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Abstract

Fuzzy extractors derive strong keys from noisy sources. Their security is defined information-
theoretically, which limits the length of the derived key, sometimes making it too short to be useful.
We ask whether it is possible to obtain longer keys by considering computational security, and show
the following.

• Negative Result: Noise tolerance in fuzzy extractors is usually achieved using an information
reconciliation component called a “secure sketch.” The security of this component, which directly
affects the length of the resulting key, is subject to lower bounds from coding theory. We show
that, even when defined computationally, secure sketches are still subject to lower bounds from
coding theory. Specifically, we consider two computational relaxations of the information-theoretic
security requirement of secure sketches, using conditional HILL entropy and unpredictability
entropy. For both cases we show that computational secure sketches cannot outperform the best
information-theoretic secure sketches in the case of high-entropy Hamming metric sources.

• Positive Result: We show that the negative result can be overcome by analyzing computational
fuzzy extractors directly. Namely, we show how to build a computational fuzzy extractor whose
output key length equals the entropy of the source (this is impossible in the information-theoretic
setting). Our construction is based on the hardness of the Learning with Errors (LWE) problem,
and is secure when the noisy source is uniform or symbol-fixing (that is, each dimension is either
uniform or fixed). As part of the security proof, we show a result of independent interest, namely
that the decision version of LWE is secure even when a small number of dimensions has no error.

Keywords Fuzzy extractors, secure sketches, key derivation, Learning with Errors, error-correcting
codes, computational entropy, randomness extractors.

1 Introduction

Authentication generally requires a secret drawn from some high-entropy source. One of the primary build-
ing blocks for authentication is reliable key derivation. Unfortunately, many sources that contain sufficient
entropy to derive a key are noisy, and provide similar, but not identical secret values at each reading (ex-
amples of such sources include biometrics [Dau04], human memory [ZH93], pictorial passwords [BS00],
measurements of capacitance [TSv+06], timing [SD07], motion [CM05], quantum information [BBR88]
etc.).
∗Email: bfuller@cs.bu.edu. Work done in part while the author was at MIT Lincoln Laboratory.
†Email: xmeng@cs.bu.edu.
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Fuzzy extractors [DORS08] achieve reliable key derivation from noisy sources (see [BDK+05, DW09,
CKOR10] for applications of fuzzy extractors). The setting consists of two algorithms: Generate (used
once) and Reproduce (used subsequently). The Generate (Gen) algorithm takes an input w and produces
a key r and a public value p. This information allows the Reproduce (Rep) algorithm to reproduce r given
p and some value w′ that is close to w (according to some predefined metric, such as Hamming distance).
Crucially for security, knowledge of p should not reveal r; that is, r should be uniformly distributed
conditioned on p. This feature is needed because p is not secret: for example, in a single-user setting
(where the user wants to reproduce the key r from a subsequent reading w′), it would be stored in the
clear; and in a key agreement application [BDK+05] (where two parties have w and w′, respectively), it
would be transmitted between the parties.

Fuzzy extractors use ideas from information-reconciliation [BBR88] and are defined (traditionally) as
information-theoretic objects. The entropy loss of a fuzzy extractor is the difference between the entropy
of w and the length of the derived key r. In the information-theoretic setting, some entropy loss is
necessary as the value p contains enough information to reproduce r from any close value w′. A goal
of fuzzy extractor constructions is to minimize the entropy loss, increasing the security of the resulting
application. Indeed, if the entropy loss is too high, the resulting secret key may be too short to be useful.

We ask whether it is possible to obtain longer keys by considering computational, rather than infor-
mation theoretic, security.

Our Negative Results We first study (in Section 3) whether it could be fruitful to relax the definition
of the main building block of a fuzzy extractor, called a secure sketch. A secure sketch is a one-round infor-
mation reconciliation protocol: it produces a public value s that allows recovery of w from any close value
w′. The traditional secrecy requirement of a secure sketch is that w has high min-entropy conditioned
on s. This allows the fuzzy extractor of [DORS08] to form the key r by applying a randomness extrac-
tor [NZ93] to w, because randomness extractors produce random strings from strings with conditional
min-entropy. We call this the sketch-and-extract construction.

The most natural relaxation of the min-entropy requirement of the secure sketch is to require HILL
entropy [HILL99] (namely, that the distribution of w conditioned on s be indistinguishable from a high-
min-entropy distribution). Under this definition, we could still use a randomness extractor to obtain r
from w, because it would yield a pseudorandom key. Unfortunately, it is unlikely that such a relaxation
will yield fruitful results: we prove in Theorem 3.6 that the entropy loss of such secure sketches is subject
to the same coding bounds as the ones that constrain information-theoretic secure sketches.

Another possible relaxation is to require that the value w is unpredictable conditioned on s. This
definition would also allow the use of a randomness extractor to get a pseudorandom key, although it
would have to be a special extractor—one that has a reconstruction procedure (see [HLR07, Lemma
6]). Unfortunately, this relaxation is also unlikely to be fruitful: we prove in Theorem 3.10 that the
unpredictability is at most log the size of the metric space minus log the volume of the ball of radius
t. For high-entropy sources of w over the Hamming metric, this bound matches the best information-
theoretic security sketches.

Our Positive Results Both of the above negative results arise because a secure sketch functions like a
decoder of an error-correcting code. To avoid them, we give up on building computational secure sketches
and focus directly on the entropy loss in fuzzy extractors. Our goal is to decrease the entropy loss in a
fuzzy extractor by allowing the key r to be pseudorandom conditioned on p.

By considering this computational secrecy requirement, we construct the first lossless computational
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fuzzy extractors (Construction 4.1), where the derived key r is as long as the entropy of the source w. Our
construction is for the Hamming metric and uses the code-offset construction [JW99],[DORS08, Section
5] used in prior work, but with two crucial differences. First, the key r is not extracted from w like in
the sketch-and-extract approach; rather w “encrypts” r in a way that is decryptable with the knowledge
of some close w′ (this idea is similar to the way the code-offset construction is presented in [JW99] as a
“fuzzy commitment”). Our construction uses private randomness, which is allowed in the fuzzy extractor
setting but not in noiseless randomness extraction. Second, the code used is a random linear code, which
allows us to use the Learning with Errors (LWE) assumption due to Regev [Reg05, Reg10] and derive a
longer key r.

Specifically, we use the recent result of Döttling and Müller-Quade [DMQ13], which shows the hardness
of decoding random linear codes when the error vector comes from the uniform distribution, with each
coordinate ranging over a small interval. This allows us to use w as the error vector, assuming it is
uniform. We also use a result of Akavia, Goldwasser, and Vaikuntanathan [AGV09], which says that
LWE has many hardcore bits, to hide r.

Because we use a random linear code, our decoding is limited to reconciling a logarithmic number
of differences. Unfortunately, we cannot utilize the results that improve the decoding radius through
the use of trapdoors (such as [Reg05]), because in a fuzzy extractor, there is no secret storage place for
the trapdoor. If improved decoding algorithms are obtained for random linear codes, they will improve
error-tolerance of our construction. Given the hardness of decoding random linear codes [BMvT78], we
do not expect significant improvement in the error-tolerance of our construction.

In Section 5, we are able to relax the assumption that w comes from the uniform distribution, and
instead allow w to come from a symbol-fixing source [KZ07] (each dimension is either uniform or fixed).
This relaxation follows from our results about the hardness of LWE when samples have a fixed (and
adversarially known) error vector, which may be of independent interest (Theorem 5.2).

An Alternative Approach Computational extractors [Kra10, BDK+11, DSGKM12] have the same
goal of obtaining a pseudorandom key r from a source w in the setting without errors. They can be
constructed, for example, by applying a pseudorandom generator to the output of an information-theoretic
extractor. One way to build a computational fuzzy extractor is by using a computational extractor instead
of the information-theoretic extractor in the sketch-and-extract construction of [DORS08]. However, this
approach is possible only if conditional min-entropy of w conditioned on the sketch s is high enough.
Furthermore, this approach does not allow the use of private randomness; private randomness is a crucial
ingredient in our construction. We compare the two approaches in Section 4.4.

2 Preliminaries

For a random variable X = X1||...||Xn where each Xi is over some alphabet Z, we denote by X1,...,k =
X1||...||Xk. The min-entropy of X is H∞(X) = − log(maxx Pr[X = x]), and the average (conditional)
min-entropy of X given Y is H̃∞(X|Y ) = − log(Ey∈Y maxx Pr[X = x|Y = y]) [DORS08, Section 2.4]. The
statistical distance between random variables X and Y with the same domain is ∆(X,Y ) = 1

2

∑
x |Pr[X =

x]−Pr[Y = x]|. For a distinguisher D (or a class of distinguishers D) we write the computational distance
between X and Y as δD(X,Y ) = |E[D(X)]− E[D(Y )]|. We denote by Dssec the class of randomized
circuits which output a single bit and have size at most ssec. For a metric space (M, dis), the (closed) ball
of radius t around x is the set of all points within radius t, that is, Bt(x) = {y|dis(x, y) ≤ t}. If the size
of a ball in a metric space does not depend on x, we denote by |Bt(·)| the size of a ball of radius t. For
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the Hamming metric over Zn, |Bt(·)| =
∑t

i=0

(
n
i

)
(|Z|− 1)i. Un denotes the uniformly distributed random

variable on {0, 1}n. Usually, we use bold letters for vectors or matrices, capitalized letters for random
variables, and lowercase letters for elements in a vector or samples from a random variable.

2.1 Fuzzy Extractors and Secure Sketches

We now recall definitions and lemmas from the work of Dodis et. al. [DORS08, Sections 2.5–4.1], adapted
to allow for a small probability of error, as discussed in [DORS08, Sections 8]. Let M be a metric space
with distance function dis.

Definition 2.1. An (M,m, `, t, ε)-fuzzy extractor with error δ is a pair of randomized procedures, “gen-
erate” (Gen) and “reproduce” (Rep), with the following properties:

1. The generate procedure Gen on input w ∈ M outputs an extracted string r ∈ {0, 1}` and a helper
string p ∈ {0, 1}∗.

2. The reproduction procedure Rep takes an element w′ ∈ M and a bit string p ∈ {0, 1}∗ as inputs.
The correctness property of fuzzy extractors guarantees that for w and w′ such that dis(w,w′) ≤ t,
if R,P were generated by (R,P )← Gen(w), then Rep(w′, P ) = R with probability (over the coins of
Gen,Rep) at least 1− δ. If dis(w,w′) > t, then no guarantee is provided about the output of Rep.

3. The security property guarantees that for any distribution W on M of min-entropy m, the string R
is nearly uniform even for those who observe P : if (R,P )← Gen(W ), then SD((R,P ), (U`, P )) ≤ ε.

A fuzzy extractor is efficient if Gen and Rep run in expected polynomial time.

Secure sketches are the main technical tool in the construction of fuzzy extractors. Secure sketches
produce a string s that does not decrease the entropy of w too much, while allowing recovery of w from
a close w′:

Definition 2.2. An (M,m, m̃, t)-secure sketch with error δ is a pair of randomized procedures, “sketch”
(SS) and “recover” (Rec), with the following properties:

1. The sketching procedure SS on input w ∈M returns a bit string s ∈ {0, 1}∗.

2. The recovery procedure Rec takes an element w′ ∈ M and a bit string s ∈ {0, 1}∗. The correctness
property of secure sketches guarantees that if dis(w,w′) ≤ t, then Pr[Rec(w′,SS(w)) = w] ≥ 1 − δ
where the probability is taken over the coins of SS and Rec. If dis(w,w′) > t, then no guarantee is
provided about the output of Rec.

3. The security property guarantees that for any distribution W overM with min-entropy m, the value
of W can be recovered by the adversary who observes w with probability no greater than 2−m̃. That
is, H̃∞(W |SS(W )) ≥ m̃.

A secure sketch is efficient if SS and Rec run in expected polynomial time.

Note that in the above definition of secure sketches (resp., fuzzy extractors), the errors are chosen
before s (resp., P ) is known: if the error pattern between w and w′ depends on the output of SS (resp.,
Gen), then there is no guarantee about the probability of correctness.

A fuzzy extractor can be produced from a secure sketch and an average-case randomness extractor.
An average-case extractor is a generalization of a strong randomness extractor [NZ93, Definition 2]) (in
particular, Vadhan [Vad12, Problem 6.8] showed that all strong extractors are average-case extractors
with a slight loss of parameters):
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Definition 2.3. Let χ1, χ2 be finite sets. A function ext : χ1 × {0, 1}d → {0, 1}` a (m, ε)-average-
case extractor if for all pairs of random variables X,Y over χ1, χ2 such that H̃∞(X|Y ) ≥ m, we have
∆((ext(X,Ud), Ud, Y ), U` × Ud × Y ) ≤ ε.

Lemma 2.4. Assume (SS,Rec) is an (M,m, m̃, t)-secure sketch with error δ, and let ext :M×{0, 1}d →
{0, 1}` be a (m̃, ε)-average-case extractor. Then the following (Gen,Rep) is an (M,m, `, t, ε)-fuzzy extractor
with error δ:

• Gen(w) : generate x← {0, 1}d, set p = (SS(w), x), r = ext(w;x), and output (r, p).

• Rep(w′, (s, x)) : recover w = Rec(w′, s) and output r = ext(w;x).

The main parameter we will be concerned with is the entropy loss of the construction. In this paper,
we ask whether a smaller entropy loss can be achieved by considering a fuzzy extractor with a compu-
tational security requirement. We therefore relax the security requirement of Definition 2.1 to require a
pseudorandom output instead of a truly random output. Also, for notational convenience, we modify the
definition so that we can specify a general class of sources for which the fuzzy extractor is designed to
work, rather than limiting ourselves to the class of sources that consists of all sources of a given min-
entropy m, as in definitions above (of course, this modification can also be applied to prior definitions of
information-theoretic secure sketches and fuzzy extractors).

Definition 2.5 (Computational Fuzzy Extractor). Let W be a family of probability distributions overM.
A pair of randomized procedures “generate” (Gen) and “reproduce” (Rep) is a (M,W, `, t)-computational
fuzzy extractor that is (ε, ssec)-hard with error δ if Gen and Rep satisfy the following properties:

• The generate procedure Gen on input w ∈ M outputs an extracted string R ∈ {0, 1}` and a helper
string P ∈ {0, 1}∗.

• The reproduction procedure Rep takes an element w′ ∈M and a bit string P ∈ {0, 1}∗ as inputs. The
correctness property guarantees that if dis(w,w′) ≤ t and (R,P ) ← Gen(w), then Pr[Rep(w′, P ) =
R] ≥ 1 − δ where the probability is over the randomness of (Gen,Rep). If dis(w,w′) > t, then no
guarantee is provided about the output of Rep.

• The security property guarantees that for any distribution W ∈ W, the string R is pseudorandom
conditioned on P , that is δDssec ((R,P ), (U`, P )) ≤ ε.

Any efficient fuzzy extractor is also a computational fuzzy extractor with the same parameters.
Remark Fuzzy extractor definitions make no guarantee about Rep behavior when the distance between

w and w′ is larger than t. In the information-theoretic setting this seemed inherent as the “correct” R
should be information-theoretically unknown conditioned on P . However, in the computationally setting
this is not true. Looking ahead, in our construction R is information-theoretically determined conditioned
on P (with high probability over the coins of Gen). Our Rep algorithm will never output an incorrect
key (with high probability over the coins of Gen) but may not terminate. However, it is not clear this is
the desired behavior. For this reason, we leave the behavior of Rep ambiguous when dis(w,w′) > t.

3 Impossibility of Computational Secure Sketches

In this section, we consider whether it is possible in build a secure sketch that retains significantly more
computational than information-theoretic entropy. We consider two different notions for computational
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entropy, and for both of them show that corresponding secure sketches are subject to the same upper
bounds as those for information-theoretic secure sketches. Thus, it seems that relaxing security of sketches
from information-theoretic to computational does not help.

In particular, for the case of the Hamming metric and inputs that have full entropy, our results are
as follows. In Section 3.1 we show that a sketch that retains HILL entropy implies a sketch that retains
nearly the same amount of min-entropy. In Section 3.2, we show that the computational unpredictability
of a sketch is at most log |M| − log |Bt(·)|. Dodis et al. [DORS08, Section 8.2] construct sketches with
essentially the same information-theoretic security1 . In Section 3.3, we discuss mechanisms for avoiding
these bounds.

3.1 Bounds on Secure Sketches using HILL entropy

HILL entropy is a commonly used computational notion of entropy [HILL99]. It was extended to the
conditional case by Hsiao, Lu, Reyzin [HLR07]. Here we recall a weaker definition due to Gentry and
Wichs [GW11] (the term relaxed HILL entropy was introduced in [Rey11]); since we show impossibility
even for this weaker definition, impossibility for the stronger definition follows immediately.

Definition 3.1. Let (W,S) be a pair of random variables. W has relaxed HILL entropy at least k
conditioned on S, denoted HHILL-rlx

ε,ssec (W |S) ≥ k if there exists a joint distribution (X,Y ), such that
H̃∞(X|Y ) ≥ k and δDssec ((W,S), (X,Y )) ≤ ε.

Intuitively, HILL entropy is as good as average min-entropy for all computationally-bounded ob-
servers. Thus, redefining secure sketches using HILL entropy is a natural relaxation of the original
information-theoretic definition; in particular, the sketch-and-extract construction in Lemma 2.4 would
yield pseudorandom outputs if the secure sketch ensured high HILL entropy. We will consider secure
sketches that retain relaxed HILL entropy: that is, we say that (SS,Rec) is a HILL-entropy (M,m, m̃, t)
secure sketch that is (ε, ssec)-hard with error δ if it satisfies Definition 2.2, with the security requirement
replaced by HHILL-rlx

ε,ssec (W |SS(W )) ≥ m̃.
Unfortunately, we will show below that such a secure sketch implies an error correcting code with

approximately 2m̃ points that can correct t random errors (see [DORS08, Lemma C.1] for a similar bound
on information-theoretic secure sketches). For the Hamming metric, our result essentially matches the
bound on information-theoretic secure sketches of [DORS08, Proposition 8.2]. In fact, we show that,
for the Hamming metric, HILL-entropy secure sketches imply information-theoretic ones with similar
parameters, and, therefore, the HILL relaxation gives no advantage.

The intuition for building error-correcting codes from HILL-entropy secure sketches is as follows. In
order to have HHILL-rlx

ε,ssec (W |SS(W )) ≥ m̃, there must be a distribution X,Y such that H̃∞(X|Y ) ≥ m̃ and
(X,Y ) is computationally indistinguishable from (W, SS(W )). Sample a sketch s ← SS(W ). We know
that SS followed by Rec likely succeeds on W |s (i.e., Rec(w′, s) = w with high probability for w ← W |s
and w′ ← Bt(w)). Consider the following experiment: 1) sample y ← Y , 2) draw x ← X|y and 3)
x′ ← Bt(x). By indistinguishability, Rec(x′, y) = x with high probability. This means we can construct a
large set C from the support of X|y. C will be an error correcting code and Rec an efficient decoder. We
can then use standard arguments to turn this code into an information theoretic sketch.

To make this intuition precise, we need an additional technical condition: sampling a random neighbor
of a point is efficient.

1The security in [DORS08, Section 8.2] is expressed in terms of entropy of the error rate; recall that log Bt(·) ≈ Hq(t/n),
where n is the number of symbols, q is the alphabet size, and Hq is the q-ary entropy function.
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Definition 3.2. We say a metric space (M, dis) is (sneigh, t)-neighborhood samplable if there exists a
randomized circuit Neigh of size sneigh that for all t′ ≤ t, Neigh(w, t′) outputs a random point at distance
t′ of w.

We review the definition of a Shannon code [SWBH49]:

Definition 3.3. Let C be a set over space M. We say that C is an (t, ε)-Shannon code if there exists
an efficient procedure Rec such that for all t′ ≤ t and for all c ∈ C, Pr[Rec(Neigh(c, t′)) 6= c] ≤ ε. To
distinguish it from the average-error Shannon code defined below, we will sometimes call it a maximal-error
Shannon code.

This is a slightly stronger formulation than usual, in that for every size t′ < t we require the code to
correct t′ random errors2. Shannon codes work for all codewords. We can also consider a formulation
that works for an “average” codeword.

Definition 3.4. Let C be a distribution over space M. We say that C is an (t, ε)-average error Shannon
code if there exists an efficient procedure Rec such that for all t′ ≤ t Prc←C [Rec(Neigh(c, t′)) 6= c] ≤ ε.

An average error Shannon code is one whose average probability of error is bounded by ε. See [CT06,
Pages 192-194] for definitions of average and maximal error probability. An average-error Shannon code
is convertible to a maximal-error Shannon code with a small loss. We use the following pruning argument
from [CT06, Pages 202-204] (we provide a proof in Section C.1):

Lemma 3.5. Let C be a (t, ε)-average error Shannon code with recovery procedure Rec such that H∞(C) ≥
k. There is a set C′ with |C′| ≥ 2k−1 that is a (t, 2ε)-(maximal error) Shannon code with recovery procedure
Rec.

We can now formalize the intuition above and show that a sketch that retains m̃-bits of relaxed HILL
entropy implies a good error correcting code with nearly 2m̃ points (proof in Section C.2).

Theorem 3.6. Let (M, dis) be a metric space that is (sneigh, t)-neighborhood samplable. Let (SS,Rec) be
an HILL-entropy (M,m, m̃, t)-secure sketch that is (ε, ssec)-secure with error δ. Let srec denote the size
of the circuit that computes Rec. If ssec ≥ (t(sneigh + srec)), then there exists a value s and a set C with
|C| ≥ 2m̃−2 that is a (t, 4(ε+ tδ))-Shannon code with recovery procedure Rec(·, s).

For the Hamming metric, any Shannon code (as defined in Definition 3.3) can be converted into an
information-theoretic secure sketch (as described in [DORS08, Section 8.2] and references therein). The
idea is to use the code offset construction, and convert worst-case errors to random errors by randomizing
the order of the symbols of w first, via a randomly chosen permutation π (which becomes part of the
sketch and is applied to w′ during Rec). The formal statement of this result can be expressed in the
following Lemma (which is implicit in [DORS08, Section 8.2]).

Lemma 3.7. For an alphabet Z, let C over Zn be a (t, δ) Shannon code. Then there exists a (Zn,m,m−
(n log |Z| − log |C|), t) secure sketch with error δ for the Hamming metric over Zn.

2In the standard formulation, the code must correct a random error of size up to t, which may not imply that it can
correct a random error of a much smaller size t′, because the volume of the ball of size t′ may be negligible compared to
the volume of the ball of size t. For codes that are monotone (if decoding succeeds on a set of errors, it succeeds on all
subsets), these formulations are equivalent. However, we work with an arbitrary recover functionality that is not necessarily
monotone.
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Putting together Theorem 3.6 and Lemma 3.7 gives us the negative result for the Hamming metric:
a HILL-entropy secure sketch (for the uniform distribution) implies an information-theoretic one with
similar parameters:

Corollary 3.8. Let Z be an alphabet. Let (SS′,Rec′) be an (ε, ssec)-HILL-entropy (Zn, n log |Z|, m̃, t)-
secure sketch with error δ for the Hamming metric over Zn, with Rec′ of circuit size srec. If ssec ≥
t(srec + n log |Z|), then there exists a (Zn, n log |Z|, m̃ − 2, t) (information-theoretic) secure sketch with
error 4(ε+ tδ).

Note In Corollary 3.8 we make no claim about the efficiency of the resulting (SS,Rec), because the
proof of Theorem 3.6 is not constructive.

Corollary 3.8 extends to non-uniform distributions: if there exists a distribution whose HILL sketch
retains m̃ bits of entropy, then for all distributions W , there is an information theoretic sketch that retains
H∞(W )− (n log |Z| − m̃)− 2 bits of entropy.

3.2 Bounds on Secure Sketches using Unpredictability Entropy

In the previous section, we showed that any sketch that retained HILL entropy could be transformed into
an information theoretic sketch. However, HILL entropy is a strong notion. In this section, we therefore
ask whether it is useful to consider a sketch that satisfies a minimal requirement: the value of the input
is computationally hard to guess given the sketch. We begin by recalling the definition of conditional
unpredictability entropy [HLR07, Definition 7], which captures the notion of “hard to guess” (we relax
the definition slightly, similarly to the relaxation of HILL entropy described in the previous section).

Definition 3.9. Let (W,S) be a pair of random variables. We say that W has relaxed unpredictability
entropy at least k conditioned on S, denoted by Hunp-rlx

ε,ssec (W |S) ≥ k, if there exists a pair of distributions
(X,Y ) such that δDssec ((W,S), (X,Y )) ≤ ε, and for all circuits I of size ssec,

Pr[I(Y ) = X] ≤ 2−k.

We will say that a pair of procedures (SS,Rec) is a unpredictability-entropy (M,m, m̃, t) secure sketch
that is (ε, ssec)-hard with error δ if it satisfies Definition 2.2, with the security requirement replaced
by H

unp-rlx
ε,ssec (W |SS(W )) ≥ m̃. Note this notion is quite natural: combining such a secure sketch in a

sketch-and-extract construction of Lemma 2.4 with a particular type of extractor (called a reconstructive
extractor [BSW03]), would yield a computational fuzzy extractor (per [HLR07, Lemma 6]).

Unfortunately, the conditional unpredictability entropy m̃ must decrease as t increases, as the following
theorem states. (The proof of the theorem, generalized to more metric spaces, is in Section C.3.)

Theorem 3.10. Let Z be an alphabet (SS,Rec) be an unpredictability-entropy (Zn,m, m̃, t)-secure sketch
that is (ε, ssec)-secure with error δ. If ssec ≥ t(|Rec|+ n log |Z|), then m̃ ≤ n log |Z| − log |Bt(·)|+ log(1−
ε− tδ).

In particular, if the input is uniform, the entropy loss is about log |Bt(·)|. As mentioned at the be-
ginning of Section 3, essentially the same entropy loss can be achieved with information-theoretic secure
sketches, by using the randomized code-offset construction. However, it is conceivable that unpredictabil-
ity entropy secure sketches could achieve lower entropy loss with greater efficiency for some parameter
settings.
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3.3 Avoiding sketch entropy upper bounds

The lower bounds of Corollary 3.8 and Theorem 3.10 are strongest for high entropy sources. This is
necessary, if a source contains only codewords (of an error correcting code), no sketch is needed, and thus
there is no (computational) entropy loss. This same situation occurs when considering lower bounds for
information-theoretic sketches [DORS08, Appendix C] .

Both of lower bounds arise because Rec must function as an error-correcting code for many points of
any indistinguishable distribution. It may be possible to avoid these bounds if Rec outputs a fresh random
variable3. Such an algorithm is called a computational fuzzy conductor. See [KR09] for the definition of a
fuzzy conductor. To the best of our knowledge, a computational fuzzy conductor has not been defined in
the literature, the natural definition is to replace the pseudorandomness condition in Definition 2.5 with
a HILL entropy requirement.

Our construction (in Section 4) has pseudorandom output and immediately satisfies definition of a
computational fuzzy extractor (Definition 2.5). It may be possible to achieve significantly better pa-
rameters with a construction that is a computational fuzzy conductor (but not a computational fuzzy
extractor) and then applying an extractor. We leave this as an open problem.

4 Computational Fuzzy Extractor based on LWE

In this section we describe our main construction. Security of our construction depends on the source W .
We first consider a uniform source W ; we consider other distributions in Section 5. Our construction uses
the code-offset construction [JW99], [DORS08, Section 5] instantiated with a random linear code over a
finite field Fq. Let Decodet be an algorithm that decodes a random linear code with at most t errors (we
will present such an algorithm later, in Section 4.2).

Construction 4.1. Let n be a security parameter and let m ≥ n. Let q be a prime. Define Gen,Rep as
follows:

Gen

1. Input: w ← W (where W is some dis-
tribution over Fmq ).

2. Sample A ∈ Fm×nq ,x ∈ Fnq uniformly.

3. Compute p = (A,Ax + w),
r = x1,...,n/2.

4. Output (r, p).

Rep

1. Input: (w′, p) (where the Hamming dis-
tance between w′ and w is at most t).

2. Parse p as (A, c); let b = c− w′.

3. Let x = Decodet(A,b)

4. Output r = x1,...,n/2.

Intuitively, security comes from the computational hardness of decoding random linear codes with
a high number of errors (introduced by w). In fact, we know that decoding a random linear code is
NP-hard [BMvT78]; however, this statement is not sufficient for our security goal, which is to show
δDssec ((X1,...,n/2, P ), (Un/2 log q, P )) ≤ ε. Furthermore, this construction is only useful if Decodet can be
efficiently implemented.

3If some efficient algorithm can take the output of Rec and efficiently transform it back to the source W , the bounds of
Corollary 3.8 and Theorem 3.10 both apply. This means that we need to consider constructions that are hard to invert (either
information-theoretically or computationally).
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The rest of this section is devoted to making these intuitive statements precise. We describe the LWE
problem and the security of our construction in Section 4.1. We describe one possible polynomial-time
Decodet (which corrects more errors than is possible by exhaustive search) in Section 4.2. In Section 4.3,
we describe parameter settings that allow us to extract as many bits as the input entropy, resulting in a
lossless construction. In Section 4.4, we compare Construction 4.1 to using a sketch-and-extract approach
(Lemma 2.4) instantiated with a computational extractor.

4.1 Security of Construction 4.1

The LWE problem was introduced by Regev [Reg05, Reg10] as a generalization of “learning parity with
noise.” For a complete description of the LWE problem and related lattices problems (which we do not
define here) see [Reg05]. We now recall the decisional version of the problem.

Definition 4.2 (Decisional LWE). Let n be a security parameter. Let m = m(n) = poly(n) be an integer
and q = q(n) = poly(n) be a prime4. Let A be the uniform distribution over Fm×nq , X be the uniform
distribution over Fnq and χ be an arbitrary distribution on Fmq . The decisional version of the LWE problem,
denoted dist-LWEn,m,q,χ, is to distinguish the distribution (A,AX+χ) from the uniform distribution over
(Fm×nq ,Fmq ).

We say that dist-LWEn,m,q,χ is (ε, ssec)-secure if no (probabilistic) distinguisher of size ssec can distin-
guish the LWE instances from uniform except with probability ε. If for any ssec = poly(n), there exists
ε = ngl(n) such that dist-LWEn,m,q,χ is (ε, ssec)-secure, then we say it is secure.

Regev[Reg05] and Peikert [Pei09] show that dist-LWEn,m,q,χ is secure when the distribution χ of errors
is Gaussian, as follows. Let Ψ̄ρ be the discretized Gaussian distribution with variance (ρq)2/2π, where
ρ ∈ (0, 1) with ρq > 2

√
n. If GAPSVP and SIVP are hard to approximate (on lattices of dimension n)

within polynomial factors for quantum algorithms, then dist-LWEn,m,q,Ψ̄mρ is secure. (A recent result of
Brakerski et al. [BLP+13] shows security of LWE based on hardness of approximating lattices problems
for classical algorithms. We have not considered how this result can be integrated into our analysis.)

The above formulation of LWE requires the error term to come from the discretized Gaussian distribu-
tion, which makes it difficult to use it for constructing fuzzy extractors (because using w and w′ to sample
Gaussian distributions will increase the distance between the error terms and/or reduce their entropy).
Fortunately, recent work Döttling and Müller-Quade [DMQ13] shows the security of LWE, under the same
assumptions, when errors come from the uniform distribution over a small interval5. This allows us to
directly encode w as the error term in an LWE problem by splitting it into m blocks. The size of these
blocks is dictated by the following result of Döttling and Müller-Quade:

Lemma 4.3. [DMQ13, Corollary 1] Let n be a security parameter. Let q = q(n) = poly(n) be a prime
and m = m(n) = poly(n) be an integer with m ≥ 3n. Let σ ∈ (0, 1) be an arbitrarily small constant
and let ρ = ρ(n) ∈ (0, 1/10) be such that ρq ≥ 2n1/2+σm. If the approximate decision-version of the
shortest vector problem (GAPSVP) and the shortest independent vectors problem (SIVP) are hard within
a factor of Õ(n1+σm/ρ) for quantum algorithms in the worst case, then, for χ the uniform distribution
over [−ρq, ρq]m, dist-LWEn,m,q,χ is secure.

To extract pseudorandom bits, we use a result of Akavia, Goldwasser, and Vaikuntanathan [AGV09]
to show that X has simultaneously many hardcore bits. The result says that if dist-LWE(n−k,m,q,χ) is

4Unlike in common formulations of LWE, where q can be any integer, we need q to be prime for decoding.
5Micciancio and Peikert provide a similar formulation in [MP13]. The result Döttling and Müller-Quade provides better

parameters for our setting.
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secure then any k variables of X in a dist-LWE(n,m,q,χ) instance are hardcore. We state their result for a
general error distribution (noting that their proof does not depend on the error distribution):

Lemma 4.4. [AGV09, Lemma 2] If dist-LWE(n−k,m,q,χ) is (ε, ssec) secure, then

δDssec′ ((X1,...,k,A,AX + χ), (U,A,AX + χ)) ≤ ε ,

where U denotes the uniform distribution over Fkq , A denotes the uniform distribution over Fm×nq , X
denotes the uniform distribution over Fnq , X1,...,k denote the first k coordinates of x, and s′sec ≈ ssec − n3.

The security of Construction 4.1 follows from Lemmas 4.3 and 4.4 when parameters are set appropri-
ately (see Theorem 4.7), because we use the hardcore bits of X as our key.

4.2 Efficiency of Construction 4.1

Construction 4.1 is useful only if Decodet can be efficiently implemented. We need a decoding algorithm
for a random linear code with t errors that runs in polynomial time. We present a simple Decodet that
runs in polynomial time and can correct O(log n) errors (note that this corresponds to a superpolynomial
number of possible error patterns). This algorithm is a proof of concept, and neither the algorithm nor its
analysis have been optimized for constants. An improved decoding algorithm can replace our algorithm,
which will increase our correcting capability and improve Construction 4.1.

Construction 4.5. We consider a setting of (n,m, q, χ) where m ≥ 3n. We describe Decodet:

1. Input A,b = Ax + w − w′

2. Randomly select rows without replacement i1, ..., i2n ← [1,m].

3. Restrict A,b to rows i1, ..., i2n; denote these Ai1,...,i2n ,bi1,...,i2n.

4. Find n rows of Ai1,...,i2n that are linearly independent. If no such rows exist, output ⊥ and stop.

5. Denote by A′,b′ the restriction of Ai1,...,i2n ,bi1,...,i2n (respectively) to these rows. Compute x′ =
(A′)−1b′.

6. If b−Ax′ has more than t nonzero coordinates, go to step (2).

7. Output x′.

Each step is computable in time O(n3). For Decodet to be efficient, we need t to be small enough so
that with probability at least 1

poly(n) , none of the 2n rows selected in step 2 have errors (i.e., so that w and
w′ agree on those rows). If this happens, and Ai1,...,i2n has rank n (which is highly likely), then x′ = x,
and the algorithm terminates. However, we also need to ensure correctness: we need to make sure that
if x′ 6= x, we detect it in step 6. This detection will happen if b−Ax′ = A(x− x′) + (w − w′) has more
than t nonzero coordinates. It suffices to ensure that A(x − x′) has at least 2t + 1 nonzero coordinates
(because at most t of those can be zeroed out by w − w′), which happens whenever the code generated
by A has distance 2t+ 1.

Setting t = O(mn log n) is sufficient to ensure efficiency. Random linear codes have distance at least
O(mn log n) with probability 1 − e−Ω(n) (the exact statement is in Corollary A.2), so this also ensures
correctness. The formal statement is below (proof in Section C.4):
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Lemma 4.6 (Efficiency of Decodet when t ≤ d(m/n− 2) log n). Let d be a positive constant and assume
that dis(W,W ′) ≤ t where t ≤ d(mn − 2) log n. Then Decodet runs in expected time O(n4d+3) operations
in Fq (this expectation is over the choice of random coins of Decodet, regardless of the input, as long as
dis(w,w′) ≤ t). It outputs X with probability 1− e−Ω(n) (this probability is over the choice of the random
matrix A and random choices made by Decodet).

4.3 Lossless Computational Fuzzy Extractor

We now state a setting of parameters that yields a lossless construction. The intuition is as follows. We
are splitting our source into m blocks each of size log ρq (from Lemma 4.3) for a total input entropy of
m log ρq. Our key is derived from hardcore bits of X: X1,...,k and is of size k log q (from Lemma 4.4).
Thus, to achieve a lossless construction we need k log q = m log ρq. In other words, in order to decode a
meaningful number of errors, the vector w is of higher dimension than the vector X, but each coordinate
of w is sampled using fewer bits than each coordinate of X. Thus, by increasing the size of q (while
keeping ρq fixed) we can set k log q = m log ρq, yielding a key of the same size as our source. The formal
statement is below.

Theorem 4.7. Let n be a security parameter and let the number of errors t = c log n for some positive
constant c. Let d be a positive constant (giving us a tradeoff between running time of Rep and |w|).
Consider the Hamming metric over the alphabet Z = [−2b−1, 2b−1], where b = log 2(c/d+2)n2 = O(log n).
Let W be uniform over M = Zm, where m = (c/d+ 2)n = O(n). If GAPSVP and SIVP are hard to
approximate within polynomial factors using quantum algorithms, then there is a setting of q = poly(n)
such that for any polynomial ssec = poly(n) there exists ε = ngl(n) such that the following holds:
Construction 4.1 is a (M,W,m log |Z|, t)-computational fuzzy extractor that is (ε, ssec)-hard with error
δ = e−Ω(n). The generate procedure Gen takes O(n2) operations over Fq, and the reproduce procedure Rep
takes expected time O(n4d+3) operations over Fq.

Proof. Security follows by combining Lemmas 4.3 and 4.4; efficiency follows by Lemma 4.6. For a more
detailed explanation of the various parameters and constraints see Section D.

Theorem 4.7 shows that a computational fuzzy extractor can be built without incurring any entropy
loss. We can essentially think of AX +W as an encryption of X that where decryption works from any
close W ′.

4.4 Comparison with computational-extractor-based constructions

As mentioned in the introduction, an alternative approach to building a computational fuzzy extractor is
to use a computational extractor (e.g., [Kra10, BDK+11, DSGKM12]) in place of the information-theoretic
extractor in the sketch-and-extract construction. We will call this approach sketch-and-comp-extract. (A
simple example of a computational extractor is a pseudorandom generator applied to the output of an
information-theoretic extractor; note that LWE-based pseudorandom generators exist [AIK06].)

This approach (specifically, its analysis via Lemma 2.4) works as long as the amount of entropy m̃ of w
conditioned on the sketch s remains high enough to run a computational extractor. However, as discussed
in Section 3, m̃ decreases with the error parameter t due to coding bounds, and it is conceivable that, if
W has barely enough entropy to begin with, it will have too little entropy left to run a computational
extractor once s is known.

In contrast, our approach does not require the entropy of w conditioned on p = (A,AX+w) to be high
enough for a computational extractor. Instead, we require that w is not computationally recoverable given
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p. This requirement is weaker—in particular, in our construction, w may have no information-theoretic
entropy conditioned on p. The key difference in our approach is that instead of extracting from w, we
hide secret randomness using w. Computational extractors are not allowed to have private randomness
[Kra10, Definition 3].

The main advantage of our analysis (instead of sketch-and-comp-extract) is that security need not
depend on the error-tolerance t. In our construction, the error-tolerance depends only on the best available
decoding algorithm for random linear codes, because decoding algorithms will not reach the information-
theoretic decoding radius.

Unfortunately, LWE parameter sizes require relatively long w. Therefore, in practice, sketch-then-
comp-extract will beat our construction if the computational extractor is instantiated efficiently based on
assumptions other than LWE (for example, a cryptographic hash function for an extractor and a block
cipher for a PRG). However, we believe that our conceptual framework can lead to better constructions.
Of particular interest are other codes that are easy to decode up to t errors but become computationally
hard as the number of errors increases.

To summarize, the advantage of Construction 4.1 is that the security of our construction does not
depend on the decoding radius t. The disadvantages of Construction 4.1 are that it supports a limited
number of errors and only a uniformly distributed source. We begin to address this second problem in
the next section.

5 Computational Fuzzy Extractor for Nonuniform Sources

While showing the security of Construction 4.1 for arbitrary high-min-entropy distributions is an open
problem, in this section we show it for a particular class of distributions called symbol-fixing. First we
recall the notion of a symbol fixing source (from [KZ07, Definition 2.3]):

Definition 5.1. Let W = (W1, ...,Wm+α) be a distribution where each Wi takes values over an alphabet
Z. We say that it is a (m + α,m, |Z|) symbol fixing source if for α indices i1, . . . , iα, the symbols Wiα

are fixed, and the remaining m symbols are chosen uniformly at random. Note that H∞(W ) = m log |Z|.

Symbol-fixing sources are a very structured class of distributions. However, extending Construction 4.1
to such a class is not obvious. Although symbol-fixing sources are deterministically extractible [KZ07],
we cannot first run a deterministic extractor before using Construction 4.1. This is because we need to
preserve distance between w and w′ and an extractor must not preserve distance between input points.
We present an alternative approach, showing security of LWE directly with symbol-fixing sources.

The following theorem states the main technical result of this section, which is of potential interest
outside our specific setting. The result is that dist-LWE with symbol-fixing sources is implied by standard
dist-LWE (but for n and m reduced by the amount of fixed symbols).

Theorem 5.2. Let n be a security parameter, m,α be polynomial in n, and q = poly(n) be a prime
and β ∈ Z+ be such that q−β = ngl(n). Let U denote the uniform distribution over Zm for an alphabet
Z ⊂ Fq, and let W denote an (m + α,m, |Z|) symbol fixing source over Zm+α. If dist-LWEn,m,q,U is
secure, then dist-LWEn+α+β,m+α,q,W is also secure.

Theorem 5.2 also holds for an arbitrary error distribution (not just uniform error) in the following
sense. Let χ′ be an arbitrary error distribution. Define χ as the distribution where m dimensions
are sampled according to χ′ and the remaining dimensions have some fixed error. Then, security of
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dist-LWEn,m,q,χ′ implies security of dist-LWEn+α+β,m+α,q,χ. We show this stronger version of the theorem
in Appendix B.

The intuition for this result is as follows. Providing a single sample with no error “fixes” at most a
single variable. Thus, if there are significantly more variables than samples with no error, search LWE
should still be hard. We are able to show a stronger result that dist-LWE is still hard. The nontrivial
part of the reduction is using the additional α + β variables to “explain” a random value for the last
α samples, without knowing the other variables. The β parameter is the slack needed to ensure that
the “free” variables have influence on the last α samples. A similar theorem for the case of a single
fixed dimension was shown in concurrent work by Brakerski et al. [BLP+13, Lemma 4.3]. The proof
techniques of Brakerski et al. can be extended to our setting with multiple fixed dimensions, improving
the parameters of Theorem 5.2 (specifically, removing the need for β).

Theorem 5.2 allows us to construct a lossless computational fuzzy extractor from block-fixing sources:

Theorem 5.3. Let n be a security parameter and let t = c log n for some positive constant c. Let d ≤ c
be a positive constant and consider the Hamming metric over the alphabet Z = [−2b−1, 2b−1], where
b ≈ log 2(c/d + 2)n2 = O(log n). Let M = Zm+α where m = (c/d + 2)n = O(n) and α ≤ n/3. Let W
be the class of all (m+ α,m, |Z|)-symbol fixing sources. If GAPSVP and SIVP are hard to approximate
within polynomial factors using quantum algorithms, then there is a setting of q = poly(n) such that for
any polynomial ssec = poly(n) there exists ε = ngl(n) such that the following holds: Construction 4.1
is a (M,W,m log |Z|, t)-computational fuzzy extractor that is (ε, ssec)-hard with error δ = e−Ω(n). The
generate procedure Gen takes O(n2) operations over Fq, and the reproduce procedure Rep takes expected
time O(n4d+3 log n) operations over Fq.

Proof. Security follows by Lemmas 4.3 and 4.4 and Theorem 5.2 . Efficiency follows by Lemma 4.6. For
a more detailed explanation of parameters see Section D.1.
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A Properties of Random Linear Codes

For efficient decoding of Construction 4.1, we need the LWE instance to have high distance with over-
whelming probability. We will use the q-ary entropy function, denoted Hq(x) and defined as Hq(x) =
x logq(q−1)−x logq x− (1−x) logq(1−x). Note that H2(x) = −x log x− (1−x) log(1−x). In the region
[0, 1

2 ] for any value q′ ≥ q, Hq′(x) ≤ Hq(x). The following theorem is standard in coding theory:

Theorem A.1. [Gur10, Theorem 8] For prime q, δ ∈ [0, 1 − 1/q), 0 < ε < 1 − Hq(δ) and sufficiently
large m, the following holds for n = d(1 −Hq(δ) − ε)me . If A ∈ Fm×nq is drawn uniformly at random,
then the linear code with A as a generator matrix has rate at least (1 −Hq(δ) − ε) and relative distance
at least δ with probability at least 1− e−Ω(m).

Our setting is the case where m = poly(n) ≥ 2n and δ = O(log n/n). This setting of parameters
satisfies Theorem A.1:

Corollary A.2. Let n be a parameter and let m = poly(n) ≥ 2n. Let q be a prime and τ = O(mn log n).
For large enough values of n, when A ∈ Fm×nq is drawn uniformly, the code generated by A has distance
at least τ with probability at least 1− e−Ω(m) ≥ 1− e−Ω(n).

Proof. Let c be some constant. Let δ = τ/m = c logn
n . We show the corollary for the case when m =

2n (increasing the size of m only increases the relative distance). It suffices to show that for sufficiently
large n, there exists ε > 0 where 1 −Hq( c logn

n ) − ε = 1/2 or equivalently that Hq( c logn
m ) < 1/2 as then

setting ε = 1/2−Hq( c logn
n ) satisfies Theorem A.1. For sufficiently large n:

• c logn
n < 1/2, so we can work with the binary entropy function H2.

• c logn
n < .1 < 1/2 and thus Hq( c logn

n ) < Hq(.1).

Putting these statements together, for large enough n, Hq( c logn
n ) < Hq(.1) < H2(.1) < 1/2 as desired.

This completes the proof.
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We also need that random matrices are full rank with high probability (to allow us to decode). We
use the following claim (techniques from Cooper [Coo00]):

Claim A.3. Let q ≥ 2 be a prime. Let α, β be integers and let let S $← Fα×(α+β)
q be uniformly generated.

Then Pr[rank(S) = α] > 1− q−β.

Proof. Let pi be the probability that the ith row is linearly dependent on the previous i− 1 rows. By the
union bound, the probability that α rows are linearly dependent is bounded by

∑α
i=1 pi. Since i− 1 rows

can span a space of size at most qi−1, the probability pi that a randomly chosen ith row is in that space
is at most qi−1/qα+β. So

Pr[rank(S) < α] =
α∑
i=1

qi−1

qα+β
=
qα − 1
q − 1

1
qα+β

< q−β.

B Proof of Theorem 5.2

Proof. We assume that all of the fixed blocks are located at the end and their fixed value is 0. If the blocks
are fixed to some other value, the reduction is essentially the same. In the reduction, the distinguisher is
allowed to depend on the source and can know the positions of the fixed blocks and their values. For a
matrix A we will denote the i-th row by ai. For a set T of column indices, we denote by AT the restriction
of the matrix A to the columns contained in T . Similarly, for a vector x we denote by xT the restriction
of x to the variables contained in T . We use similar notation for the complement of T , denoted T c. For
a matrix or vector we use T to denote the transpose. We use i as a index into matrix rows and the error
vector and j as an index into columns and the solution vector.

Let n be a security parameter, m, q, α = poly(n). Let β be such that q−β = ngl(n). All operations
are computed modulo q, and we omit “ mod q” notation. Let χ′ be some error distribution over Fmq and
let χ over Fm+n

q be defined by sampling χ′ to obtain values on dimensions 1, ...,m and then appending α
0s.

Let D be a distinguisher that breaks dist-LWE(m+α),(n+α+β),q,χ with advantage ε > 1/poly(n). Let A

denote the uniform distribution over F(m+α)×(n+α+β)
q , X denote the uniform distribution over F(n+α+β)

q ,
and U denote the uniform distribution over Fm+α

q . Then

|Pr[D(A,AX + χ) = 1]− Pr[D(A, U) = 1]| > ε.

We build a distinguisher that breaks dist-LWEm,n,q,χ. Let A′ denote the uniform distribution over
Fm×nq , X ′ denote the uniform distribution over Fnq , and U ′ denote the uniform distribution over Fmq . We
will build a distinguisher D′ of polynomial size for which

|Pr[D′(A′,A′X ′ + χ′) = 1]− Pr[D′(A′, U ′) = 1]| > (ε− ngl(n))(1− ngl(n)) ≈ ε. (1)

D′ will make a single call to D, so we focus on how to prepare a random block-fixing instance for D from
the random instance that D′ is given. The code for D′ is given in Figure 1.

The distinguisherD′ has an advantage when S is of rank α. This occurs with overwhelming probability:

Claim B.1. Let S $← Fα×(α+β)
q be randomly generated. Then Pr[rank(S) = α] ≥ 1− ngl(n).
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1. Input A′,b′, where A′ $← Fm×nq and b′ is either uniform over Fmq or b′ = A′x′ + e′ for e′ $← χ′

and uniform x′ $← Fnq .

2. Choose R $← Fα×nq uniformly at random. Initialize Q ∈ Fm×(α+β)
q to be the zero matrix.

3. Let b∗ = (b′, b∗m+1, . . . , b
∗
m+α), for uniformly chosen (b∗m+1, . . . , b

∗
m+α) $← Fαq .

4. Choose S $← Fα×(α+β)
q uniformly at random.

If rank(S) < α, stop and output a random bit.

5. Find a set of α linearly independent columns in S. Let T be the set of indices of these columns.

6. For all 1 ≤ j ≤ α+ β, j /∈ T :

Choose xn+j
$← Fq uniformly at random.

For i = 1, ...,m:

Choose Qi,j
$← Fq uniformly at random.

Set b∗i = b∗i + Qi,jxn+j .

7. Initialize A∗ =
(

A′ Q
R S

)
.

8. For i = 1, ...,m:

Choose a row vector γi ← F1×α
q uniformly at random.

Set ai ← a∗i + γi(R||S)

Set bi ← b∗i + γi(b∗m+1, ..., b
∗
m+α)T

9. For i = m+ 1, . . . ,m+ α:

Set ai ← a∗i
Set bi = b∗i .

10. Output D(A,b).

Figure 1: A PPT D′ that distinguishes LWE using distinguisher for LWE w/ block fixing source
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Proof. Direct result of Claim A.3 because q−β = ngl(n).

The probability that a random S is not full rank is ngl(n) so the distinguisher D must still have an
advantage when the matrix S is full rank. That is,

|Pr[D(A,AX + χ) = 1|rank(S) = α]− Pr[D(A, U) = 1|rank(S) = α]| > ε− ngl(n).

It suffices to show that D′ prepares a good instance for D conditioned on S being full rank. We show
this in the following three claims:

1. If A′ is a random matrix then A is a random matrix subject to the condition that rank(S) = α.

2. If b′ = A′x′ + e′ for uniform A′ and x′, then ∃x (uniformly distributed and independent of A and
e′) such that b = Ax + e, where ei = e′i for 1 ≤ i ≤ m and ei = 0 otherwise.

3. If the conditional distribution b′ |A′ is uniform, then the conditional distribution b |A is also
uniform.

Claim B.2. The matrix A is distributed as a uniformly random choice from the set of all matrices whose
bottom-right α× (α+ β) submatrix S satisfies rank(S) = α.

Proof. The bottom α rows of A (namely, R|S) are randomly generated (conditioned on rank(S) = α).
The top left m×n quadrant of A is also random, because it is produced as a sum of a uniformly random
A′ with some values that are uncorrelated with A′. The submatrix of the top-right m× (α+β) quadrant
corresponding to QT c (recall this is the restriction of Q to the columns not in T ) is also random, because
it is initialized with random values to which some uncorrelated values are then added. It is important to
note that all these values are independent of γi values.

Thus, we restrict attention to the m × α submatrix of A that corresponds to QT in A∗ (note that
these values are 0 in A∗). Consider a particular row i. That row is computed as γiST . Since ST is a
full rank square matrix and γi is uniformly and independently generated, that row is also uniform and
independent of other entries in A.

Claim B.3. If D′ is provided with input distributed as A′,b′ = A′x′ + e′ then b = Ax + e, where

• ei = e′i for 1 ≤ i ≤ m,

• ei = 0 for m < i ≤ m+ α,

• xj = x′j for 1 ≤ j ≤ n,

• and xj is uniform and independent of A and e′ for n < j ≤ n+ α+ β,

Proof. Partially define x as xj = x′j if 1 ≤ j ≤ n and xj as the value generated in step 6 for j > n and
j 6∈ T . Define the remaining variables xT as the solution to the following system of equations.

STxT =

b
∗
m+1
...

b∗m+α

−Rx′ − ST cxT c (2)

A solution xT exists as ST is full rank. Moreover, it is uniform and independent of A and e, because
b∗m+1, . . . , b

∗
m+α are uniform and independent of A and e.
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We now show that b∗ = A∗x + e. All entries in matrix Q corresponding to variables in T are set to
zero. Thus, the values of xT do not affect b∗i for 1 ≤ i ≤ m. The values of xT c are manually set, and
Qi,jxj is added to the corresponding b∗i . Thus, for 1 ≤ i ≤ m, we have b∗ = A∗x + e. For m < i, this
constraint is also satisfied by the values of xT set in Equation 2.

Thus, it remains to show that step 8 preserves this solution. We now show that for all rows 1 ≤ i ≤ m,
if b∗i = a∗ix + ei then bi = aix + ei. Recall the other rows are not modified. We have the following for
1 ≤ i ≤ m:

aix + ei = (a∗i + γi(R||S)) x + ei

= a∗ix + ei + γi(R||S)x
= b∗i + γi(R||S)x

Recall that bi = b∗i + γi(b∗m+1, ..., b
∗
m+k). We consider the product (R||S)x. It suffices to show that

(R||S)x = (b∗m+1, ..., b
∗
m+α),

(R||S)x = R

x1
...

xn

+ ST cxT c + STxT

= R

x1
...

xn

+ ST cxT c +

b
∗
m+1
...

b∗m+α

−R

x1
...

xn

− ST cxT c

=

b
∗
m+1
...

b∗m+α


This completes the proof of the claim.

Claim B.4. If the conditional distribution b′ |A′ is uniform, then b |A is also uniform.

Proof. Since R,S, and Q are chosen independently of b′, the distribution b′ |A∗ is uniform. Let b∗ be
the vector generated after step 6. Its first m coordinates are computed by adding the uniform vector b′ to
values that are independent of b∗, and its remaining α coordinates b∗m+1, . . . , b

∗
m+α are chosen uniformly.

Thus b∗ |A∗ is uniform.
Let Γ represent the matrix formed by γi. It is independent of b∗ and A∗, so b∗ | (A∗,Γ) is uniform. Let

Γ′ =
(

Im Γ
0 Iα

)
. Note that b = Γ′b∗. Since b∗ | (A∗,Γ) is uniform, and Γ′ is invertible, b | (A∗,Γ) must

also be uniform. Since A is a deterministic function of A∗ and Γ (assuming Step 5 is deterministic—if not,
we can fix the coins used), the distribution b |A is the same as b | (A∗,Γ) and is thus also uniform.

Finally, the reduction runs in polynomial time and together Claims B.2, B.3, and B.4 show that when
rank(S) = α the distinguisher D′ properly prepares the instance thus,∣∣Pr[D′(A,AX + χ) = 1]− Pr[D′(A, U) = 1]

∣∣
=
∣∣Pr
[
D′(A′,u′) = 1|rank(S) = α

]
− Pr

[
D′(A′,b′ = A′x + e) = 1|rank(S) = α

]∣∣Pr[rank(S) = α]
= |Pr[D(A,AX + χ) = 1|rank(S) = α]− Pr[D(A, U) = 1|rank(S) = α]|Pr[rank(S) = α]
≥ (ε− ngl(n))(1− ngl(n)) ≈ ε
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Where the second line follows because we can detect when rank(S) < α and output a random bit in this
case. Thus, Equation (1) is satisfied, this completes the proof.

C Additional Proofs

C.1 Proof of Lemma 3.5

Proof. Let C be the (t, ε)-average error Shannon code with recovery procedure Rec such that H∞(C) ≥ k.
Then for all t′ ≤ t ∑

c∈C
Pr[C = c] Pr[c′ ← Neigh(c, t′) ∧ Rec(c′) 6= c] ≤ ε.

For c denote by εc = Pr[c′ ← Neigh(c, t′) ∧ Rec(c′) 6= c]. Then by Markov’s inequality:

Pr
c∈C

[εc ≤ 2 E
c←C

[εc]] = Pr
c∈C

[εc ≤ 2ε] ≥ 1
2

Let C ′ denote the of set all c ∈ C where εc ≤ 2ε. Note that Prc←C [c ∈ C ′] ≥ 1/2. Since H∞(C) ≥ k, we
know |C ′| ≥ 2k−1 (otherwise Prc←C [c ∈ C ′] =

∑
c∈C′ Pr[C = c] would be less than 2k−1 1

2k
= 1/2). This

completes the proof of the Lemma 3.5.

C.2 Proof of Theorem 3.6

Proof. Let W be an arbitrary distribution of min-entropy m. Let (X,Y ) be a joint distribution such that
H̃∞(X|Y ) ≥ k and

δDssec ((W, SS(W )), (X,Y )) ≤ ε ,
where ssec ≥ t(sneigh + srec). One such (X,Y ) must exist by the definition of conditional HILL entropy.
Define D as:

1. Input w ∈M, z ∈ {0, 1}∗, t.

2. For all 1 ≤ t′ ≤ t:
w′ ← Neigh(w, t′).

If Rec(w′, z) 6= w output 0.

3. Output 1.

By correctness of the sketch Pr[D(W, SS(W )) = 1] ≥ 1− tδ. Since δD((W, SS(W )), (X,Y )) ≤ ε, we know
Pr[D(X,Y ) = 1] ≥ 1 − ε − tδ. Let Xy denote the random variable X|Y = y. By Markov’s inequality,
there exists a set SY such that Pr[Y ∈ SY ] ≥ 1/2 and for all y ∈ SY , Pr[D(Xy, y) = 1] ≥ 1− 2(ε+ tδ).

Because H̃∞(X|Y ) ≥ k, we know that Ey←Y maxx Pr[Xy = x] ≤ 2k. Applying Markov’s inequality
to the random variable maxx Pr[Xy = x], there exists a set S′Y such that Pr[y ∈ S′Y ] > 1/2, and for all
y ∈ S′Y , H∞(Xy) ≥ k − 1 (we can use the strict version of Markov’s inequality here, because the random
variable maxx Pr[Xy = x] is positive). Fix one value y ∈ SY ∩ S′Y (which exists because the sum of
probabilities of SY and S′Y is greater than 1). Thus, for all such that t′, 1 ≤ t′ ≤ t,

Pr
x←Xy

[x′ ← Neigh(x, t′) ∧ Rec(x′, z) = x] ≥ 1− 2(ε+ tδ).

Thus, Xy is a (t, 2(ε + tδ))-average error Shannon code with recovery Rec(·, y) and 2k−1 points. The
statement of the theorem follows by application of Lemma 3.5.
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C.3 Proof of Theorem 3.10

Instead of proving the result just for Hamming metric over Zn, we will prove the result for any metric
space that is both neighborhood samplable (Definition 3.2) and where picking a random point in the space
is easy. We now define this second condition:

Definition C.1. A metric space space (M, dis) is ssam-efficiently-samplable if there exists a randomized
circuit Sample of size ssam that outputs a uniformly random point in M.

Theorem C.2. Let W be a distribution over a metric space (M, dis) that is ssam samplable and (sneigh, t)
neighborhood samplable. Furthermore, assume that the number of points within distance t inM is at least
some fixed value Bt(·). Let (SS,Rec) be an unpredictability-entropy (M,H∞(W ), m̃, t) secure sketch that is
(ε, ssec)-secure with error δ. If ssec ≥ max{t(|Rec|+sneigh), |Rec|+ssam}, then m̃ ≤ log |M|− log |Bt(·)|+
log(1− ε− tδ).

Proof. Let (X,Y ) be two random variables such that δDssec ((W, SS(W )), (X,Y )) ≤ ε. It suffices to show
that ∃I of size ssec such that Pr[I(Y ) = X] ≥ |M|(1− ε− tδ)/|Bt(·)|.

Let Bt(x) denote the random variable representing a random neighbor of distance at most t from x
(note that Bt may not be efficiently samplable, because we are assuming only that a neighbor a fixed
distance is efficiently samplable). We begin by showing that Rec must recover points of X.

Claim C.3.

Pr[Rec(Bt(X), Y ) = X] =
Pr[(x, y)← (X,Y ) ∧ x′ ← Bt(x) ∧ Rec(x′, y) = x] ≥ 1− ε− tδ.

Proof. Suppose that Pr[Rec(Bt(X), Y ) = X] < 1 − ε − tδ. We construct the following distinguisher
D ∈ Dssec (the distinguisher design is slightly complicated by the fact that we don’t know at which
particular distance t′ the recover procedure is most likely to fail, so we have to try all distances):

• Input w ∈M, s ∈ {0, 1}∗.

• For all 1 ≤ t′ ≤ t:
w′ ← Neigh(w, t′).

If Rec(w′, z) 6= w output 0.

• Output 1.

First note that |D| = t(|Rec| + sneigh). Since (SS,Rec) has error δ we know that ∀w,w′ ∈ M where
dis(w,w′) ≤ t

Pr[s← SS(w) ∧ Rec(w′, s) = w] ≥ 1− δ.

This implies that for all 1 ≤ t′ ≤ t, Pr[Rec(Neigh(W, t′),SS(W )) = W )] ≥ 1−δ and thus Pr[D(W, SS(W )) =
1] ≥ 1 − tδ. If Pr[Rec(Bt(X), Y ) = X] < 1 − ε − tδ there must exist at least one 1 ≤ t′ ≤ t for which
Pr[Rec(Neigh(X, t′), Y ) = X] < 1− ε− tδ. Then

Pr[D(W, SS(W )) = 1]− Pr[D(X,Y ) = 1] ≥
(1− tδ)− Pr[Rec(Neigh(X, t′), Y ) = X] > (1− tδ)− (1− tδ − ε) > ε.

This is a contradiction and the statement of the claim follows.
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Now define I as follows:

• Input y ∈ {0, 1}∗.

• Sample x′ ← Sample.

• Output Rec(x′, y).

Note that |I| = |Rec|+ ssam. We now show that I predicts X:

Pr[I(Y ) = X] =

=
∑

x,y∈M
Pr[(x, y)← (X,Y )] Pr[I(y) = x]

=
∑

x,y∈M
Pr[(x, y)← (X,Y )]

∑
x′∈M

Pr[Sample = x′] Pr[Rec(x′, y) = x]

≥
∑

x,y∈M
Pr[(x, y)← (X,Y )]

∑
x′s.t.dis(x′,x)≤t

Pr[Sample = x′] Pr[Rec(x′, y) = x]

≥
∑

x,y∈M
Pr[(x, y)← (X,Y )]

∑
x′s.t.dis(x′,x)≤t

|Bt(·)|
|M|

Pr[Bt(x) = x′] Pr[Rec(x′, y) = x]

≥ |Bt(·)|
|M|

(1− ε− tδ)

(the last step follows by Claim C.3).
Theorem 3.10 follows by noting that Zn can be sampled in time n log |Z| and neighborhood sampled

in time n log |Z|.

C.4 Proof of Lemma 4.6

Proof. Note that Decodet will stop if w and w′ agree on all the rows selected in Step 2 (it may also stop
for other reasons—namely, in step 4; but we do not use this fact to bound the expected running time).
The probability of each selected row having an error is at most t

m−i where i is the number of rows already
selected. That is,

Pr[i1, ..., i2n have no errors] ≥
2n−1∏
i=0

(
1− t

m− i

)
≥

2n−1∏
i=0

(
1−

d
(
m
n − 2

)
log n

m− i

)

≥
2n−1∏
i=0

(
1− d log n

n

(
m− 2n
m− i

))
≥

2n−1∏
i=0

(
1− d log n

n

)

=
(

1− d log n
n

)2n

=

((
1− d log n

n

) n
d logn

)2d logn

≥ 1
42d logn

=
1
n4d

.

(The second-to-last step holds as long as n ≥ 2d log n.) Because at each iteration, we select 2n rows
independently at random, the expected number of iterations is at most n4d; each iteration takes O(n3)
operations in Fq, which gives us the expected running time bound.
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The probability that Decodet outputs ⊥ is bounded by

Pr[Decodet →⊥] ≤
∞∑
j=1

Pr[Decodet →⊥ in jth iteration of step 4]

=
∞∑
j=1

Pr[Decodet has not stopped after j − 1 iterations ∧ rank(Ai1,...,i2n) < n]

≤
∞∑
j=1

Pr[i1, ..., i2n had errors j − 1 times ∧ rank(Ai1,...,i2n) < n]

=
∞∑
j=1

Pr[i1, ..., i2n had errors j − 1 times] · Pr[rank(Ai1,...,i2n) < n]

≤
∞∑
j=1

(
1− 1

n4d

)j−1

· q−n

= n4de−Ω(n) = e−Ω(n) .

The third line from the bottom follows from the fact that the locations of the errors are assumed to
be independent of the sketch, and therefore independent of the matrix A. The second line from the
bottom follows from Claim A.3 when β = n; note that, because we use the union bound and evaluate
the probability separately for each value of j, we can treat Ai1,...,i2n as a randomly chosen 2n×n matrix,
ignoring the fact that these matrices are correlated.

We claim that if the code generated by A has distance at least 2t + 1, then Decodet will output ⊥
or the correct x′ = x. Indeed, suppose x′ 6= x. Since A(x − x′) has at least 2t + 1 nonzero coordinates
by the minimum distance of the code generated by A, and at most t of those can be zeroed out by the
addition of w − w′, such an x′ will not pass Step 6.

The probability that the code generated by A has distance lower than 2t + 1 is at most e−Ω(n) (see
Corollary A.2), the probability of outputting ⊥ is also e−Ω(n) (computed above). This gives the correctness
bound for Decodet.

D Parameter Settings for Construction 4.1

In this section, we explain the different parameters that go into our construction. In Theorem 4.7 we
give a lossless fuzzy extractor from a security parameter n and an error t. In this section, we discuss
constraints imposed by 1) efficient decoding 2) maintaining security of the LWE instance and 3) ensuring
no entropy loss of the construction. We begin by reviewing the parameters that make up our construction:

• |W |: The length of the source.

• t: Number of errors that can be supported.

• n: LWE security parameter (i.e., number of field elements in X), which must be greater than some
minimum value n0 for security.

• q: The size of the field.

• ρ: The fraction of the field needed for error sampling.
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• m: The size of each number of samples in the LWE instance.

• k: The number of hardcore bits in X (from Lemma 4.4).

We will split the source |W | into m blocks each of size 2ρq + 1 (that is, |W | = m log(2ρq + 1)). We will
ignore the parameter |W | and focus on t, n, q, ρ, and m. As stated above we have three constraints:

• Maintain security of LWE. If we assume GAPSVP and SIVP are hard to approximate within poly-
nomial factors then Lemma 4.3 says that we get security for all n greater than some minimum n0

and q = poly(n) and ρq ≥ 2n1/2+σm = poly(n). The only reason to increase ρq over this minimum
amount (other than security) is if the number of errors in W decreases with a slightly larger block
size. We ignore this effect and assume that ρq = 2n1/2+σm.

• Maintain efficient decoding of Construction 4.5. Using Lemma 4.6, this means that t ≤ d log n(m/n−
2).

• Minimize entropy loss of the construction. We will output X1,...,k so the entropy loss of the construc-
tion is |W | − |X1,...,k|. We want the entropy loss to be zero, that is, |W | = |X1,...,k|. Substituting,
one has m log 2ρq + 1 = k log q.

Collecting constraints we can support any setting where t, n, q, ρ,m, k satisfy the following constraints (for
constants d, f):

n0 < n− k

t ≤ d log n
(m
n
− 2
)

q = nf

ρq = 2n1/2+σm

m log(2ρq + 1) = k log q

Substituting q = nf and ρq = 2n1/2+σm yields the following system of equations:

n0 < n− k

t ≤ d log n
(m
n
− 2
)

m log(4n1/2+σm+ 1) = k log nf

This is the most general form of our construction, we can support any n, t,m that satisfy these equations
for constants d, f . However, the last equation may have no solution for f constant. Putting the last
equation in terms of f one has:

n0 < n− k

t ≤ d log n
(m
n
− 2
)

f =
m

k

log 4n1/2+σm+ 1
log n
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To ensure f is a constant, we set t = c log n for some constant c and that k = n/g for some constant
g > 1. Finally we assume that m is the minimum value such that t ≤ d log n(m/n− 2) (that is, there are
only as many dimensions as necessary for decoding using Lemma 4.6):

n0 < n− k

m =
(c/d+ 2)n log n

log n
= (

c

d
+ 2)n

f =
m

k

log 4n1/2+σm+ 1
log n

=
g(c+ 2d)

d

log(4(c+2d)
d n3/2+σ + 1)

log n

Note that f is at a constant in n. Assuming n − k = n(1 − 1/g) > n0 and letting t = c log n we get the
following setting:

m = (
c

d
+ 2)n

q = nf = n
m
k

log(4n1/2+σm+1)
logn = poly(n)

ρq = 2n1/2+σm = 2(
c

d
+ 2)n3/2+σ

Note, that f > m
k ≥

m
n ≥

(c/d+2)n
n ≥ 3 as long as d < c (this also ensures that m ≥ 3n, as required

for Lemma 4.6 to hold). Since ρq = 2n1/2+ρm = O(n5/2) in our setting ρ = O(n−1/2). Thus, for large
enough settings of parameters ρ is less than 1/10 as required by Lemma 4.3.

Furthermore, we get decoding using O(n4d+3) Fq operations. We can output a k fraction of X and the
bits will be pseudorandom (conditioned on A,AX + W ). The parameter g allows is a tradeoff between
the number of dimensions needed for security and the size of the field q. In Theorem 4.7, we set g = 2
and output the first half of X. Setting 1 < g < 2 achieves an increase in output length (over the
input length of W ). We also (arbitrarily) set σ = 1/2 to simplify the statement of Theorem 4.7, making
ρq = 2(c/d+ 2)n2.

D.1 Parameter Settings for Theorem 5.3

We repeat parameter settings for block fixing sources. We now have m + α as the number of samples,
while n+ α+ ω(1) is the number of variables. We can support any setting where t, n, q, ρ,m, k, α satisfy
the following constraints (for β = ω(1) and constants d, f):

n0 < n− k − α− β

t ≤ d log n
(m
n
− 2
)

q = nf

ρq = 2n1/2+σm

m log(2ρq + 1) = k log q

Substituting q = nf and ρq = 2n1/2+σm yields the following system of equations:

n0 < n− k − α− β

t ≤ d log n
(m
n
− 2
)

m log(4n1/2+σm+ 1) = k log nf
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As before we can support any setting any n, t,m, α that satisfy these equations for β = ω(1) and constants
d, f . However, the last equation may have no solution for f constant. Putting the last equation in terms
of f one has:

n0 < n− k − α− β

t ≤ d log n
(m
n
− 2
)

f =
m

k

log(4n1/2+σm+ 1)
log n

To ensure f is a constant, we set t = c log n for some constant c and that k, α = n/3 and β = log n.
Finally we assume that m is the minimum value such that t ≤ d log n(m/n − 2) (that is, there are only
as many dimensions as necessary for decoding using Lemma 4.6):

n0 < n/3− log n

m =
(c/d+ 2)n log n

log n
= (

c

d
+ 2)n

f =
m

k

log(4n1/2+σm+ 1)
log n

=
(

3(
c

d
+ 2)

) log(4( cd + 2)n3/2+σ + 1)
log n

= O(1)

Assuming n/3− log(n) > n0 and letting t = c log n we get the following setting:

m = (
c

d
+ 2)n

q = nf = n
m
n

log(4n1/2+σm+1)
logn = poly(n)

ρq = 2n1/2+σm = 2(
c

d
+ 2)n3/2+σ

As before we arbitrarily set σ = 1/2, giving ρq = 2( cd + 2)n2. Also, if c < d then we get efficient
decoding and ρ = o(1) satisfying the condition of Lemma 4.3.
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