a list of permuted, doubly encrypted ciphertexts, and computes
Decsk

(
Es
(
cπ(i)

))
= Es

(
απ(i)

)
for all i ∈ [1, n]. Then it computes F

(
Es
(
απ(i)

))
for each

i ∈ [1, n], and outputs only the elements whose multiplicity is greater than or equal to κ.

• (α1, . . . , αζ)← Reveal (pk, s′, Es(α1), . . . , Es(αζ)): Reveal outputs the most frequent κ ele-
ments by computing Ds′ (Es(αj)) for all j ∈ [1, ζ].

3.2 Security Definition

We need to prove that our protocol is secure in the presence of malicious adversaries; adversaries
that may arbitrarily deviate from the protocol specification. Following the standard technique, the
security of our protocol is analyzed by comparing what an adversary can do in a real-world exe-
cution to what he can do in an ideal world. In the ideal world, the computation is carried out by
an incorruptible trusted party to which the users send their inputs over secure channel. Then the
trusted party performs a functionality on the inputs and sends to each user its output. The protocol
is secure if any adversary in the real world can do no more harm than what he could do in the ideal
world. We only consider a static adversary who can corrupt a fixed number of users before exe-
cuting the protocol. Thus we cannot expect to always succeed in achieving fairness or guaranteed
output delivery.

Execution in the Ideal Model In the ideal world execution, each user sends his input to a trusted
party who computes the output. If the user is honest, he sends directly his input to the trusted party,
whereas a corrupted user may replace his input with any other value of the same length. After
computing the output, the trusted party first sends the output of the corrupted users to the adversary,
and the adversary then decides whether each honest user receives the output or aborts the protocol.
Let f be an n-party functionality, let A be a PT algorithm, and Υ ( {u1, . . . , un} be a set of
corrupted users. Then the ideal execution of f on inputs (x1, . . . , xn), auxiliary input z to A, and
security parameter λ is defined as the outputs of the honest users and the adversary from the above
execution. We denote this by IDEALf,A(z),Υ (x1, . . . , xn;λ).

Execution in the Real Model In the real-world model there is no trusted party and the users
exchange rounds of communication with each other. The adversary A has a full control over the
corrupted users and thus can send all messages on their behalf. The adversary does not have to
send messages according to the protocol, and may follow any PT strategy. However, an honest user
follows the instructions described in the protocol.

Let f be as above, let ℘ be an n-party protocol for computing f , let A be a PPT algorithm and
let Υ be a set of corrupted users. The real-world execution of ℘ on inputs (x1, . . . , xn), auxiliary
input z toA, and security parameter λ is defined as the outputs of the honest users and the adversary
A from executing ℘. We denote this by REAL℘,A(z),Υ (x1, . . . , xn;λ).

Security as Simulation of a Real-world Execution in the Ideal Model Using the definitions of
the real and ideal models, we can then define the security of protocols. Informally, simulating all
behaviors of a real-world adversary A in the ideal model with a trusted party implies that none of
his activities causes damage to the real-world protocol.

6



Definition 5 (Secure Protocol) Let f and ℘ be as described above. Then, we say that protocol ℘
securely computes f in the malicious model if for all PPT adversaries A in the real model, there
exists a PPT adversary S in the ideal model, such that for all Υ ( {u1, . . . , un},{

IDEALf,A(z),Υ (x1, . . . , xn;λ)
} c
≈
{
REAL℘,A(z),Υ (x1, . . . , xn;λ)

}
.

We would like to note that for designing a secure κ+ protocol against malicious adversaries, we
begin by constructing a basic protocol secure in the semi-honest model where even the adversary
must follow the instructions specified in the protocol. We then transform it into a maliciously secure
protocol, which is an effective technique widely used in this field. Here we briefly presented the
standard definition for security of protocols. Readers may refer to [13, Chap. 7] for more details
and motivating theories.

Data Privacy and User Privacy Data privacy requires that no users, or coalition of users, should
learn anything about honest users’ inputs except what can be trivially derived from the output itself.
In this field “privacy” in a protocol usually implies data privacy.

In the following we explain and motivate for user privacy. Let Z = {α1, . . . , αζ} for some
ζ ∈ N be the output of a κ+ protocol. We say that a κ+ protocol is user-private if no user or coalition
of users can gain a non-negligible advantage in distinguishing an honest user ui for all α ∈ Z such
that α ∈ Xi. In case of data privacy its necessity and notion are obvious, but comparatively user
privacy may not appeal to readers. For better understanding, we thus give an alternative description
of user privacy in Appendix A.

3.3 Cryptographic Assumptions and Tools

Next we outline the cryptographic tools and assumptions our protocols rely on.
Let G be a finite cyclic group of large prime order q, and let g ∈ G be a generator. Given h ∈ G,

the discrete logarithm (DL) problem requires us to compute x ∈ Zq such that gx = h.

Definition 6 (DL Assumption) We say that the discrete logarithm problem is intractable with re-
spect to G if for every PPT algorithm A there exists a negligible function µ in λ such that

Pr
g,x

[A (G, q, g, gx)] ≤ µ(λ).

A stronger assumption is the Decisional Diffie-Hellman (DDH) assumption. The DDH problem
says that given G with a generator g, and three elements a, b, c ∈ G, we are asked to decide whether
there exist x, y ∈ Zq such that a = gx, b = gy, and c = gxy. More formally, the DDH assumption
can be state as follows.

Definition 7 (DDH Assumption) We say that the decisional Diffie-Hellman problem is intractable
with respect to G if for every PPT algorithm A there exists a negligible function µ in λ such that

|Pr [A (G, q, g, gx, gy, gz) = 1]− Pr [A (G, q, g, gx, gy, gxy) = 1]| ≤ µ(λ),

where the probabilities are taken over the choices of g and x, y, z ∈ Zq.

The ElGamal Public Key Encryption Scheme We extensively use the ElGamal encryption
scheme [9] in this work. Throughout this paper, we work in the group Z×p where p = 2q + 1 is
also prime, and set G be a cyclic subgroup of Z×p of quadratic residues modulo p.

Let g be a random generator of G. Then the public and secret keys are 〈G, q, g, h〉 and 〈G, q, g, x〉,
respectively, where x $←− Zq and h = gx mod p. A plaintext message m ∈ G is encrypted by
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choosing r $←− Zq and the ciphertext message is (gr,m · hr). A ciphertext message c = (u, v) is
decrypted as m = v/ux. Later we use the property that if one knows r = logg u he can recon-
struct m = v/hr and thus a user who encrypted m can prove knowledge of plaintext m by proving
knowledge of randomness r. The semantic security of the ElGamal encryption scheme relies on the
DDH assumption in G. In reality, we use its threshold version since our system consists of multiple
users (n > 2). See Appendix B.1 for the threshold ElGamal encryption scheme.

Instantiating a Double Encryption Scheme using the ElGamal PKE Scheme We give a con-
crete instantiation of a double encryption scheme using the standard ElGamal encryption scheme.
Let a standard CPA-secure ElGamal encryption E = (KG,Enc,Dec) be defined as above. Now
E = (G,E,D) is defined as follows:

– A probabilistic function G(1λ) outputs (s, s′) ∈ (Zq)2 such that ss′ = 1 (mod q).
– Given α ∈ G, E : G→ G is given by α 7→ αs mod p.
– A deterministic function Ds′(β) computes βs

′
mod p.

The following lemma shows that (E ,E) is an example of double encryption.

Lemma 1 Let E and E be defined as above. Then, (E ,E) is a double encryption scheme.

Proof. We can easily verify that (E ,E) satisfies the conditions of double encryption. First we see
that for all values m ∈ Gq, m = (ms)s

′
(mod p). For any message m ∈ Gq, there exists r′ = rs

s.t.
(
gr
′
, (ms) · yr′

)
= ((gr)s, (myr)s). Lastly, for any ElGamal ciphertext c = (u, v) ∈ (Gq)

2,

where u = gr and v = myr, ms = vs · (us)−x (mod p). �

3.4 Statistically Hiding Commitment Schemes

We say a triple of PPT algorithms (KGcom, com, decom) is a commitment scheme if the algorithms
are defined as follows:

– KGcom, given a security parameter λ, outputs a public commitment key ck which specifies a
message space Mck, a randomizer space Rck and a commitment space Cck.

– com, given a message m, outputs a commitment c to m, which is denoted by c ← comck(m).
If we want to emphasize the randomizer r use for committing, we write c← comck(m; r).

– decom, given a commitment c, outputs a messagem and randomizer r for which c = comck(m, r)
or ⊥ if no such message exists. We denote this by (m, r)← decomck(c).

Loosely speaking, statistically hiding commitment schemes allow us to bind, in the computa-
tional sense, between a user and a value chosen by her, without revealing this committed value in
the informational theoretical sense. A commitment scheme with this statistical hiding property is
required to achieve our security goal.

We say the commitment scheme is statistically hiding if it satisfies the following:

– Unconditional Hiding. Given two same-sized messages m0,m1 ∈Mck,

comck(m0) ≈ comck(m1).

– Computational Binding. For all PPT algorithmA, there exists a negligible function µ in λ such
that

Pr
r,r′

[
(m, r,m′, r′)← A(c)

∣∣c = comck(m; r) ∧ c = comck(m
′; r′)

]
≤ µ(λ).
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Instantiations In this paper, we instantiate the commitment scheme with Pedersen’s commit-
ment [29], using same group G used in Section 3.3. More specifically, let p = 2q+1 where p, q are
large primes and g, h be random generators of G of quadratic residues modulo p. A commitment to

m ∈ Zq is given as comck(m; r) := gmhr with r $←− Zq. The scheme is proven to be statistically
hiding, as for all m, r,m′ there exists a r′ such that gmhr = gm

′
hr
′

as well as biding under the DL
assumption. However, given logg h it is possible to efficiently decommit any commitment c to m.

In particular, since the Pedersen commitment scheme has an equivocal property, in our proto-
col secure against malicious players the simulator can open the commitment to an arbitrary value
without being detected by the adversary.

3.5 Zero-knowledge Proofs of Knowledge

In this paper we utilize several zero-knowledge proofs (ZKP) of knowledge in our protocol for
the malicious adversary model. All these proofs of knowledge play a crucial role of enforcing all
players to correctly behave but all of them used in our protocol have been studied elsewhere. Due
to lack of space, we delegate the basics of ZKP to the Appendix B.2.

All the proofs of knowledge described in this section have been proved zero-knowledge in a
statistical or computational sense within the random oracle model, under the DL assumption and
the DDH assumption explained above. On any DDH group G we can efficiently construct these
ZKPs using standard constructions [32,5,6,16]. For better readability, we summarize all of them in
Table 2.

Details of ZKPs used in our scheme are as follows, where (pk, p, q, g,G) and ck are defined as
above.

– PoK(h) denotes a ZKP that given (p, q,G, g, h), a prover knows the discrete logarithm to the
base g of h.

– PoK(g2, c) denotes a ZKP of correct double encryption, that given (pk, ck, c, g2), a prover
knows the discrete logarithm x of g2 to the base g1 to which c = comck(x; r) is the committed
value, where g1, g2 are random elements in G.

– PoK(e) allows a prover in a zero-knowledge manner to prove for a given ElGamal encryption
e ∈ Encpk(m) that she knows the corresponding plaintext m.

– PoK(L,L′) for correct shuffle is used to prove the relation

R =
{〈(

pk, e1, . . . , ek, e
′
1, . . . , e

′
k

)
, (π, r1, . . . , rk)

〉 ∣∣
π ∈ Σk ∧ (r1, . . . , rk)

$←− (Zq)k ∧ e′i = eπ(i) · Encpk(1; ri)
}
.

The relationRCS is shorthand notation of the above relationR in this paper.

Table 2. Summary of Zero-knowledge Protocols

Protocol Relation References

PoK(h) RDL = {〈p, q,G, g, h〉
∣∣∃x ∈ Zq s.t. h = gx} [32]

PoK(g2, c) RDE =
{
〈ck, c, g1, g2〉

∣∣∃(x, s) ∈ (Zq)2 s.t. g2 = gs1 ∧ c = comck(s; r)
}

[5,6]

PoK(e) RPK =
{
〈pk, e〉

∣∣∃m ∈ Zq s.t. e ∈ Encpk(m)
}

§ 3.3

PoK(L,L′) Let L = (e1, . . . , ek) and L′ = (e′1, . . . , e
′
k) where ei∈[1,k], e′i∈[1,k] [16]

are legal ElGamal ciphertext messages under the public key pk.

RCS =
{
〈pk, L, L′〉

∣∣∃π ∈ Σk, ∃ri ∈ Zq s.t. ∀i ∈ [1, k], e′π(i) = ei · Encpk(1; ri)
}

9



For implementation considerations, we assume that according to its input parameters one can
invoke a correct ZKP protocol among those mentioned above as function overriding in the C++
programming language.

4 A κ+ Protocol for the Semi-Honest Model

In this section, we describe our construction for computing κ+ elements privately. We begin by
considering a basic setting of n users, denoted by u1, . . . , un. Let Xi = {αi,1, . . . , αi,k} for each
i ∈ [1, n]. Each user ui has his private multiset Xi, and the users wish to jointly compute

Z =

{
α ∈

n⋃
i=1

Xi
∣∣F (α) ≥ κ} .

For simplicity, assume that all elements are in a proper domain Mpk = G ⊂ Z×p of an ElGamal
encryption scheme.

4.1 Description

Let λ be a security parameter. As above, let p be a λ-bit prime such that for some prime q, p =
2q + 1, G be a finite cyclic subgroup of Z×p whose order is q, and g be a generator of G. We use
(E ,E) as a double encryption scheme given in §3.3 by a global parameter params = (G, p, q, g).
For a set X = {α1, . . . , αk}, we denote Xs as {αs1, . . . , αsk} for some s ∈ Zq.

With such notation, we proceed to describe our construction.

Setup(1λ) For i ∈ [1, n], each user ui
1. selects a value xi

$←− Zq, computes hi = gxi , and sets sk = (params, xi) and pk =(
params, h =

∏n
i=1 hi = g

∑
i∈[1,n] xi (mod p)

)
, for a threshold ElGamal encryption E with

a public/private key pair (pk, sk).

2. distributes a share (si, s
′
i) : s =

∏n
i=1 si, s

′ =
∏n
i=1 s

′
i, and s · s′ = 1 (mod q).

DEncrypt Using the double encryption scheme,
1. Every user ui first encrypts his multiset Xi as follows:

Encpk(Xi) = {Encpk(αi,1), . . . ,Encpk(αi,k)} .

Then he sends Encpk(Xi) to u1.

2. u1 computes {Es1(Encpk(X1)), . . . , Es1(Encpk(Xn))}. We denote this Y0.

Shuffle & DEncrypt For i ∈ [1, n], ui receives a vector Yi−1, and then computes its permuted and
doubly encrypted version Yi as follows:
1. ui 6=1 computes

Esi(Yi−1) = {c1, . . . , cnk}
=
{
Esi

(
Esi−1

(
· · ·Es1

(
απi−1(1)

)
· · ·
))
, . . . , Esi

(
Esi−1

(
· · ·Es1

(
απi−1(nk)

)
· · ·
))}

where απi−1(`) = απi−1◦···◦π1(`) for all ` ∈ [1, nk].

2. ui chooses a random permutation πi ∈ Σnk, and applies it to a vector of c`; we denote the
result Yi.

3. ui sends Yi to ui+1; the last user un sends Yn to all users.

10



Aggregate Let U =
⋃n
i=1 Xi. After every user has received Es(Encpk(U)),

1. Each user participates in a group decryption and obtains

Es(U) =
{
Es
(
απ(1)

)
, . . . , Es

(
απ(nk)

)}
where π = πn ◦ · · · ◦ π1.

2. Every user computes Z = {Es(α) ∈ Es(U)
∣∣F (Es(α)) ≥ κ}.

Reveal For all i ∈ [1, n]:
1. For every Es(α) ∈ Z, user ui sends Ds′i

(Es(α)) to his neighbor ui+1.

2. After receiving the outputs from un, user u1 broadcasts α = Ds′(Es(α)) to all other users.

Finally, each user obtains a κ+ set including all elements α ∈ U such that F (α) ≥ κ.
The advantage of this protocol is as follows. Compared to Kissner and Song’s protocol [20], our

scheme allows not only to find a threshold value itself but also to compute the “over threshold” set
at the same computation and communication cost—whereas they incur different and higher costs
in [20]. Compared to that described in [3], our protocol has much better computational complexity;
see details in Section 4.3. In order to present a fair comparison between our protocol and Apple-
baum et al.’s protocol [2] we devise our protocol for a semi-decentralized model in Appendix C.
The other purpose of our modification is to reduce the round complexity to a constant.

In threshold encryption schemes, during decryption process each user should output his share
of the decrypted element, but if a user sends a uniformly generated random share instead of a valid
share, then the decrypted element is uniformly random as well. If the decrypted element is uniform,
the resulting decryption reveals no information to the users.

4.2 Security Analysis

In this section we prove that our protocol is secure in the semi-honest model. We then continue
analyzing the efficiency of our protocol in the next section.

Theorem 1 (Correctness) In the private κ+ protocol in §4.1, every honest user learns the joint set
distribution of all users’ private inputs, i.e., each element Es(α) such that α ∈

⋃n
i=1 Xi and the

number of times it appears, with overwhelming probability.

Proof. Let |U| = nk. After completing the algorithm Aggregate, each player learns a randomly
permuted joint multiset Es(U) =

{
Es
(
απ(1)

)
, . . . , Es

(
απ(nk)

)}
. Since π is a permutation, for

each Es
(
απ(`)

)
and for all ` ∈ [1, nk], there exists a pair of the unique index `∗ such that

`∗ = π−1(`)

= π−1n (`) ◦ · · · ◦ π−11 (`).

Namely, Es
(
απ(`)

)
is a unique blinded version of α`∗ ∈

⋃n
i=1 Xi. Moreover, ∀`, `∗ ∈ [1, nk],

α` = α`∗ if and only if Es (α`) = Es (α`∗) with overwhelming probability. �

Corollary 1 In the private κ+ protocol in §4.1, every honest user learns all κ+ elements in the
union of private multisets with overwhelming probability.

Now we show that our protocol satisfies the privacy requirements in the semi-honest model. Let
T be a trusted party in the ideal world which receives the private input multiset Xi of size k from
user ui for i ∈ [1, n], and then returns to every user the joint multiset distribution {F (α)} for all
α ∈

⋃n
i=1 Xi.
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Lemma 2 (Data Privacy) Assume that the threshold ElGamal encryption scheme E = (KG,Enc,Dec)
is semantically secure. In the private κ+ protocol in §4.1, any coalition of less than n semi-honest
users learn no more information than would be given by using the same private inputs in the ideal
model with T .

Proof. We assume that the ElGamal encryption scheme is semantically secure, and so each user
learns only

Encpk (X1) , . . . ,Encpk (Xn) ;

Es1(Encpk(X1)), . . . , Es1(Encpk(X1)), . . . , Esi−1(Encpk(X1)), . . . , Esi−1(Encpk(Xn));

...

Esi−1(· · ·Es1(Encpk(X1)) · · · ), . . . , Esi−1(· · ·Es1(Encpk(Xn)) · · · )

during an execution. At the end of the protocol all users further know Es(Encpk(U)) where U =⋃n
i=1 Xi, and for some γ`∈[1,nk] ∈ Zq

Es(Encpk(U)) = {Es(Encpk(X1)), . . . , Es(Encpk(Xn))}
=
(
gγ1 ,

(
απ(1)

)s · yγ1) , . . . , (gγnk , (απ(nk))s · yγnk) .
As s is uniformly distributed, a group decryption of ElGamal encryptions reveals no more than

{Es(α`)}`∈[1,nk] = Es

(
n⋃
i=1

Xi

)
= Es(U).

We know the fact that F (α) = F (αs) for two multisets X and Es(X) ∈ (Gq)
k, for all s ∈ Zq

and for all α ∈ X. Hence we see that

F (Es(U)) = F

(
Es

(
n⋃
i=1

Xi

))
= F

(
n⋃
i=1

Xi

)
= F (U),

which can be derived from the output returned by T in the ideal-world model. �

Lemma 3 (User Privacy) Assume that the threshold ElGamal encryption Enc is semantically se-
cure. The protocol in §4.1 is user-private against any coalition of less than n semi-honest users.

Proof. Assume that there is at least an honest user in the system, and that the threshold ElGamal
encryption E = (KG,Enc,Dec) is CPA-secure. After performing DEncrypt and Shuffle algorithms,
every user obtains a collection of ElGamal encryptions {c1, . . . , cnk}. By the assumption, the ad-
versary cannot learn any further information except that which encryptions have been sent from
which users. Running these algorithms, each user should raise the power of a vector of encryptions
to his secret si. Namely, at the end of this step each user holds {Esi(c1), Esi(c2), . . . , Esi(cnk)}.
Next, user ui should apply a random permutation πi to the vector so that he obtains a new vector
in form of

{
Esi

(
cπi(1)

)
, Esi

(
cπi(2)

)
, . . . , Esi

(
cπi(nk)

)}
. Finishing the algorithms, all users get a

permuted and doubly encrypted list{
Es
(
cπ(1)

)
, Es

(
cπ(2)

)
, . . . , Es

(
cπ(nk)

)}
,

where the permutation π = πn ◦ · · · ◦ π1 and s =
∏n
i=1 si. As there exists at least an honest user,

even when n − 1 users collude, s is uniformly distributed and unknown to all users and π is a
random permutation. This completes the proof of the claim. �

Theorem 2 Assuming that the threshold ElGamal encryption is semantically secure and the DL
assumption holds, the proposed κ+ protocol is secure in the semi-honest model.

Proof. We complete the proof of security by Lemma 2 and Lemma 3. �
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4.3 Efficiency Analysis

In the following we give a detailed analysis of the running time and the space requirements of the
protocol. on ElGamal encryption and the power function with primes |p| = 1024, |q| = 160. To
measure users’ overhead, we count the number of exponentiations using a 1024-bit modulus.

In Table 3 we show a summary of the complexity result for our proposed protocol. The total
computational complexity is dominated by DEncrypt and Shuffle algorthms. Putting the compu-
tational complexities together shows that the total computation complexity is O(n2k) in O(n)
rounds. The proposed protocol has O(n2k log p) bits in total. It is impossible to directly compare
our protocol with Applebaum et al.’s protocol, since it runs in the semi-decentralized model, so we
just present the computational complexity.
Detailed Comparison. We consider three protocols: Kissner and Song (KS) protocol [20], Burkhart
and Dimitropoulos (BD) protocol [3], and Applebaum et al. protocol.

– KS protocol. Since KS does not provide a way for finding a threshold value τ that
separates the κ-th from the (κ + 1)-th item, we do not know the complexity in computing τ .
Assuming τ is given, their protocol has O(n2k) computation complexity in O(n) rounds.

– BD protocol. In turn, we give a comparison with BD protocol. To our knowledge, it is
the only fully decentralized κ+ protocol that does not use Yao’s garbled circuit evaluation. Their
protocol utilizes two special-purpose sub-protocols–equality and lessthan (see [8,27]), but
in [4] as the authors pointed out, comparing two shared secrets is very expensive and computa-
tional intensive. Thus, they use a computationally efficient version of the basic sub-protocols as
follows: equality requires log p rounds and lessthan requires (2 log p + 10) rounds. Their
protocol need to run two key algorithms as follows:

– Finding a correct threshold value τ :
This algorithm has (log k(2 log p+ 10) + log p+ 2 log p+ 10)nk rounds.

– Resolving collisions:
This algorithm requires n(n−1)

2 log p+ 2(n− 1) log p+ 10(n− 1) rounds.
Thus, the total round complexity is O(n(n + k log k) log p) for hash tables of size log k and U

of cardinality nk. Their protocol requires 4
(
n(n−1)

2 k + k(n− 1)
)

multiplications in Z×p .

– Applebaum et al. protocol. Let us use Op(·) to denote the com-
plexity using modulus prime p andON (·) complexity using modulus composite N . Assume all
elements are integers less than p and the maximum multiplicity is less than log log p.
Their major computation-intensive parts are as follows:

– Interactive computation between Users and Proxy: First, users should run a protocol for
oblivious evaluation of pseudorandom function by communicating with proxies, then en-
crypt the result with ElGamal encryption. This requires n(k(2 log p + 2) + 2k) exponen-
tiations over Z×p . Also, users should encrypt the multiplicity of each element with GM
encryption, requiring nk log log p multiplications over Z×N . Finally each user encrypts his

Table 3. Complexity Analysis

Comp. Cpx (expo.) Comm. Cpx (bits) Rounds Cpx

Setup n n log p 1

DEncrypt & Shuffle 4nk + 2n2k 2(n− 1)k log p+ 2n2k log p n

Aggregate n2k 2n2k log p 1

Reveal nκ nκ log p n− 1
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ElGamal ciphertexts using ElGamal encryption once more, which requires 2nk exponenti-
ations over Z×p .

– Aggregation by Database: The most computationally-intensive part is ElGamal and GM
decryption. Since database receives two types of ElGamal ciphertexts, it has to perform
2nk exponentiations over Z×p . GM decryption requires 2nk log log p exponentiations over
Z×N .

Thus, its complexity is Op(nk log p) +ON (nk log log p) exponentiations.

5 A κ+ Protocol with Malicious Adversaries

We begin by defining an ideal functionality for over-threshold aggregation. Then the trusted party
computes a set whose elements are in the union of each user’s multiset and has a multiplicity greater
than or equal to κ, and outputs the set. We state this more formally in the following section.

Definition 8 (Ideal Functionality Ftopk) There are a set of n users, U = {ui}ni=1, a trusted party
T , and an ideal adversary S controlling a set of corrupted users ũt = {uij}tj=1 for some 0 ≤ t < n.
Again let Xi = {αi,j}kij=1 be a multiset of user ui∈[1,n].

1. Each user ui sends Xi to T .
2. T computes the following functionality, and returns the output Zl to each ul∈[1,n]:

Zl =
{
αi,j ∈

⋃
i∈[1,n]Xi

∣∣∣F (αi,j) ≥ κ
}
.

In the rest of this section we present in details our construction for a protocol realizing the
ideal functionality Ftopk. To this end, we first describe several issues that we have to address in
the construction. We then provide a full description of a κ+ protocol secure against malicious
adversaries and end with the security analysis.

5.1 Constructing a Protocol Secure in the Malicious Model

Before describing the details of the protocols, we first need to outline several issues that should be
resolved in transforming the basic protocol in §4.1 into a protocol with malicious adversaries. As
above we denote by U = {ui}ni=1 a set of all players and by Υ ( U a set of corrupted players.

– It is clearly easy for a corrupted player to construct his multiset by copying an honest player’s
multiset. For example, a user u ∈ Υ obtains a multiset Xi of an honest user ui ∈ U \ Υ
through a public channel. Since ElGamal encryption is homomorphic, she can re-randomize
the encryptions of ui so that she can submit the re-randomized encryptions as the encryptions
of his input multiset without detection.

To address these problems, we introduce a zero-knowledge protocol for verifying that the
prover knows the corresponding plaintext message m to an ElGamal ciphertext message c =
Encpk(m).

– Corrupted players may deviate from the protocol instructions by computing their outputs using
an incorrect permutation or using a value which is different from a secret share si determined
in the setup of the protocol.

These problems can be also resolved by using zero-knowledge protocols mentioned in §3.5.
First—when given an ElGamal ciphertext e = Encpk(m) a player ui computes e′ = esi =
Esi(e), and then need to prove that he raised e exactly to the power of si. In addition, given
a list of ElGamal ciphertexts L = (e1, . . . , e`), he must produce a different list of ElGamal
ciphertexts L′ = (e′1, . . . , e

′
`) with a proof that there exists a permutation π ∈ Σk such that for

all j ∈ [1, `] we have Decsk

(
e′π(j)

)
= Decsk (ej).
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5.2 Over-threshold Aggregation Protocol with Malicious Adversaries

We are now ready to describe a protocol that securely computesFtopk with allowing an adversary to
maliciously behave, in the standard model. We graphically shows a high-level description without
details in Fig. 1. We then give a full description.

ui ∈ U
Xi = {αi,1, . . . , αi,k}, xi, hi = gxi , (si, s

′
i)

b = comck(xi)

c = comck(si), d = comck(s
′
i)

PoK(hi)
←−−−−−−−−−−−−−−−−−−−−−−−−→

Encpk(X1), . . . ,Encpk(Xi−1)−−−−−−−−−−−−−−−−−−−−−−−−−→
PoK(X1), . . . ,PoK(Xi−1)

∀j ∈ [1, k], ri,j
$←− Zq

Encpk(Xi)−−−−−−−−−−−→
PoK(Xi)

L′i−1 = Esi−1 ◦ πi−1(L
′
i−2)−−−−−−−−−−−−−−−−−−−−−−−−→

PoK(L′i−1, c)

PoK(L′i−2, L
′
i−1)

πi
$←− Σnk

L′i = Esi ◦ πi(L
′
i−1)−−−−−−−−−−−−−−−−−−−→

PoK(L′i−1, c)

PoK(L′i−1, L
′
i)

← Group Decryption→
Zi−1 = Es′i−1

(Zi−2)
−−−−−−−−−−−−−−−−−−−−→

PoK(Zi−1, d)
Zi = Es′i(Zi−1)

−−−−−−−−−−−−−−−−→
PoK(Zi, d)

→ {α ∈ U
∣∣F (α) ≥ κ} ←

Fig. 1. A High-level Description of ℘topk

The main component is a careful combination of the basic κ+ protocol explained in §4 and
several ZKPs in §3.5. However, introducing these zero-knowledge protocols demands to modify
several parts of the basic protocol. While each player computes his secret share, he need to commit
to his secret using the com algorithm. Moreover, using a zero-knowledge protocol for correct shuffle
requires us to commit to a list of ElGamal ciphertexts raised to the power of each player’s secret
share si.

We continue with a full description of the protocol ℘topk. Especially, in this section we use
℘topk to denote the real-world protocol corresponding to the ideal functionality Ftopk. Further, a
step followed by a star symbol (?) means that the step is newly added to the protocol ℘topk and a
step followed by a dagger symbol (†) means that the step is modified from the corresponding step
in the basic protocol.

Protocol ℘topk

– Inputs. The input of each user is a multiset Xi = {αi,1, . . . , αi,k}. (For notational convenience
we assume |Xi| = k for all i ∈ [1, n].)
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– Selection of global parameters. Each user has a security parameter λ and a large prime p such
that p = 2q + 1 for a prime q. The group G is the cyclic subgroup of Z×p in which the DDH
assumption holds. Set params = (G, p, q).

– Protocol actions.
Setup(1λ) Let g, g, h be random generators of G.

?1. Each user gets a commitment key ck = (params, g, h) by running the key generation
algorithm KGcom of Pederson’s commitment scheme.

2. Each user agrees to a threshold ElGamal encryption E with a public/private key pair
(pk, sk), which are computed as follows.

- selects a value xi
$←− Zq, computes hi = gxi , and sets sk = (params, g, xi) and

pk =
(

params, g, h =
∏n
i=1 hi = g

∑
i∈[1,n] xi

)
.

?3. Each user ui proves knowledge of logg hi using zero-knowledge proofs of knowledge
forRDL, that is, by invoking PoK(hi).

4. All users are distributed a share (si, s
′
i) such that s =

∏n
i=1 si, s

′ =
∏n
i=1 s

′
i, and

s · s′ = 1 (mod q).
?5. Finally, each user computes two commitments c = comck(si), d = comck(s

′
i) to his

secret shares respectively.

DEncrypt For all i ∈ [1, n] and j ∈ [1, k]:
†1. Every user ui encrypts his multiset Xi as follows:

Encpk(Xi) = {Encpk(αi,1), . . . ,Encpk(αi,k)}

where Encpk(αi,j) = (gri,j , αi,j · hri,j ) for some randomizer ri,j ∈ Zq, and sends
Encpk(Xi) to u1. Let ei,j = Encpk (αi,j ; ri,j). Each user then proves the knowledge of
αi,j by invoking the zero-knowledge protocol PoK (ei,j).

†2. User u1 computes {Es1(Encpk(X1)), . . . , Es1(Encpk(Xn))}, which is denoted by Y0.
Let β(1,i) = Es1 (Encpk(Xi)) = {Es1 (Encpk(αi,1)) , . . . , Es1 (Encpk(αi,k))}. The user
u1 and other users then engage in the zero-knowledge protocol PoK

(
β(1,i), c

)
for which

he proves that β(1,i) = Es1 (Encpk(Xi)) were correctly computed.

Shuffle & DEncrypt For all i ∈ [1, n], ui receives vector Yi−1 and computes a permuted,
doubly encrypted version Yi as follows:
1. ui≥2 computes

Esi(Yi−1) = {c1, . . . , cnk}
=
{
Esi

(
Esi−1

(
· · ·Es1

(
απi−1(1)

)
· · ·
))
, . . . ,

Esi
(
Esi−1

(
· · ·Es1

(
απi−1(nk)

)
· · ·
))}

,

where απi−1(`) = απi−1◦···◦π1(`) for all ` ∈ [1, nk].
?2. The user then executes a zero-knowledge protocol PoK (c`, c) to prove that he correctly

computed c` for all ` ∈ [1, nk].
†3. ui chooses a random permutation πi ∈ Σnk, applies πi to the list of c`∈[1,nk], and

computes Yi as follows.

Yi =
{

Encpk
(
cπi(1); γ1

)
, . . . ,Encpk

(
cπi(nk); γnk

)}
,

where ∀` ∈ [1, nk] : γ`
$←− Zq. Since the ElGamal encryption scheme is multiplica-

tively homomorphic, users can perform these re-randomizations efficiently.
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†4. ui sends Yi to ui+1 with a zero-knowledge proof of knowledge for RCS by executing
PoK (Esi(Yi−1), Yi); the last user un sends Yn to all users.

Aggregate Let U =
⋃n
i=1 Xi. After receiving Es (Encpk(U)).

1. Every user participates in a group decryption and obtains

Es(U) =
{
Es
(
απ(1)

)
, . . . , Es

(
απ(nk)

)}
where π = πn ◦ · · · ◦ π1.

2. Every user computes Z = {Es(α) ∈ Es(U)
∣∣F (Es(α)) ≥ κ}.

Reveal For every i ∈ [1, n]:
†1. For every α̃ ∈ Z, user ui computes Ds′i

(α̃), sends it to all other users ui′∈[1,n]\{i},
and then proves that he correctly computed with his committed secret s′i by invoking a

zero-knowledge protocol PoK
(
Ds′i

(α̃), d
)

.

†2. Finally if user u1 receives from un

α = Ds′(α̃) = Ds′ (Es (α)) = αss
′
,

and succeeds in verifying zero-knowledge proofs of knowledge forRDE, he broadcasts
all α’s.

In conclusion, each user ui gets a κ+ set, {α ∈ U|F (α) ≥ κ}.

Efficiency Compared to the basic κ+ protocol, the additional cost for the protocol ℘topk is only
needed for performing the zero-knowledge protocols. Table 4 summarizes the complexities of all
zero-knowledge protocols. We evaluated our scheme using ElGamal encryption and Pedersen com-
mitments with primes p, q where q|p − 1, |q| = 160, |p| = 1024. In particular we considered a
ZKP protocol for correct shuffle by Groth [16]. Since all of them are a special honest verifier zero-
knowledge agreement of knowledge, we need to transform the used protocol into a standard ZKP
protocol, which requires additional computation and communication cost. However, because this
transformation does not increase the complexities in the sense of big-O, we ignored this cost in our
evaluation. Moreover, we did not consider some optimized variants for other three zero-knowledge
protocols. Notice that while n2 shows up as a factor in the complexity analysis, n is usually small
in practice, and the overhead is mostly dominated by the constant factor and the value of k.

Table 4. Complexities of Zero-knowledge Protocols (ZKP)

ZKP forRDL ZKP forRDE ZKP forRPK ZKP forRCS

Prover n 2n2k + nκ n2k 0.4nk

Verifier 2n 4n2k + 2nκ 2n2k 0.5nk

Prover’s communications (bits) 1184n 2368n2k + 1184nκ 1184n2k 720nk

Security We proceed to proving that the protocol ℘topk is secure in the presence of malicious
adversaries. The following is our main theorem.

Theorem 3 Assuming the threshold ElGamal encryption E is semantically secure, hardness of the
DDH and DL problems, and all the specified ZKPs cannot be forged, then the protocol ℘topk de-
scribed above securely computes Ftopk in the presence of malicious adversaries. That is, for any
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coalition Υ of corrupted users (at most t < n such corrupted users), there is a simulator S exe-
cuting in the ideal model, such that the views of the users in the ideal model are computationally
indistinguishable from those of the honest users and Υ in the real model.

Proof Sketch The full proof of this theorem is shown in Appendix ??. Instead we provide an
intuitive explanation how to achieve our security in the malicious model.

By the security definition, we need to build a polynomial-time simulator S that outputs a list of
fake transcripts indistinguishable from a list of real transcripts created by executing ℘topk. Recall
that the ideal world also has an adversary, but by assumption the adversary cannot compromise its
security. The key observation is that if there exists an adversary in the ideal world such that it can
mimic all activities of an adversary in the real world where our protocol runs, then two adversaries
in the different worlds have the equivalent capability from security’s point of view. Thus we can
say the protocol ℘topk is secure against corresponding adversaries in the real world.

Now we only have to focus on showing that there exists such an adversary living in the ideal
world. In the literature the adversary is called a simulator. A typical way of constructing a simulator
is to give a polynomial-time algorithm for a simulator S. This simulator communicates with the
malicious players Υ , pretending to be one or more honest players in a way that Υ cannot distinguish
that it is not in the real world. The trusted third party takes the input from S and the honest parties,
and gives the result to both S and the honest parties. S then communicates with the malicious
players Υ , so they also learn the result.

The most challenging part in constructing the simulator is how to extract secrets of the malicious
players Υ . Fortunately, knowledge extractor defined in ZKPs enables us to learn all secret of Υ . See
the following for the full proof.

Proof. Following the standard simulation proof technique, we will give an PPT algorithm for a
simulator S which is a malicious player in the ideal model. This player interacts with the corrupted
players Υ , which pretends to be one or more honest players in a way that Υ cannot detect that the
simulator does not live in the real world as they do. All corrupted players are allowed to collude.

First we take a look at the ideal world. The trusted party T in the ideal world takes the input
from S and the honest players, and outputs the κ+ set to S and the honest players. Then the ideal
adversary S communicates with the corrupted players Υ and thus all corrupted players in the real
world also will know the κ+ set.

Now we describe how the simulator S operates in the real world in a computationally indistin-
guishable manner. We denote by J a set of indices for the corrupted players, whereas we denote by
I a set of indices that are assigned to all honest players.

1. For each simulated honest player ui∈I , the simulator S
(a) chooses a secret key xi ∈ Zq randomly and computes hi = gxi .

(b) chooses a random generator g ∈ G and computes h = gγ where γ $←− Zq which plays a
role of a trapdoor later. Then S computes a pair of commitments (c, d) to (si, s

′
i) respec-

tively, where c = comck(si; γ1) and d = comck(s
′
i, γ2) where γ1, γ2 are randomly chosen

randomizers.
(c) constructs a multiset Xi = {αi,1, . . . , αi,k} where αi,j

$←− G for all j ∈ [1, k]

2. The simulator S carries out Setup in the protocol ℘topk as follows:
(a) publishes ck = (g, h) and hi along with zero-knowledge proofs of the discrete logarithm to

the base g of hi.
(b) receives from each corrupted player uω∈J , a share of public key hω along with zero-

knowledge proofs for hω.
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3. For all corrupted players in Υ , the simulator S extracts the secret key sω∈J that each corrupted
player uω has chosen, from the proofs in PoK(hω).

4. The simulator then performs DEncrypt in the protocol:
(a) sends the encryption of Xi on behalf of the honest players ui∈I to all the malicious players

Υ , along with proofs of plaintext knowledge.
(b) receives from each corrupted player uω∈J the encryptions of a multiset Xω and proofs of

plaintext knowledge for its elements αω,j ∈ Xω for all j ∈ [1, k].
5. The simulator S extracts from the proofs of plaintext knowledge, the multiset Xω∈J that the

corrupted player uω has held.
6. The simulator playing a role of an adversary in the ideal world submits all multisets Xω∈J to

the trusted party T on behalf of all corrupted players living in the ideal world. At the same
time, each honest player also sends his multiset to the trusted party. The trusted party T then
computes a κ+ set

Zκ+ =

{
α ∈

n⋃
i=1

Xi

∣∣∣∣∣F (α) ≥ κ
}
,

and returns the κ+ set to both the simulator S and the honest players.
7. In turn, the simulator S prepares to return the same κ+ set to the corrupted players Υ . Our proof

technique heavily relies on the trapdoor commitment scheme. We need to change the plaintexts
in the encryption of multisets that S sent to Υ on behalf of the honest players so that the output
of the protocol becomes the same set as Zκ+ . However, since we cannot change the encryptions
of Xi∈I , we have to modify those plaintexts during performing the following algorithms in the
protocol. The modification is possible because the Pedersen commitment scheme is equivocal.
A more detailed description follows.

NOTATION For convenience when describing the simulation in this step, we add several nota-
tions. Let δ ∈ N and δ ≤ nk. We denote by ζ the cardinality of the set Zκ+ revealed by S in
Step 6. In addition, we assume that 1 ∈ I and that the sets of honest players in the ideal world
have no intersection with the sets of random elements chosen by S for the honest players in the
real world.
(a) If the set Zκ+ obtained in Step 6 can be constructed only using Xω∈J , the simulator follows

the rest of the protocol interacting with the corrupted players uω∈J as specified. Otherwise,
go to the next step.

(b) The simulator S finds how many elements need to be changed and then determines which
elements in Xi∈I should be changed into the elements in Zκ+ . Let {α̃1, . . . , α̃δ} denote a
set of such elements to be changed. Then, we see that

Zκ+ ⊂

(⋃
ω∈J

Xω

)⋃
{α̃i}δi=1 .

(c) The simulator computes s̃i∈I , s̃′i∈I such that for some i ∈ I, j ∈ [1, k],

(αi,j)
∏
i∈I(s̃i·s̃′i)·

∏
ω∈J (sω ·s′ω) ∈ {α̃1, . . . , α̃δ} and

∏
i∈I

(
s̃i · s̃′i

)
·
∏
ω∈J

(
sω · s′ω

)
= 1 mod q,

while storing in a set ∆ such a pair of indices (i, j) ∈ I × [1, k], in a sequential order.
(d) The simulator S performs Shuffle & DEncrypt of the protocol:

i. For all (i, j) ∈ ∆, computes Es̃i (Yi−1) with s̃i instead of si together with zero-
knowledge proofs of correct double encryption. Even though s̃i 6= si with high prob-
ability, the simulator can persuade a verifier to accept the proof of correct double en-
cryption. The reason is why S has trapdoors including γ = logg h and a randomizer γ1
used in the commitment c of Step 1.
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ii. chooses a random permutation πi ∈ Σnk and re-randomizes all doubly encrypted El-
Gamal ciphertexts in a randomly permuted order by using πi with proofs of correct
shuffle.

iii. sends to the corrupted players uω∈J all the computations with corresponding zero-
knowledge proofs.

iv. receives from each corrupted players uω∈J randomly permuted double encryptions and
proofs of correct double encryption and correct shuffle.

8. The simulator S extracts from the proofs of correct double encryption and correct shuffle, sω∈J
and πω∈J that the corrupted players Υ have chosen. Then S compares all sω’s in Step 3 with sω’s
in this step for all ω ∈ J . If there were different values, terminate the simulation with failure.
Otherwise, the simulator keeps all permutations πω∈J . In the later step, the simulator can find
which elements it should raise to the power of s̃i∈I by using all permutations πi∈I , πω∈J .

9. The simulator S engages in carrying out Aggregate in the protocol with the corrupted players
Υ .

10. The simulator and the corrupted players commonly hold {Es̃ (α1) , . . . , Es̃ (αζ)} where s̃ =∏
i∈I s̃i ·

∏
ω∈J sω. Now the simulator S computes{

D∏
i∈I s̃

′
i
(Es̃ (α1)) , . . . , D∏

i∈I s̃
′
i
(Es̃ (αζ))

}
with proofs of correct double encryption. S then sends the computations and proofs of correct
double encryption to the corrupted players—Reveal in the protocol. After all, the corrupted
players learn the κ+ set with simple calculations.

A word of explanation can help to clear understand the simulation done in Step 7. At the step,
the simulator decommits the trapdoor commitment s̃i∈I for the new chosen randomness γ̃1 such
that

c = gsihγ1 = gs̃ihγ̃1 .

It is clear that the simulator runs in polynomial time. Recall that we compare the simulated exe-
cution to a hybrid execution where a trusted party T is used to compute the ideal functionalityFtopk

and the zero-knowledge proofs of knowledge forRDL,RDE,RPK, andRCS. It is straightforward to
prove that A’s output in the hybrid and simulated executions described above are computationally
indistinguishable. Note that the corrupted players cannot distinguish that they are interacting with
S which is in fact working in the ideal world instead of the honest players (which are in the real
world), and the correct answer is learned by all players, in both the real and ideal world models.
This completes the proof of Theorem 3. �

6 Conclusion

In this paper we have looked at the problem of finding the κ+ elements securely, and formally
defined what it means for a protocol to be a secure κ+ protocol. We developed two protocols,
with varying operation overhead, analyzed their security, and demonstrated their practicality. That
is while developing κ+ protocols, we analyze its precisely computational and communicational
cost that our protocol requires to run properly. Moreover, we provide a full proof showing that our
protocol is secure in the presence of semi-honest adversaries.

Since semi-honest protocols commonly have critical restrictions in the security sense–for ex-
ample, even adversary should follow the instructions specified in the protocol, we transformed our
basic protocol (given in Section 4) into a stronger κ+ protocol which is also secure in the presence
of malicious adversaries. In addition to a full description of our protocol with malicious adversaries,
we proved the protocol to be secure within the simulation paradigm.
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A An Alternative View of User Privacy

The following description may help to get a clearer view on user privacy. Let Πκ,E,E be a κ+

protocol defined as in Section 3.1 over a double encryption scheme (E ,E) and A = (A1,A2) be a
PPT adversary.

(pk, sk, s, s′)← Setup(λ);
(state, Υt,m1, . . . ,mn−t)← A1(pk, n, t) s.t. Υt is a set of corrupted t users;

σ
$←− Σn and assign mσ(i) to each honest i-th user ui 6∈ Υt;

(α1, . . . , ακ)← Πκ,E,E, where A1 interacts with the n− t honest users;
(i, j)← A2(pk,m1, . . . ,mn−t, state);

We define the advantage of an adversaryA as Advκ
+

A (Πκ,E,E, λ) =
∣∣∣Pr[σ(i) = j]− 1

n−t

∣∣∣. Then the

κ+ protocol is user-private if the advantage Advκ
+

A (Πκ,E,E, λ) is negligible in security parameter
λ. Notice that the security game above is described for illustration and not for real-world use in κ+.

B Cryptographic Details for the Constructions

B.1 Threshold Schemes

In order to apply our protocol to an environment consisting of multiple players (> 2) we also need
to consider a threshold version of the ElGamal encryption scheme. Let xi be a secret key and hi
be a corresponding public key of a player ui. The public key h =

∏n
i=1 hi = g

∑n
i=1 xi = gx is

public and known to all players, and encryption is as in the standard ElGamal encryption scheme
above. For decryption, a player uj sends a request for decryption containing c = (u, v) to all
other players. On receiving the request, all other players compute a decryption share di = uxi and
send it to the player uj . Upon receiving all decryption shares, the player computes the message as
m = v∏n

i=1 di
= v

u
∑n
i=1

xi
= v/ux.

In addition, we need an efficient scheme which works as follows: When each user holds a shared
secret key si such that s =

∏n
i=1 si, the scheme allows each user to have a share s′i satisfying

s′ =
∏n
i=1 s

′
i and s′ = s−1 (mod q) for a public modulus q. In this paper, we use the scheme

studied by Algesheimer et al. [1, §5].

B.2 Definitional Details of Zero-knowledge Proofs

Definition 9 (Interactive Proof Systems) We say that a pair of PPT algorithms (P, V ) is an inter-
active proof system for a language L if there exists a negligible function µ such that the following
conditions hold:
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1. Completeness. For all x ∈ L,

Pr [(P, V )(x) = 1] ≥ 1− µ(|x|).

2. Soundness. For all x 6∈ L and PPT algorithm P ∗,

Pr [(P ∗, V )(x) = 1] ≤ µ(|x|).

Definition 10 (Zero-knowledge) Let (P, V ) be an interactive proof system for a language L. We
say (P, V ) is computationally zero-knowledge if for all PPT algorithms V ∗, there exists a PPT
algorithm S such that

{(P, V ∗)(x)}x∈L
c
≈ {S(x)}x∈L ,

where the left term means the output of V ∗ after it interacts with P on common input x and the
right term means the output of S on x.

Let R be a binary relation and ε : N → [0, 1]. We say that a PPT interactive algorithm V is a
knowledge verifier for the relationR with knowledge error ε if the following two conditions hold:

– Non-triviality. There exists a PPT interactive algorithm P such that for all (x, y) ∈ R, every
interaction of V with P on common input x ∈ LR and auxiliary input y is accepting.

– Validity with knowledge error ε. There exists a polynomial φ(·) and a probabilistic oracle
machine M such that for every PPT interactive algorithm P , for all x ∈ LR, and for every
y, r ∈ {0, 1}∗, the machine M satisfies the following condition:

Denote by ϕ(x, y, r) the probability that the PPT interactive algorithm V accepts on com-
mon input x, when interacting with the prover specified by Px,y,r. If ϕ(x, y, r) > ε(|x|),
then on input x and with access to oracle Px,y,r the machineM outputs a solutionw ∈ R(x)
with the expected number of steps bounded by

φ(|x|)
ϕ(x, y, r)− ε(|x|)

.

Definition 11 (Knowledge extractor) The oracle machine defined above is called a knowledge
extractor.

Definition 12 (Proof of Knowledge) Let (P, V ) and ε(·) be defined as above. If ε(·) = 0, then V is
simply called a knowledge verifier for the relationR. Further, we say that a pair of PPT interactive
algorithms (P, V ) such that V is a knowledge verifier for a relation R and P is an algorithm
satisfying the non-triviality condition is a system for proofs of knowledge for the relationR.

Last we need to define special honest verifier zero-knowledge [7] with the ability to simulate
the transcript for any set of challenges without access to the witness.

Definition 13 (Special Honest Verifier Zero-knowledge) We say that a protocol is a special hon-
est verifier zero-knowledge protocol for a binary relation R if it is a 3-round public-coin protocol
satisfying the following conditions:

– Completeness. If P and V runs the protocol on input x and private inputw to P where (x,w) ∈
R, then V always accepts.

– Special soundness. There exists a PT algorithm A such that, given any x and any pair of ac-
cepting transcripts (a, e, z), (a, e′, z′) on input x with e 6= e′, it outputsw such that (x,w) ∈ R.

– Special honest verifier zero-knowledge. There exists a PPT algorithm S such that

{(P (x,w), V (x, e))}x∈LR
c
≈ {S(x, e)}x∈LR ,

where S(x, e) denotes the output of S on input x and e, and (P (x,w), V (x, e)) denotes the
transcript of an execution between P and V where P takes as input (x,w) and V takes as
input x and its random challenge e.
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C Our Semi-Decentralized Construction

The most crucial drawback of the above protocol is its O(n) round complexity. To avoid this prob-
lem, Applebaum et al. introduced two semi-honest users: a proxy which shuffles a list of input
ciphertexts, and a database which aggregates κ+ elements. Applying the same technique to our
protocol, we can also obtain a constant-round κ+ protocol with the same security with modifica-
tions as follows:

– Assume that there are n1 proxies and n2 databases described as in [2].
– Each database engages in setting up a threshold ElGamal encryption and publishes a public key.

Instead of users, all proxies are distributed secret shares (sl, s′l)l∈[1,n1].
– Each user computes a list of ElGamal ciphertexts and sends it to a proxy.
– Each proxy runs DEncrypt and Shuffle, and returns the result to all databases.
– Databases perform group decryption, and get the list of encrypted κ+ elements
– Finally, all proxies decrypt the encrypted κ+ list and return the κ+ to all users.

Compared to [2], our protocol does not require OT operations, nor an extra encryption scheme.
Recall that Applebaum et al.’s protocol requires to use both the ElGamal encryption scheme and
the Goldwasser-Micali (GM) encryption scheme: the ElGamal encryption scheme is used to encrypt
elements in multisets, but the GM encryption scheme is used to encrypt their multiplicity.
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