
Enforcing Language Semantics
Using Proof-Carrying Data

(extended version)

January 13, 2014

Stephen Chong

Harvard University
chong@seas.harvard.edu

Eran Tromer

Tel Aviv University
tromer@cs.tau.ac.il

Jeffrey A. Vaughan

LogicBlox Inc.
jeff.vaughan@logicblox.com

Abstract
Sound reasoning about the behavior of programs relies on program execution adhering to the language
semantics. However, in a distributed computation, when a value is sent from one party to another,
the receiver faces the question of whether the value is well-traced: could it have been produced by a
computation that respects the language semantics? If not, then accepting the non-well-traced value may
invalidate the receiver’s reasoning, leading to bugs or vulnerabilities.

Proof-Carrying Data (PCD) is a recently-introduced cryptographic mechanism that allows messages
in a distributed computation to be accompanied by proof that the message and the history leading to
it complies with a specified predicate. Using PCD, a verifier can be convinced that the predicate held
throughout the distributed computation, even in the presence of malicious parties, and at a verification cost
that is independent of the size of the computation producing the value. Unfortunately, previous approaches
to using PCD required tailoring a specialized predicate for each application, using an inconvenient
formalism and with little methodological support.

We connect these two threads by introducing a novel, PCD-based approach to enforcing language
semantics in distributed computations. We show how to construct an object-oriented language runtime
that ensures that objects received from potentially untrusted parties are well-traced with respect to a set of
class definitions. Programmers can then soundly reason about program behavior, despite values received
from untrusted parties, without needing to be aware of the underlying cryptographic techniques.

Contents

1 Introduction 3

2 Overview 6

3 Base Language 9
3.1 Syntax and semantics . 9
3.2 Well-traced values . 12

4 Communication Language 13
4.1 Syntax and semantics . 14
4.2 Well-tracedness . 15

5 Modeling Distributed Executions 16
5.1 COCOTRUST . 16
5.2 Distributed execution graphs . 16

6 Proof Carrying Data 22
6.1 Overview of PCD . 22
6.2 A compliance predicate for well-tracedness . 25
6.3 Verifying well-tracedness . 25
6.4 Verifying correctness of COCOCOMM executions . 26

7 Extensions 28

8 Related work 30

9 Conclusion 32

Acknowledgments 32

References 33

A Auxillary Definitions 36

B Proof of Theorem 1 37

2

1. Introduction
Encapsulation allows programmers to reason locally about expressive and useful properties of programs
and values. The soundness of such local reasoning relies on program execution adhering to the language
semantics. However, in a distributed computation, when a value is received from an untrusted party, it
is potentially difficult to ascertain that the value was computed according to language semantics. Indeed,
the received value (say, an object of a specific class) may be one that could never result from any valid
computation. This could happen due to a malicious attack by the sender, transient errors, Trojan horses at
the software or hardware levels, or (transitively) corruption in values that the sender itself received from
others. Accepting values that are not the result of valid computation may belie otherwise sound reasoning,
and lead to bugs or vulnerabilities. Such risks are especially a concern with distributed and outsourced
cloud computing.

Consider, for example, object deserialization in a class-based type-safe language. A byte stream
received from the network could represent a well-formed object value (i.e., one with appropriate fields
for its class), but with a state that is impossible to reach by a sequence of calls to the class’s public
interface. Such objects may violate invariants that are satisfied by every object of that class produced in
accordance with the language semantics, by calls to the public interface. Allowing such objects into a
program’s evaluation is potentially harmful, and may render invalid any program reasoning that relies on
those invariants. Verifying these invariants is, in general, a hard open problem. Bloch devotes an entire
chapter of his book Effective Java [10] to the problem of, and manual methods for, safe deserialization of
objects. In practice, similar concerns are raised by a secure coding standard [11] (listing this problem as
“probable” and “high remediation cost”), and by a study of common weaknesses [34].

In this paper we show how to enforce language semantics in a distributed computation, where values are
sent between mutually-untrusting and potentially-malicious parties. We do so in the context of a simple
class-based object-oriented calculus, COCO, that provides encapsulation, and thus allows local language-
level reasoning about rich application-specific properties. We enforce language semantics using a recently
introduced cryptographic mechanism, Proof-Carrying Data [8, 12, 13], to prove (in zero-knowledge) that
object values that party A receives from party B were computed in accordance with language semantics,
and, transitively, that all values previously received by B and used in its computation were similarly
computed in accordance with language semantics.

Proof-Carrying Data PCD [8, 12, 13] allows every message in a distributed computation to be accom-
panied by proof that the message and the history leading to it complies with a specified compliance
predicate. Using PCD, a verifier can be convinced that the compliance predicate held throughout the com-
putation, even in the presence of malicious parties, and at a verification cost that is independent of the size
of the computation to produce the value.

The PCD compliance predicate can be instantiated with any polynomial-time computable property that
is required to hold, locally, at every node of the computation. Once a compliance predicate has been
chosen, PCD gives a recipe for generating and verifying proofs of this property during the distributed
execution. In this work, we design a PCD compliance predicate that asserts that values were produced in
accordance with the semantics of a specific object-oriented programming language, and with respect to
any prescribed set of classes in that language.

PCD proofs are probabilistic and computationally sound: convincing proofs for false statements may
exist, but no efficient algorithm can find them with more than negligible probability (just as in other
cryptographic mechanisms for integrity, such as digital signatures).

Example Consider a distributed application where a sender creates helpmate chess puzzles to be solved
by a recipient. A helpmate chess problem is a pair of an integer n and a board position. A solution exists if
White and Black can conspire such that White wins in at most n moves. It is easy to construct a solvable

3

https://en.wikipedia.org/wiki/Helpmate

class Puzzle {
remainingMoves; // Integer, number of moves until White wins
board; // Board instance holding the state of the game

initialize(b) { // gets a Board b, returns a new Puzzle
if (! b.whiteWins()) return null;

return (this with { remainingMoves = 0, board = b });
}

rewindMove(m) { // gets a Move m, returns the updated Puzzle
. . . // check that m is a legal move on the current board
return (this with

{ board = this.board.undoMove(m),
remainingMoves = this.remainingMoves + 1});

}

getBoard() { return this.board; }
}

class Board { . . .
. . . // representation of board configuration, and whose turn is next
undoMove(m) {. . . } // undo Move m and return the updated Board
whiteWins() {. . . } // return 1 iff the board represents a White win
}

class Move { . . . } // represents a move by a player

Figure 1. Class definitions for chess puzzles, in the COCO language. Comments indicate the intended
types of methods and fields. Fields are implicitly private, initialized to null, and immutable.

puzzle by starting from a White checkmate and “rewinding” valid moves, but it’s potentially difficult to
decide if a given puzzle has a solution.

Figure 1 sketches class definitions intended to implement this application, in an object-oriented pro-
gramming language (namely, the COCO language described in Section 3). Class Puzzle encodes helpmate
problems following the intuition above: Puzzles are initialized with a Board object where White has won
and where remainingMoves = 0, and more interesting puzzles are created via calls to rewindMove. All fields
in these classes are implicitly private and immutable. We can reason at the language level to conclude that
an invariant holds: every Puzzle object (where board is non-null) represents a solvable helpmate problem.

Now consider the distributed setting, and assume that all parties have agreed on a common class table
that includes the definitions of classes in Figure 1. How can a recipient know if a received Puzzle is
really solvable in the stated number of moves? An honest sender may have computed the puzzle using its
own classes (i.e., classes not in the common class table that, say, implement a proprietary puzzle-making
algorithm), executed that code according to language semantics, serialized the result, and sent it to the
recipient. However, a malicious sender might simply provide data that deserializes into an unsolvable yet
well-formed Puzzle object (i.e., it has two fields of the right name). The receiver might attempt to validate
the Puzzle by solving it, but this is, in general, expensive.

In this paper we show how to use PCD to enable the recipient to efficiently verify that the Puzzle

was (with overwhelming probability) computed in accordance with language semantics, which suffices to
allow the recipient to conclude that the puzzle is solvable. And by using zero-knowledge PCD, the sender
may share Puzzle objects without recipients learning any information about solutions, beyond that they
exist.

4

Other Applications Enforcing language semantics in distributed computations can enable solutions to
many different security problems, including the following.

• Consider a class with a single private field called key that can be set only by a method keyGen(seed) that
uses seed as a source of entropy to generate two large primes, and sets key to the product of these primes.
(This models one interesting part of RSA key generation, eliding exponents.) Upon receiving an object
of this class, the recipient knows that the field key was generated according to appropriate algorithms,
without knowing what the value of seed was. More generally, enforcement of language semantics can
be used to provide assurance that correct cryptographic algorithms were followed, without revealing
secret information.
• In proof-carrying access control systems [48], access requests are accompanied by explicit proofs that

the access is allowed, and the resource guard must check that the proof is correct. As an alternative,
consider a class representing an access request with a private field proofOK that is set only by a method
that takes a proof, checks it, and sets proofOK to a non-zero value only if the proof is correct. The
resource guard, upon receiving such an object, can simply accept the request if proofOK is non-zero,
because the resource guard is confident that language semantics were enforced. Moreover, the guard
does not learn any private information that may be present in the explicit proof.
• Higher-order contracts [21] are a run-time mechanism to enforce pre- and post-conditions of functions

in higher-order languages. Contract implementations ensure that misbehaving parties are correctly
blamed for their misbehavior [20], a form of accountability. But enforcing correct contract use in a
distributed system is a difficult problem, as an attacker may fail to evaluate pre- and post-conditions at
appropriate times (and thus contract violations are not detected) and also may alter data structures that
represent and track blame labels (possibly causing parties to be blamed inappropriately). Our approach
of enforcing language semantics can ensure contracts are evaluated correctly. Thus, rich application-
specific assertions can be checked, and blame appropriately assigned when assertions fail.

Practicality The fundamental possibility of PCD systems motivates the theoretical question of whether
program properties and language semantics can be enforced in distributed systems. Yet, ultimately we
are interested in working systems. Our approach can, in principle, be built using known cryptographic
machinery, with good asymptotic complexity (the running time overheads of all components are at most
polylogarithmic, compared to just blindly trusting received values). However, implementation of our
approach for nontrivial programs is not yet practical, since sufficiently-efficient implementations of the
underlying PCD systems are not yet available (see Section 6.1). Using current techniques, the concrete
overhead for producing proofs will be several orders of magnitude, and would thus be of practical interest
mainly for security-critical systems or a small trusted base of larger system (though verifying such proofs
is already highly efficient, on the order of milliseconds [3, 4, 40]). However, rapid recent progress in the
implementations of special cases of PCD [3, 4, 40] raises favorable prospects for implementation of the
general case required by our approach.

Outline Section 2 provides intuition about the underlying cryptographic proof system. Section 3 presents
COCO, a class-based object-oriented language with encapsulation. An object v is well-traced if there is
a COCO program that produces v. Because COCO has encapsulation and class tables, well-tracedness
enables local language-level reasoning about objects.

Section 4 presents COCOCOMM, which extends COCO with communication primitives, and requires
that any value received over a channel must be well-traced. This is sufficient to ensure that any value
produced by a COCOCOMM program must itself be well-traced. Thus, a party that uses COCOCOMM to
execute its part of a distributed computation is able to use local language-level reasoning about objects,

5

despite communication with untrusted parties. The challenge, of course, is to enforce COCOCOMM

semantics.
Sections 5 and 6 show how to use PCD to enforce COCOCOMM semantics, i.e., to ensure that all values

received could have been computed in accordance with language semantics. Section 7 discusses extensions
to our approach, including supporting additional language features (imperative state, concurrency, etc.),
and achieving stronger proof notions. We discuss related work in Section 8, and conclude in Section 9.

Contribution The key contribution of this work is a novel mechanism to enforce language semantics in
distributed computations with potentially malicious or faulty participants. This enables sound program
reasoning: because received values are verified to have been computed in accordance with language
semantics, developers can reason about properties and invariants of received values without needing to
trust the party that computed the value. Key features of our approach include the following.

• We support both verified computation and private intermediate computations and data. For verified
computation of known code, the known code may be placed in a mutually-agreed-upon common
class table, and enforcement of language semantics ensures that this code is executed correctly.
Computation not included in the common class table is deliberately left unspecified, and parties may
choose it arbitrarily. For example, a party may use a proprietary algorithm or private data structure
to perform a computation (e.g., to generate a chess puzzle); the zero-knowledge property ensures that
such algorithms and private data are not unnecessarily revealed.

This is enabled by careful design of the programming language COCO, which is a class-based object-
oriented calculus that provides encapsulation. This combination of language features enables local
language-level reasoning about programs, which in turn enables local reasoning about application-
specific properties, despite communication with potentially malicious parties.
• Our scheme offers efficient verification with short proofs. That is, one party can prove to another that

a value v is well-traced using a proof whose size is independent of the length of the computation to
compute v (and the time to produce the proof is polynomial in the length of the computation). Moreover,
verification is transitive: a party can prove not just that the value it produced is well-traced, but any value
it received was itself well-traced. (These properties arise due to the underlying PCD mechanism.)

2. Overview
Our approach relies on two key technical mechanisms. The first includes the COCO programming
language, its extension to distributed settings (COCOCOMM), and the implementation using PCD to
enforce language semantics in distributed computations. This is the main contribution of our paper and
subsequent sections will formally describe our approach and prove its correctness. The second mechanism
is PCD itself, which we use as a black box and is not a contribution of this paper.

However, in order to understand (and believe) our results, it is helpful to gain intuition for the PCD
mechanism. Thus, in this section we forgo abstraction and provide a brisk, informal walk-through of our
system, focusing on the cryptographic machinery that make the approach possible, and sketching reasons
for its soundness. This journey will go through several scenarios (highlighted in bold), starting from naive
non-solutions that assume too much or are inefficient, and building towards (one instance of) the full
approach. Here, we simplify or omit most technical details.

Consider, first, the case of two parties, Alice and Bob. They have agreed upon an object-oriented
programming language, in this case COCO, and upon a class table CTcmn providing a common vocabulary
(e.g., the classes from the chess puzzle example). Each party also has arbitrary additional local classes,
and some local program to evaluate. At some point, Bob’s program receives from Alice an object v of a
class C in CTcmn.

6

All Bob knows about v is its class C. He does not know what program was used to produce it. However,
because the language provides encapsulation, Bob can reason locally, relying on the language semantics
and the content of CTcmn, and deduce an invariant of C which v must fulfill (e.g., the puzzle is solvable).
That COCO supports sound, encapsulation-based reasoning at all is a result of careful decisions in its
design (see Sections 3–4). And because C is a COCO class, as opposed to COCOCOMM, Bob need not
think about communication in his analysis of v; he can reason as if v was constructed locally by a trusted
runtime.

Suppose Bob ascertained that this invariant of v implies a desirable property of his program (e.g., it
eventually solves the puzzle represented by v). If both Alice and Bob’s programs are run in a trusted
joint runtime (e.g., a single interpreter running on a trusted platform), which passes v from Alice’s
program to Bob’s, then Bob’s property of course holds. It still holds if the programs are separated onto
different computers, using separate but trusted runtime systems that correctly execute both programs
and, whenever Alice sends a value, faithfully serialize it, transmit it to Bob over a network, and deserialize
it there.

Suppose, however, that Alice runs an untrusted runtime that may produce corrupted values (due to
malice or faults). When v is received, the deserialization in Bob’s runtime easily ensures that v is well-
formed (i.e., it has the right fields). But for Bob’s property to hold, the value should moreover be well-
traced (i.e., indeed produced by Alice executing a program, in adherence with the language semantics,
and using the common class table). This is not guaranteed, and in general may be infeasible or impossible
to check directly (e.g., how would one efficiently check if a chess puzzle is solvable?).

Bob still trusts his own computer (otherwise it is meaningless to discuss his program’s behavior). He
replaces his local runtime with a verifying runtime, which requires Alice to provide evidence that v is
well-traced. Alice (if she is honest) then installs a proving runtime. Her runtime first executes her program
as usual, until the point where her program sends v. This may entail nondeterministic choices resolved
in arbitrary ways, such as external inputs, human interaction, or randomness; these choices are recorded
in a trace-witness W . Alice’s runtime then packages up everything needed to reproduce v: Alice’s local
program t, her local classes CT , and W ; call this her local input, linp. Alice’s runtime sends her linp to
Bob’s runtime, which checks it using a fixed program, called the compliance predicate C, which operates
simply as follows: given value v and local input linp, C(v, linp) ensures that CT is compatible with
CTcmn, and replays the whole computation to confirm that v is the correct result of executing program t
with classes CT , using trace-witness W to resolve nondeterministic choices. Bob’s runtime will agree to
deserialize v only if C(v, linp) accepts. We have thus restored the soundness of Bob’s reasoning, but using
inefficient verification and long proofs.

We would like to move the burden of proving back to Alice. To convince Bob that there exists linp that
produces v (and thus v is well-traced), Alice should run C on her own computer, and convince Bob of the
following.

Alice’s Statement: “There exists some linp such that C(v, linp) accepts.”

Probabilistically-Checkable Proofs (PCPs) [1] allow us to do just that. Alice’s runtime first records a
step-by-step trace T of C’s execution (note that C is a fixed, known part of the runtime). It then uses a
PCP to encode T into proof πPCP, which is a string of bits with a special error-detection property: there is
an efficient algorithm, the PCP verifier VPCP, that gets v as input, samples just a handful of locations in
the string πPCP, and just by a simple consistency check on these bits (e.g., a few parity checks), decides
whether T is a correct trace of an execution of C(v, linp) for the given v and some linp. The PCP verifier
is probabilistically sound: if there does not exist linp such that C(v, linp) accepts, then for any proof string
πPCP, the PCP verifier will almost always catch an inconsistency in πPCP and reject. Alice’s runtime thus

7

sends v and πPCP to Bob’s runtime, which runs VPCP. Alas, the string πPCP is even longer than the trace
T it encodes. We have thus attained a probabilistically-sound efficient verification with long proofs.

The next improvement is to reduce the proof size using cryptographic machinery. Alice’s runtime again
produces the PCP proof string πPCP as above. It then summarizes πPCP and commits to it, by computing its
cryptographic (Merkle) hash digest r. Hash digest r determines which locations in πPCP to sample. Alice’s
runtime creates a new proof string π consisting of hash digest r, the samples, and cryptographic evidence
for consistency between these. It then sends v and π to Bob’s runtime, which runs a verifier VCSP to check
this. VCSP(v, π) checks the hash consistency and then invokes VPCP to check the samples. Soundness now
relies on cryptographic assumptions (e.g., that no efficient algorithm can find colliding inputs to the hash
function, or manipulate the hash input to control the choice of samples). We thus attain a computationally-
sound proof system [33], whose soundness holds only if the adversary is an efficient algorithm. The size of
π is merely logarithmic in that of πPCP (and T). We have thus attained computationally-sound efficient
verification with short proofs for Alice’s Statement, and thus for well-tracedness of v. This is the best
Bob could hope for.

More generally, similar computationally-sound proofs can generically compress proofs for NP state-
ments (i.e., statements of the form “there exists w such that Φ(x,w) accepts” for a polynomial-time Φ).
We use this later.

Let us now extend the scenario to a chain of untrust. Consider a third party, Carol, who has her own
computer and program. She joins the conversation, using the same common class table CTcmn. After
receiving v from Alice, Bob’s program sends a value v′ (derived from v) to Carol. In her turn, Carol runs
some COCO program that receives v′, and relies on v′ being well-traced in order to ensure some property.
Carol does not trust Alice or Bob. She thus installs the same verifying runtime described above, using
computationally-sound proofs, and expects Bob to produce a suitable proof π′ for v′. Bob can compute
his local input linp′ similarly to Alice, but when he tries to run C, it fails because the replayed computation
receives a value (from Alice); this mustn’t be allowed, for fear that the value is not well-traced. Indeed,
even if Bob correctly evaluated every step of his program, if he (accidentally or maliciously) received
values that were not well-traced, then v′ may not be well-traced.

We thus require a mechanism for transitive verification: Bob’s proof π′ should convince Carol not
merely that Bob executed his own program correctly, but also that he verified that every value he received
was well-traced. The combination of these ensures that v′ is well-traced.

To realize this we make two extensions. First, we extend compliance predicate C with an additional
parameter ~vin, representing the values received during the computation. Now, C(v, linp, ~vin) (where
linp = (CT, t,W)) ensures thatCT is compatible withCTcmn, and that v is the correct result of executing
program t using classes CT , using trace-witness W to resolve nondeterministic choices, and using ~vin
as the list of received values. This takes care of verifying Bob’s COCO evaluation. Second, in order to
transitively verify that values ~vin are well-traced, we define the following algorithm MC. Given value
v, local input linp, received values ~vin and corresponding proofs ~πin, MC(v, linp, ~vin, ~πin) verifies that
C(v, linp, ~vin) accepts and, moreover, for every input vi ∈ ~vin and corresponding proof πi ∈ ~πin, the
aforementioned verifier VCSP(vi, πi) accepts. Carol asks Bob to prove the following about v′.

Bob’s Statement: “There exists some linp, received values ~vin and corresponding proofs ~πin such that
MC(v′, linp, ~vin, ~πin) accepts.”

Bob then convinces Carol of this statement, using a computationally-sound proof. Concretely, Bob’s
proof is a compression of the execution trace of MC(v′, linp′, (v), (π)), where v and π are the value and
proof he received from Alice. The result is a transitive proof that convinces Carol that v′ is well-traced.1

1 While intuitively appealing, this recursive composition of proofs is not obvious. It requires additional ingredients: a trusted
“signed input and randomness” oracle [12] or, alternatively, strong “proof of knowledge” extractability assumptions [8, 47].

8

Note that, in the above, proofs always “piggybacked” on values: every data value sent was accompanied
by a stand-alone proof that attests to its well-tracedness. Carol did not have to talk to Alice; the proof
produced by Bob already summarized his history. This idea naturally generalizes to general distributed
computation among untrusted parties. Consider a distributed system, consisting of any number of
parties, communicating in an arbitrary pattern and mutually-distrusting. We can ensure that, jointly, they
are following the prescribed language semantics with respect to common classes CTcmn, by having all
of them follow a protocol similar to Bob: verify every incoming value, and produce a transitive proof
for every sent value, using computationally-sound proofs about (a generalization of) algorithm MC.
The proofs are constant size, regardless of the length of computation or number of parties, and always
“summarize” the relevant history back to the dawn of computation. This is a Proof-Carrying Data system
for the property of well-tracedness.

Existing constructions of Proof-Carrying Data (of Chiesa and Tromer [12] following Micali [33],
Kilian [29] and Valiant [47], of which the above is a sketch; and of Bitansky et al. [8], which takes an
alternative approach) already tackle the cryptographic details and soundness analysis, and encapsulate
them as a “cryptographic primitive” which lets any compliance predicate (of suitable form) be enforced.
In the remainder of this paper, we will take these constructions as granted, and instantiate them for well-
tracedness, for a particular, illustrative object-oriented language COCO, by defining a suitable compliance
predicate and proving its requisite properties. By instantiating PCD on a compliance predicate that
enforces language semantics, we enable local language-level program reasoning. A single instantiation of
PCD enables many applications to enforce arbitrary properties through the use of standard programming
language mechanisms.

3. Base Language
This section introduces COCO, a Core Calculus for Objects. COCO is a class-based object-oriented
calculus broadly based on Featherweight Java [27], but modified to model encapsulation and to support
a clear, robust definition of well-tracedness. COCO allows only functional update of fields (i.e., fields
are immutable, but it is possible to create a copy of an object with modified fields), and all fields are
private (i.e., fields of objects of class C are accessible only by code of class C). These restrictions provide
encapsulation and enable local language-level reasoning about objects, because given a COCO object, the
only way it could have been produced is by some sequence of calls to methods of the corresponding class.

COCO contains two operators, escape and capture, that model the essence of values escaping their
owner [38] without the need for an explicit escape analysis. A non-deterministic choice operator makes it
easy to construct and reason about observers of escaped values, even in the presence of concurrency and
non-termination. These features allows us to give an intuitive definition of well-tracedness that includes
escaped objects.

3.1 Syntax and semantics
COCO is a class-based object-oriented language; a class table CT is a partial map from names to class
declarations, which define the classes’ fields and methods. We write dom(CT) for the set of class names
for which CT provides a definition, and names(CT) for the set of class names used or defined in CT .

Figure 2 presents the syntax of COCO. X indicates a set (without duplicates) of objects in syntactic
category X . We use subscripts to refer to individual elements of X , e.g., Xi.

Objects have form {C | f = v }, where C is the class of the object, and the fields fi of the object map to
values vi. Operator newC creates an object {C | f = null }, i.e., all fields initially map to the special value
null. Notation s.m(t) invokes method m with receiver s and argument t. All methods take one argument
and return a value. Fields are immutable and implicitly private: fields may be read only via term this.f ,

9

Metavariable convention for names

C,D class names (∈ CName) s, t terms (∈ Term)
CT class tables (∈ CT) u, v, o values (∈ Val)
f, g field names i integers (∈ Z)
m,n method names ⊕ total integer operations
x, y, z variable names (∈ Var)

Syntax

Class Table Class Declaration
CT ∈ CT = CName⇀ CDecl χ ::= class{fields f ; methsM } ∈ CDecl

Method Declaration
M ::= m(x) {return t; }

Terms
s, t ::= x Variable | s.m(t) Method invocation

| i Integer constants | this.f Field access
| this The current object | this with{ f = s} Functional field update
| null Null value | if t then s1 else s2 If not zero
| newC Object creation | letx = s in t Let
| t instanceof C Instance-of test | escape s Escape
| isnull t Null test | capture Capture
| s⊕ t Integer operations | s8t Nondeterministic choice

Values
o, v ::= {C | f = v } Object | null Null value

| i Integer value

Figure 2. Syntax of COCO

and term this with { g = s} creates a new object identical to the object denoted by this, except each gi is
mapped to the result of evaluating si.

Term s8t concurrently evaluates both s and t; if either evaluates to some value v, s8t may evaluate to
v. We use term s8t to provide a limited model of both concurrency and nondeterministic choice.

We provide a simple mechanism to model how values can escape the context where they are created
(e.g., through imperative state, communication, exceptions or coroutines—none of which exist in COCO).
This explicit modeling allows code in a class to temporarily violate object invariants, so long as it
can ensure that all objects that may escape satisfy object invariants. We use escape and capture to
mark where objects escape and where escaped objects may be used, thus allowing us to avoid defining
semantics for object invariants, or defining an escape analysis. Term escape t evaluates t to a value v,
marks v as “escaping” by appending it to a list S of escaped values, and evaluates to v. Term capture

nondeterministically evaluates to any value in S (i.e., that previously escaped). If a class does not contain
any escape terms, then a value owned by that class can escape only if it is passed as an argument to a
method (of another class) that may apply escape to it, or if it is returned from a method.

Judgment CT, ρ ` 〈t, S〉 → 〈t′, S′〉 indicates that, under class table CT , and environment ρ, term
t takes one small step to t′, with the list of escaped values growing from S to S′. Figure 3 defines
inference rules for this judgment. When a small step evaluation of t evaluates an escape v term then

10

Evaluation Contexts

E ::= [·] | isnull E | E ⊕ t | v ⊕ E | if E then s else t | E instanceof C | E.m(t) | v.m(E)

| this with{ g = v, f = E, g′ = t} | E8t | t8E | letx = E in t | escapeE

CT, ρ ` 〈s, S〉 → 〈t, S′〉

CT, ρ ` 〈s, S〉 → 〈s′, S′〉
CT, ρ ` 〈E[s], S〉 → 〈E[s′], S′〉

ρ(x) = v

CT, ρ ` 〈x, S〉 → 〈v, S〉
ρ(this) = v

CT, ρ ` 〈this, S〉 → 〈v, S〉

CT, ρ ` 〈i1 ⊕ i2, S〉 → 〈i, S〉
i1 ⊕ i2 = i

CT, ρ ` 〈isnull null, S〉 → 〈1, S〉

CT, ρ ` 〈isnull v, S〉 → 〈0, S〉
v 6= null

CT, ρ ` 〈if i then s1 else s2, S〉 → 〈s1, S〉
i 6= 0

CT, ρ ` 〈if 0 then s1 else s2, S〉 → 〈s2, S〉 CT, ρ ` 〈{C | f = u } instanceof C, S〉 → 〈1, S〉

CT, ρ ` 〈v instanceof C, S〉 → 〈0, S〉
v 6= {C | f = u }

ρ(this) = {C | f = u, g = v }
CT, ρ ` 〈this.g, S〉 → 〈v, S〉

CT (C) = class{fields f ; methsM }
CT, ρ ` 〈newC, S〉 → 〈{C | f = null }, S〉

v1 = {C | f = u } CT (C) = class{fields f ; methsM,m(x) {return t; } }
CT, ρ ` 〈v1.m(v2), S〉 → 〈mcall(t, [this 7→ v1, x 7→ v2]), S〉

CT, ρ′ ` 〈t, S〉 → 〈t′, S′〉
CT, ρ ` 〈mcall(t, ρ′), S〉 → 〈mcall(t′, ρ′), S′〉 CT, ρ ` 〈mcall(v, ρ′), S〉 → 〈v, S〉

ρ(this) = {C | f = u, g = v }
CT, ρ ` 〈this with{ g = v′}, S〉 → 〈{C | f = u, g = v′ }, S〉

CT, ρ ` 〈letx = u in v, S〉 → 〈v, S〉
CT, ρ[x 7→ v] ` 〈t, S〉 → 〈t′, S′〉

CT, ρ ` 〈letx = v in t, S〉 → 〈letx = v in t′, S′〉

CT, ρ ` 〈v8t, S〉 → 〈v, S〉 CT, ρ ` 〈t8v, S〉 → 〈v, S〉

CT, ρ ` 〈escape v, S〉 → 〈v, S • [v]〉
v ∈ S

CT, ρ ` 〈capture, S〉 → 〈v, S〉

Figure 3. Operational semantics of COCO

11

Terms
s, t ::= ...

| mcall(t, ρ) Partially-evaluated method call

Environments
ρ ∈ Var ∪ {this}⇀ Val

Figure 4. Deep syntax of COCO

S′ = S • [v] (where • denotes list concatenation); otherwise S′ = S. We write CT ` 〈t, S〉 → 〈t′, S′〉
when environment ρ is empty and CT ` 〈s, S〉 →∗ 〈t, S′〉 for zero or more sequential small steps. We
write ∅ for the empty list of escaped values.

Environments ρ ∈ Var ∪ {this} ⇀ Val map variables and this to values. We write ∅ for the
empty environment. Environments are modified by let terms and by method invocations. For instance,
letx = v in t steps to letx = v in t′ by evaluating t in an environment where ρ has been extended to
ρ[x 7→ v].

To define the operational semantics of method calls, we extend the surface syntax (Figure 2) with a
new syntactic form, mcall(t, ρ), which is used to indicate a partially evaluated method call. The extended
syntax is shown in Figure 4.In the remainder of the paper, we use “program” to mean a COCO term that
uses just surface syntax, and does not contain a term of the form mcall(t, ρ).

Intuitively, term v.m(u) invokes methodm on object v, passing value u as an argument. If the class dec-
laration of v’s class contains method declaration m(x) {return t; }, then v.m(u) steps to mcall(t, [this 7→
v, x 7→ u]). More generally, term mcall(t, ρ) represents a method invocation that is currently executing,
where t is the rest of the method body to execute, and ρ is the environment for the callee. Note that unlike
let terms, evaluation of mcall replaces the current environment instead of extending it; this models the fact
that all variables are local to a method.

As mentioned previously, term escape v adds v to the list S of escaped values, and capture evaluates
nondeterministically to a previously escaped value. Note that the list of escaped values only increases
during execution.

A small-step evaluation of s8t may take a step for either s or t (using appropriate evaluation contexts),
or, if either s or t is a value, then it may step to that value.

3.2 Well-traced values
We say that a value v is well-traced in class table CT if there is some COCO program that can evaluate to
v using a class table that is consistent with CT .

The property of well-tracedness is central to our goal of enforcing language semantics in distributed
computation. Intuitively, if value v is well-traced in class table CT , then v could have been produced by
a program execution that adhered to the language semantics, using class definitions that are compatible
with class table CT , but possibly including additional classes.

To formally define well-tracedness, we first introduce some notation, and define what it means for a
value to be well-formed in a class table, and for one class table to extend another.

We must first present some preliminary definitions. Judgment CT ẁf v, defined in Figure 5, indicates
that v is well-formed in class table CT . Intuitively, well-formedness requires that objects are syntactically
consistent with their class definitions. That is, object o = {C | f = v } is well-formed if C appears in CT ,
the fields f bound by object o are exactly the fields that the class C has according to CT , and, recursively,
the values v that o binds to fields are also well formed in CT . Well-formedness (unlike well-tracedness) is

12

CT ẁf v

CT (C) = class{fields f1, . . . , fn; methsM } CT ẁf vi for i ∈ 1..n names(CT) ⊆ dom(CT)

CT ẁf {C | f1 = v1, . . . , fn = vn }

names(CT) ⊆ dom(CT)

CT ẁf null

names(CT) ⊆ dom(CT)

CT ẁf i

Figure 5. Inference rules for well-formedness

directly and efficiently checkable. If an object o is not well formed, then o is inconsistent with class table
CT , and use of o may result in stuck computation.

Class table CT extends class table CT ′ when CT contains all of the class declarations of CT ′, and
possibly some additional class declarations.

Definition 1 (Class table extension). Class table CT extends class table CT ′ (written CT ⊇ CT ′) if
dom(CT ′) ⊆ dom(CT) and for all C ∈ dom(CT ′), CT (C) = CT ′(C).

We can now formally define well-tracedness:

Definition 2 (Well-traced values). Value v is well-traced in CT if CT ẁf v and there exist a class table
CT ′ and a program t such that

CT ′ ⊇ CT and CT ′ ` 〈t, S〉 →∗ 〈v, S′〉 .

Well-tracedness distinguishes syntactically well-formed values from values that can be produced
by a COCO program. For integers, these notions coincide. However, for objects, well-tracedness plus
encapsulation can ensure that fields satisfy nontrivial predicates (e.g., “this chess puzzle is solvable”, “this
is a valid RSA modulus, i.e., an integer which is the product of two large primes”). It is encapsulation
that makes well-tracedness a useful property: in a calculus without encapsulation, the set of well-formed
values and well-traced values typically coincide.

Note that well-tracedness of a value does not imply that we know the computation that produced it.
Class table CT represents class definitions that are well-known and agreed upon by all parties, such as
standard libraries and common application-specific classes (e.g., Puzzle, Board, and Move for the chess
puzzle example). The computation that produced the value may use additional classes beyond those in
CT . For example, the computation may use classes that are defined by another party in the distributed
system, and represent proprietary algorithms or private data-structures of the other party.

The inclusion in COCO of non-deterministic concurrent evaluation and terms escape and capture means
that any object that escapes the dynamic scope of the owning class is well-traced. This permits a simple
and intuitive definition of well-tracedness that includes such escaping objects, since if program t allows
value v to escape, then program t8capture can evaluate to v, and thus v is well-traced. For example, even
if the classes in CT do not include any escape terms, if their code passes a value v to a method of an
arbitrary class, then that could be a class in some CT ′ (extending CT) which invokes escape on v, which
means we could write a COCO program that escapes v; hence v is well-traced in CT .

4. Communication Language
COCO deliberately models only local computation without communication. This is so that we can
define well-tracedness independently of communication with untrusted parties, which greatly simplifies

13

Metavariable convention for names
ch ranges over channel names

Syntax
Terms
s, t ::= . . .

| send t on ch Send
| recv on ch Receive

Figure 6. Syntax of COCOCOMM (extending COCO)

reasoning about well-traced values. In this section, we extend COCO to the calculus COCOCOMM by
adding communication primitives. A COCOCOMM program represents the local computation of one party
of a distributed computation; communication with other parties occurs by sending and receiving values on
channels. COCOCOMM semantics ensure that all values received are well-traced in a common class table.

4.1 Syntax and semantics
COCOCOMM extends COCO with terms for sending and receiving values over channels. The syntax
extension is given in Figure 6. Term send t on ch evaluates term t to a value, which is sent over channel
ch , and the term evaluates to the value sent. Term recv on ch receives a value on channel ch . We require
that values sent and received are well-formed in a common class table: a set of class names and definitions
that all parties in a distributed computation have agreed upon in advance. The common class table ensures
that a value received will be well-formed in the receiver’s local class table, even though the local class
tables of the sender and receiver may differ. This is analogous to restricting class serialization in Java to
only classes from well-known and agreed-upon libraries.2

Importantly, COCOCOMM semantics also require that any value received is well-traced in the common
class table. Intuitively, this allows the recipient to use local reasoning to establish invariants about the
received value. That is, the recipient can examine the code of the relevant classes in the common class
table in order to reason about the received value. The recipient does not need to trust the sender of the
value, or be concerned about how the value was produced. The challenge is to enforce the semantics of
COCOCOMM, that is, to ensure that all values received are well-traced. We address this in Sections 5 and
6.

Judgment CT,CTcmn, ρ c̀omm 〈t, S〉 → 〈t′, S′〉 indicates that COCOCOMM term t takes one small step
to term t′, using class table CT and environment ρ, using common class table CTcmn for communication,
with the list of escaped values growing from S to S′. Class table CT must extend the common class table
CTcmn, i.e., CT ⊇ CTcmn. Note that CTcmn is a COCO class table: the definitions of the classes of CTcmn

do not contain any send or recv terms; CT may, however, contain classes with send or recv terms. We
write CT,CTcmn c̀omm 〈t, S〉 →∗ 〈t′, S′〉 to indicate that term t can take zero or more steps to evaluate
to term t′ (with an empty environment).

Semantics for COCOCOMM are similar to that of COCO: for each inference rule in the operational
semantics of COCO (Figure 3) there is a corresponding inference rule for COCOCOMM. In addition, we
have inference rules for the terms send t on ch and recv on ch , given in Figure 7. The rule for send t on ch
evaluates t to a value, ensures that the value is well-formed in CTcmn, and adds v to the list of escaped
values. The rule for recv on ch nondeterministically receives some value v that is well-traced in CTcmn.

2 We could extend our model to allow mobile code, that is, class definitions sent over channels. For simplicity, we refrain from
doing so.

14

CT,CTcmn, ρ c̀omm 〈t, S〉 → 〈t′, S′〉

E ::= . . . | send E on ch

CTcmn ẁf v

CT,CTcmn, ρ c̀omm 〈send v on ch, S〉 → 〈v, S • [v]〉

v is well-traced in CTcmn

CT,CTcmn, ρ c̀omm 〈recv on ch, S〉 → 〈v, S〉

Figure 7. Semantics of COCOCOMM (extending COCO)

Example Consider the chess puzzle example from the Introduction. (The pseudo-code in Figure 1 is
close to, but not exactly, COCO syntax.) Suppose class table CTcmn contains definitions for common
classes, including Puzzle, Board, and Move. When object {Puzzle | remainingMoves = n, board = v } is
received, the fact that it is well-traced, combined with the class definitions in CTcmn, allows the recipient
to reason that the puzzle must have a solution within n moves. This holds, even though the recipient may
not trust the sender, and has no idea how the sender produced the object. Indeed, the sender may have used
proprietary code (in classes not in CTcmn) to compute the puzzle, or may have manufactured the puzzle
without executing any COCO program.

COCOCOMM is a strict extension of COCO: if t is a COCO program that evaluates to value v, then it is
also a COCOCOMM program that evaluates to v. The converse does not necessarily hold.

Communication model We do not explicitly model the operation of COCOCOMM communication
channels. In Section 5.2 we define a model for composing concurrently executing programs so that send

and recv operations are matched up appropriately, but this model is deliberately underspecified with
respect to whether communication is point-to-point, broadcast, in-order, reliable, etc. These details are
not important for the purposes of this paper.

4.2 Well-tracedness
COCOCOMM preserves well-tracedness, in that if a COCOCOMM program allows value v to escape and v
is well-formed in CTcmn then v is well-traced in CTcmn.

Theorem 1. Let CT be a COCOCOMM class table and let CTcmn be a common class table such that
CT ⊇ CTcmn. Let t be a COCOCOMM program, t′ a term, S a sequence of escaped values, and v a value
such that v ∈ S. If

CT,CTcmn c̀omm 〈t, ∅〉 →∗ 〈t′, S〉

and CTcmn ẁf v then v is well-traced in CTcmn.

The proof of this theorem is in Appendix B.
Theorem 1 has two key implications. First, a party using COCOCOMM to carry out its part of a

distributed computation can be sure that values produced by its computation could also have been
produced by a plain COCO program. The party does not need to be concerned that values received over
channels can somehow violate properties that can be established by reasoning about only COCO programs.
Despite communication with untrusted parties, it is as easy to reason about COCOCOMM programs as it
is to reason about COCO programs.

15

CT,CTcmn, ρ t̀rust 〈recv on ch, S〉 → 〈v, S〉

Figure 8. Receive rule for COCOTRUST (modifying COCOCOMM.)

Second, honest parties can indeed use COCOCOMM to perform a distributed computation, since any
value that an honest party sends over a channel will be well-traced in CTcmn, and can thus be accepted
by the receiver. In other words, computation by honest parties will not get stuck due to sending non-well-
traced values. Later, we will show that this is preserved when the assumption of honesty is replaced by
cryptographic proofs.

5. Modeling Distributed Executions
The COCOCOMM language enables a party in a distributed computation to reason locally about values
received during computation, without trusting the senders. To enforce COCOCOMM semantics, we must
ensure that only well-traced values are received. In this and the following section, we show how to enforce
COCOCOMM semantics using Proof-Carrying Data (PCD) [8, 12], as follows.

We introduce COCOTRUST, which is similar to COCOCOMM except that the evaluation of recv does not
check that received values are well-traced (Section 5.1). We show that if we have a distributed computation
where all parties are executing COCOTRUST programs, then received values are, nevertheless, well-traced
(Section 5.2 and Theorem 2). Thus, to enforce COCOCOMM semantics, it suffices to ensure that all parties
adhere to COCOTRUST semantics.

We provide an overview of PCD (Section 6.1), and develop a PCD compliance predicate that states that
a computation adheres to COCOTRUST semantics (Section 6.2). By instantiating PCD on this compliance
predicate, a party can prove that its computation adhered to COCOTRUST semantics, and, transitively, all
values it received were also produced by COCOTRUST semantics.

We show that this yields a sound and complete proof system for well-tracedness of values (Section 6.3
and Theorems 3 and 4, using Theorem 2), and, moreover, a sound and complete proof system for COCO-
COMM semantics (Section 6.4 and Theorems 5 and 6).

5.1 COCOTRUST

COCOTRUST shares its syntax of terms and evaluation contexts with COCOCOMM, and has a single (but
crucial) relaxation in semantics. Judgment CT,CTcmn, ρ t̀rust 〈t, S〉 → 〈t′, S′〉 indicates that COCO-
COMM term t takes one small step to term t′, using class table CT and environment ρ, using common
class table CTcmn for communication, with the list of escaped values growing from S to S′. As before,
we write CT,CTcmn t̀rust 〈t, S〉 →∗ 〈t′, S′〉 to indicate that term t can take zero or more steps, using
COCOTRUST semantics, to evaluate to term t′ (with an empty environment).

Inference rules for the COCOTRUST operational semantics are identical to those for COCOCOMM,
with the exception of the rule for receiving values. Whereas COCOCOMM requires received values to be
well-traced in the common class table CTcmn, COCOTRUST merely “trusts” that received values will be
suitable. The COCOTRUST rule for recv is shown in Figure 8; note that there is no premise for the rule,
and thus no requirements on the received value v. Intuitively, the simplified rule for recv makes it easy to
efficiently implement COCOTRUST evaluation.

5.2 Distributed execution graphs
Suppose that we have multiple parties, each of which is executing its own COCOTRUST program, with
common class tableCTcmn, and recv operations are matched up with appropriate send operations. As long

16

as all parties are honest, i.e., adhere to COCOTRUST semantics and CTcmn, all values received by parties
will in fact be well-traced and thus COCOCOMM semantics are achieved.

To model this, we define distributed execution graphs, which represent the parallel composition of
COCOTRUST programs with the sends and receives matched up appropriately. The nodes of a distributed
execution graph represent zero or more computational steps taken by one of the parties. Directed edges
between nodes indicate either local sequential evaluation for a single party (who first performs the
computation represented by the source node, and then the computation represented by the target node), or
communication between two parties (i.e., the last computational step of the source node is a send v on ch
term, and v is received by the first step of the target node).

We first informally describe distributed execution graphs, and then present a formal definition, stated
in a way that simplifies the subsequent use of PCD. The key observation is that in a distributed execution
graph (where all parties are following COCOTRUST semantics), all values received are well-traced, and
thus COCOCOMM semantics are achieved.

Nodes of a distributed execution graph Each node in a distributed execution graph has a label of the
form (CT, 〈t, S〉, 〈t′, S′〉,W) whereCT is a class table, t and t′ are terms, andCT,CTcmn t̀rust 〈t, S〉 →∗
〈t′, S′〉. Trace-witness W allows us to efficiently check that CT,CTcmn t̀rust 〈t, S〉 →∗ 〈t′, S′〉. This will
be useful when we instantiate PCD to help enforce COCOCOMM semantics. Trace-witnesses indicate how
nondeterministic choices in the program were resolved. Formally, a trace-witnessW is a sequence defined
by the grammar below, which indicates, for each step, whether the step was deterministic, or, if it was a
nondeterministic choice s8 t, whether the left or right term was chosen (and how the nondeterministic
choices of the subterm were evaluated), or, if it was a capture term, the index i of the escaped value to
which the term evaluated.

U ::= Det | Left · U | Right · U | i
W ::= (U)∗

We denote the set of possible trace-witnesses asW .

Edges of a distributed execution graph Edges between nodes of a distributed execution graph indicate
either the continuation of the local sequence of evaluation or communication, and are labeled to indicate
which. The labels also convey the information required for checking consistency between its source and
destination nodes.3

A sequence edge between two nodes has label seq[CT, t′, S′], indicating that the source node compu-
tation used class table CT and the last term in the source node’s computation was t′ with escaped values
S′. The target node represents the continuation of the computation by the same party, so the target node’s
computation will also use class table CT , and the first term in the target node’s computation will be t′

with escaped values S′.
A communication edge between two nodes has label msg[v, ch], indicating that the source node sent

value v over channel ch , and value v was received by the target node. Thus, the last term of the source node
must have the form F [send v on ch] for some context F ; and the first term of the target node must have the
form F ′[recv on ch] for some context F ′ and then step to F ′[v], indicating that the value v was received.
Here, contexts F are used to identify send and recv terms that will be reduced in the next evaluation step.

3 Thus, Definition 3 speaks of requirements within a node, and on node vs. its incident edges, but never on node vs. another node.
This is essential to the subsequent instantiation of PCD to enforce COCOCOMM semantics, since no node can observe another
except by the messages sent.

17

F ::= [·] | isnull F | F ⊕ t | v ⊕ F | if F then s else t
| F instanceof C | F.m(t) | v.m(F)

| send F on ch | this with{ g = v, f = F, g′ = t}
| F 8t | t8F | escapeF
| letx = F in t | letx = v inF | mcall(F, ρ)

Figure 9. Contexts. Compared to COCOCOMM evaluation contexts, this adds letx = v inF and
mcall(F, ρ).

〈t, ∅〉 →∗
CT
〈t′, S′〉 〈t0, S0〉 →∗

CT
〈t, S〉 〈t, S〉 →∗

CT
〈t′, S′〉seq[CT, t, S]

Case (0): No incoming edges. Case (1): One incoming edge.

〈t0, S0〉 →∗
CT
〈F0(recv on ch)︸ ︷︷ ︸

t

, S〉 〈F0(recv on ch)︸ ︷︷ ︸
t

, S〉 →
CT
〈F0(v), S〉 →∗

CT
〈t′, S′〉

〈t1, S1〉 →∗
CT1
〈F1(send v on ch)︸ ︷︷ ︸

t2

, S2〉 〈F1(send v on ch)︸ ︷︷ ︸
t2

, S2〉 →
CT1
〈F1(v), S2〉 →∗

CT1
〈t3, S3〉

seq[CT, t, S]

msg[v,
ch]

seq[CT1, t2, S2]

Case (2): Two incoming edges.

Figure 10. Cases for incoming edges of distributed execution graph nodes. Dashed nodes and edges indi-
cate a typical (but not required) neighborhood. Here, 〈t, S〉 →∗

CT
〈t′, S′〉 is shorthand for CT,CTcmn t̀rust

〈t, S〉 →∗ 〈t′, S′〉.

Contexts F include the evaluation contexts of Figures 3 and 7 and also contexts for method calls mcall

and letx = v in t expressions. Syntax for these contexts is given in Figure 9.4

We restrict the incoming and outgoing edges of nodes to ensure that the graph represents valid
computation and communication between parties. For example, we ensure that no node has multiple
incoming sequence edges. More precisely, we ensure that for each node (CT, 〈t, S〉, 〈t′, S′〉,W), there
are only three possible cases for the incoming edges, enumerated here. (Diagrams illustrating the cases
are given in Figure 10.)

(0) No incoming edges. This node represents the start of a computation by a party, where t is the program
the party is executing. Escaped values S should be empty.

(1) One incoming sequence edge. This node represents the continuation of a local evaluation process: the
parent node indicates that the party has evaluated the program up to term t (and escaped values S), and
this node continues execution from t (and using the same class table, and escaped values S).

4 The COCOCOMM operational semantics do not include let and mcall in evaluation contexts E, since these require specialized
inference rules and would not be correctly handled by the generic rule for evaluation contexts (first rule in Figure 3). For example,
letx = v in send x on ch is equivalent to F [send x on ch] where F = letx = v in [·], but there is no evaluation context E such
that it is equivalent to E[send x on ch].

18

(2) Two incoming edges, consisting of one sequence edge and one communication edge. This node
represents the continuation of an evaluation process (via a seq edge) after receiving a value via a msg
edge from a sender. Note that the sender will typically continue its execution via another seq edge.

We require that distributed execution graphs are acyclic to ensure that communication is causally
ordered: messages aren’t received before they are sent. We also require that evaluation of a recv term
receives exactly one value that was previously sent by a send term. We do not otherwise make assumptions
about the operations of channels. For example, our model is agnostic as to whether message delivery is
in-order or out-of-order, and is agnostic as to whether a sent value should be received at most once (i.e.,
point-to-point communication), or whether a sent value may be received multiple times along multiple
communication edges (e.g., broadcast communication).

Definition of distributed execution graphs Before we formally define distributed execution graphs, we
first introduce a helper function, check, that given class table CT , configurations 〈t, S〉 and 〈t′, S′〉, and
trace-witness W , efficiently checks whether CT ` 〈t, S〉 →∗ 〈t′, S′〉. Note that although terms t and
t′ may contain send and recv operations, the semantics are COCO, not COCOTRUST. This means that t
evaluates to t′ without performing any send or receive operations.

Proposition 1 (Existence of check). There exists a polynomial-time algorithm

check : CT ×
(
Term× List(Val)

)
× (

Term× List(Val)
)
×W → {0, 1}

such that whenever
check(CT, 〈t, S〉, 〈t′, S′〉,W) = 1

it holds that CT ` 〈t, S〉 →∗ 〈t′, S′〉.
Define also a version that takes the common class table and skips any initial send if the value sent is

well-formed in the common class table:

check′(CT,CTcmn, 〈t, S〉, 〈t′, S′〉,W) ={
check(CT, 〈F [v], S〉, 〈t′, S′〉,W) if t = F [send v on ch] and CTcmn ẁf v

check(CT, 〈t, S〉, 〈t′, S′〉,W) otherwise

Implementation of check and check′ is straightforward: using the trace witness, we can efficiently find
a derivation of CT ` 〈t, S〉 →∗ 〈t′, S′〉. Moreover, trace-witnesses can be produced efficiently (which is
needed to satisfy the PCD instantiation requirements).

Proposition 2 (Efficient trace-witness production). There exists a polynomial-time algorithm that, given
a derivation of CT ` 〈t, S〉 →∗ 〈t′, S′〉 yields trace-witnessW where check(CT, 〈t, S〉, 〈t′, S′〉,W) = 1.

Note that the running time of check is polynomial in all of its inputs, including W , which in turn is
polynomial in the size of the derivation. However, it independent of the derivation of received messages
(indeed, check verifies only plain COCO derivations).

Distributed execution graphs are defined as follows.

Definition 3 (Distributed execution graph). Given a class table CTcmn, a distributed execution graph
using CTcmn is a labeled directed acyclic graph fulfilling the following.

a. Each node’s label is of the form (CT, 〈t, S〉, 〈t′, S′〉,W) where CT is a class table, t and t′ are terms,
S and S′ are lists of values, and W ∈ W is a trace-witness.

19

b. For each node (CT, 〈t, S〉, 〈t′, S′〉,W) and edge with label zout exiting it, exactly one of the following
holds:
i. zout = seq[CT, t′, S′]

ii. zout = msg[v, ch] for some value v and channel ch, such that t′ = F [send v on ch] for some context
F , and CTcmn ẁf v

c. For each node (CT, 〈t, S〉, 〈t′, S′〉,W) and its list ~zin of incoming edges, exactly one of the following
holds:

(0) ~zin is empty and:
i. CT extends CTcmn

ii. check′(CT,CTcmn, 〈t, S〉, 〈t′, S′〉,W) = 1

iii. t is a program (i.e., it contains only surface syntax)
iv. S is the empty list ∅.

(1) ~zin = (seq[CTE, tE, SE]) such that:
i. CTE = CT and tE = t and SE = S

ii. check′(CT,CTcmn, 〈t, S〉, 〈t′, S′〉,W) = 1

(2) ~zin = (seq[CTE, tE, SE], msg[v, ch]) such that:
i. CTE = CT and tE = t and SE = S

ii. t = F [recv on ch] for some context F
iii. check(CT, 〈F [v], S〉, 〈t′, S′〉,W) = 1

Distributed execution graphs represent the execution of communicating COCOTRUST (rather than
COCOCOMM) programs. Recall, however, that COCOCOMM semantics differ from COCOTRUST seman-
tics only in requiring received values to be well-traced. Since the distributed execution graph explicitly
shows the “pedigree” of each received value, it implies that all received values are in fact well-traced, and
thus, COCOCOMM semantics hold for all nodes in the graph:

Theorem 2. In a distributed execution graph, for every node labeled (CT, 〈t, S〉, 〈t′, S′〉,W), it holds
that

CT,CTcmn c̀omm 〈t, S〉 →∗ 〈t′, S′〉 .

Proof. By induction on the structure of the graph. Since the graph is acyclic, the induction is well founded.
The induction hypothesis is that for any node (CT, 〈t, S〉, 〈t′, S′〉,W), there exists a program t0 such that
CT,CTcmn c̀omm 〈t0, ∅〉 →∗ 〈t′, S′〉 and moreover, if t′ = F [send v on ch] and CTcmn ẁf v then v is
well-traced in CTcmn.

We will use the following lemma, which is straightforward from the definitions:

Lemma 1. For any program t0, terms t,t′, class tables CT ,CTcmn, lists S,S′ and trace witness W : if

CT,CTcmn c̀omm 〈t0, ∅〉 →∗ 〈t, S′〉 and check′(CT,CTcmn, 〈t, S〉, 〈t′, S′〉,W) = 1

then

CT,CTcmn c̀omm 〈t0, ∅〉 →∗ 〈t′, S′〉 .

Consider node n, labeled (CT, 〈t, S〉, 〈t′, S′〉,W). Assume the inductive hypothesis holds for all nodes
that can reach n. To show that there exists a program t0 such that CT,CTcmn c̀omm 〈t0, ∅〉 →∗ 〈t′, S′〉,
consider the cases of the incoming edges to n.

20

(0) The cases of no incoming edges is straightforward, letting t0 = t and noting condition c(0) in
Definition 3 and the definition of check′.

(1) In the case of a single incoming edge (seq[CTE, tE, SE]), we know by condition c(1)i of Definition 3
that CTE = CT and tE = t and SE = S, and then by condition b(i) of Definition 3 that this edge
exited some parent node of the form (CT, 〈·, ·〉, 〈t, S〉, ·). By the induction hypothesis applied to the
parent, there exists a program t0 such that CT,CTcmn c̀omm 〈t0, ∅〉 →∗ 〈t, S〉.
By condition c(1)ii of Definition 3, check′(CT,CTcmn, 〈t, S〉, 〈t′, S′〉,W) = 1 and thus by Lemma 1,
CT,CTcmn c̀omm 〈t0, ∅〉 →∗ 〈t′, S′〉 as required.

(2) In the case of two incoming edges, these are seq[CTE, tESE] and msg[u, ch]. Similarly to the above,
we deduce from conditions c(2)i and b(i) of Definition 3 that there exists a program t0 such that
CT,CTcmn c̀omm 〈t0, ∅〉 →∗ 〈t, S〉. Moreover, by condition c(2)ii, t = F [recv on ch] for some
context F .
By condition b(ii), the parent of the edge msg[u, ch] is node of the form (·, ·, 〈F2[send u on ch], ·〉, ·)
for some context F2, and CTcmn ẁf u. Thus, by the induction hypothesis, u is well-traced in CTcmn,
and thus by COCOCOMM semantics, CT,CTcmn ` 〈F [recv on ch], S〉 → 〈F [u], S〉.
Concatenating these derivations, we get: CT,CTcmn c̀omm 〈t0, ∅〉 →∗ 〈F [u], S〉. Also, by condition
c(2)iii, check(CT, 〈F [u], S〉, 〈t′, S′〉,W) = 1 and thus by Lemma 1, CT,CTcmn c̀omm 〈t0, ∅〉 →∗
〈t′, S′〉 as required.

There remains to show that if t′ = F [send v on ch] for some v, and CTcmn ẁf v, then v is well-
traced. Indeed, since send v on ch adds v to the list of escaped values, we have CT,CTcmn c̀omm

〈t08capture, ∅〉 →∗ 〈v, S′〉, and so by Theorem 1, v is well-traced.

The key implication of this theorem is that to show that a received value is well-traced, it suffices to
show that the computation that sent the value (and, transitively, any computation on which the sender
depended) adhered to COCOTRUST semantics. We can achieve this by instantiating PCD appropriately,
which we do in the following subsections.

A corollary of this theorem is that in a distributed execution graph, any value sent or received is well-
traced.

Corollary 1. In a distributed execution graph, for every edge labeled msg[v, ch], v is well-traced in class
table CTcmn.

Proof. Consider the source node of an edge msg[v, ch], and suppose it is (CT, 〈t, S〉, 〈t′, S′〉,W). Term
t′ must be of the form F [send v on ch] for some F . By the structure of the graph, and by Theorem 2 there
is a program t0 such that CT,CTcmn c̀omm 〈t0, ∅〉 →∗ 〈F [v], S′ • [v]〉. By Theorem 1 we have that v is
well-traced, as required.

Modeling computation with distributed execution graphs In this paper distributed execution graphs
define a model of concurrently executing, communicating COCOTRUST programs. Below, we argue
informally that this is indeed a reasonable model of distributed computation.

First, distributed execution graphs are “intuitively sound,” in the sense that every distributed execution
graph maps to a scenario of parties executing COCOTRUST programs on distinct hardware and sending
messages via a network. Second, they are “intuitively complete,” in the sense that given a pool of
communicating COCOTRUST interpreters, we can construct a distributed execution graph representing
this. Note that while formal soundness and completeness results could be proved with respect to a (for
instance) CSP-style model of COCOTRUST, we would still need an informal argument to show that the
CSP-style model itself is reasonable.

21

Third, a distributed execution graph can be incrementally constructed as a system of COCOTRUST

programs executes using the following process. As the programs execute they may nondeterministically
perform the following actions on the distributed execution graph:

1. Add an unlabeled node (representing a prospective derivation)

2. Add an edge labeled seq[CT, t, S] from a labeled node n to an unlabeled node n′ (representing n′

continuing evaluation from configuration 〈t, S〉)
3. Add an edge labeled msg[v, ch] from a labeled node n to an unlabeled node n′ (representing n sending

the value v to n′ on channel ch)

4. Label an unlabeled node (representing the actual derivation and nondeterministic choices)

This process can be more fully specified to ensure that the resulting distributed execution graph satisfies
the appropriate constraints and accurately reflects the execution of the COCOTRUST programs.

6. Proof Carrying Data
6.1 Overview of PCD
Proof Carrying Data (PCD), introduced by Chiesa and Tromer [12, 13] and developed by Bitansky et al.
[7, 8], is a cryptographic mechanism for ensuring that a given property is maintained at every step of
a distributed computation among mutually-untrusting parties. The designated property is specified as a
compliance predicate, and all messages between parties are accompanied by a proof that the message’s
data, along with all of the distributed computation leading to that message, satisfies the compliance
predicate.

We first recall the key definitions of PCD, which capture the notion of a distributed computation that is
compliant with a designated property, and define a PCD system that proves and verifies such compliance.
See Bitansky et al. [7] for formal definitions.5

Distributed computation transcripts Distributed computations are viewed as directed acyclic multi-
graphs with vertex labels and edge labels.6 Vertices represent the computation of programs, and edges
represent messages sent between these programs. Such graphs are called distributed computation tran-
scripts.

In our case, an “honest” distributed computation transcript will be a distributed execution graph. Thus,
node labels should be of the form (CT, 〈t, S〉, 〈t′, S′〉,W), edge labels should be of the form seq[CT, t, S]
or msg[v, ch], and the conditions in Definition 3 should hold. But verifying these conditions is up to the
PCD system.

In a proof-carrying distributed computation transcript, every edge label zi is augmented with another
proof string label πi. Figure 11 shows an example.

Compliance A compliance predicate C is a polynomial-time computable predicate for a node in a
distributed computation transcript. Intuitively, a compliance predicate is a locally verifiable property: the
predicate can be checked using just information that is available at a node. By choosing an appropriate
compliance predicate, global properties may hold if all nodes in a distributed transaction graph satisfy the
compliance predicate.

More precisely, C(zout; linp, ~zin) observes the local environment of a node in a distributed computation
transcript: the list of received inputs ~zin; an (alleged) output zout; and the node’s label, or local input,
5 We use the definitions of “publicly-verifiable PCD system” of Bitansky et al. [7, 8] which, compared to Chiesa and Tromer
[12], do not assume a secure oracle/token; directly allow arbitrary node in-degree and out-degrees; and simplify the security
quantification. We also make some simplifications, mentioned in subsequent footnotes where pertinent.
6 The definition of Bitansky et al. [7] requires source and sink nodes to be labeled⊥. The restriction is inessential and we remove
it here for convenience. Also, we identify ⊥ with ∅.

22

linpA linpB

linpC

linpD

linpE

linpF

linpG

linpH linpI

z1
π1

z2

π2
z3
π3

z4
π4

z 5
π 5

z6
π6

z7
π7

z8
π8

z
9

π
9

z10
π10

z11
π11

Figure 11. Example of a proof-carrying distributed computation transcript. Node labels (“local inputs”)
are denoted linpi, edge labels zi, and proof strings πi. Omitting proof strings gives the corresponding (non-
proof-carrying) distributed computation transcript. When checking compliance of node linpH, C checks
the values marked by solid boxes. When proving compliance, PC additionally gets the incoming proofs,
marked by dashed boxes, and outputs π11.

denoted linp. The label linp contains the executed program and any associated local data (in our case,
it will be the local class table CT , configurations 〈t, S〉 and 〈t′, S′〉, and trace-witness W). Given a
distributed computation transcript DCT , we say that node n in DCT , with inputs ~zin and local input
linp, is C-compliant if C(zout, linp, ~zin) holds for every output zout of n (see Figure 11). We say that DCT
is C-compliant if every node in the graph is C-compliant. We say that a string z is C-compliant if there
exists a C-compliant distributed computation transcript containing an edge labeled z.7

PCD syntax and operation A PCD system for a compliance predicate C is a triple of algorithms
(G,PC,VC):

• PCD generator G, given an integer κ as a key size, outputs a key k which will be used by PC to generate
proofs and by VC to verify them.8

• PCD prover PC: Let k be a key, let ~zin be a list of inputs and ~πin be corresponding proof strings, let
linp be a local input string, and let zout be an output string. Then PC(k, ~zin, ~πin, linp, zout) outputs a
proof string πout for the claim that zout is C-compliant.
• PCD verifier VC: Let k be a key, let zout be an output string and πout a corresponding proof string.

Then VC(k, zout, πout) is meant to accept only if convinced that zout is C-compliant.

Using these algorithms, a distributed computation transcript is dynamically compiled into a proof-
carrying distributed computation transcript by generating and adding “on the fly” a proof string to each
edge (see Figure 11). The process of generating proof strings is defined inductively, starting from the
source nodes in the transcript graph. Consider a node n in the transcript, with local input linp, received
inputs ~zin and corresponding proofs ~πin, and an output zout. Use prover PC to produce a new proof string
πout for its output zout (given the inputs of n, their corresponding generated proof strings, the program
of n, and its output). Proof strings generated in this way form the additional label on the edges in the
resulting proof-carrying transcript.

The triple (G,PC,VC) must satisfy three properties. The first two bound the complexity of proving and
verifying, and the third is computational soundness, discussed next.

Completeness and asymptotically-efficient proving The PCD prover can prove true statements, and do
so efficiently. Whenever it is indeed the case that a given distributed computation transcript is C-compliant,

7 In Bitansky et al. [7], the edge labeled z should be the first one entering a sink, but this is inessential since one can consider the
subgraph leading to this edge.
8 For simplicity, we merge the “reference string” σ and “verification state” τ of Bitansky et al. [7] into a single key k.

23

one can use the PCD prover PC to generate proof strings for each message, and all of these proof strings
will be accepted by the PCD verifier. The generation of these proofs runs in time that is polynomial in the
key size κ and the time it took to run C at every node in the distributed computation transcript.9

Efficient verification Proof strings generated by the PCD prover have length polynomial in the key size
κ, and are efficiently verifiable by the PCD verifier: VC(k, zout, πout) runs in time polynomial in κ and the
length of the string zout. In particular, the proof length and verification time are independent of how long
it took to evaluate C and run PC.10

Soundness notion 11 It is computationally infeasible to prove false statements. This is expressed as
follows. Let P̃ be any efficient cheating prover, i.e., a deterministic algorithm running in time polynomial
in the key size κ.12 After a key k ← G(1κ) is randomly generated, P̃(k) outputs some non-compliant
string z along with a proof string π, and tries to use π to falsely convince VC that z is compliant. Then, we
are guaranteed that VC(k, z, π) will accept this false claim with negligible probability κ−ω(1) (i.e., smaller
than 1/p(κ) for any polynomial p). Formally:

Definition 4 (PCD soundness). (G,PC,VC) is sound if for every efficient cheating-prover algorithm P̃
and key size κ ∈ N:

Pr
k←G(1κ)

 (z, π)← P̃(k)
∧ VC(k, z, π) = 1
∧ z is not C-compliant

 ≤ κ−ω(1)
Construction of PCD There are two known approaches to constructing PCD systems. The first, sketched
in Section 2, is based on probabilistically-checkable proofs (PCPs). It relies on standard cryptographic
assumptions (collision-resistant hashing and signatures), and requires parties to have access to a trusted
oracle (e.g., a secure hardware token or trusted network service) that signs its inputs and produces fresh
randomness. An asymptotically-efficient construction is known [12], and there has been recent progress
towards the requisite concretely-efficient PCPs [2].

An alternative approach starts with the special case of PCD for a single message, called computationally-
sound proofs of knowledge [33] or Succinct Non-interactive ARguments of Knowledge (SNARKs) which
can be constructed without any trusted oracles, under a large class of assumptions [6]. SNARKs have been
recently implemented for C programs [3, 4] and a restricted subset thereof [40], using approaches based
on knowledge-of-exponent assumptions [26][31][23][9], in the relaxed “preprocessing” sense, where G is
allowed to run for time polynomial in that of C. These are practical for very small programs, and research
efforts are underway to improve efficiency. Using bootstrapping [8], such SNARKs (in principle) suffice
to construct PCD systems without oracles, for a restricted but large set of distributed execution graph
structures.

9 The formal definition of completeness requires a precise description of the inductive process of proof generation, and is thus
straightforward but long; see Bitansky et al. [7, §5.2].
10 For simplicity of presentation, we assume here that the potential adversary’s power is greater than all “honest” computations
that will be proven, and the key size κ is chosen large enough to be secure against such adversaries. Since the adversary’s power
is at most poly(κ), the length of honest computation can be upper-bounded by B = κlog κ (or any other superpolynomial
subexponential function), and thus the logB terms in the proof length and verifier complexity expressions of Bitansky et al. [7]
are dominated by κ and can be omitted.
11 Soundness is implied by the stronger “proof of knowledge” proved in Bitansky et al. [7, 8], Chiesa and Tromer [12]. For
simplicity, in the following we discuss mere soundness, but our construction also offers proof of knowledge (see Section 7).
12 Or more, generally, a family of circuits, one for each κ, whose size is polynomial in κ.

24

6.2 A compliance predicate for well-tracedness
We shall use PCD to prove well-tracedness of values sent by a system of communicating COCOCOMM

programs. A common class tableCTcmn will be fixed in advance, and every value v sent during an (honest)
execution will accompanied by a proof that v is well-traced in CTcmn.

Consider a system of communicating COCOCOMM programs using common class table CTcmn, that
sends value v from one party to another on channel ch . If this computation is honest, then by the
completeness of distributed execution graphs, there is a distributed execution graph DEG with an edge
labeled msg[v, ch]. We shall define a PCD compliance predicate Ccmn that enables efficiently proving the
existence of such a DEG .

The compliance predicate Ccmn will be applied to the nodes of a distributed computation transcript that
is allegedly a distributed execution graph. The role of Ccmn is to check that the nodes in the transcript
indeed fulfill the constraints defined in Definition 3, i.e., that each node’s label describes a correct COCO-
TRUST derivation that is consistent with the incoming and outgoing edges’ labels.

Definition 5 (Compliance predicate enforcing CTcmn). For a COCO class table CTcmn, the compliance
predicate enforcing CTcmn is denoted Ccmn. Given local input linp, inputs ~zin and (alleged) output zout,
Ccmn(zout, linp, ~zin) accepts if:

1. linp is the form (CT, 〈t, S〉, 〈t′, S′〉,W) where CT is a class table, t and t′ are terms, S and S′ are
lists of values, and W ∈ W is a trace-witness, and for these:

2. Condition b(i) or b(ii) from Definition 3 holds, and
3. Condition c(0), c(1), or c(2) from Definition 3 holds.

Lemma 2. Let CTcmn be a COCO class table. Then every Ccmn-compliant distributed computation
transcript is also a distributed execution graph using CTcmn, and vice versa.

The above is obvious from the definitions. Thus:

Lemma 3. Let CTcmn be a COCO class table, let v be a value, and ch a channel. If z = msg[v, ch] is
Ccmn-compliant then v is well-traced in CTcmn.

Proof. As z is Ccmn-compliant, there exists a Ccmn-compliant distributed computation transcript DCT
containing an edge labeled z. By Lemma 2, DCT is a distributed execution graph using CTcmn, and thus
by Corollary 1, v is well-traced in CTcmn.

6.3 Verifying well-tracedness
By plugging compliance predicate Ccmn into a PCD construction, we obtain a PCD system (G,PCcmn ,VCcmn).
This PCD system is both sound and complete for efficiently verifying well-tracedness of values. This
means that given a well-traced value v, it is possible to construct a proof that v is well-traced, and if we
accept a proof that v is well-traced, then it is indeed well-traced (up to a negligible probability of error).
This is key to enforcing COCOCOMM semantics, which we will see in Section 6.4.

Soundness for well-tracedness To verify well-tracedness of a value v with a proof π, we run VCcmn(k,
msg[v, ch], π), where k is the key generated by G (the channel ch does not matter, but is syntactically
necessary since VC expects to verify edge labels of a distributed execution graph). Soundness of the PCD
system means that if an efficient cheating-prover algorithm generates a string z = msg[v, ch] claiming that
v is well-traced, along with an alleged proof π for this (as before ch does not matter), but v is actually not
well-traced, then VCcmn(z, π) will accept only with negligible probability (smaller than any 1/poly(κ)).
Formally:

25

Theorem 3 (Soundness of PCD for well-tracedness). For any COCO class table CTcmn, any efficient
cheating-prover algorithm P̃, and every key size κ:

Pr
k←G(1κ)

(z, π)← P̃(k)

∧ VCcmn(k, z, π) = 1
∧ ∃v, ch : z = (msg[v, ch])

∧ v is not well-traced in CTcmn

 ≤ κ−ω(1)
Proof. The soundness of the PCD system (G,PC,VC), according to Definition 4, means that whenever
the verifier accepts (z, π), it’s true that z is Ccmn-compliant (up to negligible probability). By Lemma 3,
if z = msg[v, ch] then v is well-traced in CTcmn (up to negligible probability).

Completeness for well-tracedness The PCD system is complete in that if we have a well-traced value
with a known derivation, then we can efficiently produce a proof for its well-tracedness:

Theorem 4 (Completeness of PCD for well-tracedness). Let CTcmn be a COCO class table, and let v be a
well-traced value in CTcmn, witnessed by CT ′ ` 〈t, ∅〉 →∗ 〈v, S〉 where CT ′ is a COCO class table such
that CT ′ ⊇ CTcmn. Consider the COCOTRUST execution

CT ′, CTcmn t̀rust 〈send t on ch, ∅〉 →∗ 〈v, S • [v]〉

Let W be the trace-witness corresponding to the above derivation (by Proposition 2) and let linp =
(CT, 〈send t on ch, ∅〉, 〈v, S • [v]〉,W).

Then for any key size κ and key k ← G(1κ), the proof π = PCcmn(k, ∅, ∅, linp,msg[v, ch]) is always
accepted:

VCcmn(k,msg[v, ch], π) = 1.

Moreover, π is computed in time polynomial in the size of the derivation CT ` 〈t, ∅〉 →∗ 〈v, S〉.

Proof. Consider the graph DEG consisting of a node labeled linp, with no input edges, and single outgoing
edge labeled z going to another node labeled (CTcmn, 〈recv on ch, ∅〉, 〈v, ∅〉, ∅). It is readily verified to
be a distributed execution graph using CTcmn, and thus by Lemma 2, DEG is also a Ccmn-compliant
distributed computation transcript. The claim then follows from the completeness of the PCD system.
Efficiency follows from PCcmn being polynomial-time in its inputs, and the size of W being polynomial in
the size of the derivation.

6.4 Verifying correctness of COCOCOMM executions
The PCD system (G,PCcmn ,VCcmn) can be used to verify the correct execution of a number of parties,
each of which is executing its own COCOCOMM program. That is, we can use the PCD system to build a
runtime system for COCOCOMM that correctly enforces semantics even when non-well-traced values are
received from rogue parties.

Soundness for COCOCOMM executions A party who performs a COCOTRUST evaluation, and uses
VCcmn to verify every received value, can rest assured that (except with negligible probability) the
evaluation follows the stricter COCOCOMM semantics: the probability that VCcmn accepts all received
values, and yet the evaluation violates COCOCOMM semantics, is negligible (smaller than any 1/poly(κ)).
Formally:

Theorem 5 (Soundness of verifying COCOCOMM). Consider a COCOTRUST derivation:

CT,CTcmn t̀rust 〈t, S〉 →∗ 〈t′, S′〉

26

Let (vi, chi)
`
i=1 be the list of values, and corresponding channels, received in this derivation. Then for any

efficient cheating-prover algorithm P̃′, and every key size κ:

Pr
k←G(1κ)

 πi ← P̃′(k, i) for 1..`
∧ VCcmn

(
k, msg[vi, chi]πi

)
= 1 for 1..`

∧ ¬ CT,CTcmn c̀omm 〈t, S〉 →∗ 〈t′, S′〉

 ≤ κ−ω(1)
Proof. The only difference between the semantics of COCOCOMM and COCOTRUST is the premise of the
recv rule, so the above probability is bounded by:

≤ Pr
k←G(1κ)

 πi ← P̃′(k, i) for 1..`
∧ ∃i ∈ 1..` : VCcmn

(
k, msg[vi, chi]πi

)
= 1

∧ vi is not well-traced in CTcmn

Invoking the union bound on the events for separate i:

≤
∑̀
i=1

Pr
k←G(1κ)

 πi ← P̃′(k, i)
∧ VCcmn

(
k, msg[vi, chi]πi

)
= 1

∧ vi is not well-traced in CTcmn

and invoking Theorem 3 (with P̃ derived from P̃′ by hardcoding i and z = msg[vi, chi,]):

≤
∑̀
i=1

κ−ω(1) ≤ κ−ω(1)

Proof generation Generating the above proof requires an inductive process accompanying the whole
computation. Every time a party in the computation sends a message (msg edge) or pauses its derivation
to receive a message (seq edge), it will run the PCD prover PCcmn to produce a proof that the computation
was correct so far. Thus, we modify the process for incremental generation of a distributed execution
graph (Section 5.2) to ensure that each edge also has a proof associated with it.13 Initially, we run the
PCD generator G with a sufficiently large key size κ to obtain a key k ← G(1κ). Then we run the
following proof generation process: every time a new edge is added (Operations 2 and 3), with edge label
zout, exiting a node labeled linp = (CT, 〈t, S〉, 〈t′, S′〉,W) whose incoming edges are labeled ~zin with
associated proofs ~πin, we generate the proof π = PCcmn(k, ~zin, ~πin, linp, zout) and associate π with the
edge. (See Section 2 for a more concrete but less precise account.)

Completeness for COCOCOMM executions The proofs constructed as above are indeed accepted by
the PCD verifier (which follows easily from PCD completeness):

Theorem 6 (Completeness of verifying COCOCOMM). Let DEG be a distributed execution graph using
COCO class table CTcmn. Consider an edge e in DEG , labeled z, from node n to node n′. Consider any
key size κ and key k ← G(1κ). Let π be a proof associated with e by the above proof generation process.
Then π is accepted: VCcmn(k, z, π) = 1.

Moreover, the running time of the proof generation process for edge e is polynomial in the size of the
derivation associated with node n.
13 For a general formal treatment, see the ProofGen process in Bitansky et al. [7].

27

Proof. Consider DEG ′, the subgraph of DEG consisting of n′, and all nodes that can reach n′ (which of
course includes n). DEG ′ is also a distributed execution graph usingCTcmn, and is thus a Ccmn-compliant
distributed computation transcript. Acceptance of π thus follows from the completeness property of PCD
(observing that the aforementioned proof generation process is essentially identical to the ProofGen
process of Bitansky et al. [7]).

Let the label of n be (CT, 〈t, S〉, 〈t′, S′〉,W); then efficiency follows from PCcmn being polynomial-
time in its inputs, and the size of W being polynomial in the size of the derivationto which it attests.

Remarks In the above soundness definitions, the received values are independent of the PCD key k. The
stronger property of adaptive soundness, where vi and chi (and thus the resulting derivation) are allowed
to depend on k, holds as well (due to the adaptive soundness of the underlying PCD system).

A natural optimization is the case where, in a distributed computation, there exists a clique of trusted
parties Q that trust each other, but not others. The parties in Q can then verify messages received from
outside Q, but omit verification of messages within Q, and still deduce that their (various) derivations
follow COCOCOMM semantics.

7. Extensions
COCO is an intentionally minimal calculus, intended to capture essential language features and match
them to the PCD formalism, while maintaining simplicity. However, our techniques can be extended to
handle more expressive language features, and to provide stronger guarantees for consumers of verified
values.

Imperative state, including a heap, can be added in a straightforward manner. State is threaded
through the operational semantics of the language (as with the list of escaped values), and sent values
are accompanied by a heap, which includes all locations that are transitively reachable from the value.
When a value and heap are received, locations in the received heap are renamed to ensure disjointness
from the current heap, and then the received heap is unioned with the current heap. The definition of
distributed execution graphs is extended to enforce state consistency.

With the addition of state, we would no longer require the use of escape and capture terms to help
define well-tracedness, since the language would now contain another, more standard, mechanism by
which values may escape the dynamic scope of an owning class.

Concurrency is already modeled by the nondeterministic choice operator s8 t, although threads are
not guaranteed to run to completion. This can be remedied by adding a concurrent composition operator.
Additional mechanisms for synchronization and communication between threads could also be added.

Evolution of values from known past ones (e.g., showing that the computation to produce value
v′ used value v) is a stronger property than well-tracedness (which allows an arbitrary semantically-
allowed history). For example, consider a protocol for a chess game (as opposed to the aforementioned
chess puzzle), where White sends value v describing a board, subsequently receives value v′ supposedly
representing the board after Black’s move, and wishes to ensure that v′ is actually the result of a
computation that starts with v and legally moves a single Black piece to produce v′.

Such properties can be enforced using mechanisms within the programming language, and do not
require modifications to the language, or to the runtime mechanism for enforcing well-tracedness. One
approach is to ensure that classes in CTcmn contain a field that is an append-only log of past states (or
a cryptographic compression thereof, using hash functions), and the field is updated appropriately by
methods of the class. For example, an object representing a chess board may contain a log of all previous
chess boards that led up to it. This ensures that the object itself is recording its evolution, and well-
tracedness suffices to allow reasoning about the evolution of the value.

28

Another approach is to add a field id to a class, and the value of this field is only modified by method
setId(r) { return (this with {id = owf(r)}); } where owf is a cryptographic one-way hash function. Given
an object v with a particular value n for the field id, v was produced either by evolution from another
object v′ with id equal to n, or by a computation that knows a value i such that owf(i)= n. For example,
White sets the id field of a board v by calling setId(r) with a large random integer r, and upon receiving v′,
verifies that v′.getId()=v.getId(). Either v′ evolved from v, or Black found a preimage of owf, which is by
definition infeasible.

Enforcing encapsulation by the language semantics, along with enforcing of those semantics, enable
local language-level reasoning about received values. However, in Java, it is difficult to enforce encap-
sulation, due to reflection. In order for our technique to be useful, we anticipate that it will be necessary
to restrict the use of reflection and any other mechanisms that may violate encapsulation, or otherwise
prevent local reasoning. Indeed, many sophisticated Java language analyses are sound only in the absence
of reflection.

Note that in our setting we use encapsulation to enforce integrity: ensuring that values of fields of
objects are consistent with using the public interface of the object. We are not able to use encapsulation
to enforce confidentiality, since a malicious party receiving an object could always violate language
semantics to examine the values of fields of that object (e.g., by peeking into the interpreter’s in-memory
representation of values). PCD will only detect violation of language semantics if the malicious party
attempts to send a non-well-traced value.

Interaction with the external environment can be modeled in COCO by treating inputs as nondeter-
ministic choices. However, this does not enforce that choice resolution is “truly external.” To do so we
could add input operators to COCO, and make the PCD compliance predicate verify inputs are crypto-
graphically signed by suitable input devices, parties in the environment, etc.

Proof of knowledge is a security property of computational proof systems that is stronger than mere
soundness. At times, there is a difference between proving that value v is well-traced and proving
that one knows a program that (efficiently) produces v. This is especially true in programs that use
cryptography. For example, consider the class BobPayment which sets its field amount to an integer i
only when a method BobPayment.check is called with arguments i and u, where u is a digital signature
on i that verifies under Bob’s (hard-coded) signature verification key. Suppose Alice sends Bob the value
v = {BobPayment | amount=1000000 } and a proof that v is well-traced. Should Bob be convinced that he
owes her $1M? Clearly a valid signature on “1000000” exists, so v is trivially well-traced regardless of
whether Alice actually received the signature. However Alice cannot efficiently compute the signature
by herself, so if she efficiently produced v following COCO semantics, then Bob should indeed be
convinced. Our proof system indeed (nontrivially) supports reasoning about the computational complexity
of producing values. PCD systems offer, beyond mere soundness, the guarantee of proof of knowledge [7],
which implies essentially the following: whenever the verifier accepts, VCcmn(k,msg[v, ch], π) = 1, the
(possibly cheating) prover that produced π actually “knows” the full derivation of the value v and “could
have” written it down with similar complexity.

Zero-knowledge is another useful property of proof systems, meaning essentially that when the verifier
accepts, all it learns is that the value is well-traced, and nothing else about its derivation. In particular, if
the sender had secrets, they are not revealed by the proof he produces, a desirable property in any other
application where a party has proprietary algorithms or private data (such as the chess puzzle example of
the Introduction). Our approach provides zero knowledge when invoked using suitable PCD systems [7]
or SNARKs [3, 4, 40].

29

8. Related work
Verifiable computing The Proof-Carrying Data mechanism lies in the broad area of verifiable comput-
ing, which has been extensively studied from a cryptographic perspective. Verifying general, distributed
interaction requires the full power of PCD systems whose construction was discussed in Section 6.1.

An important special case is Succinct Noninteractive Arguments of Knowledge (SNARKs) which,
beside being an ingredient for PCDs as discussed in Section 6.1, are also of direct use for proving correct
execution of stand-alone programs (e.g., outsourcing a computational task to a cloud server, and requiring
a proof of the results’ correctness). Recently, concrete SNARK systems were implemented for proving
correct execution of C programs. One is restricted to constant memory access and control flow [40], and
another supports arbitrary control flow and memory accesses (by implementing a simulated random-access
machine) [4] and even self-modifying code [3]. Those works focus on the cryptographic and algorithmic
implementations and are complementary to the present paper. In particular, they consider only the case
of stand-alone programs (rather than distributed computation), and do not address issues of enforcing
well-tracedness and invariants of values, for which the C language is unsuitable due to lack of strong
encapsulation. Our work can thus be construed as looking ahead to potential uses and a program analysis
approach for exploiting the “raw power” of the cryptographic implementations, once they achieve full
PCD and sufficient efficiency.

If one relaxes the requirements to allow the verifier to send queries back to the prover (instead of
proofs piggy-backing on existing messages), then interactive proof systems are relevant, including recent
highly-optimized implementations (see Vu et al. [49] and references therein). If one further relaxes the
verifier efficiency requirement, then many secure multiparty computation and secure function evaluation
techniques become relevant. When simultaneously verifying many claims, one can use efficient batching
arguments (see Setty et al. [44] and references therein). Some restricted classes of computation, such as
those expressible as low-depth circuits, have especially efficient proof systems [24] which were recently
implemented (see Thaler [46] and references therein).

Automatic program partitioning Jif/Split [51, 52] automatically partitions single-threaded programs
annotated with security types [42] into a program distributed across potentially mutually distrusting host
machines. The partitioning ensures that if computation of a value is declared to be independent of a given
host, then that host is unable to corrupt or influence the computation of the value. This enables sound
reasoning at the language-level of abstraction about the distributed computation: the value computed by
the distributed system will be the same as the value computed by the single-threaded program unless one
or more of the hosts upon which the computation depends (as indicated by the security-type annotations)
is malicious. In Jif/Split, if a host is corrupted, then no computation they perform can be trusted. By
contrast, our system allows trust to be gained in computation performed by a corrupted or malicious host:
values received from hosts are checked to ensure they are well-traced, which enables sound reasoning
about properties that the value must satisfy. However, our system is not suitable for restricting the flow of
information in a distributed system, and is thus, is not suitable for enforcing confidentiality requirements.

Enforcing language semantics Our work ensures that values received over a network were produced
according to COCOCOMM semantics, thus enabling sound reasoning about such values at the level of
language abstractions, even in the presence of malicious parties. We do not know of existing work
exploring this problem.

Much previous work seeks to enforce language-level semantics in different settings, typically on a
single execution platform, or against different classes of faults.

Safe deserialization of objects, as discussed in Section 1, is extensively discussed in Bloch’s book
on practical Java programming [10, Chapter 11]. Pointing out that “serialization is an extralinguistic
mechanism for creating objects”, Bloch presents several attacks that cause objects to be deserialized

30

into a state that cannot be reached through their public interfaces (i.e., attacks that create non-well-
traced objects). Although Bloch describes methods for defensive programming to avoid these attacks,
the solutions are manual and error-prone. Similar concerns are raised in CERT’s Secure Coding Standard
for Java entries SER06-J and SER07-J [11], in Common Weakness Enumeration entry CWE-502 [34],
and the references therein.

Numerous works seek to enforce memory safety in C and C-like programs, including CCured [37],
Cyclone [25, 28], and SAFECode [18, 19]. SAFECode in particular states that their mechanism enables
certain analyses to be sound (points-to graph, call graph, and a subset of type information).

Perry et al. [41] present a type system that can detect transient hardware faults (a single local
corruption) in assembly programs, by maintaining redundant copies of the computations and enforcing
their consistency.

Work on certified compilation (e.g., [5, 14, 15, 30]) seeks to ensure that program semantics is
preserved as the program is compiled.

Ensuring integrity Various language-based techniques have attempted to ensure the integrity of com-
putation or the values they create. For example, automated program partitioning [52] allows a distributed
computation to be written as a single program with security types, and is compiled so that only sufficiently
trusted hosts may handle high-integrity data and computation. Likewise, evidence-based audit [48] allows
programs to automatically verify that incoming values are endorsed by trusted principals. Techniques
including proof-carrying code (PCC) [36] and dependently typed programming [17] combine values (rep-
resenting data or code) with machine-checkable proof objects that demonstrate the validity of propositions
about the values, independent of their provenance.

These techniques require a programmer to reason about a level of security types, propositions, or
proofs, as well as the main computation language. By contrast, PCD allows a programmer to reason
entirely at the level of COCOCOMM, and without making implicit or explicit trust assumptions about
remote parties. Such systems are complementary to our approach. Similar to proof-carrying access control
systems (discussed in the Introduction) our approach can enable compression, constant-time verification,
and zero-knowledge privacy for PCC and dependent-type proofs.

Foreign function interfaces Foreign function interfaces (FFI) allow programs written in a high-level
language to call code written in another language (typically C or native machine code). It is available in
many popular languages, for performance and interoperability reasons. Typically, the callee can return
arbitrary values to the caller, potentially violating the semantics and invariants of the high-level language
(i.e., producing values that are not well-traced). Furr and Foster [22] describe a static analysis approach to
this problem, based on cross-language type-inference. Google Native Client [35, 50] restricts the native-
code callee, using software fault isolation, to a certain memory region and set of instructions; however, it
does not reason about the values output by the callee.

Our approach to proving well-tracedness offers an alternative, in principle: the high-level language can
require values produced by FFI calls to be accompanied by proofs of well-tracedness. However, this incurs
runtime overhead, which seems unattractive for performance-motivated uses of FFI.

Remote attestation Remote attestation [16, 39] uses a hardware root of trust, typically based on a Trusted
Platform Module (TPM), along with cryptography, to let a target machine convince an appraiser/verifier
machine that the target machine’s state fulfills some properties (e.g., that it is presently running a specific,
unmodified and suitably-configured software stack).

Remote attestation can be used to claim well-tracedness of values by attesting that they were produced
by executing a given program on top of a given operating system. This attestation is convincing if the

31

appraiser trusts the TPM hardware root of trust,14 the correctness of the hardware platform (e.g., CPU and
memory), and the correctness of (requisite properties of) the operating system. Our PCD-based approach
removes all of these assumptions.

Similarly to our approach, BIND [45] and Flicker [32] aim to provide fine-grained attestation, attesting
only to code directly relevant to producing an output. They remove the trust in the operating system,
using CPU support for secure execution and late launch. However, trust in the hardware remains inherent.
Notably, BIND supports transitive proofs, similarly to PCD.

Unlike most prior works, which focus on low-level properties such as enforcing execution of specific
or signed software, we focus on enforcing language semantics, requiring that values produced by a target
machine are well-traced.

PCD can be an alternative to hardware-based remote attestation, in scenarios where the latter is used
to enforce integrity or correctness of a value computed by an untrusted target machine. However, PCD
cannot express or enforce properties of the target machine as a whole, and thus cannot enforce secrecy
properties, such as preventing data copying in Digital Rights Management applications.

9. Conclusion
This paper presents a novel mechanism to enforce language semantics in a distributed computation with
potentially malicious participants. Using the cryptographic mechanism of Proof-Carrying Data (PCD)
[8, 12], we ensure that values received must be well-traced: they could have been produced by a program
execution consistent with the language semantics. Thus, developers can reason about properties and
invariants of received values, without trusting the parties that provide the values and without being aware
of the underlying cryptographic mechanism.

Acknowledgments
We thank are indebted to Alessandro Chiesa, Christos Dimoulas, Daniel Genkin, Greg Morrisett and Noam
Rinetzky for their insightful comments.

This work was supported by the Air Force Office of Scientific Research under Award No. FA95501210262;
by the Check Point Institute for Information Security; by the Israeli Ministry of Science and Technology;
by the Israeli Centers of Research Excellence I-CORE program (center 4/11); by the National Science
Foundation under Grant No. 1054172; and by NATO’s Public Diplomacy Division in the Framework of
”Science for Peace”.

14 The Pioneer system [43] aims to remove the explicit hardware root of trust, but depends on extensive knowledge of the precise
hardware, can be verified only locally, and is subject to some attacks [16].

32

References
[1] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polylogarithmic time. In

Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC ’91, pages 21–32, 1991.

[2] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. On the concrete efficiency of probabilistically-checkable
proofs. In Proceedings of ACM symposium on Symposium on theory of computing, pages 585–594. ACM,
2013.

[3] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive arguments for a von Neumann
architecture. Cryptology ePrint Archive, Report 2013/879, 2013. http://eprint.iacr.org/2013/879.

[4] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C: Verifying program executions
succinctly and in zero knowledge. In Proceedings of CRYPTO 2013, LNCS. Springer, to appear.

[5] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler correctness. In Proceeding of the 14th
ACM SIGPLAN international conference on Functional programming, pages 97–108, 2009.

[6] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct non-
interactive arguments of knowledge, and back again. In Proceedings of Innovations in Theoretical Computer
Science 2012, pages 326–349. ACM, 2012.

[7] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and bootstrapping for SNARKs and
proof-carrying data. Cryptology ePrint Archive, Report 2012/095, 2012. http://eprint.iacr.org/2012/
095.

[8] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and bootstrapping for SNARKs and
proof-carrying data. In Proceedings of ACM symposium on Symposium on theory of computing, STOC ’13,
pages 111–120. ACM, 2013. ISBN 978-1-4503-2029-0.

[9] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-interactive arguments via linear
interactive proofs. In Proceedings of the 10th Theory of Cryptography Conference, TCC ’13, pages 315–333,
2013.

[10] J. Bloch. Effective Java, Second Edition. Addison-Wesley, Boston, 2nd edition, 2008.

[11] CERT. The CERT Oracle secure coding standard for Java, entries SER06-J and SER07-
J. https://www.securecoding.cert.org/confluence/display/java/The+CERT+Oracle+Secure+

Coding+Standard+for+Java, 2013. Accessed 2013-06-04.

[12] A. Chiesa and E. Tromer. Proof-carrying data and hearsay arguments from signature cards. In A. C.-C. Yao,
editor, ICS, pages 310–331. Tsinghua University Press, 2010. ISBN 978-7-302-21752-7.

[13] A. Chiesa and E. Tromer. Proof-carrying data: Secure computation on untrusted platforms. The Next Wave:
the NSA’s review of emerging technologies, 19(2):40–46, 2012. URL http://www.nsa.gov/research/

_files/publications/next_wave/TNW_19_2_ProofCarryingData_Chiesa_Tromer.pdf.

[14] A. Chlipala. A certified type-preserving compiler from lambda calculus to assembly language. In Proceedings
of the 2007 ACM SIGPLAN conference on Programming language design and implementation, PLDI ’07,
pages 54–65, New York, NY, USA, 2007. ACM.

[15] A. Chlipala. A verified compiler for an impure functional language. In Proceedings of the 37th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’10, pages 93–106, New York,
NY, USA, 2010. ACM.

[16] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon, J. Ramsdell, A. Segall, J. Sheehy, and
B. Sniffen. Principles of remote attestation. International Journal of Information Security, 10(2):63–81, June
2011.

[17] T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76, 1988.

[18] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure virtual architecture: A safe execution environment
for commodity operating systems. In Proceedings of the Twenty First ACM Symposium on Operating Systems
Principles (SOSP), 2007.

[19] D. Dhurjati, S. Kowshik, and V. Adve. SAFECode: Enforcing alias analysis for weakly typed languages. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation, 2006.

33

http://eprint.iacr.org/2013/879
http://eprint.iacr.org/2012/095
http://eprint.iacr.org/2012/095
https://www.securecoding.cert.org/confluence/display/java/The+CERT+Oracle+Secure+Coding+Standard+for+Java
https://www.securecoding.cert.org/confluence/display/java/The+CERT+Oracle+Secure+Coding+Standard+for+Java
http://www.nsa.gov/research/_files/publications/next_wave/TNW_19_2_ProofCarryingData_Chiesa_Tromer.pdf
http://www.nsa.gov/research/_files/publications/next_wave/TNW_19_2_ProofCarryingData_Chiesa_Tromer.pdf

[20] C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen. Correct blame for contracts: No more scapegoating.
In POPL, pages 215 – 226, 2011.

[21] R. B. Findler and M. Felleisen. Contracts for higher-order functions. In ICFP, pages 48–59, 2002.

[22] M. Furr and J. S. Foster. Checking type safety of foreign function calls. ACM Trans. Program. Lang. Syst., 30
(4):18:1–18:63, Aug. 2008. ISSN 0164-0925. . URL http://doi.acm.org/10.1145/1377492.1377493.

[23] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs without PCPs.
In Proceedings of the 32nd Annual International Conference on Theory and Application of Cryptographic
Techniques, EUROCRYPT ’13, pages 626–645, 2013.

[24] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: Interactive proofs for Muggles. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC ’08, pages 113–122, 2008.

[25] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory management
in Cyclone. In Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 282–293, New York, NY, USA, 2002. ACM Press.

[26] J. Groth. Short non-interactive zero-knowledge proofs. In Proceedings of the 16th International Conference on
the Theory and Application of Cryptology and Information Security, ASIACRYPT ’10, pages 341–358, 2010.

[27] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ. ACM
Transactions on Programming Languages and Systems, 23(3):396–450, 2001.

[28] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang. Cyclone: A safe dialect of
C. In ATEC ’02: Proceedings of the General Track of the annual conference on USENIX Annual Technical
Conference, pages 275–288, Berkeley, CA, USA, 2002. USENIX Association.

[29] J. Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, STOC ’92, pages 723–732, 1992.

[30] X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning, 43(4):363–446, 2009.

[31] H. Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In
Proceedings of the 9th Theory of Cryptography Conference on Theory of Cryptography, TCC ’12, pages 169–
189, 2012.

[32] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: an execution infrastructure for TCB
minimization. In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems
2008, Eurosys ’08, pages 315–328, New York, NY, USA, 2008. ACM.

[33] S. Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298, 2000. Preliminary
version appeared in FOCS ’94.

[34] MITRE Corporation. Common weakness enumeration, CWE-502, 2013. URL http://cwe.mitre.org/

data/definitions/502.html.

[35] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan. RockSalt: better, faster, stronger SFI for the x86. In
Proceedings of the 33rd ACM SIGPLAN conference on Programming Language Design and Implementation,
PLDI ’12, pages 395–404, New York, NY, USA, 2012. ACM.

[36] G. C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 106–119, New York, NY, USA, 1997. ACM.

[37] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe retrofitting of legacy code. In Proceedings of the
29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 128–139, 2002.

[38] Y. G. Park and B. Goldberg. Escape analysis on lists. In Proceedings of the ACM SIGPLAN 1992 Conference
on Programming Language Design and Implementation, pages 116–127, New York, NY, USA, 1992. ACM.

[39] B. Parno, J. McCune, and A. Perrig. Bootstrapping Trust in Modern Computers. Springer, 2011. ISBN
9781461414605.

[40] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable computation. In
Proceedings of the IEEE Symposium on Security and Privacy, 2013.

34

http://doi.acm.org/10.1145/1377492.1377493
http://cwe.mitre.org/data/definitions/502.html
http://cwe.mitre.org/data/definitions/502.html

[41] F. Perry, L. Mackey, G. A. Reis, J. Ligatti, D. I. August, and D. Walker. Fault-tolerant typed assembly
language. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 42–53, New York, NY, USA, 2007. ACM Press.

[42] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal on Selected Areas in
Communications, 21(1):5–19, Jan. 2003.

[43] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying integrity and
guaranteeing execution of code on legacy platforms. In Proceedings of ACM Symposium on Operating Systems
Principles (SOSP), pages 1–16, Oct. 2005.

[44] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish. Resolving the conflict between generality
and plausibility in verified computation. In EuroSys, 2013.

[45] E. Shi, A. Perrig, and L. V. Doorn. BIND: A fine-grained attestation service for secure distributed systems. In
Proceedings of the 2005 IEEE Symposium on Security and Privacy, pages 154–168, Washington, DC, USA,
2005. IEEE Computer Society.

[46] J. Thaler. Time-optimal interactive proofs for circuit evaluation. CoRR, abs/1304.3812, 2013.
[47] P. Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In TCC,

2008.
[48] J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic. Evidence-based audit. In CSF, pages 177–191, 2008.

Extended version available as U. Pennsylvania Technical Report MS-CIS-08-09.
[49] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture for interactive verifiable computation.

In Proceedings of the IEEE Symposium on Security and Privacy, 2013.
[50] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar. Native

client: A sandbox for portable, untrusted x86 native code. In Security and Privacy, 2009 30th IEEE Symposium
on, pages 79–93, 2009. .

[51] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Untrusted hosts and confidentiality: Secure program
partitioning. In Proceedings of the 17th ACM Symposium on Operating System Principles (SOSP), pages 1–14,
New York, NY, USA, Oct. 2001. ACM Press.

[52] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using replication and partitioning to build secure
distributed systems. In Proceedings of the IEEE Symposium on Security and Privacy, pages 236–250, Oakland,
California, May 2003. IEEE Computer Society.

35

A. Auxillary Definitions
We write names(CT) for the set of class names used or defined in CT . Collecting class names mentioned
in syntax (via names) is straightforward because there are no binding occurences of class names and no
need to avoid capture. We overload names to return the class names used in terms, environments, class
declarations, and sets of values.

Definition 6 (names).

names(newC) = {C}
names(t instanceof C) = names(t) ∪ {C}

...

names(i) = ∅
names(null) = ∅

names({C | f = v }) = {C} ∪
(⋃

(f=v)∈f=v names(v)
)

names(ρ) =
⋃

x∈dom(ρ)

names(ρ(x))

names(m(x) {return t; }) = names(t)

names

(
class{ fields f ;

methsM }

)
=
⋃

M∈M

names(M)

names(CT) =
⋃

C∈dom(CT)

{C} ∪ names(CT (C))

names({v1, . . . , vn}) = names(v1) ∪ · · · ∪ names(vn)

We write e[D/C] to denote the replacement of class name C with class name D in expression e. As
before, we overload this notation to also define substitution for environments, class declarations, class
tables, and sets of values.

36

Definition 7 (·[·/·]).

C[D/C] = D

E[D/C] = E where C 6= E

(newE)[D/C] = new (E[D/C])

(t instanceof E)[D/C] = (t[D/C]) instanceof (E[D/C])

...

i[D/C] = i

null[D/C] = null

{E | f = v }[D/C] = {E[D/C] | f = (v[D/C]) }

ρ[D/C] = λx.(ρ(x)[D/C])

CT [D/C] = λE.

(CT (C))[D/C] E = D

(CT (E))[D/C] E ∈ dom(CT) \ {C,D}
undefined otherwise

{v1, . . . , vn}[D/C] = {v1[D/C], . . . , vn[D/C]}

We define what it means for one environment to extend another.

Definition 8 (⊇). We write ρ2 ⊇ ρ1 when for any x ∈ dom(ρ1) it is the case that ρ2(x) = ρ1(x).

B. Proof of Theorem 1
Given an evaluation CT ` 〈t, S〉 →∗ 〈t′, S′〉, it is possible to rename any class C to a new class name D
without otherwise modifying the evaluation.

Lemma 4 (Renaming). Suppose
CT, ρ ` 〈t, S〉 →∗ 〈t′, S′〉

and
D /∈ names(CT) ∪ names(t) ∪ names(ρ) ∪ names(t′) ∪ names(S) ∪ names(S′) .

Then, for any class name C, it is the case that

CT [D/C], ρ[D/C] ` 〈t[D/C], S[D/C]〉 →∗ 〈t′[D/C], S′[D/C]〉.

Proof. by induction on the reduction relation.

Given an evaluation of a program, it is possible to add additional classes to the class table without
changing the evaluation.

Lemma 5. Suppose CT2 ⊇ CT1 and CT1 ` 〈t, ∅〉 →∗ 〈t′, S〉. Then CT2 ` 〈t, ∅〉 →∗ 〈t′, S〉

Proof. By a straightforward induction on CT1 ` 〈t, ∅〉 →∗ 〈t′, S〉.

37

We are now ready to prove Theorem 1, which states that if value v esacpes during evaluation of a COCO-
COMM program and v is well-formed with respect to common class table CTcmn, then v is well-traced in
CTcmn.

Proof of Theorem 1. Suppose we have a COCOCOMM program t using classtable CT and during an
evaluation of t, the value v escapes and values u1, . . . , un are received. Intuitively, since each value
received is well-traced in CTcmn, there are COCO terms s1, . . . , sn and class tables CT1, . . . , CTn such
that CTi ⊇ CTcmn and CTi ` 〈si, ∅〉 →∗ 〈s′i, Si〉 such that ui ∈ Si.

We will first construct a class table CT ∗ such that for all i we have a program si such that CT ∗ `
〈si, ∅〉 →∗ 〈s′i, Si〉 such that ui ∈ Si.

For each i, we can rename the classes in si and CTi using Lemma 4 to acquire terms si and class
tables CT ′i ⊇ CTcmn such that dom(CT ′i) ∩ (dom(CT ′j) ∪ CT) = dom(CTcmn) for all i 6= j, and
CT ′i ` 〈si, ∅〉 →∗ 〈s′i, Si〉 such that ui ∈ Si.

Let CT ∗ = CT ∪
⋃
CT ′i . Then by Lemma 5 for any i it holds that CT ∗ ` 〈si, ∅〉 →∗ 〈s′i, Si〉 such

that ui ∈ Si.

Recall that t is a COCOCOMM program such that value v escapes during evaluation, and v is well-
formed in CTcmn. We must show that v is well traced. We now translate COCOCOMM program t to a
COCO program that replaces all recv on ch terms with term capture and replaces any term send s on ch
with escape s. Moreover, we compose the translation with terms that will mark values u1, . . . , un as
escaping. More precisely we translate t to the following program, which we denote t∗.

t∗ ≡ s18. . .8sn8[[t]]

where [[·]] is a function such that

[[send s on ch]] = escape [[s]]

[[recv on ch]] = capture

and is otherwise homomorphic in the struture of terms. Note that t∗ is a program that uses only COCO

terms (i.e., it does not contain any send or recv operations).
Moreover, we translate the class table CT ∗ in a similar way, denoted [[CT ∗]]. More precisely [[CT ∗]] is

a class table with the same domain as CT ∗ and if for class C,

CT ∗(C) = class{fields f ; methsm(x) {return t; } }

then
[[CT ∗]](C) = class{fields f ; methsm(x) {return [[t]]; } }.

First note that [[CT ∗]] ` 〈t∗, ∅〉 →∗ 〈[[t]], S∗〉 such that {u1, . . . , un} ⊆ S∗.
We now show that evaluation of 〈t, ∅〉 with class table CT under COCOCOMM semantics is in lockstep

with evaluation of 〈[[t]], S∗〉 with class table [[CT ∗]] under COCO semantics. We proceeds by induction on
the length of the evaluation, with the inductive hypothesis being that if the current COCOCOMM term is s
then the current COCO term is [[s]]. For each small step, we proceed by induction on the derivation

CT,CTcmn, ∅ c̀omm 〈s, S〉 → 〈s′, S′〉,

to show that if S′ ⊆ S′′′ then
[[CT ∗]], ∅ ` 〈[[s]], S′′〉 → 〈[[s′]], S′′′〉

38

and S ⊆ S′′. The only interesting case is when the redex is recv on ch , and the received value is ui for
some ui that is well-traced in CTcmn. In the translated version, the redex is capture, and the current set of
escaped values contains at least u1, . . . , un. Thus, we can step to ui as required.

Finally, since v is a value, we have [[v]] = v, and so we have a program t∗ such that

[[CT ∗]] ` 〈t∗, S〉 →∗ 〈t′, S〉

for some S such that v ∈ S, and thus v is well-traced, as required.

39

	Abstract
	Contents
	1 Introduction
	2 Overview
	3 Base Language
	3.1 Syntax and semantics
	3.2 Well-traced values

	4 Communication Language
	4.1 Syntax and semantics
	4.2 Well-tracedness

	5 Modeling Distributed Executions
	5.1 CocoTrust
	5.2 Distributed execution graphs

	6 Proof Carrying Data
	6.1 Overview of PCD
	6.2 A compliance predicate for well-tracedness
	6.3 Verifying well-tracedness
	6.4 Verifying correctness of CocoComm executions

	7 Extensions
	8 Related work
	9 Conclusion
	Acknowledgments
	References
	A Auxillary Definitions
	B Proof of Theorem 1

