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Abstract. Information theoretic cryptography is discussed based on conditional Rényi en-
tropies. Our discussion focuses not only on cryptography but also on the definitions of con-
ditional Rényi entropies and the related information theoretic inequalities. First, we revisit
conditional Rényi entropies, and clarify what kind of properties are required and actually
satisfied. Then, we propose security criteria based on Rényi entropies, which suggests us
deep relations between (conditional) Rényi entropies and error probabilities by using sev-
eral guessing strategies. Based on these results, unified proof of impossibility, namely, the
lower bounds of key sizes is derived based on conditional Rényi entropies. Our model and
lower bounds include the Shannon’s perfect secrecy, and the min-entropy based encryption
presented by Dodis, and Alimomeni and Safavi-Naini. Finally, a new optimal symmetric key
encryption is proposed which achieve our lower bounds.

Keywords: Information Theoretic Cryptography, (Conditional) Rényi entropy, Error prob-
ability in guessing, Impossibility, Symmetric-key Encryption, Shannon’s Bound, Shannon’s
impossibility

1 Introduction

1.1 Motivation and Related Works

How to measure the quantities of information is an important issue not only in information
theory, but also in cryptography because information measures in cryptography tell us
not only the coding efficiency but also security level in terms of equivocation of secret
information. Historically, Shannon entropy [2] is the measure of information theoretic
cryptography. On the other hand, it is also important to evaluate the cardinality of a
set in which a random variable takes values, i.e., Hartley entropy [3]. Furthermore, min-
entropy [4] is also considered to be an important quantity in guessing the secret in the
context of cryptography.

For instance, consider the case of symmetric-key encryption. As is well known by Shan-
non’s seminal work [5], the perfect secrecy in symmetric-key encryption is formalized as
H(M) = H(M |C), where M and C are random variables which take values on sets of
plaintexts and ciphertexts, respectively; and then, symmetric-key encryption with perfect
secrecy implies the lower bound on secret-keys H(K) ≥ H(M) (Shannon’s bound, Shan-
non’s impossibility, [5]). Similarly, we also know that the number of key candidates can be
no less than the cardinality of the set of plaintexts. Furthermore, Dodis [6] recently showed
that the similar property also holds with respect to min-entropy. Namely, he showed the
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bound on secret-keys, R∞(K) ≥ R∞(M), for symmetric-key encryption with perfect se-
crecy3. Also, Alimomeni and Safavi-Naini [8] introduced the guessing secrecy, formalized
by R∞(M) = R∞(M |C), and under which they derived the bound R∞(K) ≥ R∞(M),
where R∞(·) and R∞(·|·) are the min-entropy and the conditional min-entropy, respec-
tively. Here, it is worth noting that the above results are proved utilizing totally different
techniques. This fact is very interesting from the theoretical viewpoint, and it must be
fruitful not only for cryptography but also for information theory if we can unify the above
proofs and derive them as corollaries. In order to unify them, Rényi entropy [9] might be
useful since it is considered to be a generalization of Shannon, min, and several other kinds
of entropies as well as the cardinality.

However, unfortunately, we cannot expect Rényi entropies to satisfy rich properties like
Shannon entropies, since Rényi entropies are obtained axiomatically from several relaxed
postulates for Shannon entropy. Due to this fact, subadditivity does not hold for Rényi
entropy although it is very fundamental property of Shannon entropy. Hence, it is not so
easy to unify the above different kinds of proofs in terms of Rényi entropies. Even worse,
the definition of conditional Rényi entropy is not uniquely determined. In order to under-
stand the conditional Rényi entropies, the results by Teixeira et al. [10] are very useful.
In [10], the relations among three different kinds of conditional Rényi entropies and four
different kinds of conditional min-entropies are discussed. However, the authors missed to
include the other different definitions of conditional Rényi entropies provided in [11, 12].
Moreover, they did not find the definitions of conditional Rényi entropies corresponding to
several conditional min-entropies [13, 14] which are useful in cryptographic contexts. Find-
ing reasonable explanation for these min-entropies in terms of conditional Rényi entropies
is also an important contribution, since these relations actually bridge interesting infor-
mation theoretic measures of conditional Rényi entropies and cryptographically important
min-entropies.

Finally, note that constructing a unified framework of information theoretic cryptog-
raphy based on conditional Rényi entropies is not only theoretically interesting but also
practically important, because measuring the security by (conditional) Rényi entropies
offers us a new security criteria, and it may open a new vista in the field while covering
existing criteria. In particular, discussing min-entropy criteria is very important since the
attacker will guess the plaintext with the highest probability (called guessing secrecy).
From this viewpoint, it is plausible that the security should be measured by min-entropy
instead of Shannon entropy. Although this fact was pointed out by Alimomeni and Safavi-
Naini [8], an explicit construction of encryption satisfying the guessing secrecy criteria
is not provided in the literature. Hence, it is a very interesting open problem to design
information theoretic cryptography under Rényi entropic security criteria in general. In
particular, we are interested in the constructions tightly meeting the lower bounds of key
size measured by min-entropies or Rényi entropies in general.

1.2 Our Contributions and Organization of This Paper

Conditional Rényi entropies, revisited (Sections 2 and 3) In [10], Teixeira et al.
analyzed the relations among exiting conditional Rényi entropies. However, their analy-
ses should be reinforced with the following three aspects. First, they do not discuss the
implications of their results from an axiomatic viewpoints in entropies. Recall that Rényi
entropy was originally discovered in [9] axiomatically, and many kinds of entropies are
derived from Rényi entropy as special cases. Hence, it is desirable to discuss conditional
3 Merhav [7] studied the exponent of this kind of success probability in guessing for symmetric-key cryp-

tography with variable-length keys in asymptotic setup. In this study, each key depends on the ciphertext,
and hence, its length can be varied depending on the ciphertext.
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Rényi entropies from axiomatic and/or technological viewpoints. Second, the analysis in
[10] missed to include two important conditional Rényi entropies due to Arimoto [11]
and Hayashi [12] denoted by RA

α(X|Y ) and RH
α(X|Y ), respectively, which are introduced

in information theoretic and/or cryptographic contexts. Third, cryptographically impor-
tant conditional min-entropies are not sufficiently analyzed in [10] since they cannot be
obtained from the conditional Rényi entropies discussed in [10].

Based on the above motivations, we start our discussion from the postulates required
for Shannon and Rényi entropies, and we summarize in Sect. 2.3 what kind of properties
should be required and/or are interested. We choose several important properties such
as non-negativity, conditioning reduces entropy, data processing inequality (DPI), etc.,
as the conditions hopefully required for conditional Rényi entropies while the chain rule
is outside the scope. Actually, we will see in Sect. 2.4 that the chain rule does not hold
generally in the case of (conditional) Rényi entropies. Then, we consider the relation
between conditional Rényi entropies and conditional min-entropies. We clarify that the
conditional min-entropies useful in cryptographic context are related to the conditional
Rényi entropies RA

α(X|Y ) and RH
α(X|Y ).

Sections 3.1–3.3 are devoted to show that the above properties hopefully required for
conditional Rényi entropies are actually satisfied by RA

α(X|Y ) and RH
α(X|Y ). Furthermore,

we show an extension of Fano’s inequality [15] for conditional Rényi entropies in Section
3.4, which will be useful in the forthcoming discussion as well as the inequalities discussed
in Sections 3.1–3.3.

Proposal of security criteria based on conditional Rényi entropies (Section 4)
In this paper, we propose security criteria based on conditional Rényi entropies RA

α(X|Y )
and RH

α(X|Y ). Our motivation and significance for proposing it lies in the following two
points.

The first point lies in realistic significance which is deeply related to guessing probabil-
ity by adversaries. Owing to theoretical results about the conditional Rényi entropies in
Sections 2 and 3, we will show that conditional Rényi entropies, RA

α(X|Y ) and RH
α(X|Y ),

play an important role to derive a lower bound on failure of guessing by adversaries, and
it turns out that our security criteria is a sufficient condition to make it reasonably large
enough. Our way of thinking of this is deeply related to the approach to show the converse
of channel coding theorem by Shannon [2] and the recent one to show the converse of
channel coding theorem in finite blocklength regime [16, 17] in information theory.

The second point lies in mathematical importance for generalizing Shannon’s impos-
sibility (or Shannon’s bounds) H(K) ≥ H(M) in symmetric-key encryption with perfect
secrecy. For details about this contribution, see below.

Generalizing Shannon’s impossibility in encryption (Sections 5 and 6) One of
our main purpose in this paper is to generalize Shannon’s impossibility (or Shannon’s
bound) H(K) ≥ H(M) in perfectly secure symmetric-key encryption so that all known
bounds (i.e., the Shannon’s, Dodis’s, and Alimomeni and Safavi-Naini’s bounds) are cap-
tured in our generic bound. By utilizing information-theoretic results about conditional
Rényi entropies obtained in Sections 2 and 3, we extend Shannon’s impossibility result
for encryption by a generic and unified proof technique, and it turns out that our new
bound includes all the bounds mentioned above (i.e., the bounds by Shannon, Dodis, and
Alimomeni and Safavi-Naini) as special cases.

Then, we propose constructions of secret-key encryption meeting the lower bounds
which we derived by Rényi entropy of order α. It is well-known that, in the case of α = 1,
one-time pad [18] is optimal in the sense of key size measured by Shannon entropy. Hence,
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we are interested in the case of α 6= 1. In particular, we will focus on the case of α = ∞,
i.e., the situation where the security is measured by the conditional min-entropies. Note
that under conditional min-entropy security criteria, perfect secrecy is not guaranteed in
general. Actually, we propose a symmetric-key encryption that does not satisfy the perfect
secrecy but satisfies the security measured by (conditional) min-entropies. Furthermore,
it turns out that the proposed symmetric key encryption achieves tight lower bounds of
key-size.

Furthermore, in Sect. 6, we slightly extend our bounds in terms of conditional Rényi
entropies to the one under a class of conditional entropy functions which is naturally
characterized from axiomatic consideration discussed in Section 2.3. This part of contri-
bution is mainly shown from a theoretical interest, and for possibility of apperance of new
conditional entropy formulas except for RA

α(X|Y ) and RH
α(X|Y ).

2 Conditional Rényi Entropies, Revisited

2.1 Preliminaries: Rényi Entropies and α-divergence

Definition 1 (Rényi entropy, [9]) Let X be a random variable taking values in a finite
set X . For a real number α ≥ 0, the Rényi entropy of order α is defined by4

Rα(X) :=
1

1− α
log
∑
x∈X

PX(x)α.

It is well known that many information measures such as Hartley entropy, Shannon
entropy, collision entropy, and min-entropies are special cases of Rényi entropy. Namely,
they are respectively obtained by R0(X) = log |X |, R1(X) := limα→1 Rα(X) = H(X),
R2(X) = − log Pr{X = X ′}, and R∞(X) := limα→∞ Rα(X) = minx∈X {− log PX(x)},
where X and X ′ are independently and identically distributed (i.i.d.) random variables,
and H(X) := −

∑
x∈X PX(x) log PX(x) is Shannon entropy.

In the forthcoming discussion, the α-divergence (also known as Rényi divergence of
order α or the normalized Chernoff α-divergence) is important.

Definition 2 (α-divergence) Let X and Y be random variables taking values in a finite
set X . For a real number α ≥ 0, the α-divergence is defined by

Dα(X‖Y ) = Dα(PX(·)‖PY (·)) =
1

α− 1
log
∑
x∈X

PX(x)α

PY (x)α−1
. (1)

In particular, binary α-divergence is analogously defined as dα(p‖q) := Dα([p, 1−p]‖[q, 1−
q]) = (α− 1)−1 log

{
pαq1−α + (1− p)α(1− q)1−α

}
.

The α-divergence is considered as an generalization of Kullback-Leibler divergence de-
fined by D(X‖Y ) :=

∑
x∈X PX(x) log(PX(x)/PY (x)) since it holds that limα→1 Dα(X‖Y ) =

D(X‖Y ). Note that the α-divergence is nonnegative for all α ≥ 0. We also note that α-
divergence for α ∈ (0,∞) is equal to 0 if and only if PX(·) = PY (·), similarly to Kullback-
Leibler divergence. However, it is only sufficient in the cases of α→ 0 and α→∞.

4 Throughout of the paper, the base of logarithm is e. Note that the base of logarithm is not essential
since the same arguments hold for arbitrary base of logarithm.
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2.2 Definitions of Conditional Rényi Entropies

Similarly to the conditional version of Shannon entropy, it is natural to consider the con-
ditional Rényi entropies. Actually, several definitions of conditional Rényi entropies have
been proposed, e.g., [11, 12, 19–22]. In particular, relations and properties are discussed in
[10] among three kinds of conditional Rényi entropies such as

RC
α(X|Y ) :=

∑
y∈Y

PY (y)Rα(X|Y = y) (2)

RJA
α (X|Y ) := Rα(XY )−Rα(Y ) (3)

RRW
α (X|Y ) :=

1
1− α

max
y∈Y

log
∑
x∈X

PX|Y (x|y)α (4)

defined in [19], [20, 21], and [22], respectively. The definitions RC
α(X|Y ) and RJA

α (X|Y ) can
be interpreted as extensions of conditional Shannon entropy since they are analogues of
H(X|Y ) :=

∑
y∈Y PY (y)H(X|Y = y) and H(X|Y ) := H(XY )−H(Y ), respectively. The

third definition RRW
α (X|Y ) is obtained by letting ε = 0 of the conditional smooth Rényi

entropy [22].
In addition to the above, two conditional Rényi entropies are introduced in [11] and

[12], which are defined as

RA
α(X|Y ) :=

α

1− α
log
∑
y∈Y

PY (y)

{∑
x∈X

PX|Y (x|y)α

}1/α

(5)

RH
α(X|Y ) :=

1
1− α

log
∑
y∈Y

PY (y)
∑
x∈X

PX|Y (x|y)α (6)

respectively. Both of these conditional Rényi entropies are outside the scope of [10].
RH

α(X|Y ) is defined in [12] to derive an upper bound of leaked information in universal
privacy amplification. RA

α(X|Y ) is used in [11] to show that the strong converse of chan-
nel coding theorem. We also note that RA

α(X|Y ) is implicitly used even in cryptographic
contexts. In [23], RA

α(X|Y ) = −((1+s)/s)φ(s/(1+s)|X|Y ) is used to bound an average se-
curity measure of privacy amplification, where φ(t|X|Y ) := log

∑
y(
∑

x PXY (x, y)
1

1+t )1−t.
Not only the conditional Rényi entropies discussed in [10] but also RA

α(X|Y ) and
RH

α(X|Y ) is non-negative and is upper bounded by log |X |. Note that RA
α(X|Y ) = 0

and RH
α(X|Y ) = 0 hold if and only if every x is obtained from a certain y ∈ suppPY

deterministically, where suppPY := {y ∈ Y | PY (y) > 0}. On the other hand, RA
α(X|Y ) =

RH
α(X|Y ) = log |X | holds, if X and Y are statistically independent and X is uniformly

distributed on X . In addition, RA
α(X|Y ) and RH

α(X|Y ) are continuous with respect to
α ∈ (0,∞). The proofs are not so hard and we omit them (Proofs for RA

α(X|Y ), see
[11]). Note that the following fundamental relations hold with respect to RH

α(X|Y ) and
RA

α(X|Y ).

Proposition 1 For a fixed real number α ≥ 0, the probability distributions PY , and the
conditional probability distribution PX|Y , it holds that

RH
α(X|Y ) ≤ RA

α(X|Y ). (7)

Note that RH
α(X|Y ) ≤ RA

α(X|Y ) for α > 1 was proved in Lemma 7 of [23]. In addition,
Proposition 1 means that: it holds even for 0 < α < 1 and its proof is simply shown by
Jensen’s inequality; and the cases of α = 0, 1 are meant to take the limits at α = 0, 1 (see
Theorem 1 and Proposition 2).
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2.3 Fundamental Requirements for Conditional Rényi entropies

Here, we discuss fundamental properties required to conditional Rényi entropies from
axiomatic, information theoretic, and cryptographic viewpoints. In this section, Rényi
entropies are independent from each definition, and hence, it is denoted by Rα(X|Y ).

Axiomatic Consideration Recall that Rényi entropy is axiomatically obtained, namely,
it is the unique quantity (up to a constant factor) that satisfies weakened postulates
for Shannon entropy [9]. According to [9], the postulates that characterize the Shannon
entropy are, (a) H(X) is a symmetric function with respect to each probability in a
probability distribution of X; (b) H(X) is a continuous function of PX ; (c) H(X) =
1 if X is a uniform binary random variable, and; (d) the chain rule, i.e., H(XY ) =
H(Y ) + H(X|Y ) holds5, where H(X|Y ) :=

∑
y PY (y)H(X|Y = y). Then, Rényi entropy

is obtained by (a)–(c) and, instead of (d), H(XY ) = H(X) + H(Y ) if X and Y are
statistically independent.

Based on this derivation, it might be acceptable to require conditional Rényi entropies
to satisfy (a)–(c) with conditioned random variables. Namely,

– Rα(X|Y ) is symmetric with respect to {PX|Y (x|y)}x∈X for each y ∈ Y, as well as
{PY (y)}y∈Y .

– Rα(X|Y ) is a continuous function with respect to PXY (·, ·).
– Rα(X|Y ) = 1 if a binary random variable X is uniformly distributed for given Y , i.e.,

PX|Y (1|y) = PX|Y (0|y) = 1/2 for all y ∈ suppY .

All conditional Rényi entropies in this paper satisfy the above properties although we omit
their proofs.

Since the postulate (d) is replaced with H(XY ) = H(X) + H(Y ) for independent
random variables X and Y , it is natural to expect that Rényi entropies do not satisfy the
chain rule. Actually, it is pointed out in [10, Theorem 5] that RC

α(X|Y ) and RRW
α (X|Y )

do not satisfy the chain rule for arbitrary α 6= 16. We will see in Section 2.4 that the
chain rules do not hold for RA

α(X|Y ) and RH
α(X|Y ) either. Instead, we consider several

fundamental properties related to chain rule.
First, note that H(XY ) ≥ H(X) is derived from the chain rule of Shannon entropies

since the conditional Shannon entropy is non-negative. The inequality H(XY ) ≥ H(X)
means that additional information Y increases the entropy of X. Hence, we call this
inequality as “Additional information Increases Entropy,” (AIE) as opposed to CRE which
will be introduced below. In this paper, we will focus on the non-negativity and AIE for
(conditional) Rényi entropies.

Second, it is also known that Rényi entropies do not satisfy the subadditivity since only
the additivity for independent random variables is required for Rényi entropies instead
of the postulate (d). Subadditivity for Shannon entropy is written as H(XY ) ≤ H(X) +
H(Y ), which is equivalent to H(X|Y ) ≤ H(X) due to the chain rule. This inequality is
called as “Conditioning reduces entropy” [24], CRE for short. Even if the chain rule does
not hold for Rényi entropies, we have possibilities that CRE holds for Rényi entropies.

Summarizing so far, instead of the chain rules, three fundamental properties discussed
above are formally given in a form of

0
(8a)

≤ Rα(X|Y )
(8b)

≤ Rα(X)
(8c)

≤ Rα(WX) (8)

5 This form of the chain rule is inductively obtained by using the postulate (d) in [9, p. 547].
6 In the case of α = 1, conditional Rényi entropies coincide with conditional Shannon entropy, and hence,

chain rule is obviously satisfied. In addition, it is obvious that RJA
α (X|Y ) also satisfies the chain rule

since it is defined to satisfy the chain rule.
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for arbitrary α ≥ 0, and random variables W,X, and Y , which gives an upper and a lower
bounds of Rα(X). The inequality (8a) means that the conditional Rényi entropies is non-
negative. In addition, CRE (8b) states that the entropy of random variable X decreases if
some information Y related to X is revealed. On the other hand, AIE (8c) implies that the
entropy of X increases if some information is added. We will investigate the inequalities
with respect to (8a) and (8b) in this paper, while (8c) itself is not directly investigated.
Instead, (8c) is proved as a special case of (9c) which is introduced later in (9)7.

The equalities of (8a) and (8b) hold under the following conditions:

– (8a): Rα(X|Y ) = 0 holds if X = f(Y ) for a certain (deterministic) mapping f : Y → X .
– (8b): Rα(X) = Rα(X|Y ) holds if X and Y are independent.

It is easy to show that all conditional Rényi entropies in this paper satisfy the non-
negativity while the proofs of them are omitted.

Inequality (8) shows an upper and a lower bounds of Rα(X). Since we are interested
in conditional Rényi entropies, it might be natural to require its upper and lower bounds
in a similar manner to (8), namely,

0
(9a)

≤ Rα(X|Y Z)
(9b)

≤ Rα(X|Z)
(9c)

≤ Rα(WX|Z). (9)

The inequality (9a) is essentially the same with (8a). Hence, we are concerned in this
paper with the inequalities (9b) and (9c). As a natural extension of Shannon entropies,
inequalities (9b) and (9c) hold with equalities under the following conditions, which will
be proved in later sections:

– (9b): Rα(X|Y Z) = Rα(X|Z) holds if8 X ↔ Z ↔ Y .
– (9c): Rα(X|Z) = Rα(WX|Z) holds if W = f(X,Z) for a certain (deterministic)

mapping f : X × Z →W.

In the case of conditional Shannon entropies, i.e., α→ 1, (9b) combining with chain rule
results in H(XY Z) + H(Z) ≤ H(XZ) + H(Y Z). This inequality implies that Shannon
entropy is polymatroid [26], which is one of the most important properties of Shannon
entropy. While Rényi entropy is not9 polymatroid for general α ≥ 0, the lower bound of
(9) is not only a simple extension of CRE but also has an important connection to the
structure of information measures.

The inequality (9c) is not only a mathematical extension of (8c) but also useful in
proving information theoretic inequality. Actually, the equality case of (9c) plays a crucial
role in this paper, see Proof II in Section 5.2. In addition, in the case of (conditional)
Shannon entropies, i.e., α → 1, (9c) is introduced in [25, (13.9) in Lemma 13.6] as an
important property.

Finally, we note that stronger inequality than H(X|Y Z) ≤ H(X|Z), which corresponds
to (9b), is known for Shannon entropy if X ↔ Z ↔ Y . In this case, it holds that H(X|Y ) ≤
H(X|Z), which is equivalent to I(X; Y ) ≥ I(X; Z), called Data Processing Inequality
(DPI). In this paper, we will study DPI for conditional Rényi entropies, i.e.,

Rα(X|Z) ≥ Rα(X|Y ) if X ↔ Z ↔ Y, (10)

where the equality holds under the following condition:
7 Note that (8c) is equivalent to RJA

α (W |X) ≥ 0, which obviously holds if (8a) holds. However, (9c) does
not follow from RJA

α (W |X) ≥ 0, and hence, it is necessary to be investigated.
8 If random variables X, Y , and Z, taking values in finite sets X , Y, and Z, respectively, satisfy

PXZ|Y (x, z|y) = PX|Y (x|y)PZ|Y (z|y) for all x ∈ X , y ∈ Y, and z ∈ Z, we say that X, Y, and Z
form a Markov chain in this order, in symbols X ↔ Y ↔ Z.

9 In the case of Rényi entropy, the corresponding inequality, i.e., Rα(XY Z)+Rα(Z) ≤ Rα(XZ)+Rα(Y Z)
does not hold for general α since it is equivalent to RJA

α (X|Z) ≥ RJA
α (X|Y Z).
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Table 1. Summary of properties of conditional Rényi entropies; AIE: Additional Information Increases
Entropy, CRE: Conditioning Reduces Entropy, DPI: Data Processing Inequality

Eq. (2): RC
α(·|·) (3): RJA

α (·|·) (4): RRW
α (·|·) (5): RH

α(·|·) (6): RA
α(·|·)

Chain Rule No (obvious) X (obvious) No (obvious) No (obvious) No (obvious)
Weak Chain Rule No ([10]) X (obvious) X ([10]) No (Prop. 4) No (Prop. 4)

(8a): Non-negetivity X ([10]) X ([10]) X ([10]) X X
(8b): CRE No ([10]) No ([10]) X (α ≥ 1)10 X (Thm. 2) X ([11, 31])
(9b):CRE conditioned by Z No ([10]) No ([10]) X (α ≥ 1)10 X (Thm. 4) X (Thm. 4)
(9c): Conditioned AIE X (Thm. 5) X (Thm. 5) X (Thm. 5) X (Thm. 5) X (Thm. 5)
(10): DPI No (obvious) No (obvious) No (obvious) X (Thm. 6) X (Thm. 6)

– (10): the equality holds if there exists a surjective mapping f : Z → Y.

Whether each conditional Rényi entropy given by (2)–(6) satisfies each property dis-
cussed above is summarized in Table 1, which will be proved in later sections.

Relation to other entropies Rényi entropy is an extension of many information mea-
sures such as Shannon entropy, min-entropy, and Hartley entropy, collision entropy, etc. In
particular, from a cryptographic viewpoint, Shannon and min-entropies are particularly
important. Hence, it is better if Rα(X|Y ) satisfies the following properties:

(i) limα→1 Rα(X|Y ) = H(X|Y ).
(ii) Conditional Rényi entropy of order α converges to conditional min-entropies if α→∞.

Similarly to conditional Rényi entropies, we can find several definitions of conditional
min-entropies. Among them, the average conditional min-entropy

Ravg
∞ (X|Y ) := − log EY

[
max

x
PX|Y (x|Y )

]
(11)

proposed in [14] is important from a cryptographic viewpoint, e.g., [14, 27–30]. We can also
find the worst case conditional min-entropy (e.g., in the analysis of physically unclonable
functions (PUFs), see [13]).

Rwst
∞ (X|Y ) := − log max

x∈X
y∈supp PY

PX|Y (x|y). (12)

Here we note that the conditional Rényi entropies RC
α(X|Y ), RJA

α (X|Y ), and RRW
α (X|Y )

do not satisfy either (i) or (ii) shown above. Namely, it is pointed out in [10] that,

– limα→∞ RRW
α (X|Y ) = Rwst

∞ (X|Y ) but limα→1 RRW
α (X|Y ) 6= H(X|Y ),

– limα→1 RN
α(X|Y ) = H(X|Y ) but limα→∞ RN

α(X|Y ) 6= Ravg
∞ (X|Y ), Rwst

∞ (X|Y ) for N ∈
{C, JA}.

In the above sense, RN
α(X|Y ), N ∈ {C, JA, RW} do not satisfy our requirements for con-

ditional Rényi entropies. In addition, note that (11) is not sufficiently analyzed in [10]
since the conditional Rényi entropies corresponding to Ravg

∞ (X|Y ) is not provided in the
literature while it plays important roles in many cryptographic applications.

One of the reasons why we focus on RA
α(X|Y ) and RH

α(X|Y ) is that the conditional
Rényi entropy RA

α(X|Y ) and RH
α(X|Y ) missing in [10] actually bridge the conditional

Shannon entropy and the conditional min-entropy appeared in cryptography as shown
below. Hence, in the forthcoming discussion, we will mainly focus on the properties of
conditional Rényi entropies RA

α(X|Y ) and RH
α(X|Y ).

10 In [10], a counterexample of CRE in the case of α > 1. However, it is easy to show that CRE holds for
0 ≤ α ≤ 1.
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Theorem 1 For random variables X and Y , following relations are satisfied:

(i) lim
α→1

RA
α(X|Y ) = lim

α→1
RH

α(X|Y ) = H(X|Y ).

(ii) lim
α→∞

RA
α(X|Y ) = Ravg

∞ (X|Y ), and lim
α→∞

RH
α(X|Y ) = Rwst

∞ (X|Y ).

Proof. The proof of limα→1 RA
α(X|Y ) = H(X|Y ) is provided in [11]. For the rest of the

proofs, see Appendix A.1. 2

Finally, we consider the limits of conditional Rényi entropies as α → 0, which can be
considered as conditional Hartley entropies.

Proposition 2 For random variables X and Y , the following relations hold:

lim
α→0

RC
α(X|Y ) = EY [ log |suppPXY | ] (13)

lim
α→0

RJA
α (X|Y ) = log |suppPXY | − log |suppPY | (14)

lim
α→0

RRW
α (X|Y ) = log max

y∈Y

{∣∣suppPX|Y =y

∣∣} (15)

lim
α→0

RA
α(X|Y ) = log max

y∈Y

{∣∣suppPX|Y =y

∣∣} (16)

lim
α→0

RH
α(X|Y ) = log EY

[ ∣∣suppPX|Y
∣∣ ] (17)

Proof. See Appendix A.2. 2

It is interesting to see that average and the worst cases of conditional min-entropies
correspond to RA

α(X|Y ) and RH
α(X|Y ), respectively, while average and the worst cases of

conditional Hartley entropies correspond to RH
α(X|Y ) and RA

α(X|Y ), respectively.

2.4 Chain Rule and Weak Chain Rule for Conditional Rényi Entropies

Based on the discussion of the previous section, it is hard to expect that the conditional
Rényi entropies satisfy the chain rule. According to [10], we can readily know that the
chain rule will not hold with equality if the conditional Rényi entropies satisfy CRE since,
by defining the conditional Rényi entropy as RJA

α (X|Y ) := Rα(XY ) − Rα(Y ) [20, 21], it
does not satisfy CRE. Hence, we aim to relax the requirement so that the chain rule holds
with inequality.

Definition 3 For N ∈ {C,RW, A,H}, we say that the conditional Rényi entropy RN
α(X|Y )

satisfies weak chain rule if, for arbitrarily fixed α ≥ 0, either Rα(XY ) ≥ RN
α(X|Y ) +

Rα(Y ) or Rα(XY ) ≤ RN
α(X|Y ) + Rα(Y ) holds for arbitrarily random variables X and

Y . These conditions are equivalent to RJA
α (X|Y ) ≥ RN

α(X|Y ) and RJA
α (X|Y ) ≤ RN

α(X|Y ),
respectively.

Proposition 3 ([10]) Let X and Y be random variables taking values in finite sets X
and Y, respectively. Then, it holds that RJA

α (X|Y ) ≥ RRW
α (X|Y ) if α > 1, RJA

α (X|Y ) ≤
RRW

α (X|Y ), otherwise. On the other hand, the values of RJA
α (X|Y ) and of RC

α(X|Y ) are
incomparable.

Proposition 3 implies that only RRW
α (X|Y ) satisfies the weak chain rule. However,

similarly to RC
α(X|Y ), we can show that neither RA

α(X|Y ) nor RH
α(X|Y ) satisfy the chain

rule even in a weak sense.

Proposition 4 For N ∈ {A, H}, the values of RJA
α (X|Y ) and RN

α(X|Y ) are incompara-
ble. Namely, for a fixed α, there exist probability distributions PXY and PX′Y ′ satisfying
Rα(XY ) > RN

α(X|Y ) + Rα(Y ) and Rα(X ′Y ′) < RN
α(X ′|Y ′) + Rα(Y ′).
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This proposition can be verified by the following example in a binary alphabet case:

Example 1 Consider the following two cases:

Case I. PXY (0, 0) = 1/2, PXY (0, 1) = 1/8, PXY (1, 0) = 1/4, and PXY (1, 1) = 1/8.
Case II. PXY (0, 0) = 3/8, PXY (0, 1) = 1/4, PXY (1, 0) = 5/16, and PXY (1, 1) = 1/16.

The graph of ϕN(α) := Rα(XY ) − RN
α(X|Y ) − Rα(Y ) for N ∈ {A,H} are depicted in

Fig. 1–(a),(b) in Appendix B, which means that Rα(XY ) > RN
α(X|Y )+Rα(Y ) holds only

when α ∈ (0, 1) with Case I, but Rα(XY ) < RN
α(X|Y )+Rα(Y ) holds only when α ∈ (0, 1)

with Case II. Recall that, in the case of α = 1, Rényi entropies coincide with Shannon
entropies. Hence, in this case, the chain rule, i.e., ϕN(1) = 0, holds.

3 Information Theoretic Inequalities for Conditional Rényi Entropies

As is pointed out in Theorem 1, the conditional Rényi entropies RA
α(X|Y ) and RH

α(X|Y )
are related to cryptographically meaningful min-entropies. Furthermore, in this section, we
show that several important inequalities are satisfied by these conditional Rényi entropies,
which is another reason why we are focusing on them.

3.1 Conditioning Reduces Entropy

First, we discuss “conditioning reduces entropy” (CRE, [24]), which is formulated as, in
the case of Shannon entropies, H(X) ≥ H(X|Y ) for arbitrary random variables X and Y .
It is well known that CRE is very useful and fundamental property in proving information
theoretic inequalities. However, it is known that several definitions of Rényi entropies
do not satisfy CRE. Actually, it is pointed out in [10] that RC

α(X|Y ), RJA
α (X|Y ), and

RRW
α (X|Y ) given by (2)–(4), respectively, do not satisfy CRE in general11. Fortunately,

however, we will point out in this section that RA
α(X|Y ) and RH

α(X|Y ), which are outside
the scope of [10], satisfy CRE in general.

Theorem 2 (Conditioning reduces entropy) Let X and Y be random variables tak-
ing values on X and Y, respectively. For all α ≥ 0, it holds that

RH
α(X|Y ) ≤ Rα(X), (18)

where the equality holds if and only if X and Y are statistically independent in the case of
α ∈ (0,∞). However, independency between X and Y is not necessary but sufficient for
the equality of (18) when α→ 0 and α→∞.

Remark 1 The same result also holds for RA
α(X|Y ), which was proved in [11, 31]12. Then,

(18) is immediately obtained by recalling CRE for RA
α(X|Y ) and the relation given by (7)

in Proposition 1. Namely, it holds that RH
α(X|Y ) ≤ RA

α(X|Y ) ≤ Rα(X).
Due to CRE for RA

α(X|Y ) and RH
α(X|Y ), it is immediately seen that Ravg

∞ (X|Y ) and
Rwst

∞ (X|Y ) also satisfy CRE, though it is possible to show it directly.

Proof. In the case of α → 1, Theorem 2 holds from the properties of Shannon entropies.
From Jensen’s inequality, in the case of 0 < α < 1, we have

EY

[∑
x∈X

PX|Y (x|Y )α

]
≤
∑
x∈X

EY

[
PX|Y (x|Y )

]α =
∑
x∈X

PX(x)α, (19)

11 We can show that CRE is satisfied by RRW
α (X|Y ) in the case of α > 1. See Proposition 14 of Section 6.

12 However, [11, 31] did not discuss the condition for equality. See Remark 2.
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where the equality holds PX|Y (x|Y ) = PX(x) with probability 1 for all x ∈ X , i.e., X

and Y are statistically independent. Similarly, it holds that EY

[∑
x∈X PX|Y (x|Y )α

]
≥∑

x∈X PX(x)α in the case of α ≥ 1, and the equality holds if and only if X and Y are
statistically independent.

In the cases of α → 0 and α → ∞, (19) is also valid from the continuity of RH
α(X|Y )

and Rα(X).
Finally, we show that the independency between X and Y is not necessary but sufficient

for the equality of (18) when α→ 0 and α→∞.
To see this in the case of α→ 0, we consider the arbitrarily correlated random variables

X and Y satisfying suppPXY = X ×Y . Then, it holds that suppPX|Y =y = X for all y ∈ Y,
and hence, we have limα→0 RH

α(X|Y ) = log EY

[
|suppPX|Y |

]
= log |X | = log |suppPX |.

Hence, the equality of (18) holds even if X and Y are statistically correlated.
In the case of α →∞, we introduce the following probability transition from Y to X

with X = {0, 1, 2} and Y = {0, 1}: PX|Y (0|0) = 2/3, PX|Y (1|0) = 1/12, PX|Y (2|0) = 1/4,
PX|Y (0|1) = 2/3, PX|Y (1|1) = 1/4, PX|Y (2|1) = 1/12, which makes X and Y statis-
tically correlated if Y is not uniform. In the case of (PY (0), PY (1)) = (1/3, 2/3), we
have (PX(0), PX(1), PX(2)) = (2/3, 7/36, 5/36), and hence, it follows that Rwst

∞ (X|Y ) =
R∞(X) = − log(2/3). 2

Remark 2 As is pointed in Remark 1, CRE for RA
α(X|Y ), i.e., RA

α(X|Y ) ≤ Rα(X)
is proved in [11, 31] and the condition for equality is given in the case of α ∈ (0,∞)
while it is not discussed in the cases of α → 0 and α → ∞. By observing the relation
RH

α(X|Y ) ≤ RA
α(X|Y ) ≤ Rα(X), the examples provided in the proof of Theorem 2 also

satisfy RA
α(X|Y ) = Rα(X) when α → 0 and α → ∞. Actually, these examples also

results in limα→0 RA
α(X|Y ) = log maxy∈Y |suppPX|Y =y| = log |X | = log |suppPX |, and

Ravg
∞ (X|Y ) = R∞(X) = − log(2/3).

We also note that another example of RA
α(X|Y ) = Rα(X) for correlated X and Y in

the case of α→∞ will be given in Sect. 5.4 in the context of a symmetric key encryption.

Although Proposition 2 can be proved directly as shown above, this proof does not tell
us the difference between both sides of (18). To see this gap, we introduce a conditional
α-divergence defined by the same idea with RH

α(X|Y ) in the following form.

Definition 4 ([17]) Let X1, X2, and Y be random variables taking values on X1, X2,
and Y, respectively. Assume that the probability distributions of these random variables
are given by PX1Y (·, y) = W (·|y)Q(y), PX2Y (·, y) = V (·|y)Q(y) for all y ∈ Y with a
probability distribution Q(·) and conditional probability distributions W (·|·) and V (·|·).

Then, for a real number α ≥ 0, define the conditional α-divergence Dα(X1‖X2|Y ) to
be

Dα(X1‖X2|Y ) :=
1

α− 1
log
∑
x,y

W (x|y)α

V (x|y)α−1
Q(y) (20)

which is also written as Dα(W‖V |Q) depending on the context.

Similarly to the conditional Rényi entropies, Dα(X1‖X2|Y ) satisfies the fundamen-
tal properties of conditional α-divergence. For a real number α ≥ 0, the conditional α-
divergence satisfies the following properties:

Proposition 5 Let X1, X2, and Y be random variables following the probability distribu-
tions PX1Y (·, y) = W (·|y)Q(y), PX2Y (·, y) = V (·|y)Q(y) for all y ∈ Y. Then, the following
properties are satisfied:
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(i) limα→1 Dα(X1‖X2|Y ) = D(X1‖X2|Y ) :=
∑

x,y Q(y)W (x|y) log(W (x|y)/V (x|y)).
(ii) Dα(X1‖X2|Y ) ≥ 0 for all α ≥ 0, where the equality holds if and only if W (·|y) = V (·|y)

for all y ∈ suppQ in the case of α ∈ (0,∞).

Proof. The property (i) is pointed out in [17] without proof. We provide the formal proofs
for (i) and (ii) in Appendix A.3 for readers’ convenience. 2

Then, the following relation holds, which can be seen as an alternative proof for The-
orem 2 owing to Dα(PY |X‖PY |PXα) ≥ 0. Moreover, the condition for the equality of (18)
is easily derived by recalling that Dα(PY |X‖PY |PXα) = 0 if and only if X and Y are
statistically independent for the case of α ∈ (0,∞).

Theorem 3 Let X, Y , and Z be random variables taking values in finite sets X , Y and
Z, respectively. For all α ≥ 0, it holds that

Rα(X)−RH
α(X|Y ) = Dα(PY |X‖PY |PXα) (21)

where PXα(x) := PX(x)α/
∑

x̃ PX(x̃)α for x ∈ X .

Although this theorem follows from the identity introduced in [17, Equation (21)] by
letting QAB(a, b) = PA(a)PU (b) where U follows the uniform distribution, the direct proof
is given as follows:

Proof. Observe that{∑
x

PX(x)α

}−1∑
x,y

PY (y)PX|Y (x|y)α =

{∑
x

PX(x)α

}−1∑
x,y

PXY (x, y)αPY (y)1−α

=
∑
x,y

PX(x)α∑
x PX(x)α

PY |X(y|x)αPY (y)1−α. (22)

Taking the logarithms of both sides of (22) and multiplying −1/(1−α), we obtain (21). 2

This relation (21) is an analogue of the well-known definition of the mutual information:
I(X; Y ) := H(X)−H(X|Y ) since the mutual information can be written as

I(X;Y ) := D(PXY ‖PXPY ) =
∑
x,y

PY (x)PY |X(y|x) log
PY |X(y|x)

PY (y)
= D(PY |X‖PY |PX)

Note that I(X; Y ) = I(Y ;X) = D(PX|Y ‖PX |PY ) and it is easy to check that the
conditional divergence of order α satisfies that Dα(PX|Y ‖PX |PY ) = Dα(PY |X‖PY |PX).
On the other hand, it is obvious that Dα(PX|Y ‖PX |PYα) = Dα(PY |X‖PY |PXα) does not
hold generally, and hence, Rα(X) − RH

α(X|Y ) = Rα(Y ) − RH
α(Y |X) does not hold for

general α as well.
Hence, it is natural to define a mutual information of order α by

IH
α (X; Y ) := Rα(X)−RH

α(X|Y ), (23)

which is similar to the Arimoto’s mutual information of order α defined by

IA
α (X; Y ) := Rα(X)−RA

α(X|Y ), (24)

in the context of describing channel coding theorem in a general setting [11] .

Remark 3 Note that IH
α (X; Y ) and IA

α (X;Y ) are not symmetric, i.e., IH
α (X; Y ) 6= IH

α (Y ; X)
and IA

α (X; Y ) 6= IA
α (Y ; X) in general. In addition, it is seen that IA

α (X; Y ) ≤ IH
α (X; Y ) gen-

erally holds from (7) of Proposition 1. Since RH
α(X|Y ) satisfies CRE as well as RA

α(X|Y ),
it is easy to see that both of IA

α (X; Y ) and IH
α (X; Y ) are non-negative, and they are equal

to zero if and only if X and Y are statistically independent. in the case of α ∈ (0,∞).
However, it should be stressed that the independency only sufficient if α→∞.
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3.2 Upper and Lower Bounds of Conditional Rényi Entropies

We discuss (9) for RA(·|·) and RH(·|·), which is an extended inequality of (8) as we have
seen in Sect. 2.3. Inequality (9) indicates an upper and a lower bounds of the conditional
Rényi entropies.

The following theorem proves the inequality (9b):

Theorem 4 For arbitrary RVs X, Y , and Z, it holds for all α ≥ 0 that

RA
α(X|Z) ≥ RA

α(X|Y Z) (25)

RH
α(X|Z) ≥ RH

α(X|Y Z) (26)

where the equalities hold if and only if X ↔ Z ↔ Y in the case of α ∈ (0,∞). However,
X ↔ Z ↔ Y is not necessary but sufficient for the equalities of (25) and (26) when α→ 0
and α→∞.

Proof. In the case of α → 1, the theorem obviously holds due to the properties of con-
ditional Shannon entropies. Hence, we first prove13 (25) in the case of α ∈ (0, 1). Note
that

RA
α(X|Z) =

α

1− α
log EY

{∑
x∈X

PX|Z(x|Z)α

}1/α


=
α

1− α
log EZ

[∥∥PX|Z(·|Z)
∥∥

α

]
, (27)

where we define an α-norm for the probability distribution PX by ‖PX‖ := {
∑

x PX(x)α}1/α

for a positive real number α ≥ 0 and a random variable X taking values in a finite set X .
Note that the α-norm ‖x‖α :=

{∑
x∈X xα

}1/α is a strictly concave function of x ∈
(R+)n in the case of α ∈ (0, 1), which can be easily verified from Minkowski’s inequality
(for instance, see [32, Thm. 25, page 31]). Hence, it holds for arbitrary y ∈ Y that

‖PX|Z(·|z)‖α =
∥∥EY

[
PX|Y Z(·|Y, z)

]∥∥
α

≥ EY

[
‖PX|Y Z(·|Y, z)‖α

]
(28)

from Jensen’s inequality. The equality holds if and only if PX|Y Z(x|Y, z) is constant for
all x ∈ X with probability 1, i.e., PX|Y Z(x|y, z) = PX|Z(x|z) for all y ∈ Y. Applying
α/(1−α) log EY [·] to both sides, we have (25) in the case of α ∈ (0, 1). The quality holds
if and only if X ↔ Z ↔ Y . In the case of α ∈ (1,∞), we can prove (25) in a similar
manner.

Then, we prove (26) in the case of α ∈ (0, 1). Note that

RH
α(X|Z) =

1
1− α

log EZ

[∑
x∈X

PX|Z(x|Z)α

]

=
1

1− α
log
∑
x∈X

EY

[
PX|Z(x|Z)α

]
. (29)

Due to Jensen’s inequality for the concave function xα, α ∈ (0, 1), it holds for arbitrary
y ∈ Y that

EY Z

[
PZ|Y Z(x|Y Z)α

]
≤ EY

[
EZ

[
PX|Y Z(x|Y Z)

]α]
= EY

[
PX|Y (x|Y )α

]
(30)

13 While (25) was proved in [11, 31], we show the proof for the readers’ convenience and for checking the
condition for equality.
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in the case of α ∈ (0, 1). Hence, we obtain (26). The equality holds if and only if X ↔
Z ↔ Y due to in the same discussion with the case of (28). In the case of α > 1, we can
prove (26) in a similar manner.

Finally, in the cases of α → 0 and α → ∞, inequalities (25) and (26) are valid from
the continuity of RA

α(·|·) and RH
α(·|·), respectively.

The conditions of equalities in (25) and (26) when α→ 0 and α→∞ can be discussed
almost the same line with the proof of Theorem 2. 2

Remark 4 Note that the other kinds of conditional Rényi entropies such as RC
α(X|Z),

RRW
α (X|Z), and RJA

α (X|Z), do not satisfy (9b) in general since they do not satisfy CRE,
i.e., (8b) in general.

Then, we prove (9c) which gives an upper bound of conditional Rényi entropies as
an extension of CRE (8c). We prove that all five conditional Rényi entropies satisfy the
conditioned AIE while several inequalities such as CRE and DPI do not hold for several
conditional Rényi entropies.

Theorem 5 Let W , X, and Z be random variables taking values in finite sets W, X , and
Z, respectively. Then, for each of N ∈ {C, JA, RW, A, H} and for all α ≥ 0, we have:

(i) RN
α(X|Z) ≤ RN

α(WX|Z),
(ii) RN

α(X|Z) = RN
α(WX|Z) if W = f(X,Z) for some (deterministic) mapping f : X ×

Z →W.

Proof. Although (i) for RA
α(X|Y ) is proved in [31, Proposition 2], we will prove this claim

for all remaining conditional Rényi entropies simultaneously. For any α with α ∈ [0, 1)
and arbitrary z ∈ Z, it holds that∑

w,x

PWX|Z(w, x|z)α =
∑

x

PX|Z(x|z)α
∑
w

PW |XZ(w|x, z)α ≥
∑

x

PX|Z(x|z)α. (31)

Hence, we have

max
z

∑
w,x

PWX|Z(w, x|z)α ≥ max
z

∑
x

PX|Z(x|z)α, (32)

∑
z

PZ(z)

(∑
w,x

PWX|Z(w, x|z)α

)1/α

≥
∑

z

PZ(z)

(∑
x

PX|Z(x|z)α

)1/α

, (33)∑
z

PZ(z)
∑
w,x

PWX|Z(w, x|z)α ≥
∑

z

PZ(z)
∑

x

PX|Z(x|z)α, (34)

which result in RRW
α (X|Z) ≤ RRW

α (WX|Z), RA
α(X|Z) ≤ RA

α(WX|Z) and RH
α(X|Z) ≤

RH
α(WX|Z), respectively.

Furthermore, (31) also implies that Rα(WX) ≥ Rα(X) since we can consider the
case of Z is constant with probability 1 in (31). Hence, the conditioned AIE RJA

α (X|Z) ≤
RJA

α (WX|Z) is obvious from the AIE of Rényi entropies since it is equivalent to Rα(XZ) ≤
Rα(WXZ) from its definition. Similarly, RC

α(X|Z) ≤ RC
α(WX|Z) also holds due to the

AIE of Rényi entropies, i.e., Rα(X|Z = z) ≤ Rα(WX|Z = z) for all z ∈ Z.
If there exits a deterministic mapping f : X × Z →W, it holds that∑

w

PW |XZ(w|x, z)α = 1. (35)
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for α ∈ [0, 1) since PW |XZ(w|x, z) ∈ {0, 1} for all (x, z) ∈ suppPXZ . Then, (31) holds with
equality, which also makes (32)–(34) hold with equalities in the case of α ∈ (0, 1). In the
case of α→ 0, this argument is also valid (even for (33)), and hence, the existence of such
f is sufficient for the equalities for all α ∈ [0, 1).

The case of α ∈ (1,∞) can be similarly discussed, and we omit it. In addition, the
statement in the case of α = 1 is true, since it means the case of Shannon entropy. 2

Remark 5 As we proved, the existence of such a deterministic map f : X × Z → W
is sufficient condition for the equality of RN

α(X|Z) ≤ RN
α(WX|Z). However, it is easy

to show that the existence of such f is not necessary to satisfy RN
α(X|Z) = RN

α(WX|Z)
when α → ∞. To see this, it is sufficient to show R∞(X) = R∞(WX) holds even if
such f does not exist. Such a case happens when X = Y = {0, 1} and PWX(0, 1) = 1/2,
PWX(1, 0) = PWX(1, 1) = 1/4, and PWX(0, 0) = 0. In this case, it holds that R∞(WX) =
R∞(X) = log 2 but such a deterministic map f does not exist. Actually, in this case, we
can check that H(WX) = (3/2) log 2 > H(X) = log 2.

3.3 Data Processing Inequality

The data processing inequality (DPI, [24]) tells us that I(X; Y ) ≥ I(X; Z) holds if X ↔
Y ↔ Z. We can extend Theorem 2, in the following way:

Theorem 6 (Data processing inequality) Let X, Y , and Z be random variables tak-
ing in finite sets X , Y, and Z, respectively, and assume that X ↔ Y ↔ Z. Then it holds
that IA

α (X; Y ) ≥ IA
α (X;Z) and IH

α (X;Y ) ≥ IH
α (X; Z) for arbitrary α ≥ 0. In the case of

α ∈ (0,∞), the equality holds if and only if there exists a surjective mapping f : Y → Z.

Proof. Without loss of generality, we can write Z = g(Y, R) where g : Y × R → Z
is a deterministic mapping, and R is a random variable taking values in a finite set
and is independent of X. Then, we have both of RA

α(X|g(Y, R), Y,R) = RA
α(X|Y R) and

RH
α(X|g(Y,R), Y, R) = RH

α(X|Y R) since g is deterministic. Noticing that X ↔ Y ↔ R, it
holds that

PX|Y R(x|y, r) =
PXR|Y (x, r|y)

PR|Y (r|y)
=

PX|Y (x|y)PR|Y (r|y)
PR|Y (r|y)

= PX|Y (x|y) (36)

for all x ∈ X , y ∈ Y, and z ∈ Z, where the second equality is validated by the Markov
chain. Hence, we have RA

α(X|Y R) = RA
α(X|Y ) and RH

α(X|Y R) = RH
α(X|Y ). Due to CRE,

we obtain RA
α(X|Y ) ≤ RA

α(X|g(Y, R)) and RH
α(X|Y ) ≤ RH

α(X|g(Y, R)), which completes
the proof. 2

Remark 6 DPI is very useful since it implies that the quality of information degenerates
by processing the information. It is worth noting that DPI generally holds only for RA

α(X|Y )
and RH

α(X|Y ) since DPI is an extension of CRE, as summarized in Table 1.

3.4 Fano’s Inequality

In this section, we derive upper-bounds for RH
α(X|Y ), and they can be seen as extension

of Fano’s inequality (see Remark 7).

Theorem 7 Let X and Y be random variables taking values in a finite set X . Also, let
Pe := Pr{X 6= Y } and P̄e := 1− Pe. Then, for α ≥ 0, we have the following inequalities.

(i) If 0 ≤ α ≤ 1 and Pe ≥ 1− 1
|X | , or α ≥ 1 and 0 ≤ Pe ≤ 1− 1

|X | , it holds that

RH
α(X|Y ) ≤ 1

1− α
log
[
(|X | − 1)1−αPα

e + P̄α
e

]
.
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(ii) If 0 ≤ α ≤ 1 and 0 ≤ Pe ≤ 1− 1
|X | , or α ≥ 1 and Pe ≥ 1− 1

|X | , it holds that

RH
α(X|Y ) ≤ 1

1− α
log
[
(|X | − 1)1−αPα−1

e (1− P̄ 2−α
e ) + P̄e

]
.

Here, in the above inequalities the case α = 1 is meant to take the limits at α = 1, and
the case Pe = 0 is meant to take the limits at Pe = 0.

Proof. See Appendix A.4 2

Remark 7 In Theorem 1 it is shown that limα→1 RH
α(X|Y ) = H(X|Y ). On the other

hand, by applying the L’Hospital’s rule to the right hands of inequalities in Theorem 7,
we obtain the following finite limits at α = 1:

(i) lim
α→1

1
1− α

log
[
(|X | − 1)1−αPα

e + P̄α
e

]
= Pe log(|X | − 1) + h(Pe),

(ii) lim
α→1

1
1− α

log
[
(|X | − 1)1−αPα−1

e (1− P̄ 2−α
e ) + P̄e

]
= Pe log(|X | − 1) + h(Pe),

where h(·) is the binary entropy function. Therefore, by taking the limit at α = 1 for each
of inequalities in Theorem 7, we obtain Fano’s inequality as a special case. In this sense,
our inequalities in Theorem 7 can be considered as extension of Fano’s inequality.

Remark 8 Note that Fano’s inequality implies H(X|Y ) → 0 as Pe → 0. Theorem 7
implies that, for any α ≥ 0, RH

α(X|Y )→ 0 as Pe → 0, as we would expect.

4 Security Criteria Based on Conditional Rényi Entropies

4.1 Motivation and Significance

Our motivation and significance for considering security criteria based on conditional Rényi
entropies lies in two points.

The first point lies in realistic significance which is deeply related to guessing proba-
bility by adversaries. In Section 4.3, we show that (conditional) Rényi entropies play an
important role to derive a lower bound on failure of guessing by adversaries, and it turns
out that our security criteria is a sufficient condition to make it reasonably large enough.
Our way of thinking is also related to the recent elegant approach in information theory in
order to show the converse of channel coding theorem in finite blocklength regime [16, 17].

The second point lies in mathematical importance for generalizing Shannon’s impos-
sibility (or Shannon’s bounds) in information-theoretic cryptography. The purpose is to
extend and unify existing notions and techniques by considering (conditional) Rényi en-
tropies which cover various kinds of entropies such as the (conditional) Shannon entropy,
Hartley entropy, and min-entropy. Specifically, for symmetric-key encryption protocols,
there exist several known bounds on secret-keys including the Shannon’s bounds (see Sec-
tion 4.2). And, our purpose is to extend those bounds in a generic and unified manner by
using security criteria based on conditional Rényi entropies.

4.2 Existing Lower Bounds on Secret-keys

We describe well-known Shannon’s bound [5] for symmetric-key encryption and its ex-
tensions (or variants) by Dodis [6], and Alimomeni and Safavi-Naini [8]. To describe the
bounds, we use the following notation: let K, M , and C be random variables which take
values in finite sets K, M, and C of secret-keys, plaintexts, and ciphertexts, respectively.
Informally, a symmetric-key encryption is said to meet perfect correctness if it has no
decryption-errors; a symmetric-key encryption is said to meet perfect secrecy if it reveals no
information about plaintexts from ciphertexts, which is formalized by H(M |C) = H(M)
(see Section 5 for the formal model of encryption protocols and its explanation).
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Proposition 6 (Shannon’s bound: [5]) Let Π be a symmetric-key encryption such that
both encryption and decryption algorithms are deterministic. If Π satisfies perfect correct-
ness and perfect secrecy, we have H(K) ≥ H(M) and |K| ≥ |M|.

Proposition 7 (Dodis’s bound: Theorem 3 in [6]) Let Π be a symmetric-key encryp-
tion. If Π satisfies perfect correctness and perfect secrecy, we have R∞(K) ≥ R∞(M).

Remark 9 Note that a similar result with Proposition 7 is proved in [33] using informa-
tion spectrum methods [34]. In [33, Theorem 5], it is clarified that the inf-spectral rate
of the secret key is not less than that of the plaintext. Noticing the recent results [35] of
smooth min-entropy [36], the asymptotic version of min-entropy is equivalent to the inf-
spectral entropy. Hence, we can say that an asymptotic version of Proposition 7 is proved
in [33]. However, [6] directly proves R∞(K) ≥ R∞(M) in a non-asymptotic setup.

Proposition 8 (Alimomeni and Safavi-Naini’s bound: Theorem 2 in [8]) Let Π
be a symmetric-key encryption such that both encryption and decryption algorithms are
deterministic. If Π satisfies both R∞(M) = Ravg

∞ (M |C) and perfect correctness, we have
R∞(K) ≥ R∞(M).

4.3 Lower Bounds on Failure Probability of Adversary’s Guessing

We show that lower bounds on failure probability of adversary’s guessing are given by
conditional Rényi entropies, RH

α(M |C) or RA
α(M |C), in general.

Let α > 1. Suppose that an adversary obtains a ciphertext C by observing a channel,
and he chooses an arbitrary function g. Let M̂ := g(C), Pe := Pr{M 6= M̂}, and P̄e :=
1 − Pe. The purpose of the adversary is to maximize Pr{M = M̂} = P̄e (or equivalently,
to minimize Pe) by taking a guessing strategy g. Without loss of generality, we assume
P̄e ≥ 1/|M|.

First, we derive a lower bound on Pe by using IH
α (M ; C). By the inequalities

Rα(M) = IH
α (M ; C) + RH

α(M |C)
(a)

≤ IH
α (M ; C) + RH

α(M |M̂)
(b)

≤ IH
α (M ; C) +

1
1− α

log
[
(|M| − 1)1−αPα

e + P̄α
e

]
, (37)

where (a) follows from DPI for RH
α(X|Y ) and (b) follows from our extension of Fano’s

inequality (i.e., Theorem 7), we have

exp
{

(1− α)[Rα(M)− IH
α (M ; C)]

}
≥ (|M| − 1)1−αPα

e + P̄α
e

≥ (1− Pe)α. (38)

By (38), we obtain

Pe ≥ 1− exp
{

1− α

α
[Rα(M)− IH

α (M ; C)]
}

.

Therefore, we obtain the following result.

Theorem 8 The failure probability of adversary’s guessing is lower-bounded by

Pe ≥ 1− exp
{

1− α

α
Rα(M)

}
exp

{
α− 1

α
IH
α (M ;C)

}
. (39)
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In particular, if PM is the uniform distribution, we have

Pe ≥ 1− |M|
1−α

α exp
{

α− 1
α

IH
α (M ; C)

}
. (40)

If we impose security criteria IH
α (M ; C) ≤ ε for small ε (say, ε = 0) for an encryption

protocol (note that any other quantity Rα(M), |M| is independent of security of the
protocol), the above lower bound can be large, and hence the adversary cannot guess a
target plaintext from a ciphertext with reasonable probability even if he chooses a powerful
guessing strategy g.

Remark 10 The bound (39) is tight for α =∞ in the following sense: Consider the case
IH
∞(M ;C) = 0. Then, (39) implies that Pe ≥ 1 − exp(−R∞(M)) = 1 − maxm PM (m),

or equivalently P̄e ≤ maxm PM (m). The equality of this bound is achievable, since an
adversary can take a strategy g(C) = arg maxm PM (m).

Second, we discuss a lower bound on Pe by using IA
α (M ;C). Before discussion, we note

the following previous results.

Definition 5 ([37]) For random variables X, Y , and a real number ρ 6= 1, the Gallager’s
function is defined by

E0(ρ, PX , PY |X) = − log
∑

y

(∑
x

PX(x)PY |X(y|x)
1

1+ρ

)1+ρ

.

Proposition 9 ([11]) For random variables X and Y , it holds that

IA
α (X; Y ) =

α

1− α
E0(α−1 − 1, PXα , PY |X)

where PXα is given by PXα(x) = PX(x)α
P

x̃ PX(x̃)α . Conversely, for random variables X and Y ,
we have

α

1− α
E0(α−1 − 1, PX , PY |X) = IA

α (X1/α; Y ),

where PX1/α
is given by PX1/α

(x) = PX(x)1/α
P

x̃ PX(x̃)1/α .

Proposition 10 ([17]) For a real number α > 0, and for distributions PX , PX̂ over X
such that ε := Pr{X 6= X̂} ≤ 1− 1

|X | , it holds

dα(1− ε ‖ 1/|X |) ≤ α

1− α
E0(α−1 − 1, PX , PX̂|X).

In particular, we have
α

α− 1
log(1− ε) + log |X | ≤ α

1− α
E0(α−1 − 1, PX , PX̂|X).

Now, let’s be back to our discussion. We use the same notation as in the case of
IH
α (M ; C). By combining the above propositions, we have

α

α− 1
log(1− Pe) + log m ≤ α

1− α
E0(α−1 − 1, PM , PM̂ |M )

= IA
α (M1/α; M̂)

≤ IA
α (M1/α;C),

where M̂ = g(C), PM1/α
(m) = PM (m)1/α

P

m̃ PM (m̃)1/α , and the last inequality follows from DPI for

RA
α(X|Y ). From the inequality, we obtain the following result.
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Proposition 11 The failure probability of adversary’s guessing is lower-bounded by

Pe ≥ 1− |M|
1−α

α exp
{

α− 1
α

IA
α (M1/α; C)

}
. (41)

In particular, if PM is the uniform distribution, we have

Pe ≥ 1− |M|
1−α

α exp
{

α− 1
α

IA
α (M ; C)

}
. (42)

Remark 11 If PM is the uniform distribution, the bound (40) is directly obtained from
the bound (42) since IA

α (M ; C) ≤ IH
α (M ;C). However, it is not the case in general.

Therefore, IH
α (M ; C) ≤ ε or IA

α (M ;C) ≤ ε for small ε ∈ [0, 1] is a sufficient condition to
show that the failure probability of adversary’s guessing is large enough (or equivalently,
the success probability of adversary’s guessing is small enough). Our security criteria based
on conditional Rényi entropies is IH

α (M ;C) ≤ ε or IA
α (M ; C) ≤ ε, which is equivalent to

Rα(M) − RH
α(M |C) ≤ ε or Rα(M) − RA

α(M |C) ≤ ε, and it is natural to consider the
security criteria in terms of an adversary’s guessing probability.

5 Generalizing Shannon’s Impossibility in Encryption

In this section, we extend the bounds in Section 4.2 in a generic and unified manner by
using security criteria based on conditional Rényi entropies.

5.1 The Model and Security Definition

We explain the traditional model of (symmetric-key) encryption protocols. In the following,
letM (resp. C) be a finite set of plaintexts (resp. a finite set of ciphertexts). Also, let M and
PM be a random variable which takes plaintexts in M and its distribution, respectively.
C denotes a random variable which takes ciphertexts c ∈ C.

Let Π = ([PED], πenc, πdec) be an encryption protocol as defined below:

– Let PED be a probability distribution over E × D which is a finite set of pairs of
encryption and decryption keys. [PED] is a key generation algorithm, and it outputs
(e, d) ∈ E × D according to PED;

– πenc is an encryption algorithm. It takes an encryption key e ∈ E and a plaintext
m ∈ M on input, and it outputs a ciphertext c ← πenc(e,m), which will be sent via
an authenticated channel;

– πdec is a decryption algorithm. It takes on input a decryption key d ∈ D and a ciphertext
c ∈ C, and it outputs m̃← πdec(d, c) where m̃ ∈M.

If Π = ([PK ], πenc, πdec) (i.e., [PED] = [PKK ] and e = d), Π is said to be a symmetric-
key encryption.

In this paper, we do not require that πenc is deterministic, namely, πenc can be random-
ized. Also, we assume that Π meets perfect correctness, namely, it satisfies πdec(d, πenc(e,m)) =
m for any possible (e, d) and m. In addition, we consider the case where an encryption
protocol Π is usable at most one time (i.e., the one-time model).

Let PM be a distribution on M, and we assume that it is fixed in the following dis-
cussion.

Definition 6 (Secrecy) For α ≥ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·). An encryp-
tion protocol Π is said to meet ε-secrecy with respect to Rα(·|·), if it satisfies

Rα(M)−Rα(M |C) ≤ ε.

In particular, Π meets perfect secrecy with respect to Rα(·|·), if ε = 0 above.
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Note that the traditional notion of perfect secrecy (i.e., H(M |C) = H(M))14 is equiva-
lent to that of perfect secrecy with respect to RH

α(·|·) or RA
α(·|·) for α ∈ (0,∞) (see Theorem

2). Also, ε-secrecy with respect to RH
α(·|·) (resp., RA

α(·|·)) is equivalent to IH
α (M ; C) ≤ ε

(resp., IA
α (M ; C) ≤ ε) (see Section 4.3).

5.2 Basic Idea for Generalization of Shannon’s Impossibility

By Shannon’s work [5], it is well known that we have H(K) ≥ H(M) for symmetric-
key encryption with perfect secrecy (see Proposition 6), which is often called Shannon’s
impossibility. It will be natural to generalize or extend it to the Rényi entropy. However,
there exist some difficulties to generalize it in a technical viewpoint, since in general
conditional Rényi entropies do not always have rich properties like the conditional Shannon
entropy as we have seen in Sections 2 and 3. In this subsection, we briefly explain our idea
of generalizing Shannon’s impossibility to the Rényi entropy.

First, let’s recall two proof techniques used for deriving H(K) ≥ H(M) below, where
PS, PC, and CRE mean perfect secrecy, perfect correctness, and conditioning reduces
entropy, respectively.
Proof I.

H(M) = H(M |C) (by PS)
= H(M |C)−H(M |KC) (by PC)
= I(M ; K|C)
= H(K|C)−H(K|MC)
≤ H(K|C)
≤ H(K) (by CRE)

Proof II.

H(M) = H(M |C) (by PS)
≤ H(MK|C) (by conditioned AIE)
= H(K|C) + H(M |KC) (by chain rule)
= H(K|C) (by PC)
≤ H(K) (by CRE)

In addition to PS and PC, the property commonly used in both proofs is CRE. From
this point of view, it would be reasonable to consider a class of conditional Rényi entropies
RH

α(·|·) and RA
α(·|·) which satisfy CRE. In addition, in order to complete the proofs, the

useful property of the mutual information (i.e., I(X; Y ) = I(Y ; X)) is used in Proof
I, while the properties of conditioned AIE, i.e., (9c), and chain rule are used in Proof
II. At this point, one may think it hopeless to apply the technique in Proof I, since
IH
α (X; Y ) 6= IH

α (Y ; X) and IA
α (X; Y ) 6= IA

α (Y ; X) in general; and also one may think it
hopeless to apply the technique even in Proof II, since each of RH

α(·|·) and RA
α(·|·) does not

satisfy the (weak) chain rule in general. Nonetheless, our idea is to follow that of Proof
II: our technical point is not to use the (weak) chain rule, but to successfully utilize the
equality condition of conditioned AIE in the case of PC. Owing to our new results about
conditional Rényi entropies in Sections 2 and 3, we can prove extension of Shannons’s
impossibility in a highly simple and unified way compared to other ways used for the
proofs in the bounds in Section 4.2, as will be seen in Section 5.3.
14 This condition is equivalent to I(M ; C) = 0, or equivalently, M and C are independent (i.e., PMC =

PMPC).
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5.3 Lower Bounds

We newly derive a family of lower bounds on secret-keys with respect to (conditional)
Rényi entropies in a comprehensive way. And, it will be seen that our new bounds include
all the existing bounds in Section 4.2 as special cases.

Theorem 9 For arbitrary α ≥ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·). Let Π =
([PED], πenc, πdec) be an encryption protocol satisfying perfect correctness. Then, we have
the following bounds.

(i) (Lower bound on the size of encryption-keys) If Π satisfies Rα(C) ≤ Rα(C|M)+ ε and
πenc is deterministic, we have Rα(E) ≥ Rα(C)− ε.

(ii) (Lower bound on the size of decryption-keys) Suppose that Π satisfies Rα(M) ≤
Rα(M |C) + ε. Then, we have Rα(D) ≥ Rα(M)− ε.

(iii) (Lower bound on the size of ciphertexts) It holds that Rα(C) ≥ Rα(M).

Proof. First, we can show (i) as follows.

Rα(C) ≤ Rα(C|M) + ε
(a)

≤ Rα(CE|M) + ε
(b)
= Rα(E|M) + ε

(c)
= Rα(E) + ε, (43)

where (a) follows from Theorem 5 (i), (b) follows from Theorem 5 (ii) since πenc is deter-
ministic, and (c) follows from that M and E are independent.

Secondly, we can show (ii) as follows.

Rα(M) ≤ Rα(M |C) + ε
(a)

≤ Rα(MD|C) + ε
(b)
= Rα(D|C) + ε

(c)

≤ Rα(D) + ε, (44)

where (a) follows from Theorem 5 (i), (b) follows from Theorem 5 (ii) since Π meets
perfect correctness, and (c) follows from that both RA

α(·|·) and RH
α(·|·) satisfy CRE (see

Theorem 2).
Finally, we show (iii) as follows.

Rα(M)
(a)
= Rα(M |D)

(b)

≤ Rα(MC|D)
(c)
= Rα(C|D)

(d)

≤ Rα(C), (45)

where (a) follows from that D and M are independent, (b) follows from Theorem 5 (i), (c)
also follows from Theorem 5 (ii) since Π meets perfect correctness, and (d) follows from
that both RH

α(·|·) and RA
α(·|·) satisfy CRE (see Theorem 2). 2

In particular, we obtain the following results for symmetric-key encryption protocols.

Corollary 1 For arbitrary α ≥ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·). Let Π =
([PK ], πenc, πdec) be a symmetric-key encryption protocol which meets perfect correctness.
Then, we have the following.

(i) If Π satisfies Rα(M) ≤ Rα(M |C) + ε, it holds that Rα(K) ≥ Rα(M)− ε.
(ii) If Π satisfies Rα(C) ≤ Rα(C|M) + ε and πenc is deterministic, we have Rα(K) ≥

Rα(C)− ε and Rα(C) ≥ Rα(M).

Proof. Suppose E = D = K in Theorem 9. The statement (i) follows from (ii) of Theorem
9. Furthermore, the statement (ii) follows from (i) and (iii) of Theorem 9. 2

Corollary 2 For arbitrary α ≥ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·). Let Π =
([PK ], πenc, πdec) be a symmetric-key encryption protocol which meets perfect correctness
and ε-secrecy with respect to Rα(·|·). Then, it holds that Rα(K) ≥ Rα(M)− ε.
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Interestingly, the following corollary shows that traditional perfect secrecy implies a
family of lower bounds of the Rényi entropy Rα(·) for all α ≥ 0.

Corollary 3 Let Π = ([PK ], πenc, πdec) be a symmetric-key encryption protocol which
meets both perfect correctness and perfect secrecy. Then, for any α ≥ 0, it holds that
Rα(K) ≥ Rα(M). In particular, if πenc is deterministic, we have Rα(K) ≥ Rα(C) ≥
Rα(M).

Proof. For arbitrary α ≥ 0, let Rα(·|·) be RH
α(·|·) or RA

α(·|·). If Π meets perfect secrecy, or
equivalently, M and C are independent, it holds that Rα(M |C) = Rα(M) and Rα(C|M) =
Rα(C). Then, from Corollary 1 and by applying ε = 0, the proof is completed. 2

Remark 12 Note that the Shannon’s bounds (i.e., Proposition 6) are special cases of
Corollary 3, since they are obtained by applying α = 0, 1 in Corollary 315. Also, Dodis’s
bound (i.e., Proposition 7) is a special case of Corollary 3, since it is obtained by ap-
plying α → ∞ in Corollary 3. Furthermore, Alimomeni and Safavi-Naini’s bound (i.e.,
Proposition 8) is a special case of Corollary 2, since it is obtained by applying ε = 0
and Ravg

∞ (·|·) = limα→∞ RA
α(·|·) in Corollary 216. Therefore, since Corollaries 2 and 3 are

special cases of Theorem 9, all the bounds are special cases of ours in Theorem 9.

5.4 Constructions

We note that H(M |C) = H(M) implies Rα(M |C) = Rα(M) for all α ≥ 0, where Rα(·|·) is
RH

α(·|·) or RA
α(·|·). Therefore, in this sense security criteria based on the Shannon entropy

implies security criteria based on the Rényi entropy. However, the converse is not true in
the case of α → ∞. Actually, as we will see in the following, security criteria based on
the min-entropy is strictly weaker than that of the Shannon entropy. Although in [8] it
is not shown that the lower bound in Proposition 8 is tight for symmetric-key encryption
protocols which do not meet perfect security, we can show that it is tight by considering
the following simple construction.

SupposeM = C = K = {0, 1} and PK(0) = PM (0) = p with 1/2 < p < 1. We consider
the one-time pad for 1-bit encryption Π1 = ([PK ], πenc, πdec), where πenc(k, m) = k ⊕m
and πdec(k, c) = k ⊕ c.

Proposition 12 The above protocol Π1 does not meet perfect secrecy, and Π1 satisfies
perfect secrecy with respect to Ravg

∞ (·|·), or equivalently IA
∞(M ; C) = 0. Furthermore, it

holds that R∞(K) = R∞(M) in Π1.

Proof. For the above protocol Π1, it holds that

PM |C(m|1) =
1
2

for any m ∈ {0, 1},

PM |C(0|0) =
p2

p2 + (1− p)2
,

PM |C(1|0) =
(1− p)2

p2 + (1− p)2
.

15 Strictly speaking, the bounds are slightly more general than Shannon’s ones, since we have removed the
assumption that πenc and πdec are deterministic

16 Strictly speaking, the bound is slightly more general than Alimomeni and Safavi-Naini’s one, since we
do not assume that πenc and πdec are deterministic.
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Hence, it is clear that Π1 does not meet perfect secrecy. On the other hand, we have

Ravg
∞ (M |C) = − log

(∑
c

PC(c)max
m

PM |C(m|c)

)

= − log
(

PC(0) · p2

p2 + (1− p)2
+ PC(1) · 1

2

)
= − log

(
p2 + p(1− p)

)
= − log p = R∞(M).

In addition, it is obvious that R∞(K) = R∞(M) = − log p. Therefore, the proof is com-
pleted. 2

Remark 13 In the above construction Π1, we note that limα→∞ RH
α(M |C) = Rwst

∞ (M |C) <
R∞(M). Therefore, Π1 does not meet perfect secrecy with respect to Rwst

∞ (·|·). Also, we
note that Rwst

∞ (C|M) < R∞(C), and Π1 illustrates IA
∞(M ; C) 6= IA

∞(C; M) for the random
variables M and C, while Π1 meets IH

∞(M ; C) = IH
∞(C; M)( 6= 0).

In the case of α ∈ (0,∞), the perfect secrecy with respect to RH
α(·|·) implies the

traditional perfect secrecy, namely, independency of C and M . However, in the case of
ε-security with respect to RH

α(·|·) does not imply the perfect secrecy if ε > 0. In general,
for any sufficiently large α ≥ 0, the following construction shows that the lower bound in
Corollary 2 for symmetric-key encryption protocols is tight in an asymptotic sense.

SupposeM = C = K = {0, 1} and PM (0) = p and PK(0) = q such that p = 1
2(1 + δ1),

q = p + δ2, and 0 < δi and δi = o(1/α) for i = 1, 2. We consider the one-time pad for 1-bit
encryption Π2 = ([PK ], πenc, πdec), where πenc(k, m) = k ⊕m and πdec(k, c) = k ⊕ c.

Proposition 13 For a sufficiently large α ≥ 0, the above protocol Π2 does not meet perfect
secrecy, and Π2 meets ε-secrecy with respect to RH

α(·|·), or equivalently IH
α (M ; C) = ε, with

ε = o(1/α). Furthermore, it holds that Rα(K) = Rα(M)− o(1/α) in Π2.

Proof. See Appendix A.5. 2

Remark 14 Note that the above construction Π2 meets ε-secrecy with respect to RA
α(·|·),

or equivalently IA
α (M ; C) = ε, with ε = o(1/α). This fact directly follows from Proposition

13 and the inequality IA
α (M ; C) ≤ IH

α (M ; C). Also, by calculation (see Appendix A.5), we
can see that Π2 illustrates IH

α (M ;C) 6= IH
α (C;M) for the random variables M and C.

6 Further Extension of Our Results

In Section 5, we have derived lower bounds in a generic and unified manner by using
security criteria based on conditional Rényi entropies (i.e., by using RH

α(·|·) and RA
α(·|·)).

In this section, from a theoretical interest, we further extend the results to a wide class of
conditional entropies which includes RH

α(·|·) and RA
α(·|·).

6.1 A Class of Pairs of Entropies and Conditional Entropies under
Consideration

In the proof of our bound in Theorem 9, we note that it is crucial to use the properties
of CRE and conditioned AIE of RH

α(·|·) and RA
α(·|·). Therefore, in order to further extend

Theorem 9 in a generic way, we consider a wide class of entropies and conditional en-
tropies satisfying several properties including CRE and conditioned AIE. In addition to
the above consideration, we take into account the axiomatic consideration in Section 2.3
for conditional entropies. From the aspect above, we define the following class of pairs of
entropy and conditional entropy functions.
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Definition 7 Let Σ be a class of pairs of entropy and conditional entropy functions such
that, for any (F (·), F (·|·)) ∈ Σ, it satisfies the following conditions.

1. (Unconditioning implies entropy) If Y is the random variable taking a constant (i.e., Y
is deterministic), a conditional entropy function implies an entropy function F (·|Y ) =
F (·), namely F (X|Y ) = F (X) for any random variable X.

2. (Symmetricity) F (X|Y ) is symmetric with respect to {PX|Y (x|y)}x∈X for each y ∈ Y,
and {PY (y)}y∈Y .

3. (Continuity) F (X|Y ) is a continuous function with respect to PXY .
4. (Uniformity implies maximum) F (X|Y ) = 1 if a binary random variable X is uni-

formly distributed for given Y .
5. (Non-negativity) F (X|Y ) ≥ 0 for all random variables X and Y .
6. (Conditioned AIE) (i) F (X|Z) ≤ F (XY |Z) for all random variables X, Y , and Z;

and in particular , (ii) F (X|Z) = F (XY |Z) if Y = f(X,Z) for some (deterministic)
mapping f .

7. (CRE) F (X|Y ) ≤ F (X) for all random variables X and Y , where equality holds if X
and Y is independent.

Note that all the properties in Definition 7 are focused on and discussed in Section
2.3, and more importantly, we have explained why we consider all the properties as im-
portant and reasonable ones for conditional entropies. As we have seen, the class Σ ac-
tually contains (Rα(·), RH

α(·|·)) and (Rα(·), RA
α(·|·)) for all α ≥ 0. In addition, Σ contains

(Rα(·), RRW
α (·|·)) for any α > 1, and its proof is straightforward from [10, 22]. Therefore,

we have the following proposition.

Proposition 14 The class Σ in Definition 7 contains

(i) (Rα(·), RH
α(·|·)) for any α ≥ 0;

(ii) (Rα(·), RA
α(·|·)) for any α ≥ 0; and

(iii) (Rα(·), RRW
α (·|·)) for any α > 1.

By using the class Σ, we further extend our results in Section 5, as will be seen in the
following sections.

6.2 Encryption

The model of encryption protocols is the same as that in Section 5.1. However, we consider
the following security definition instead of Definition 6.

Definition 8 (Secrecy) Let Π be an encryption protocol. Then, for any (F (·), F (·|·)) ∈
Σ in Definition 7, Π is said to meet ε-secrecy with respect to (F (·), F (·|·)), if it satisfies

F (M)− F (M |C) ≤ ε.

Then, we derive a family of lower bounds on secret-keys for all entropy and conditional
entropy functions in Σ in Definition 7 in a comprehensive way. Theorem 10, and Corollaries
4, 5 and 6 below are extension of Theorem 9, and Corollaries 1, 2 and 3, respectively. Their
proofs can be shown in the same way as those in Section 5.3, and we omit them here.

Theorem 10 Let Π = ([PED], πenc, πdec) be an encryption protocol satisfying perfect cor-
rectness. Then, for any (F (·), F (·|·)) ∈ Σ in Definition 7, we have the following.

(i) (Lower bound on the size of encryption-keys) If Π satisfies F (C) ≤ F (C|M) + ε and
πenc is deterministic, we have F (E) ≥ F (C)− ε.
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(ii) (Lower bound on the size of decryption-keys) Suppose that Π satisfies F (M) ≤ F (M |C)+
ε. Then, we have F (D) ≥ F (M)− ε.

(iii) (Lower bound on the size of ciphertexts) It holds that F (C) ≥ F (M).

Corollary 4 Let Π = ([PK ], πenc, πdec) be a symmetric-key encryption protocol which
meets perfect correctness. For any (F (·), F (·|·)) ∈ Σ in Definition 7, we have the following.

(i) If Π satisfies F (M) ≤ F (M |C) + ε, it holds that F (K) ≥ F (M)− ε.
(ii) If Π satisfies F (C) ≤ F (C|M)+ ε and πenc is deterministic, we have F (K) ≥ F (C)−

ε and F (C) ≥ F (M).

Corollary 5 Let (F (·), F (·|·)) ∈ Σ in Definition 7, and let Π = ([PK ], πenc, πdec) be
a symmetric-key encryption protocol which meets perfect correctness and ε-secrecy with
respect to (F (·), F (·|·)). Then, it holds that F (K) ≥ F (M)− ε.

Corollary 6 Let Π = ([PK ], πenc, πdec) be a symmetric-key encryption protocol which
meets both perfect correctness and perfect secrecy. Then, for any entropy function F (·)
appearing in Σ in Definition 7, it holds that F (K) ≥ F (M). In particular, if πenc is
deterministic, we have F (K) ≥ F (C) ≥ F (M).

7 Conclusion

Information theoretic cryptography was discussed based on conditional Rényi entropies.
Our discussion focused not only on cryptography but also on the definitions of conditional
Rényi entropies and the related information theoretic inequalities.

First, we revisited conditional Rényi entropies, and clarified what kind of properties
are required and actually satisfied. Based on the axiomatic discussion for conditional Rényi
entropies, we listed several hopefully required properties for condition Rényi entropies such
as non-negativity, chain rule, conditioning reduces entropy (CRE), additional information
increases entropy (AIE), data processing inequality (DPI), and their extended inequalities.
Since five conditional Rényi entropies are proposed so far, we investigated each definition
of conditional Rényi entropy actually satisfies each property. As a result, we concluded
that the conditional Rényi entropies proposed by Arimoto [11] and Hayashi [12], denoted
by RA

α(·|·) and RH
α(·|·), respectively, satisfy all properties except chain rule and weak chain

rule. In addition, we pointed out that RA
α(·|·) and RH

α(·|·) correspond to the conditional
min-entropies Ravg

∞ (·|·) and Rwst
∞ (·|·), respectively, when α → ∞. Finally, we presented

Fano’s inequality for RH
α(·|·).

Then, we proposed security criteria based on Rényi entropies, which suggests us deep
relations between (conditional) Rényi entropies and error probabilities by using several
guessing strategies. Based on these results, unified proof of impossibility, namely, the
lower bounds of key sizes was derived based on conditional Rényi entropies. Our model and
lower bounds include the Shannon’s perfect secrecy, and the min-entropy based encryption
presented by Dodis [6], and Alimomeni and Safavi-Naini [8].

Finally, new optimal symmetric key cryptography is proposed which achieve our lower
bounds. In particular, we succeeded in constructing symmetric key cryptography which
is secure under the conditional min-entropy Ravg

∞ (·|·) and the conditional Rényi entropy
RH

α(·|·) with (almost) tight key sizes.
Our discussion can be extended to wider classes of conditional entropies. We discuss

such a framework of extended conditional entropies, and provide an extended model of
symmetric key encryption. We also derive the lower bounds of key sizes, which includes
the case of encryption based on conditional Rényi entropies.
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9. Rényi, A.: On measures of information and entropy. Proc. of the 4th Berkeley Symposium on Mathe-
matics, Statistics and Probability 1960 (1961) 547–561

10. Teixeira, A., Matos, A., Antunes, L.: Conditional Rényi entropies. IEEE Trans. Information Theory
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A Technical Proofs

A.1 Proof of Theorem 1

(i) The equality limα→1 RA
α(X|Y ) = H(X|Y ) is proved in [11]. limα→1 RH

α(X|Y ) = H(X|Y )
is easily verified by the L’Hospital’s rule. Namely, we have

lim
α→1

RH
α(X|Y ) = − lim

α→1

d
dα

log EY

[∑
x∈X

PX|Y (x|Y )α

]
= − lim

α→1
EY

[∑
x∈X

d
dα

PX|Y (x|Y )α

]

= −EY

[∑
x∈X

PX|Y (x|Y ) log PX|Y (x|Y )

]
=
∑
y∈Y

PY (y)H(X|Y = y).

(46)

(ii) We first prove limα→∞ RA
α(X|Y ) = Ravg

∞ (X|Y ). Observing that

max
x

PX|Y (x|y) ≤

{∑
x

PX|Y (x|y)α

}1/α

≤ |X |1/α max
x

PX|Y (x|y) (47)

holds for arbitrarily fixed y ∈ Y, it holds that

lim
α→∞

α

1− α
log
∑

y

PY (y)

{∑
x

PX|Y (x|y)α

}1/α

= − log
∑

y

PY (y)max
x

PX|Y (x|y),

(48)

which means that limα→∞ RA
α(X|Y ) = Ravg

∞ (X|Y ) holds.
Then, we prove limα→∞ RH

α(X|Y ) = Rwst
∞ (X|Y ). We can check that for every fixed

y ∈ Y

max
x

PX|Y (x|y)α ≤
∑

x

PX|Y (x|y)α ≤ |X |max
x

PX|Y (x|y)α. (49)
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The expectations of the upper and the lower bounds in (49) with respect to Y can be
further bounded as∑

y

PY (y)|X |max
x

PX|Y (x|y)α ≤ |X | max
x∈X

y∈supp PY

PX|Y (x|y)α (50)

and

PY (y∗)max
x

PX|Y (x|y∗)α ≤
∑

y

PY (y)max
x

PX|Y (x|y)α (51)

respectively, where we define that y∗ ∈ suppPY attains the maximum of PX|Y (x|y)
over the set X × suppPY .

Now, we can assume that α is sufficiently large, say α > 1. Then, noticing that
1/(1− α) < 0 and from (49)–(51), we have

RH
α(X|Y ) ≥ 1

1− α
log

|X | max
x∈X

y∈supp PY

PX|Y (x|y)α


and

RH
α(X|Y ) ≤ 1

1− α
log

PY (y∗) max
x∈X

y∈supp PY

PX|Y (x|y)α

 .

Hence, we have lim infα→∞ RH
α(X|Y ) ≥ − log maxx,y PX|Y (x|y), and lim supα→∞ RH

α(X|Y ) ≤
− log maxx,y PX|Y (x|y), since |X | is finite, which imply the claim of the proposition. 2

A.2 Proof of Proposition (2)

All relations except (16) are almost obvious by noticing that limα→0 Rα(X) = log |suppPX |.
Equation (16) is immediately obtained from the following lemma.

Lemma 1 For arbitrary random variable Z taking values in a finite set Z, it holds that
limα→0 E

[
Z1/α

]α
= maxz∈Z z.

Proof of Lemma 1
Let Sα(Z) := EZ

[
Z1/α

]α
and z∗ := maxz∈Z z. Lemma 1 is verified from the following

two inequalities.
We first check that Sα(Z) ≤ z∗ for arbitrary α ≥ 0, which is immediately obtained by

observing that Sα(Z) ≤
{∑

z∈Z PZ(z)z∗1/α
}α

= z∗.
Then we prove the second inequality limα→0 Sα(Z) ≥ z∗ from the easily verified relation

such that PZ(z∗) ≤
∑

z∈Z PZ(z) (z/z∗)1/α. This inequality is equivalent to z∗1/αPZ(z∗) ≤
EZ

[
Z1/α

]
, i.e., z∗PZ(z∗)α ≤ Sα(Z). Taking the limits α→ 0 for both sides of z∗PZ(z∗)α ≤

Sα(Z), we obtain limα→0 Sα(Z) ≥ z∗. 2

Now, we can prove (16). Let Z :=
∑

x∈X PX|Y (x|Y )α with Z := Y. From Lemma 1
combined with the easily verified identity limα→0

∑
x∈X PX|Y (x|y)α = log

∣∣suppPX|Y =y

∣∣
for arbitrary y ∈ Y, (16) yields immediately. 2
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A.3 Proof of Proposition 5

(i) The claim directly follows from the L’Hospital’s rule:

lim
α→1

Dα(X1‖X2|Y ) =
d
dα

log
∑
x,y

{
W (x|y)
V (x|y)

}α

V (x|y)Q(y)

∣∣∣∣∣
α=1

=
∑
x,y

Q(y)W (x|y) log
W (x|y)
V (x|y)

= D(W‖V |Q) = D(X1‖X2|Y ). (52)

(ii) For α ∈ (0, 1), it follows that∑
x,y

W (x|y)α

V (x|y)α−1
Q(y) =

∑
x,y

(
W (x|y)
V (x|y)

)α

PY Z(x, y)

= EY Z

[(
W (Y |Z)
V (Y |Z)

)α]
≤
{

EY Z

[
W (Y |Z)
V (Y |Z)

]}α

=

{∑
x,y

W (x|y)
V (x|y)

V (x|y)Q(y)

}α

= 1 (53)

where the inequality follows from Jensen’s inequality. The quality holds if and only if
W (Y |Z)/V (Y |Z) is constant with probability 1, which implies W (·|y) = V (·|y) for y ∈
suppQ.

Similarly, in the case of α ∈ (1,∞), we have
∑

x,y
W (x|y)α

V (x|y)α−1 Q(y) ≥ 1, where the equality
holds if and only if W (·|y) = V (·|y) for y ∈ suppQ.

Hence, Dα(X1‖X2|Y ) ≥ 0 holds for α ∈ (0, 1) ∪ (1,∞), but due to the continuity of
conditional α-divergence, this inequality holds for all α ≥ 0. 2

A.4 Proof of Theorem 7

Let m := |X |. We define a random variable Z and its associated distribution PZ over
X × X as follows. For (i, j) ∈ X × X , we define

PZ(i, j) :=


P̄e

m
if i = j,

Pe

m(m− 1)
if i 6= j.

Also, for any fixed j ∈ X , we define a distribution PZ1(·|j) over X by

PZ1(i|j) :=

 P̄e if i = j,
Pe

m− 1
if i 6= j.

Note that PZ1(i|j) = mPZ(i, j) for (i, j) ∈ X × X . Then, by non-negativity of the condi-
tional α-divergence we have

0 ≤ Dα(XY ‖Z|Y ) =
1

α− 1
log

∑
j

PY (j)
∑

i

(
PXY (i, j)

PY (j)

)α

PZ1(i|j)1−α


=

1
α− 1

log

m1−α
∑
i,j

PXY (i, j)αPY (j)1−αPZ(i, j)1−α

 . (54)
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On the other hand, we get∑
i,j

PXY (i, j)αPY (j)1−αPZ(i, j)1−α

=
∑
i 6=j

PXY (i, j)αPY (j)1−αPZ(i, j)1−α +
∑

i

PXY (i, i)αPY (i)1−αPZ(i, i)1−α

=
(

Pe

m(m− 1)

)1−α∑
i6=j

PXY (i, j)αPY (j)1−α +
(

P̄e

m

)1−α∑
i

PXY (i, i)αPY (i)1−α

=
(

Pe

m(m− 1)

)1−α
∑

i,j

PXY (i, j)αPY (j)1−α −
∑

i

PXY (i, i)αPY (i)1−α


+
(

P̄e

m

)1−α∑
i

PXY (i, i)αPY (i)1−α

=
(

Pe

m(m− 1)

)1−α∑
i,j

PXY (i, j)αPY (j)1−α

+

(∑
i

PXY (i, i)αPY (i)1−α

)[(
P̄e

m

)1−α

−
(

Pe

m(m− 1)

)1−α
]

. (55)

Therefore, by (54) and (55) we obtain

0 ≥ 1
1− α

log

{(
Pe

m− 1

)1−α∑
i,j

PXY (i, j)αPY (j)1−α

+

(∑
i

PXY (i, i)αPY (i)1−α

)[
P̄ 1−α

e −
(

Pe

m− 1

)1−α
]}

(56)

For simplicity, we set

r :=
∑
i,j

PXY (i, j)αPY (j)1−α, s :=
∑

i

PXY (i, i)αPY (i)1−α,

a :=
(

Pe

m− 1

)1−α

, b := P̄ 1−α
e −

(
Pe

m− 1

)1−α

,

and then (56) is written in the form:

1
1− α

log(ar + sb) ≤ 0. (57)

Suppose that 0 ≤ α < 1 and Pe 6= 0 (i.e., a > 0). Then, (57) implies

r ≤ a−1(1− sb) = (m− 1)1−αPα−1
e + s(1− (m− 1)1−αPα−1

e P̄ 1−α
e ). (58)

Here, we note that 1 − (m − 1)1−αPα−1
e P̄ 1−α

e ≥ 0 (resp., ≤ 0) if Pe ≥ 1 − 1
m (resp.,

Pe ≤ 1− 1
m).

Now, we need the following lemma.

Lemma 2 For a real number α ≥ 0, it holds that:

(i) P̄e ≤ s ≤ P̄α
e if 0 ≤ α ≤ 1;
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(ii) P̄α
e ≤ s ≤ P̄e if α ≥ 1.

Proof. It is trivial that the statement is true for α = 0, 1. Thus, we consider the case of
α 6= 0, 1.

First, we show (i). Suppose 0 < α < 1. Then, we have

s =
∑

i

PXY (i, i)αPY (i)1−α ≥
∑

i

PXY (i, i)αPXY (i, i)1−α =
∑

i

PXY (i, i) = P̄e.

On the other hand, we consider a function

f(x1, . . . , xm, y1, . . . , ym) =
m∑

i=1

xα
i y1−α

i (0 ≤ xi ≤ yi)

subject to the constraints
∑m

i=1 xi = P̄e and
∑m

i=1 yi = 1. For arbitrary (x1, . . . , xm, y1, . . . , ym)
satisfying the above condition, we define a random variable W by Pr(W = xi/yi) = yi for
i = 1, 2, . . . , m. Then, since g(w) := wα is a concave function, it holds that

EW [g(W )] ≤ g(EW [W ])

by Jensen’s inequality. Therefore, we have

f(x1, . . . , xm, y1, . . . , ym) ≤ P̄α
e ,

and hence s ≤ P̄α
e (Note that this inequality can also be shown by using Lagrange multi-

pliers).
Next, suppose that α > 1. In this case, we can similarly show s ≤ P̄e. In addition, by

using the similar discussion in the case 0 < α < 1, we can also prove s ≥ P̄α
e . 2

If 0 ≤ α < 1 and Pe ≥ 1− 1
m , from (58) and (i) in Lemma 2 it follows that

r ≤ (m− 1)1−αPα−1
e + P̄α

e (1− (m− 1)1−αPα−1
e P̄ 1−α

e )
= (m− 1)1−αPα

e + P̄α
e . (59)

If 0 ≤ α < 1 and 0 < Pe ≤ 1− 1
m , from (58) and (i) in Lemma 2 it follows that

r ≤ (m− 1)1−αPα−1
e + P̄e(1− (m− 1)1−αPα−1

e P̄ 1−α
e )

= (m− 1)1−αPα−1
e (1− P̄ 2−α

e ) + P̄e. (60)

Next, suppose that α > 1 and Pe 6= 0. Then, (57) implies

r ≥ a−1(1− sb)
= (m− 1)1−αPα−1

e + s(1− (m− 1)1−αPα−1
e P̄ 1−α

e ). (61)

Here, we note that 1 − (m − 1)1−αPα−1
e P̄ 1−α

e ≥ 0 (resp., ≤ 0) if Pe ≤ 1 − 1
m (resp.,

Pe ≥ 1− 1
m).

If α > 1 and Pe ≥ 1− 1
m , from (61) and (ii) in Lemma 2 it follows that

r ≥ (m− 1)1−αPα−1
e + P̄e(1− (m− 1)1−αPα−1

e P̄ 1−α
e )

= (m− 1)1−αPα−1
e (1− P̄ 2−α

e ) + P̄e. (62)

If α > 1 and 0 < Pe ≤ 1− 1
m , from (61) and (ii) in Lemma 2 it follows that

r ≥ (m− 1)1−αPα−1
e + P̄α

e (1− (m− 1)1−αPα−1
e P̄ 1−α

e )
= (m− 1)1−αPα

e + P̄α
e . (63)
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Therefore, from (59), (60), (62) and (63), it holds that

RH
α(X|Y ) =

1
1− α

log r

≤


1

1−α log
[
(m− 1)1−αPα

e + P̄α
e

]
if 0 ≤ α < 1 and Pe ≥ 1− 1

m , or α > 1 and 0 < Pe ≤ 1− 1
m ,

1
1−α log

[
(m− 1)1−αPα−1

e (1− P̄ 2−α
e ) + P̄e

]
if 0 ≤ α < 1 and 0 < Pe ≤ 1− 1

m , or α > 1 and Pe ≥ 1− 1
m

(64)

For the case α = 1, the left hand of (64) implies limα→1 Rα(X|Y ) = H(X|Y ) by
Theorem 1-(ii). In addition, the right hands of (64) have a finite limit at α = 1, and it is
equal to Fano’s inequality (see Remark 7). Therefore, (64) holds even for α = 1.

For the case Pe = 0, the left hand of (64) implies limPe→0 Rα(X|Y ) = Rα(X|X) = 0,
and the right hands of (64) imply

lim
Pe→0

1
1− α

log
[
(m− 1)1−αPα

e + P̄α
e

]
= 0 (for α ≥ 1),

lim
Pe→0

1
1− α

log
[
(m− 1)1−αPα−1

e (1− P̄ 2−α
e ) + P̄e

]
= 0 (for 0 ≤ α ≤ 1).

Therefore, (64) holds for Pe = 0. 2

A.5 Proof of Theorem 13

It is easily seen that Π2 does not meet perfect secrecy since q 6= 1/2. And, it holds that:

Rα(M) =
1

1− α
log(pα + (1− p)α)

=
1

1− α
log
[(

1
2

)α

(1− δ1)α +
(

1
2

)α

(1 + δ1)α

]
=

1
1− α

log
(

1
2

)α

(2 + o(1)), (65)

Rα(K) =
1

1− α
log(qα + (1− q)α) =

1
1− α

log(pα + (1− p)α + o(1))

=
1

1− α
log
(

1
2

)α

(2 + o(1)), (66)

Rα(C) =
1

1− α
log
[(

1
2

)α

(1− δ2
1)

α +
(

1
2

)α

(1 + δ2
1)

α + o(1)
]

=
1

1− α
log
(

1
2

)α

(2 + o(1)), (67)

RH
α(M |C) =

1
1− α

log
∑

c

PC(c)
∑
m

PM |C(m|c)α

=
1

1− α
log
(

1
2

)α [
(1− δ2

1) +
1
2

(1− δ1)2α

(1 + δ2
1)α−1

+
1
2

(1 + δ1)2α

(1 + δ2
1)α−1

+ o(1)
]

=
1

1− α
log
(

1
2

)α

(2 + o(1)), (68)

RH
α(C|M) =

1
1− α

log
∑
m

PM (m)
∑

c

PC|M (c|m)α

=
1

1− α
log [p(qα + (1− q)α) + (1− p)(qα + (1− q)α)]

=
1

1− α
log (qα + (1− q)α) = Rα(K). (69)
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Therefore, we get

IH
α (M ; C) = Rα(M)−RH

α(M |C) =
1

1− α
log

2 + o(1)
2 + o(1)

= log(1 + o(1))
1

α−1

= log(1 + o(1/α)) = o(1/α),

where the last equality follows from log(1+x) = x−o(x). Similarly, we also have Rα(M)−
Rα(K) = o(1/α). Therefore, the proof is completed. Finally, for Remark 14 we see that
IH
α (M ; C) 6= IH

α (C; M) by calculation. 2

B Graphs of ϕN(α) for Cases I and II in Example 1

(a) ϕA(α) = Rα(X) − RA
α(X|Y ) (b) ϕH(α) = Rα(X) − RH

α(X|Y )

Fig. 1. Graphs of ϕN(α), N ∈ {A, H} for Cases I and II in Example 1


