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Abstract

We show that the class of polynomial-size branching programs can be obfuscated according
to a virtual black-box notion akin to that of Barak et.al., in an idealized black-box group model
over pseudo-free groups. This class is known to lie between NC1 and P and includes most
interesting cryptographic algorithms. The construction is rather simple and is based on Kilian’s
randomization technique for Barrington’s branching programs.

The black-box group model over pseudo-free groups is a strong idealization. In particular, in
a pseudo-free group, the group operation can be efficiently performed, while finding surprising
relations between group elements is intractable. A black-box representation of the group pro-
vides an ideal interface which permits prescribed group operations, and nothing else. Still, the
algebraic structure and security requirements appear natural and potentially realizable. They
are also unrelated to the specific function to be obfuscated.

Our modeling should be compared with the recent breakthrough obfuscation scheme of Garg
et al. [FOCS 2013]: While the high level structure is similar, some important details differ. It
should be stressed however that, unlike Garg et al., we do not provide a candidate concrete
instantiation of our abstract structure.

1 Introduction

A program obfuscator O, informally, is a compiler that changes a program P into a program O(P )
which is equivalent to P in functionality, but leaks no more information about P than black-box
access to P .

In spite of the immense popularity of program obfuscation in the programming and systems se-
curity communities, coming up with program obfuscation mechanisms that provide rigorous security
guarantees has proven to be a hard problem. Indeed, such obfuscation schemes have been shown
only for relatively few classes of programs, or functions, e.g. [Can97, LPS04, Wee05, HMLS07,
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HRSV07, CD08, CRV10, BR13]. Furthermore, sweeping impossibility results show that a natu-
ral notion of security for program obfuscation, namely virtual black box (VBB) obfuscation, is
impossible to obtain in general [BGI+01, GK05].

Still, in an exciting new work, Garg et al. [GGH+13] propose a general obfuscation mecha-
nism and argue that it satisfies a weaker notion of security, called Indistinguishability Obfuscation
[BGI+01, GR07]. They also demonstrate that this notion actually suffices in many applications.

We take a slightly different approach and show general feasibility results for VBB program
obfuscation in an idealized model of computation. Specifically, we show that in the “black-box
group model”, taken over a group that’s pseudo-free except for a certain structure, a large class of
branching programs can be VBB-obfuscated. While our obfuscation procedure is very simple and
relies strongly on idealized security properties of the underlying group, the basic ingredients of our
scheme show great similarity to corresponding ingredients in the [GGH+13] scheme. (See the end
of the introduction for a brief account of the history of this work.) We give background for and
brief description of our scheme.

Pseudo-free Black-box Groups. The notion of a black-box group was introduced by Babai
and Szemeredi [BS84]. Informally, a black-box group is a algebraic group adjoined with a “random
representation of group elements” — namely a random function from group elements to a large
enough binary domain, along with oracles that allow performing the group operation directly on
the representations of the elements. The idea is to capture groups where the only meaningful
computational operations that can be done with the representations of group elements is use them
to do one of the group operations, namely group multiplication or inversion.

A free group is an infinite group defined by a set of generatorsA = {a1, a2, . . . , an}. The elements
of this group are all the words that use the symbols in A, along with their inverses (the inverses are
also treated as formal symbols). This group is “free” in the sense that there is no relation among
the ai’s that define the generating set. Pseudo-free groups, defined by Hohenberger [Hoh03] and
later made precise by Rivest [Riv04] are, informally, groups which cannot be distinguished from
a free group by any probabilistic polynomial-time adversary. The notion is naturally extendable
to groups where some given set of relations are assumed to exist and the group remains otherwise
free. (An example for such a group is the free Abelian group.) A Pseudo-Free Black-Box Group is
a black-box group defined over a group that’s assumed to be pseudo-free. Such a black-box group
provides only very limited interface; for instance, it does not allow obtaining the representations
of inverses, and it is infeasible to determine the order of the group. For formal definitions of these
notions, see Section 2.

Group-based Branching Programs. Branching Programs are a non-uniform model of com-
putation introduced by Lee [Lee59] and studied by [BDFP86, Bar86, BT87, BT88]. In particular,
bounded-width branching programs (which can be considered as programs over some symmetric
group Sn) were introduced by [BDFP86]. The celebrated result of Barrington [Bar86] shows that
width-5 branching programs (equivalently, branching programs over the symmetric group S5) are
equal in computational power to the circuit class NC1. The model of branching programs was
further generalized to branching programs over arbitrary groups (as opposed to just the symmetric
groups) and other algebraic structures starting from the work of [BT87, BT88]. As for the compu-
tational power of this model, we know that if the group has a certain (easy to satisfy) non-Abelian
structure, branching programs over such a group are at least as powerful as NC1 (using an easy
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generalization of the arguments used by Barrington). On the other hand, polynomial-size branching
programs are contained in P .

Our construction. We show how to obfuscate any family of NC1 circuits in a black-box group
based on a group that is pseudo-free except for some simple structure. Specifically, we assume
existence of a group G that is pseudo-free except for the following structure. To clearly present
the different elements of the construction, we describe G as a product of four groups G = GA ×
GP ×GK ×GB, where the group operation for G is the natural extension of the group operations
of the four components. The group GA is a pseudo-free Abelian group, the groups, GP and GK are
non-Abelian pseudo-free group, and GB is a group that supports the Barrington transformation
(e.g., GB can be S5). We use an abstract black box access mechanism to G where the following
idealized interfaces are given: (1) It is possible to obtain representations of group elements of
the form (rA, 1, 1, 1), (1, rP , 1, 1), (1, 1, rK , 1) and (1, 1, 1, rB), together with their inverses, where
rA, rP , rK , rB are random elements of GA, GP , GK , GB, respectively. (2) It is possible to perform
the group operation in G on representations of elements in G. (3) It is possible to test whether
a given string is a representation of an element of G that has a given form. (Specifically, we
test whether the underlying element is of the form (1, aP , rK , rB), where aP is any element of
GP and rK , rB are random elements of GK and GB that were fixed ahead of time.) (4) Finally,
it is possible to obtain representations of six fixed “special elements. These are the elements if
the form (1, 1, 1, g1)...(1, 1, 1, g6), where g1..g6 are the six special elements used in the Barrington
construction and for which the special Barrington relations hold.

In this group, our obfuscation mechanism can be briefly summarized as follows. Our starting
point is the universal function U(〈c〉 , x) = c(x). That is, U interprets its first input as a description
of a circuit c and then runs c on the second input, x. We assume that U is in NC1, which means
that it only handles appropriately constrained circuits. We first run Barringtons transformation on
U in our generic group, where we use only the GB part of G, and the identity elements in the other
parts. Recall that the output of this transformation is a sequence of triples {(var(j),g0

j ,g
1
j )}j=1..m

where each gi
j = (1, 1, 1, gij), each var(j) specifies an index i of a bit zi in the input z of U , and the

program is evaluated by picking from each triplet the element g
zvar(j)
j that corresponds to the value

of that bit, multiplying all the elements in order, and checking whether the end product equals a
special group element. (Here m is the length of the program.) Now, consider the following potential
“obfuscated program“: For each input bit location var(j) that corresponds to the description of
c, output only the pair (var(j),g

zvar(j)
j ). For each input bit location var(j) that corresponds to the

input x, output the entire triple {(var(j),g0
j ,g

1
j )}. This information certainly suffices for evaluating

c on any input x of the evaluators choice. However, it is still far form a valid obfuscation since it
does not “hide“ c at all.

To protect c, we randomize the output of Barrington‘s transformation in three steps. Here we
use the other three components of G. The first step is similar to Kilian‘s randomization [K89], and
uses the GK component: For each j = 1..m − 1 choose a random element rj in GK . and replace
each triple (var(j),g0

j ,g
1
j ) with (var(j), (1, 1, rj , g

0
j ), (1, 1, rj , g

1
j )). In addition, the special target

group element α from Barringtons construction is replaced by (1, 1, r, α), where r = r1r2...rm. The
evaluator is given the ability to test whether it holds a representation of an element of the form
(1, aP , r, α) where aP is any element in GP . Intuitively, this step ensures that the only way to
obtain meaningful information from the program is by multiplying one element from each triple,
in order. Note that the pseudofree group structure allows us to avoid the need to use inverses in
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the Kilian randomizers.
The second step is to randomize the GP coordinates of the group elements. That is, we multiply

each one of the 2m group elements in the branching program resulting from the previous step by
a new, unique element of the form (1, rP , 1, 1) where rP is a random element in GP . This step
ensures that partial evaluations of the obfuscated program look like independent random values.

The third step is to randomize the GA coordinates of the group elements so as to force the
evaluator of the program to use each bit of the input x in a consistent way across all the triples.
That is, for each i = 1..|x| let j1, ..., jk be the triples that correspond to the ith bit in x. Then, for
each bit b ∈ {0, 1}, the obfuscator chooses random s1, ..., sk in GA such that s1 · ... · sk = 1, and for
each l = 1...k sets the GA component of gbjl to be sl. We show:

Main Theorem 1 (Informal) The above construction is a VBB obfuscator for any family of
NC1 circuits, in the black box group model for G.

Interpreting Our Result. We suggest some interpretations of our result. Perhaps the most
immediate and natural interpretation is that our abstract construction provides a “blueprint”, or
a direction for coming up with potential concrete obfuscation schemes. This interpretation should
be compared with the breakthrough construction of Gentry et al. [GGH+13]. Indeed, while at
high level their scheme appears to have similar structure, the details are a somewhat different. In
particular, they use in a crucial way the fact that their underlying mathematical structure allows
even adversarial parties to evaluate only a bounded number of group operations. In contrast, our
scheme works even when an unbounded number of group operations can be performed.

Alternatively, the scheme can be taken as a basis for hardware-based obfuscation, where the
black box group operations are implemented in hardware.

Either way, it is worth stressing that the ideal structure we assume has relatively simple interface
and is independent of the functions to be obfuscated.

Finally, we note that our construction bypasses the impossibility result of [BGI+01]. This is
due to the fact that we use an idealized model, and thus our obfuscated program is not a fully
specified algorithms, and so the [BGI+01] “diagonalization” technique does not apply. Still, any
concrete instantiation of our obfuscation using a real pseudo-free group cannot satisfy the virtual
black-box property in the standard model. Finding a meaningful notion of security for program
obfuscation that captures the full power of such general construction without being susceptible to
diagonalization-based impossibility results such as those of [BGI+01] is an interesting question.

History of this work. An early version of this work was submitted to Crypto 2007. Shortly
afterwards, we found that the construction there was lacking. We then formulated the solutions of
the additional Abelian and non-Abelian randomizations, but these solutions were never formalized.
Given the recent exciting advancements in program obfuscation mechanisms [GGH+13], we have
decided to complete writing up this early work and post it in hope of obtaining better understanding
of the necessary ingredients towards general obfuscation. In particular, the GA and GP parts of the
current solution are direct formalizations of our ideas from 2007. We are grateful to the authors
of [GGH+13] for prompting us to dig up our old ideas and make them rigorous. For completeness,
the 2007 version of this work is available at [CV07].
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2 Mathematical Preliminaries

Computing with an abstract group family G = {Gn}n∈N requires representing the group elements
as strings, and performing group operations with such a representation. We will work with two
types of representations of group elements.

Canonical Representation: Let ` = `(n) be a polynomial function. A canonical representation
is simply an injective function Ψn : Gn → {0, 1}`(n). For any group element g ∈ Gn, Ψ(g) ∈ {0, 1}n
is called the canonical representation of g.

When we say statements of the form “choose a group G . . .” in a computational context, what
we really mean is “choose a group G together with a canonical representation Ψ . . .”. When we talk
about computing on group elements g ∈ G, what we mean is computing on Ψ(g). For example, a
canonical representation of a ∈ Z∗N is just its bit representation using a dlogNe-bit string.

The more important object for us is a:

Black-box Representation: Let r = r(n) and ` = `(n) be polynomial functions. The black-box
representation of a group Gn, denoted [Gn], is a random injective function Rn : Gn → {0, 1}`(n)
chosen from the space of all such functions, together with algorithms P, Samp and Test, defined as
below. (When clear from the context, we omit the subscript n.)

• The randomized function Samp = SampR,D is parameterized by a distribution D over G.
It picks an element g ∈ G according to distribution D and returns the pair (x, y) where
x← R(g) and y ← R(g−1).

• The function P = PR takes as input x, y ∈ {0, 1}`(n), and outputs the representation of the
product of the group elements associated to x and y. That is:

– if there are group elements f, g ∈ G such that x = R(f) and y = R(g), then output
z = R(f · g).

– output ⊥ otherwise.

• The function TestL,R is a procedure parameterized by a binary relation L on elements in G.
For strings x, y ∈ {0, 1}`(n), TestL,R(x, y) = 1 if x and y represent group elements that stand
in the relation L. That is, if there are group elements f, g ∈ G such that x = R(f) and
y = R(g), and L(f, g) = 1, then output 1. Else output 0.

An algorithm A that works with black-box access to a group G is denoted A[G](· · · ). A[G](· · · )
has black-box access to the procedures R, P, Samp and Test.

Free and Pseudo-Free Groups. A free group is an infinite group generated by a given set of
generators which have no non-trivial relationships. More precisely, let A = {a1, a2, . . . , ak} be a
non-empty set of distinct symbols, called the generators of the free group. Elements of a free group
are words over the alphabet A. The empty word, denoted ε, is the identity of the free group. We
let F (A) denote the free group generated by A as a set of generators. Words can be simplified
by grouping together adjacent symbols that are the same. For example, the word a1a2a2a3a2 can
be simplified to a1a

2
2a3a2 (but not to a1a

3
2a3, since the free group is not Abelian). Thus, F (A) is

the set of all words over A in canonical form. The multiplication operation for a free group is just
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concatenating the two words, and reducing it to canonical form. A free group has no surprising
identities – the only ones are those that follow from the axioms of group theory.

Informally, a group G is called pseudo-free if it is “indistinguishable” from a free group (in a
sense that we will make precise below). The notion of pseudo-free groups was first introduced by
Hohenberger [Hoh03], and later made precise by Rivest [Riv04].

To define the notion of pseudo-freeness precisely, we introduce the notion of equations over a
free group. Let x1, x2, . . . , xm be variables that can take on values in F (A). An equation in F (A)
takes the form w1 = w2, where w1 and w2 are words over the symbols of F (A) and the set of
variables X = {x1, x2, . . . , xm}. That is, w1, w2 ∈ (X ∪ A)∗. We will denote such an equation by
E(x1, . . . , xm; a1, . . . , ak). Equations that have solutions in the free group are called satisfiable, and
ones that are not are called unsatisfiable. For example, the equation x1a

3
2 = a2x

2
2 is satisfiable by

setting x1 = x2 = a22, whereas the equation x1a1 = a2x1 is unsatisfiable. Letting e denote the
identity of the free group, namely the empty word, the equation x1a2 = e is unsatisfiable as well.

Consider now an equation over variables X and a random set of elements Γ = {g1, . . . , gk} from
the groupG, obtained by replacing the constants a1, . . . , ak in the equation E(x1, . . . , xm; a1, . . . , ak)
by g1, . . . , gk. We call this realE(x1, . . . , xm; g1, . . . , gk). We say that a group G is pseudo-free if
no probabilistic polynomial time adversary can, given randomly chosen g1, . . . , gk ← G, produce
an equation E = E(x1, . . . , xm; a1, . . . , ak) that is unsatisfiable in the free group generated by A,
together with a solution for the corresponding equation realE(x1, . . . , xm; g1, . . . , gk) in the group
G.

Definition 1 (Pseudo-Free Group [Hoh03, Riv04]) A family G = {Gn}n∈N of finite com-
putational groups is pseudo-free if for every probabilistic polynomial-time adversary A, for every
polynomial p, if g1, g2, . . . , gp(n) are elements chosen uniformly and independently at random from
Gn, then the probability

Pr
[
A(g1, g2, . . . , gp(n)) = (E, h1, h2, . . . , hm) : hi ∈ Gn,

E = E(x1, x2, . . . , xm; a1, a2, . . . , ap(n)) is unsatisfiable over the free group F (a1, . . . , ap(n)), and

realE = realE(h1, . . . , hm; g1, g2, . . . , gp(n)) is satisfied over Gn

]
is a negligible function of n.

Remark. This definition differs slightly from that of [Hoh03, Riv04] in that we do not allow the
words or the equations to use the inverses of the generators ai. In particular, in the definition of
[Hoh03, Riv04], the free group F (A) is defined to be the set of strings (A ∪ A−1)∗ where A−1 =
{a−11 , . . . , a−1m } denotes the set of all the inverse symbols, whereas in our case the free group F (A)
is the set of all strings A∗. The case where inverses are provided explicitly is captured in our next
definition, namely that of (free and) pseudo-free groups with relations.

Pseudo-Free Group with Relations. A free group with relations (FGR) is defined sim-
ilarly, except that in addition, the generators are related in certain ways. In particular, let
A = {a1, a2, . . . , am} be a non-empty set of generators as before. Let R = {R1, . . . ,R`} be a
set of relations. Each Ri is an equation of the form wi,0 = wi,1 where wi,0 and wi,1 are words over
the alphabet A. Words can be simplified by grouping together adjacent symbols that are the same.
They can also be simplified using the relations R. For example, in a free group with alphabet
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{a1, a2, a3} and the relation a2a3 = a3a
2
2, the word a1a2a2a3a2 can be simplified to a1a3a

5
2. This

defines an equivalence class of words that can be transformed to each other using the group axioms
and the relations. The free group with relations FR(A) is the set of all equivalence classes of words
over A. A free group with relations has no surprising identities – the only ones are those that follow
from the axioms of group theory and (combinations of) the given relations.

We highlight two important special cases of free groups with relations:

1. The first example is a free Abelian group which is a free group generated by A = {a1, . . . , am}
with the

(
m
2

)
relations aiaj = ajai for all i, j ∈ [m].

2. The second example corresponds to the definition of a free group used in [Hoh03, Riv04]
where the words and equations are allowed to work with inverses of the generators. This is
captured as a free group in our sense generated by A = {a1, . . . , am, a′1, . . . , a′m} with the m
relations aia

′
i = e for all i ∈ [m] (where e, the empty word, is the identity of the free group.)

A pseudofree group with relations is defined similarly:

Definition 2 (Pseudo-Free Group with Relations) A family G = {Gn}n∈N of finite compu-
tational groups is pseudo-free with relations R if for every probabilistic polynomial-time adversary
A, for every polynomial p, if g1, g2, . . . , gp(n) are elements chosen uniformly and independently at
random from Gn subject to satisfying relations R, then the probability

Pr
[
A(g1, g2, . . . , gp(n)) = (E, h1, h2, . . . , hm) : hi ∈ Gn,

E = E(x1, x2, . . . , xm; a1, a2, . . . , ap(n)) is unsatisfiable over FR(a1, . . . , ap(n)), and

realE = realE(h1, . . . , hm; g1, g2, . . . , gp(n)) is satisfied over Gn

]
is a negligible function of n.

We stress that the real group elements g1, . . . , gp(n) that the adversary is given satisfy all the
relations of the group. That is, for every Ri, we have that the equation Ri(g1, . . . , gp(n)) is satisfied.
In our first example of Abelian pseudo-free groups, this simply means that g1, . . . , gp(n) are uniformly
random elements of the group, since we are guaranteed that every two elements in the real group
commute. In our second example, the real group elements g1, . . . , gm, g

′
1, . . . , g

′
m are chosen to be

random elements in the group together with their inverses.
Recall that RSA group Z∗N is a pseudo-free Abelian group:

Theorem 1 ([Mic05]) Let G = {Gn} denote an ensemble of groups where each

Gn = {Z∗N : N = pq where p and q are n-bit primes}

Then the group ensemble G is a pseudo-free Abelian group family under the strong RSA assumption.

We also need the following easy fact:

Proposition 2 Let G = {Gn} and H = {Hn} denote two families of pseudo-free groups with
relations RG and RH , respectively. Then their product Gn×Hn := {G×H : G ∈ Gn, H ∈ Hn} is also
pseudo-free with relations RG×H defined as follows: for every equation RG := (w1,G = w2,G) ∈ RG

and RH := (w1,H = w2,H) ∈ RH , we have that the equation (w1,G, w1,H) = (w2,G, w2,H) ∈ RG×H .

7



2.1 Branching Programs

Branching Programs are a non-uniform model of computation introduced by Lee [Lee59] and studied
by [BDFP86, Bar86, BT87, BT88]. This notion was generalized to branching programs over groups,
monoids and other algebraic structures starting from the work of [BT87, BT88]. We will use the
definition of branching programs over groups, given below.

For a group G, a G-branching program is a family of programs {Pn}n∈N, where Pn operates
on inputs of length n. Each Pn is a sequence of m instructions of the form (var(j), gj,0, gj,1) where
gj,0, gj,1 ∈ G and var : [m] → [n] is a function where var(j) specifies which of the n variables is
associated to the jth instruction. For a group element α ∈ G, we say that a program Pn α-computes
a Boolean function fn if for every x ∈ {0, 1}n:

m∏
j=1

gj,xvar(j)
=

{
α if fn(x) = 1

ID if fn(x) = 0

where ID denotes the identity element of G.
In our presentation, it will be convenient to think of universal branching programs {BPn}n∈N

that operate on 2n bits – n function bits that specify the function to be computed, in addition to n
input bits. The universal program BPn defines a family of functions {Fb(c) := BPn(b, c)}b∈{0,1}n .

Barrington’s Theorem for Group Branching Programs. The following theorem is essen-
tially Barrington’s Theorem, stated in the language of pseudo-free groups with relations:

Theorem 3 Let fG be the free group generated by the set of symbols (a1, . . . , ak;α, β, γ, p, q, r) with
the inverses of α, β, γ, p, q and r, together with the following four relations:

pα−1p−1 = α, qαq−1 = β, αβα−1β−1 = γ, rγr−1 = α

Then, there is a fG-branching program of size O(4d) for any function that can be computed by binary
AND-OR circuits of depth d.

For completeness, we sketch the proof below.
Let C be a Boolean circuit of depth d composed of NOT and two-input AND gates. We will

construct a fG-branching program of size 4d that computes the same function as C. The construction
proceeds inductively.

1. For a variable xi, the single instruction (xi, g0 = 1, g1 = α) is a branching program that
α-computes the function f(x1, . . . , xn) = xi. The single instruction (x1, g0 = 1, g1 = 1)
computes the constant function that outputs 0, and (x1, g0 = α, g1 = α) computes the
constant function that outputs 1.

2. Let P be a branching program that computes a circuit C. Then, the program that computes
the function NOT (C) is constructed as follows. Let (xI0 , g

0
0, g

1
0) be the first instruction in P

and let (xIm , g
0
m, g

1
m) be the last instruction. Then, to create the program P ′ for NOT (C):

• Change the first instruction to (xI0 , pg
0
0, pg

1
0); and

• Change the last instruction to (xIm , g
0
mα
−1p−1, g1mα

−1p−1).
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Whenever P evaluates to the identity element ID, P ′ will evaluate to pα−1p−1 = α, and
whenever P evaluates to α, P ′ will evaluate to pαα−1p−1 = ID, as required.

3. Let P and Q be branching programs that compute circuits C and D. Then, the program that
computes the circuit AND(C,D) is constructed as follows. Let (xI0 , g

0
0, g

1
0) – resp. (yI0 , h

0
0, h

1
0)

– be the first instruction in P – resp. Q – and let (xIm , g
0
m, g

1
m) – resp. (yIm , h

0
m, h

1
m) – be the

last instruction in P – resp. Q. Then, to create the program for AND(C,D), concatenate
four programs C1, D1, C2 and D2, defined as follows:

• To create C1, change the first instruction of C to (xI0 , rg
0
0, rg

1
0);

• To create D1, change the first instruction of D to (yI0 , qh
0
0, qh

1
0); and the last instruction

to (yIm , h
0
mq
−1, h1mq

−1);

• To create C2, change the first instruction of C to (xI0 , p
−1g00, p

−1g10) and the last instruc-
tion to (xIm , g

0
mp
−1, g1mp

−1); and

• To create D2, change the first instruction of D to (yI0 , q
−1h00, q

−1h10); and the last in-
struction to (yIm , h

0
mqr

−1, h1mr
−1);

When either P or Q evaluate to the identity element ID, the new program will evaluate to ID,
and and when both P and Q evaluate to α, P ′ will evaluate to rαβα−1β−1r−1 = rγr−1 = α,
as required.

2.2 Obfuscation

Barak et al. [BGI+01] gave the first formal definition of a notion of obfuscation that captured the
property that the obfuscator strip programs of non-black-box information. They formalized this
by requiring that any predicate computable from the obfuscated program is also computable from
black-box access to it.

Our variant of the definition will be in the programmable black-box group oracle model, where
the adversary gets access to an oracle [G]← BB.InitG(1n) for some group, but the simulator doesn’t.
Informally, this gives the simulator the ability to fake an oracle of his choice on-the-fly during the
simulation. A formal definition, called predicate obfuscation follows.

For a family C of polynomial-size circuits, for a length parameter n let Cn be the circuits in C
with input length n (i.e. C = {Cn}).

Definition 3 (Predicate Obfuscation [BGI+01]) An efficient algorithm O is a predicate ob-
fuscator for the family C = {Cn} in the black-box group oracle model for a family of groups {Gn}n∈N
if it has the following properties:

• Preserving Functionality: There exists a negligible function negl(n), s.t. for all input lengths
n, for any C ∈ Cn:

Pr[∃x ∈ {0, 1}n : (O[G](C))[G](x) 6= C(x)] ≤ negl(n)

The probability is taken over O’s random coins and the choice of the oracle [G]← BB.InitG(1n).

• Polynomial Slowdown: There exists a polynomial p(n) such that for sufficiently large input
lengths n, for any C ∈ Cn, the obfuscator O only enlarges C by a factor of p: |O[G](C)| ≤
p(|C|).
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• Virtual Black-box: For every polynomial sized adversary circuit A, there exists a polynomial
size simulator circuit S and a negligible function negl(n), such that for every input length n,
for every C ∈ Cn, for every predicate π:∣∣∣Pr[A[G](O[G](C)) = 1]− Pr[SC(1n) = 1]

∣∣∣ ≤ negl(n)

The probability is over the coins of the adversary, the simulator and the obfuscator as well as
the choice of the black-box oracle [G]← BB.InitG(1n).

3 Obfuscating Branching Programs using Pseudo-free Groups

In this section, we show a simple obfuscator for all functions computable in NC1, in the idealized
black-box group model for the product group G := GA ×GK ×GP ×GB where:

• GA is a pseudo-free Abelian group. For instance, one can use the family of groups {Z∗N :
N = pq is a product of two n-bit primes p and q} which is pseudo-free Abelian by a result of
Micciancio [Mic05];

• GK and GP are two copies of a pseudo-free non-Abelian group1; and

• GB is a Barrington group which could, for instance, be the symmetric group S5.

The testing relation L for Test is described later on. The sampling distributions D for Samp allow
sampling elements that have 1 in three out of the four coordinates, and in the fourth coordinate
a random element in the corresponding group. In addition, it is possible to obtain the description
of the six special elements (1, 1, 1, g1), ..., (1, 1, 1, g6) where g1, ..., g6 ∈ GB are used in the Bar-
rington construction. From now on, we allow ourselves to say “choose a random element in GB”
(resp., GA, GP , GK) and mean “choose an element of G that has a random element of GB (resp.,
GA, GP , GK) in the appropriate coordinate, and identity elements in the other three coordinates.”

Outline of the Obfuscator Construction. We start with a universal NC1 circuit U that
takes as input 2n bits: n function bits f = f1 . . . fn that specify the circuit to be computed,
and n input bits x = x1 . . . xn. The circuit computes a family of functions on n bits given by
C =

{
Cf (x) = U(f ,x)

}
f∈{0,1}n .

Our first step is to apply Barrington’s theorem (Theorem 3) to the circuit U(f , ·) to produce
a branching program over the group GB in canonical form. That is, the branching program has
m = poly(n) layers, numbered 1 through m, where in the ith layer, the program looks at variable i
(mod 2n). We assume that the first n variables are the function bits and the last n are the input
bits. That is, the first variable is read in layers 1, 2n + 1, 4n + 1, . . ., and so forth. We stress that
this is a simplifying convention only: clearly, any branching program can be converted into one in
this canonical form.

The obfuscator will henceforth work with this branching program which is composed of tuples

(var(j), gj,0, gj,1) for every j ∈ [m].

1A possible candidate for such a group is GL2(ZN ), the group of two-by-two matrices with elements in the ring
ZN where the group operation is matrix multiuplication.
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where var : {1, 2, . . . ,m} → {1, 2, . . . , n} is a function that assigns a variable to every tuple in the
branching program, and gj,0, gj,1 ∈ GB are group elements. Below we view this as a branching
program over the product group G where the constituent group elements are gj,0 := (1, 1, 1, gj,0)
and gj,1 := (1, 1, 1, gj,1), respectively.

Our second step is to use Kilian’s technique [K89] to randomize this branching program, with
the goal of forcing the adversary to perform its evaluation “in the right order”. Namely, we sample
uniformly random elements [u1], . . . , [um] ← GK using the sampling interface SampR,D where the
distribution D picks a uniformly random element in GK . (More precisely, each [um] is in fact the
element (1, 1, um, 1).) We then randomize each tuple (var(j), [gj,0], [gj,1]) into:(

var(j), [uj ] · [gj,0], [uj ] · [gj,1]
)

Note that if the original branching program ([α], ID)-computes a function f , then the new
randomized program ([u∗ ·α′], [u∗])-computes the same function, where u∗ :=

∏m
i=1 ui.

The obfuscated program contains these tuples, and access to the black-box group oracle with a
Test function parameterized by the relation

L

(
(fa, fk, fp, fb), (ga, gk, gp, gb)

)
= 1 if and only if ga = fa = 1, gk = fk = u∗ and gb = fb = 1

Informally, the Kilian randomization makes sure that the only way for the adversary to deduce
useful information from the obfuscated program is to multiply elements from consecutive layers,
and do so in the prescribed order. However, this still does not provide sufficient protection, since
an adversarial evaluator could still evaluate only parts of the program and compare partial results
when run on different inputs (what we call the “partial evaluation attack”); furthermore, she could
multiply elements from different layers in the branching program in a way thats inconsistent with
any input string to the branching program (what we call the “inconsistent evaluation attack”). We
thus use two additional randomization steps:

Our third step is to ensure security against the partial evaluation attack. We do this by
completely randomizing the group elements in each tuple using the non-Abelian pseudo-free group
GP . That is, we randomize each tuple (var(j), [gj,0], [gj,1]) into:(

var(j), [vj,0] · [gj,0], [vj,1] · [gj,1]
)

where the uniformly random elements vj,b ← GP are sampled using the Samp oracle. (More
precisely, the sampled element is of the form (1, 1, vj,b, 1).)

All these still leave one more attack in the picture, namely the inconsistent evaluation attack.
That is, for two tuples j and j′ such that var(j) = var(j′), the adversary could choose gj,0 from
the first tuple and gj′,1 from the second tuple, when computing a group product. This will leak
information to the adversary beyond what he could learn from black-box access to the function,
and in some case, could even reveal the entire function to him.

To force consistency, we use an Abelian randomization technique. Namely,

• For each j ∈ {1, . . . ,m} and b ∈ {0, 1}, choose uniformly random numbers aj,b subject to the
condition that for each i, and each b ∈ {0, 1},∏

j:var(j)=i

aj,b = 1
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• Randomize each tuple (var(j), [gj,0], [gj,1]) into:(
var(j), [aj,0] · [gj,0], [aj,1] · [gj,1]

)
where aj,b := (aj,b, 1, 1, 1).

The idea is that if the adversary evaluates the program consistently, then all the elements aj,b
cancel out. On the other hand, the adversary cannot force these random Abelian components to
cancel out on any invalid execution, since doing so would mean that he found surprising relations
between the Abelian group elements, thus violating pseudofreeness of the Abelian group GA.2

Both the pseudo-freeness of the groups as well as the black-box idealization are necessary for
security. For example, even though Z∗N is a pseudo-free Abelian group, this alone does not prevent
an adversary from adding two numbers x, y ∈ Z∗N , an operation that is not legal in the multiplicative
group interface.

Our final obfuscated branching program consists of the tuples (j, [gj,0], [gj,1]) together with the
black-box group interface. For a formal description of the obfuscator, see Figure 1.

Theorem 4 Assume that H = {Hn}n∈N is a (non-Abelian) pseudo-free family of groups, and
assume that the Strong RSA assumption holds. Then, there exists an obfuscator O for the class
of NC1 circuits, secure under the virtual black-box definition, in the black-box group model for the
product group G := GA ×GP ×GK ×GB where GA is an Abelian pseudo-free group, GK and GP

are isomorphic copies of the non-Abelian pseudofree group H, and GB is the symmetric group S5.

Proof: Define a layer j ∈ {1, . . . ,m} of the branching program to be a function layer if var(j) ∈
{1, 2, . . . , n} is a variable that describes the function being obfuscated. Let S denote the set of
(secret) function layers. Define a layer j ∈ {1, . . . ,m} of the branching program to be an input
layer if var(j) ∈ {n+ 1, n+ 2, . . . , 2n} is a variable that describes the input to the function. Let P
denote the set of (public) input layers.

For a formal description of the obfuscator, see Figure 1 and for the computation of the obfuscated
program, see Figure 2. Correctness is straightforward. To show that this is an obfuscation of the
class of NC1 circuits C := {U(f , ·)}f∈{0,1}n ,it remains to show that it satisfies the virtual black-box
property.

Virtual Black-box. Let A[G] be a PPT adversary. We now construct a simulator SimU(f ,·) which
has oracle access to the functionality of U(f , ·), and simulates the view of the adversary given the
obfuscated program O(U(f , ·)).

The simulator runs the adversary on input a fake obfuscated branching program B̃P that
consists of uniformly random strings in {0, 1}`(n). Namely, a uniformly random string [σj ] for every
function layer j, and a pair of uniformly random strings ([σj,0], [σj,1]) for every input layer j.

During the course of the simulated execution, the simulator maintains a list of tuples where each
tuple T is of the form T := (Λ, y) where y ∈ {0, 1}`(n) and Λ = (λ1, . . . , λ`) is an ordered sequence
of pointers where each λi is either: σj , σj,b, or a group element that the simulator generated as a
result of a query to the Samp oracle (to be described below.) The semantics is that y is the product
of the group elements represented in the list Λ.

2An alternative way to obtain such elements in GA is to choose k − 1 random elements a1, ..., ak−1 in GA along
with their inverses a−1

1 , ..., a−1
k−1. Now, set ak = Πi=1..ka

−1
i .
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Obfuscator O[G]

Input: A string f = (f1, . . . , fn), specifying the function U(f , ·) to be computed.

Oracle Access: The black-box group oracle for the product group G := GA × GP ×
GK × GB, consisting of the oracles P, Samp and Test with parameters described
below.

Operation of the Obfuscator O:

1. Run Barrington’s procedure on the universal NC1 circuit to obtain a universal
branching program BP :=

{
(var(j), [gj,0], [gj,1])

}m
j=1

.

2. Call the oracle SampDK
to get group elements [u1], . . . , [um] ∈ G where the

distribution DK samples uniformly random elements from the set {1}× {1}×
GK × {1}.

3. Call the oracle SampDP
to get a group element [vj ] ∈ G for every function

layer j, and a pair of group elements [vj,0], [vj,1] ∈ G for every input layer j.
Here, the distribution DP samples uniformly random elements from the set
{1} × {1} ×GK × {1}.

4. For every input variable i ∈ {n+1, . . . , 2n}, and for every j such that var(j) = i,
and c ∈ {0, 1}, use the oracle SampDA

to get group elements [aj,c] such that∏
j:var(j)=i

[aj,0] = 1 and
∏

j:var(j)=i

[aj,1] = 1

Here, the distribution DA samples uniformly random elements from the set
GA×{1}× {1}× {1}. (This can be done in many ways, see the description in
the outline for two alternatives.)

Now, randomize the branching program. That is, for every 1 ≤ j ≤ m:

1. If var(j) ∈ S, then set
[gj ] := [gj ] · [uj ] · [vj ]

2. If var(j) ∈ P , output both [gi,0] and [gi,1] where

[gj,c] := [gj,c] · [uj ] · [vj,c] · [aj,c]

As the description of the branching program, output these group elements together
with a Test oracle for the relation L defined by

L

(
(1,u∗,−, 1), (ga, gk, gp, gb)

)
= 1 if and only if ga = 1, gk = u∗ and gb = 1

where u∗ := u1u2 . . .um.

Figure 1: The Obfuscator for NC1 Circuits
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Evaluating the Obfuscated Program O[G](U(f , ·))

Input: An obfuscated branching program given by a group element [gj ] for every function
layer j, and a pair of group elements ([σj,0], [σj,1]) for every input layer j. An input
x = (x1, . . . , xn).

The Obfuscated Program is evaluated as follows.

• For every function layer j ∈ {1, . . . ,m}, let gj,0 := gj,1 := gj .

• Compute

gx :=
m∏
j=1

gj,xvar(j)

using the product oracle P.

• Call the oracle Test on input gx. If the Test oracle returns 1, output 0; other-
wise output 1.

Figure 2: Evaluating the Obfuscated Branching Program

The data structure T is initialized with the tuples
(
([σj ]), [σj ]

)
for every function layer j, and

tuples (
([σj,0]), [σj,0]

)
and

(
([σj,1]), [σj,1]

)
for every input layer j.

Before proceeding further, we need the notions of equivalent tuples, invalid tuples and inconsis-
tent tuples. Two tuples Λ1 and Λ2 are equivalent if they are either: (a) identical, or (b) identical
except that they differ by a single group element which is an output of SampGA

. Equivalence of
tuples is the transitive closure of this condition.

Definition 4 (Valid and Invalid Tuples) A valid tuple T = (Λ, y) relative to the branching

program B̃P is one where Λ = (λ1, . . . , λm) where each λi ∈ {0, 1}`(n) and

1. for every function layer j, λj = [σj ]; and

2. for every input layer j, λj ∈
{

[σj,0], [σj,1]
}

.

A tuple that is not valid is called invalid.

That is, a valid tuple represents a product of exactly m elements, where the jth element is
chosen from the jth tuple of the branching program B̃P . Note, however, that a valid tuple need
not correspond to the evaluation of B̃P on any single input x.

Definition 5 (Consistent and Inconsistent Tuples) A consistent tuple T = (Λ, y) relative to

the branching program B̃P and an input x ∈ {0, 1}n is one where L = (λ1, . . . , λm) where each
λi ∈ {0, 1}`(n) and

1. for every function layer j, λj = [σj ]; and
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2. for every input layer j, λj = [σj,xvar(j)
].

A tuple that is valid but not consistent is called inconsistent.

Note that a consistent tuple is always valid, but not necessarily vice versa.
We now proceed with the description of the simulator. The simulator runs the adversary on the

fake branching program B̃P and answers its queries to the black-box group oracle [G], as follows:

1. Answering the A queries to P: When A issues a query of the form (y1, y2) ∈ ({0, 1}`(n))2 to
the black-box group multiplication oracle P, Sim does the following:

• Check if there are tuples of the form (Λ1, y1) and (Λ2, y2) in his list. If there are no such
tuples, then return ⊥.

• Check if there is a tuple (Λ, y) such that Λ is equivalent to Λ1||Λ2. If yes, return y.

• Otherwise, return a uniformly random string y and add the tuple
(
(Λ1||Λ2), y

)
to the

list.

2. Answering the A queries to Samp: When A issues a query to Samp, return a random string
y ∈ {0, 1}∗, and add the tuple ((y), y) to the list.

3. Answering the A queries to Test: When A issues a query y ∈ {0, 1}∗ to Test, do the following:

(a) Check if there is a tuple of the form (Λ, y) in the list. If not, output 0;

(b) Check if Λ is a consistent list w.r.t. input x. If not, output 0;

(c) If both checks pass, query the oracle U(f , ·) on input x, and output whatever the oracle
returns.

4. Finally, output whatever A outputs.

We now show that the simulated execution of the adversary described above is computationally
indistinguishable from the real execution, assuming that the groups GK and GP are pseudo-free
non-Abelian and that that group GA is pseudo-free Abelian. That is,∣∣∣Pr[A[G](O[G](U(f ,x))) = 1]− Pr[Sim[G],U(f ,·)(1n) = 1]

∣∣∣ ≤ negl(n)

We will show this by the following sequence of claims:

Claim 5 Assume that the adversary makes two queries to the product oracle P with lists L1 6= L2

such that the products evaluate to the same real group element. Then, there is a PPT algorithm E
such that

AdvE,pf(GP )(1
n) ≥ Adv

O,U(f ,·)
A (1n)− negl(n)

Proof: Let the two multiplication queries along with their corresponding histories be (L1, y1), (L2, y2)
and (L′1, y

′
1), (L

′
2, y
′
2). Let S1, S2, S

′
1, S
′
2 denote the ordered sequence of branching program group

elements encoded in L1, L2, L
′
1, L

′
2 respectively.

Assume that L1||L2 6= L′1||L′2, and yet

R−1(y1) ·R−1(y2) = R−1(y′1) ·R−1(y′2)

15



Let σi (resp. σ′i) be the projections of R−1(yi) (resp. R−1(y′i)) on the GP component. Thus, we
have σ1 · σ2 = σ′1 · σ′2 and consequently,∏

i∈S1||S2

σi =
∏

i∈S′1||S′2

σi (1)

Yet, S1||S2 6= S′1||S′2, violating pseudofreeness of GP . �

Claim 6 Assume that the adversary makes an inconsistent query to the black-box group oracle.
Then, there is an algorithm B such that

Advpf.abB (1n) ≥ AdvO,BPb
A (1n)− negl(n)

Proof: Let ` := bm/2nc. The adversary B gets as input a sequence of elements b0, b2, . . . , b`−1 ∈ GA

and b0, . . . , b
′
`−1 ∈ GA together with their inverses. It generates the Abelian randomization in the

following way:

• Choose a random variable i ∈ {1, 2, . . . , 2n}.

• Set the Abelian randomization elements for variable i as follows: choose v2nj+i,0 = bjb
−1
j+1 (mod `),

and v2nj+i,1 = b′j(b
′
j+1 (mod `))

−1. Note that the numbers v2nj+i,0 and v2nj+i,1 are random sub-

ject to the condition that their product is 1. That is,
∏`

j=0 v2nj+i,0 = 1 and
∏`

j=0 v2nj+i,1 = 1.

For the remaining variables i′ 6= i, set the Abelian randomization components to be 1. Any
inconsistent evaluation on variable i that results in a test query evaluating to 1 gives us an equation
that is unsatisfiable in the free Abelian group but is clearly satisfied in GA. �

Claim 7 Assume that the adversary makes an invalid query to the black-box group oracle. Then,
there is an algorithm B such that

AdvB,pf(GK)(1
n) ≥ AdvA,O,U(b,·)(1

n)− negl(n)

Proof: Let the invalid test query together with its corresponding history be (L, y). Let S denote
the ordered sequence of branching program group elements encoded in L. Since this is an invalid
query, we have ∏

i∈S
σi = g1g2 . . .gm

and S 6= (1, 2, . . . ,m). This immediately gives us an attack against the pseudo-freeness of GK . �
�
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