
Counter-cryptanalysis

Marc Stevens

CWI, Amsterdam, The Netherlands
marc@marc-stevens.nl

Abstract. We introduce counter-cryptanalysis as a new paradigm for
strengthening weak cryptographic primitives against cryptanalytic attacks.
Redesigning a weak primitive to more strongly resist cryptanalytic tech-
niques will unavoidably break backwards compatibility. Instead, counter-
cryptanalysis exploits unavoidable anomalies introduced by cryptanalytic
attacks to detect and block cryptanalytic attacks while maintaining full
backwards compatibility. Counter-cryptanalysis in principle enables the
continued secure use of weak cryptographic primitives.
Furthermore, we present the first example of counter-cryptanalysis, namely
the efficient detection whether any given single message has been con-
structed – together with an unknown sibling message – using a cryptana-
lytic collision attack on MD5 or SHA-1.
An immediate application is in digital signature verification software to
ensure that an (older) MD5 or SHA-1 based digital signature is not a
forgery using a collision attack. This would certainly be desirable for two
reasons. Firstly, it might still be possible to generate malicious forgeries
using collision attacks as too many parties still sign using MD5 (or SHA-
1) based signature schemes. Secondly, any such forgeries are currently
accepted nearly everywhere due to the ubiquitous support of MD5 and
SHA-1 based signature schemes. Despite the academic push to use more
secure hash functions over the last decade, these two real-world arguments
(arguably) will remain valid for many more years.
Only due to counter-cryptanalysis were we able to discover that Flame, a
highly advanced malware for cyberwarfare uncovered in May 2012, em-
ployed an as of yet unknown variant of our chosen-prefix collision attack
on MD5 [SLdW07, SSA+09]. In this paper we disect the revealed crypt-
analytic details and work towards the reconstruction of the algorithms
underlying Flame’s new variant attack. Finally, we make a preliminary
comparision between Flame’s attack and our chosen-prefix collision attack.

1 Introduction

1.1 Weak cryptographic primitives

Cryptographic primitives that are broken or weak due to the existence of crypt-
analytic attacks should be retired in favor of a more secure one. However, in

c©IACR 2012. This article is the full version submitted by the author(s) to the IACR
and to Springer-Verlag on June 7, 2012. The version published by Springer-Verlag is
available at ?.

practice, widely used cryptographic primitives that are broken continue to be used
long after their expiration date. This phenomenom is caused by many reasons
among which are cost and/or risk considerations, unconvincing real-world abuse
scenarios and even laxness.

However, in the case of weak digital signature schemes there is also the issue
of supporting old signatures. It may well be impossible to replace all old weak
signatures with more secure ones, as signatures tend to proliferate beyond the
control of the original signer. It seems that therefore signature verifiers will
continue to accept weak – and possibly malicious – signatures for a long time
to come. Unfortunately, signature verifiers have no way of knowing whether all
signers have actually retired the weak scheme and whether an ’old’ weak signature
is really an old one or just forged to look like one.

This is exactly what we’re currently seeing for MD5-based signatures in
practice. MD5 was first proven to be broken in 2004 by Wang et al.[WY05],
however the first truly convincing attack scenario using MD5 collisions was our
construction of a rogue Certification Authority from 2008 using a more powerful
attack called the chosen-prefix collision attack [SSA+09]. MD5 has been explicitly
disallowed for digital signatures for Certification Authorities ever since, but it’s
still used by some and still supported nearly everywhere.

1.2 Flame

An example showing that the continued support for weak signature schemes leaves
one vulnerable is Flame [Cry12, Kas12]. Flame is a highly advanced malware for
cyberwarfare discovered in May 2012, which spread itself locally by impersonating
as a properly, but illegitimately, signed Windows Update security patch. Flame’s
code-signing certificate was obtained by fooling Microsoft into signing an colliding
and innocuous-looking certificate using an MD5-based signature algorithm. As
the to-be-signed part of both certificates were carefully crafted to result in the
same MD5-hash using a chosen-prefix collision attack, the MD5-based signature
is valid for both certificates.

Even though Microsoft was fully aware of these severe weaknesses of MD5
and spent great effort in migrating to more secure hash functions for new digital
signatures at least since 2008, their software continued to accept (old) MD5-based
digital signatures. Also, in their efforts they overlooked their use of MD5-based
signatures for licensing purposes in their Terminal Server Licensing Service
up to the discovery of Flame in 2012. This, together with other unforeseen
circumstances, allowed the creation of Flame’s properly, but illegitimately, signed
security patch that was trusted by all versions of the Windows [MS12a]. 1

1.3 Counter-cryptanalysis

We introduce counter-cryptanalysis as a new paradigm for strengthening weak
cryptographic primitives against cryptanalytic attacks by exploiting subtle, un-

1 Any license certificate produced by the Terminal Server Licensing Service could
directly be used to attack Windows Vista and earlier versions, but not later versions.

avoidable anomalies introduced by the cryptanalytic attack. This might seem to
be impossible for, e.g., passive cryptanalytic attacks on public and/or private
key encryption schemes. But any active cryptanalytic attack that feeds care-
fully crafted inputs to the cryptographic primitive may thereby introduce subtle
unavoidable anomalies that can be exploited to detect such attacks. In effect,
counter-cryptanalysis protects against cryptanalytic attacks and thereby may
prevent significant leaks or damages.

Note that in contrast to a strengthened redesign of the cryptographic primi-
tive, applying counter-cryptanalysis does not alter the cryptographic primitive
intrinsically. Thus counter-cryptanalysis can be applied transparantly in the
cryptographic primitive, only altering its behaviour when a cryptanalytic attack
is detected. Thereby in principle enabling the continued secure use of a weak
primitive for full backwards compatibility.

1.4 Collision attack detection

We also introduce the first example of counter-cryptanalysis, namely the efficient
detection whether any given single message has been constructed using a crypt-
analytic collision attack on MD5 or SHA-1. In particular our novel techniques
solves the above verifiers problem as he can now assess whether a message hav-
ing a MD5-based or SHA-1-based signature is part of a forgery attack using a
cryptanalytic collision attack.

Although one way to use our novel technique is to obtain, together with
the MD5 or SHA-1 hash, an auxilary boolean output indicating whether a
cryptanalytic attack has been detected as depicted in Fig. 1. This auxilary
boolean output can then be used by the application to decide to invalidate the
signature as well as informing the user of a forged signature. Another possibility
to effectively invalidate a forgery (attempt) that does not require changes at the
application level is to ensure that the two colliding messages result in different
outputs, e.g., by outputting the truncated SHA-256 hash or outputting a random
hash value instead.

MD5 can be altered to provide an auxilary output indicating whether the input message
was constructed using a collision attack based upon known message block differences
and cryptanalytic techniques.

Fig. 1. Counter-cryptanalytic strengthening

1.5 Overview

The rest of this paper is split into two parts. In Sect. 2, we first introduce
our novel collision detection algorithm and apply it to both MD5 and SHA-1.

Next in Sect. 3, we discuss the discoveries made by analyzing Flame’s malicious
certificate using our counter-cryptanalysis technique and our work towards the
reconstruction of the underlying algorithms and our preliminary conclusions.

2 Detection of cryptanalytic collision attacks

2.1 Brief background on collision attacks

MD5 and SHA-1 are cryptographic hash functions that use the Merkle-Damg̊ard
construction in which the security of the hash function is reduced to that of
a compression function that takes as input an Intermediate Hash Value IHV
and 512-bit message block B. The compression starts with a working state WS0

initialized with IHV and goes through 64 (MD5) or 80 (SHA-1) steps t = 0, . . .
computing state WSt+1 from WSt. Finally it outputs the sum of IHV and the
last working state. A collision for a hash function is a pair of messages (M,M ′)
that have the same hash. For any named variable X related to M , we denote by
X ′ the same variable for M ′.

The first collision attack on MD5 is due to Wang et al.[WY05] and is con-
structed from two sequential near-collision attacks on the compression function.
Each near-collision attack starts with a given (IHV, IHV ′)-pair with a known
difference denoted by δIHV and uses specific message block differences denoted
by δB. It is based on a differential path that describes exactly how the input
differences δIHV and δB propagate through the compression function, for which
then a solution (B,B′) with B′ = B + δB is found. As Wang et al.’s attack
requires a zero δIHV before the two near-collision blocks, this type of collision
attack is called an identical-prefix collision attack.

The more powerful chosen-prefix collision attack [SLdW07] can start from
an arbitrary (IHV, IHV ′) pair. It first uses a birthday search to obtain a new
(IHVb, IHV

′
b) pair whose difference δIHVb has a specific form. Then it employs a

series of near-collision attacks that iteratively reduces δIHVb to zero and thereby
results in a collision.

2.2 Exploiting cryptanalytic necessities

The main principle of our novel technique of detecting collision attacks is to detect
the last near-collision block of a collision attack and uses two key observations
on the literature on MD5 and SHA-1 cryptanalysis:

– There are only a small number of possible message block differences that
may lead to feasible near-collision attacks;

– All published MD5 and SHA-1 collision attacks use differential paths that at
some step have no differences at all in the working state, or – in the case of
MD5 – the differences (231, 231, 231, 231) (see [dBB93]).2

2 The reason for this is simple: these working state differences can be maintained at
every step of the 64 steps of MD5Compress with probability at least 1/2 if not 1.

Due to these observations it is possible to check for collision attacks given only
one message of a colliding pair of messages. First we present our basic algorithm
and then prove its correctness if the message was actually constructed using a
collision attack. Then we argue that the probability of a false positive is practically
negligible. Lastly, we apply our algorithm to MD5 and SHA-1 specifically.

Algorithm 2-1 Last near-collision block detection

This algorithm returns True if a near-collision attack is detected and False otherwise.
For a given message M , let M0, . . . ,MN−1 be the N message blocks that result from
the padding and the splitting of M by the hash function. For k ∈ {0, . . . , N − 1} do
the following:

1. Let IHVk be the intermediate hash value before the message block Mk is processed.
2. Initialize the working state WS0 with IHVk, compute steps 0, . . . , S − 1 resulting

in working states WS1, . . . ,WSS and determine IHVk+1 using IHVk and WSS .
3. For each possible combination of values for message block differences δB, step i

and working state differences δWSi belonging to a feasible near-collision attack do
the following:
(a) Apply the message block differences δB to Mk to obtain M ′k.
(b) Apply the working state differences δWSi to WSi to obtain WS′i.
(c) Compute steps i − 1, . . . , 0 backwards to obtain the working states

WS′i−1, . . . ,WS
′
0.

(d) Compute steps i, . . . , S − 1 to obtain the working states WS′i+1, . . . ,WS
′
S .

(e) Determine IHV ′k from WS′0 and IHV ′k+1 from IHV ′k and WS′S .
(f) If IHV ′k+1 = IHVk+1 then (Mk,M

′
k) is a near-collision block pair: return True

4. Return False

Algorithm We present our collision detection algorithm in Alg. 2-1 that should
work for any Merkle-Damg̊ard hash function with a MD4-style compression
function and in particular for MD5 and SHA-1. Our algorithm depends on a
list of triples (δB, i, δWSi) for which there may exist a feasible collision attack
that uses message block differences δB and always uses working state differences
δWSi at step i. For a total of C triples, the runtime-complexity of Alg. 2-1 for a
message M is approximately C + 1 times the runtime-complexity of computing
the hash value of M .

Correctness First we assume that our list of triples (δB, i, δWSi) is exhaustive
for all possible feasible collision attack. For two colliding messages M and M ′

constructed with a feasible collision attack, let (Mk,M
′
k) be the last near-collision

block pair of a collision attack. Let IHVk+1 and IHV ′k+1 be the intermediate
hash values just after applying the compression function to Mk and M ′k in the
hash value computation of M and M ′, respectively. Evidently, it follows that

IHVk+1 = IHV ′k+1,

If the message (upper half) was constructed using a collision attack and we correctly
guess both the working state differences at a certain step and the used message block
differences, then we obtain values of the internal computation of its sibling message (lower
half). These are sufficient to reconstruct the entire compression function computation
for this sibling block and verify whether there is a collision: IHV ′k+1 = IHVk+1.

Fig. 2. Detection of near-collisions

however as only the message M is given, the values of M ′, M ′k and IHV ′k+1 are
not directly known. Since M and M ′ were constructed with a feasible collision
attack, there exists a triple (δB, i, δWSi) in our list such that δB = δMk and
this last near-collision attack uses working state differences δWSi at step i. As
illustrated in Fig. 2, step 3 of Alg. 2-1 computes IHVk+1 and IHV ′k+1 and tests
for the telltale condition IHVk+1 = IHV ′k+1 in the following manner.

The hash value computation of M gives us values for the input IHVk, output
IHVk+1 and intermediate state WSi (the working state before step i) of the
compression function applied to IHVk and Mk. Since we know the message block
differences and the working state differences by assumption, we can determine
the message block M ′k and the working state WS′i associated with the message
M ′ that collides with M . Computing steps i+ 1, . . . , S (where S = 64 for MD5
and S = 80 for SHA-1) of the compression function using M ′k and WS′i, we obtain
working states WS′i+1, . . . ,WS

′
S . As the step functions of MD5 and SHA-1 are

reversible we can also compute working states WS′i−1, . . . ,WS
′
0. The value of

IHV ′k can be derived from WS′0 and the value of IHV ′k+1 can be computed from
IHV ′k and WS′S .

It is clear that Alg. 2-1 on input M for the value k in step 3 for the
triple (δBi, i, δWSi) will determine the correct value IHV ′k+1, verify that in-
deed IHV ′k+1 = IHVk+1 and therefore return True. What remains is to argue
that the probability of a false positive, i.e., it returns True for a given message
M which was not constructed using a cryptanalytic collision attack, is negligible.

False positives If the given message block is not part of a near-collision block
pair then the guessed WS′i is passed through all 64 or 80 steps of the compression
function to determine IHV ′k+1. Therefore, we argue that if there was no crypt-
analytic attack then the distribution of the resulting value IHV ′k+1 is close to
the uniform distribution. Hence, the probability of a false positive, namely that
IHV ′k+1 = IHVk+1, is thereby approximately C · 2−L where L is the bit length
of the hash value and C is the number of triples attempted in step 3 of Alg. 2-1
as before.

Interestingly, the false positive probability may be prove to be higher when
there exists a differential path compatible with one of the combinations of δB, i
and δWSi that holds with probability higher than 2−L. So far only one non-zero
differential path is known with probability higher than 2−128 for MD5 (and none
for SHA-1), namely the differential path consisting of differences in the most
significant bit [dBB93], and this differential path is treated as a special case
below and also checks for the necessary second-last near-collision block. So if
nevertheless the false positive probability proves to be higher than we conjecture
then this may well point towards interesting unknown cryptanalytic weaknesses.

2.3 Application to MD5

Alg. 2-1 can be directly applied to MD5. What remains is to determine possible
combinations of values for message block differences δB, step i and working state
differences δWSi that belong to a feasible near-collision attack. The message block
differences are additive in Z/232Z and for each message block Mk the message
block M ′k can be either Mk + δB or Mk − δB. There are two trivial different
working state differences δWSi that can be used for MD5, namely (0, 0, 0, 0) and
(231, 231, 231, 231), written more compactly as 0 and 231.

We refer to Sect. A for a list of 222 triples (δB, i, δWSi) derived from the
literature. We do not guarantee that this list forms the exhaustive list of all
combinations that lead to feasible near-collision attacks. However, it should be
noted that interesting message block differences have been studied extensively
for nearly a decade, which has resulted in the above mentioned list. Nevertheless,
other combinations from future collision attacks can easily be added to this list.

All published near-collision attacks require complex differential steps in the
first round, thereby requiring a high number of bitconditions, say at least 200.
E.g., the differential paths by Wang et al. require roughly 300 bitconditions
[WY05]. This implies that the probability of a false positive is dominated by the
general C · 2−L term explained earlier. Hence, the probability of a false positive
is estimated as 222 · 2−128 and thus negligible.

However, there is a special case. Due to the pseudo-collision attack against
MD5’s compression function by den Boer and Bosselaers [dBB93], there is also
a special near-collision attack not yet included in the above list. It uses zero
message block differences and δWSi = 231 for all i ∈ {0, . . . , 64}. One can test
for this pseudo-collision attack using δB = 0, i = 32 and δWS32 = 231. The
probability of a false positive is 2−48 which is not negligible. However, since it

requires δWS0 = 231 and thus IHVin = 231, this pseudo-collision attack requires
at least one preceding near-collision block to form a collision attack against MD5.

This observation calls for the following modification of Alg. 2-1 for MD5 to
reduce the chance of a false positive to 222 · 2−128 · 2−48 for the case δB = 0.
Whenever a near-collision block is detected in step 3.(f) for the combination
δB = 0, i = 32 and δWS32 = 231 and before returning True, perform steps
1–4 of Alg. 2-1 on the previous message block Mk−1 using all combinations
that have δB 6= 0 and using the condition IHV ′k = IHVk + 231 instead of
the condition IHV ′k = IHVk. If this sub-instance returns False then the main
instance continues with the next combination of δB, i and δWSi. Otherwise, the
main instance returns True.

Given a message M , the average complexity to detect whether M is con-
structed by a collision attack against MD5 using one of the given message
differences is about 222+1+1 = 224 times the complexity of computing the MD5
hash of M . It has a conjectured false positive probability of about 222 · 2−128.

2.4 Application to SHA-1

Alg. 2-1 can be directly applied to SHA-1. Note that this is possible even though
no actual colliding messages for SHA-1 are known yet. What remains is to
determine possible combinations of values for message block differences δB, step i
and working state differences δWSi that belong to a feasible near-collision attack.

All known attempts at a SHA-1 collision attack are based on combining local
collisions according to a disturbance vector (DVi)

79
i=0 ∈ (Z/232Z)80. Furthermore,

Manuel [Man11] has found that all proposed disturbance vectors can be catego-
rized into two classes as given in Tbl. B-1. A disturbance vector from the first
class denoted by I(j, b) is defined by DVj = . . . = DVj+14 = 0 and DVj+15 = 2b.
Similarly, a disturbance vector from the second class denoted by II(j, b) is de-
fined by DVj+1 = DVj+3 = RL(231, b) and DVj+15 = 2b and DVj+i = 0
for i ∈ {0, 2, 4, 5, . . . , 14}. For both classes, the remaining DV0, . . . , DVj−1 and
DVj+16, . . . , DV79 are determined through the message expansion relation.

For a given disturbance vector (DVi)
79
i=0, the necessary message block differ-

ences are the XOR differences (DWi)
15
i=0 = Mk ⊕M ′k determined as:

DWi :=
⊕

(j,r)∈R

RL(DVi−j , r), R = {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)},

where DV−1, . . . , DV−5 are given by the reversed message expansion relation:

DVi = RR(DVi+16, 1)⊕DVi+2 ⊕DVi+8 ⊕DVi+13, i = −1, . . . ,−5.

For both disturbance vector I(j, b) and II(j, b) there are no differences at step
j+8, hence to test for near-collision block pair using either disturbance vector we
use Alg. 2-1 with the combination (DWt)

15
t=0, i = j + 8 and δWSi = (0, 0, 0, 0, 0).

Given the fact that no actual collisions are known yet, it is somewhat difficult
to decide which triples to include. For this we refer to our recent analysis

[Ste13] that seems to use the most appropriate cost function, namely one that is
exact, exhaustive and takes the dependence of local collisions fully into account.
However, due to the complex nature of constructing a collision attack, this cost
function is not perfect as it does not accurately predict the final attack complexity.
Nevertheless, we propose (a bit arbitrarily) to limit ourselves to the following 14
best disturbance vectors:

I(46,0), I(48,0), I(49,0), I(50,0), I(51,0), I(48,2), I(49,2),
II(46,0), II(50,0), II(51,0), II(52,0), II(53,0), II(54,0), II(56,0).

Similar to the case of MD5, it is always possible to add extra disturbance vectors
to the above list in the future whenever it is believed it can lead to a feasible
collision attack. Ignoring the first round, each disturbance vector has a probability
in the order of 2−70 that a false positive occurs. Taking into account the complex
differential steps necessary in the first round, we can safely assume that the
probability of a false positive is negligible.

Given a message M , the average complexity to detect whether M is con-
structed by one of the above possibly feasible collision attacks against SHA-1 is
about 14 + 1 = 15 times the complexity of computing the SHA-1 hash of M . It
has a conjectured false positive probability of about 14 · 2−160.

3 Analyzing Flame’s chosen-prefix collision attack

3.1 Background on Flame

Flame is a highly advanced malware for cyberwarfare and was discovered in May
2012 by the Iranian CERT, Kaspersky Lab and CrySyS Lab. It seemed to have
targeted the Middle-East, with the most infections in Iran. We refer to the analysis
of Kaspersky Lab and CrySyS Lab for more details on the functionality, purpose
and origin of Flame. Here, we will focus on Flame’s advanced propagation.

For a malware, it has a number of quite uncharacteristic features [Kas12,
Cry12]. It has a modular design with up to 20 different plugins with different
specific roles, each of which can be carefully selected prior infection. Flame is about
20MB in size as it also includes many different libraries such as for compression
(zlib, bz2, ppmd), database (sqlite) and even a Lua virtual machine. Infections
seem to occur with surgical precision with each target carefully selected instead
of wildly spreading, which may be one of the reasons it has evaded discovery
since about 2007 when Flame’s main file was first seen. It spread itself locally
as a valid, but illegitimate, Microsoft Windows security patch by impersonating
Windows Update. Flame seems to be the first to use a chosen-prefix collision
attack maliciously in the wild. Lastly, as we’ve discovered, it employed a yet
unknown variant chosen-prefix collision attack.

3.2 Applying counter-cryptanalysis

On the 3rd of June 2012, Microsoft blogged that in their initial analysis of Flame
they “identified that an older cryptography algorithm could be exploited and then

be used to sign code as if it originated from Microsoft” [MS12b]. An immediate
guess for this cryptically worded attack was a chosen-prefix collision attack
on MD5 due to our construction of a rogue Certification Authority [SSA+09].
However, only the certificates in the chain leading to the forged signature on
Flame’s executable were circulating on the Internet. In particular the sibling
innocuous-looking certificate actually used to obtain the forged signature on the
malicious certificate was not available to directly verify a collision attack.

We were asked by enthousiasts if we could indeed verify whether the malicious
certificate named ‘MS’ was constructed using a collision attack. We ran a proof-
of-concept implementation of our technique from Sect. 2 dating from 2008 on
a privately-obtained copy of the ‘MS’ certificate. In 0.03 seconds, it detected
4 sequential near-collision blocks and reconstructed the underlying differential
paths that are given in Sect. C. These differential paths indeed indicate a chosen-
prefix collision attack that starts with a δIHV containing many bit differences
that is gradually reduced to zero by the four near-collision blocks. However,
very surprisingly, we discovered that these differential paths are not of the same
family we used and also show characteristics that do not match those from known
differential path construction methods for MD5. In the following sections we first
describe the observed characteristics and then analyze and compare them.

On a historic note, the validity period of the ‘MS’ certificate started February
19 of 2010. Although the date can be faked, it can be argued that it does not
make sense to craft this special code-signing certificate that only becomes valid in
the (far) future. This puts Flame’s attack years after the first identical-prefix and
chosen-prefix collision attack. Also, Project HashClash [HC] released a chosen-
prefix collision toolkit in 2009, which was generally expected to have been used
before our discovery. Hence, it is our guess that the development of Flame’s attack
started before this release, but after the publication of the first chosen-prefix
collision attack.

3.3 Observed characteristics of Flame’s differential paths

1. Wang et al.‘s message block differences. All four differential paths are
based on the same message block differences that were used by Wang et
al. for the first MD5 collision [WY05]: δm4 = δm14 = 231 and δm11 = ±215.
The first and third path use δm11 = +215 and the second and third path use
the negated form δm11 = −215.

2. δIHV corrections. The four differential paths are used in a step-wise manner
to eliminate the differences in δIHV = (δa, δb, δc, δd) resulting from the
birthday search in their chosen-prefix collision. The corrections each path
made are:

Block δa = δQ61 δb = δQ64 δc = δQ63 δd = δQ62

1 [31] [31,25,-18,-15,-12,9,1] [31,25,-14,-12,9] [31,25]
2 [31,5] [-26,24,21,-14,-9,5,0] [31,26,24,20,-9,5] [31,-25,-9,5]
3 [31] [30,26,-24,20,-17,15,9,-3] [31,26,-24,-14,9] [31,25,9]
4 [31] [-25,14,-9,-5,3,0] [31,-25,14,-9] [31,-25,-9]

1+2 [5] [31,-24,21,-18,-16,14,-12,5,2,-0] [27,-24,20,-14,-12,5] [-9,5]
3+4 [] [30,24,20,-16,-14,-5,0] [24] []

1+4 [] [31,-18,-14,-12,-4,-2,-0] [-12] [-9]
2+3 [5] [30,22,-20,-17,14,5,-3,0] [27,20,-14,5] [5]

all [5] [-30,21,19,17,-12,2] [27,20,-14,-12,5] [-9,5]

Note: we use the compact notation [b1, . . . , bn] for
∑n

i=0 2|bi|sign(bi).

In comparison, the first collision attack by Wang et al. was based upon the
δIHV ‘correction’ ([31],[31,25],[31,25],[31,25]) used in two sequential near-
collision attacks, where the second uses the negated ‘correction’ such that
the two ‘corrections’ cancel out.

3. bit differences in all bits of ∆Q6, identical for blocks 1&3 and 2&4

Block q6[31] . . . q6[0]
1 ++----+- ---+---- -----+++ ++++++++

2 +-++++++ ++++---- ------+- --+-----

3 ++----+- ---+---- -----+++ ++++++++

4 +-++++++ ++++---- ------+- --+-----

4. highest density of bitconditions found on Q4, . . . , Q8. The four differ-
ential paths have, respectively, only 8, 4, 6 and 5 bits of freedom left out of
those 160 bits of Q4, . . . , Q8.

5. fixed differences δQ6, . . . , Q60. The differential paths from the first and
third block (that use the same message block differences) use the same
differences δQ6, . . . , δQ60. Similarly, the differential paths from the second
and fourth block (that also use the same message block differences) use the
same differences δQ6, . . . , δQ60.

6. advanced message modification not maximized. One of the key mes-
sage modifications to speed up to collision search are tunnels [Kli06]. The
best and most important tunnel allows a simple message modification that
does not affect all bitconditions on Q1, . . . , Q24. For Flame’s differential
paths, this tunnel can maxime the time spent on steps 24 and onwards. This
tunnel is based on flipping a bit Q9[b] with no bit condition and requires that
Q10[b] = Q′10[b] = 0 and Q11[b] = Q′11[b] = 1. As shown in the table below,
the near-collision blocks show a significantly lower tunnel strength than the
maximal strength possible based on just the differential paths.3

3 The ‘avg. strength’ is the average strength that would be observed if the extra
conditions on Q10 and Q11 are each fulfilled randomly and the tunnel is not used.

Block strength max. strength avg. strength
1 7 17 4.25
2 13 18 4.5
3 10 17 4.25
4 9 18 4.5

3.4 Differential path construction analysis

So far there are two known methods for constructing a differential path for MD5.
One is the our method [SLdW07] that uses a meet-in-the-middle approach. The
second one is due to Mendel et al. [MRS09] that works similar to a probabilistic
algorithm from coding-theory that searches for low weight code words.

The fact that all bit positions of ∆Q6 have non-zero differences for all dif-
ferential paths and that this does not help the collision search itself, indicates
that this choice was made with a specific purpose for the differential path con-
struction. This choice seems to be a very bad one in combination with a method
similar to Mendel et al.‘s, as it is unnecessary and leads to significant increases
in computational cost and number of differential path conditions. Hence, also
given the uncharacteristicly high amount of differences and conditions in the first
few steps, we argue that a meet-in-the-middle approach was used with a random
starting path and a fixed ending path. However, from Observation 3 it is also
clear that it does not use our method to construct a full differential path from the
starting and ending paths: none of our differential paths have this characteristic.
Evidently, it uses a yet unknown meet-in-the-middle method to construct full
differential paths.

However, using the four differential paths, we can make an educated guess
on how their method works. In any meet-in-the-middle approach, the lower and
upper partial differential paths can be constructed independently except for four
differential steps. It appears that Flame’s uses a fixed differential path over steps
9, . . . , 59, then the meet-in-the-middle steps are 5, 6, 7, 8. Our educated guess is
that they first completed step 5 and then used an exhaustive search over steps 6, 7
and 8. With step 5 completed, the boolean function outcome modular differences
δFt for steps 6, 7 and 8 are completely determined. To complete steps 6, 7 and 8,
such an exhaustive search only needs to find bit conditions that achieves these
three modular differences simultaneously. The choice for non-zero differences in
∆Q6 makes a lot of sense in this scenario, as it almost maximizes the number
of choices for each ∆Ft[b] (t = 6, 7, 8, b = 0, . . . , 31) and thus results in a higher
success probability. Completing step 5 and the exhaustive search can either be
done efficiently in a bit-wise approach, e.g., an adaptation of our method, or
simply with a brute-force search. So far we were not able to distinguish between
these two very different approaches from these differential paths.

Unfortunately, the choice to use non-zero differences in all bit positions of
∆Q6 strictly reduces the solution space over steps 5, 6, 7, 8 in comparison to our
method and thus requires more lower/upper differential path pairs to succeed.
Moreover, the choice to use a fixed upper differential path over steps 9, . . . , 59
implies that Flame’s method requires many more lower differential paths to

obtain the required amount of lower/upper path pairs. Overall, this would imply
that Flame’s method has higher complexity and results in differential paths with
fewer degrees of freedom.

We were able to perform a somewhat simple quantitive comparison of Flame’s
differential paths with differential paths constructed using our publicly available
HashClash toolkit [HC]. In an experiment we tried to find a replacement path
for Flame’s first differential path with as few bitconditions as possible. The
resulting differential path is given in Tbl. D-1 and has only 266 bit conditions
over Q1, . . . , Q24 which are 62 fewer than the 328 bit conditions of Tbl. C-1. In
another experiment we tried to construct a differential path with the HashClash
toolkit in a very short amount of time, the result was an average runtime of
only 15 seconds on an Intel i7-2600 CPU leading to differential paths with about
276 bit conditions, which is still 52 bit conditions fewer than Flame’s path. This
experiment used only 20,000 lower and 20,000 upper partial paths leading to a
total of 400,000,000 pairs. Future research might provide insights in the minimum
complexity of constructing differential paths with the same characteristics of
Sect. 3.3, however we have no results in this direction at this point of time.

3.5 Near-collision block search

Though Observation 6 indicates the best tunnel strength is not maximized, it is
also clear that this tunnel (or a slightly weaker version) is actually used as the
observed tunnel strength is significantly higher than what would be observed if
this tunnel was not used (cf. ‘avg. strength’ at Obs. 6). A reasonable guess is
that they used tunnels in a dynamic manner depending on whether the necessary
conditions on Q10 and Q11 were fulfilled.

Given the low number of bitconditions on Q18, . . . , Q24 and sufficiently high
tunnel strengths, we can reasonably say that the near-collision block search
complexity is dominated by the cost of steps 24 up to 63. We have experimentally
determined the success probability over steps 24 up to 63 for each of the near-
collision blocks and these are given in Tbl. 3-1 together with lower-bounds for
the average complexity in MD5 compression function calls. Note that because the
inner-most loop computes at least 9 steps of the compression function, this search
is well suited for massively parallel architectures in contrast to our chosen-prefix
collision attack.

Table 3-1. Near-collision blocks: complexity lower-bounds

Block estimated probability of steps 24-63 average complexity lower-bound

1 2−38.8 236.0

2 2−46.8 244.0

3 2−33.6 230.8

4 2−33.3 230.5

[WY05] 2−20.5 217.7

3.6 Birthday and reduction procedures

The δIHV resulting from the birthday procedure can be observed as the differ-
ences for t = −3,−2,−1, 0 of the first differential path Tbl. C-1:

δIHV = (−25, −22+212−217−219−221+230, −25+212+214−220−227, −25+29).

Based on the available space in the certificate, our initial guess is that Flame uses
64 birthday bits over the first and last word of the IHV (matching t = −3 and
t = −2 of the first path). However, this does not immediately imply that Flame’s
birtday search has complexity

√
π · 232 MD5 compressions, as not every birthday

collision is usable. In fact, the two random-looking differences have very low
weights of 6 and 5 bit differences, where an uniform distribution that might be
expected from an arbitrary birthday collision would actually lead to an average
of about 11 bit differences each. Just aiming at such a low weight distribution
would result in a birthday complexity of about 242 MD5 compressions. However,
lacking a systematic family of differential path like that of [SSA+09], it is almost
certain that the positions of the bit differences are also important, which further
increases the birthday complexity.

Further research may provide more insights in which δIHV corrections are
possible within the observed near-collision block complexities and the effect
thereof on the birthday search and its complexity.

3.7 Preliminary conclusions

Firstly, Flame’s method to construct differential paths seems to be sub-optimal
compared to those obtained with our public HashClash toolkit [HC].

Secondly, so far we have been able to provide a weak lower-bound for the birth-
day search and good lower-bounds for the near-collision block search complexities.
These lower-bounds together indicate that Flame’s new variant chosen-prefix
collision attack likely costs more than 244.3 MD5 compressions. How much more
remains an open question as the birthday search complexity is inaccurate and it
does not yet include the cost of the differential path construction. Also note that
we have only one instance of a chosen-prefix collision from Flame’s new variant
attack, making it uncertain how close the observed near-collision block search
complexities are to what can be expected on average with Flame’s attack.

In comparison, the average complexity of our 2009 chosen-prefix collision
attack for four near-collision blocks appears to be dominated by the birthday
search complexity of 244.55 MD5 compression function calls (cf. [SSA+09, Table
2] using r = 4 and w = 5). Comparing the weak lower-bound with this cost, the
theoretical complexity of Flame’s attack is not significantly lower than that of
our attack. Nevertheless, Flame’s attack might be more cost effective due to the
suitabilitiy of the collision search for massively parallel architectures.

4 Conclusion

We have introduced counter-cryptanalysis as a new paradigm for strengthening
weak cryptographic primitives. Also, we have presented the first example thereof,

namely the efficient detection whether a given message was constructed using a
cryptanalytic collision attack on MD5 and/or SHA-1. A reference implementation
will be made available on project HashClash [HC].

Using our novel technique, we have analyzed Flame’s malicious certificate and
exposed its chosen-prefix collision attack. Our proof-of-concept collision detection
implementation also reconstructed the four underlying differential paths. These
differential paths reveal that Flame used a yet unknown variant chosen-prefix
collision attack on MD5. We have analyzed these differential paths, working
towards a reconstruction of the underlying algorithm, and found a preliminary
weak lower-bound of 244.3 MD5 compressions for Flame’s new variant chosen-
prefix collision attack.

Acknowledgements

I’m indepted to Arjen Lenstra for our insightful discussions which have led to
the idea of counter-cryptanalysis.

References

[Cry12] CrySyS Lab, sKyWIper (a.k.a. Flame a.k.a. Flamer): A complex malware
for targeted attacks, Laboratory of Cryptography and System Security,
Budapest University of Technology and Economics, May 31, 2012.

[dBB93] Bert den Boer and Antoon Bosselaers, Collisions for the Compressin Func-
tion of MD5 , EUROCRYPT (Tor Helleseth, ed.), Lecture Notes in Computer
Science, vol. 765, Springer, 1993, pp. 293–304.

[HC] HashClash project webpage, http://code.google.com/p/hashclash.

[Kas12] Kaspersky Lab, The Flame: Questions and Answers, Securelist blog, May
28, 2012.

[Kli06] Vlastimil Klima, Tunnels in Hash Functions: MD5 Collisions Within a
Minute, Cryptology ePrint Archive, Report 2006/105, 2006.

[Man11] Stéphane Manuel, Classification and generation of disturbance vectors for
collision attacks against SHA-1 , Des. Codes Cryptography 59 (2011), no. 1-
3, 247–263.

[MRS09] Florian Mendel, Christian Rechberger, and Martin Schläffer, MD5 Is Weaker
Than Weak: Attacks on Concatenated Combiners, ASIACRYPT (Mitsuru
Matsui, ed.), Lecture Notes in Computer Science, vol. 5912, Springer, 2009,
pp. 144–161.

[MS12a] Microsoft, Flame malware collision attack explained , Security Research &
Defense, Microsoft TechNet Blog, June 6, 2012.

[MS12b] Microsoft, Microsoft certification authority signing certificates added to the
Untrusted Certificate Store, Security Research & Defense, Microsoft TechNet
Blog, June 3, 2012.

[SLdW07] Marc Stevens, Arjen K. Lenstra, and Benne de Weger, Chosen-Prefix Col-
lisions for MD5 and Colliding X.509 Certificates for Different Identities,
EUROCRYPT (Moni Naor, ed.), Lecture Notes in Computer Science, vol.
4515, Springer, 2007, pp. 1–22.

http://www.crysys.hu/skywiper/skywiper.pdf
http://www.crysys.hu/skywiper/skywiper.pdf
http://dx.doi.org/10.1007/3-540-48285-7_26
http://dx.doi.org/10.1007/3-540-48285-7_26
http://code.google.com/p/hashclash
https://www.securelist.com/en/blog/208193522/The_Flame_Questions_and_Answers
http://eprint.iacr.org/2006/105
http://eprint.iacr.org/2006/105
http://dx.doi.org/10.1007/s10623-010-9458-9
http://dx.doi.org/10.1007/s10623-010-9458-9
http://dx.doi.org/10.1007/978-3-642-10366-7_9
http://dx.doi.org/10.1007/978-3-642-10366-7_9
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
http://blogs.technet.com/b/srd/archive/2012/06/03/microsoft-certification-authority-signing-certificates-added-to-the-untrusted-certificate-store.aspx
http://blogs.technet.com/b/srd/archive/2012/06/03/microsoft-certification-authority-signing-certificates-added-to-the-untrusted-certificate-store.aspx
http://dx.doi.org/10.1007/978-3-540-72540-4_1
http://dx.doi.org/10.1007/978-3-540-72540-4_1

[SSA+09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra,
David Molnar, Dag Arne Osvik, and Benne de Weger, Short Chosen-Prefix
Collisions for MD5 and the Creation of a Rogue CA Certificate, CRYPTO
(Shai Halevi, ed.), Lecture Notes in Computer Science, vol. 5677, Springer,
2009, pp. 55–69.

[Ste13] Marc Stevens, New Collision Attacks on SHA-1 Based on Optimal Joint
Local-Collision Analysis, EUROCRYPT (Thomas Johansson and Phong Q.
Nguyen, eds.), Lecture Notes in Computer Science, vol. 7881, Springer,
2013, pp. 245–261.

[VJBT08] Jiŕı Vábek, Daniel Joscák, Milan Bohácek, and Jiŕı Tuma, A New Type
of 2-Block Collisions in MD5 , INDOCRYPT (Dipanwita Roy Chowdhury,
Vincent Rijmen, and Abhijit Das, eds.), Lecture Notes in Computer Science,
vol. 5365, Springer, 2008, pp. 78–90.

[WY05] Xiaoyun Wang and Hongbo Yu, How to Break MD5 and Other Hash Func-
tions, EUROCRYPT (Ronald Cramer, ed.), Lecture Notes in Computer
Science, vol. 3494, Springer, 2005, pp. 19–35.

[XF09] Tao Xie and Dengguo Feng, How To Find Weak Input Differences For MD5
Collision Attacks, Cryptology ePrint Archive, Report 2009/223, 2009.

[XF10] Tao Xie and Dengguo Feng, Construct MD5 Collisions Using Just A Single
Block Of Message, Cryptology ePrint Archive, Report 2010/643, 2010.

[XFL08] Tao Xie, DengGuo Feng, and FanBao Liu, A New Collision Differential For
MD5 With Its Full Differential Path, Cryptology ePrint Archive, Report
2008/230, 2008.

[XLF08] Tao Xie, Fanbao Liu, and Dengguo Feng, Could The 1-MSB Input Difference
Be The Fastest Collision Attack For MD5 ? , Cryptology ePrint Archive,
Report 2008/391, 2008.

A List of possible feasible MD5 near-collision attacks

Used non-zero message block differences in published near-collision attacks are:

– δB = ±(δm11 = 215, δm4 = δm14 = 231) [WY05]: i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm2 = 28, δm11 = 215, δm4 = δm14 = 231) [SSA+09]: i = 44,
δWS44 ∈ {0, 231};

– δB = ±(δm11 = 2b) for b ∈ {0, . . . , 30} [SLdW07]: i = 44, δWS44 ∈ {0, 231};
– δB = (δm11 = 231) [SLdW07]: i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm5 = 210, δm10 = 231) [XF10]: i = 44, δWS44 ∈ {0, 231};
– δB = (δm8 = 231) [XLF08]: i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm6 = 28, δm9 = δm15 = 231) [XFL08]: i = 37, δWS37 ∈ {0, 231};
– δB = ±(δm9 = 227, δm2 = δm12 = 231) [VJBT08]: i = 37, δWS37 ∈ {0, 231}.

Other non-zero message block differences taken from [XF09] and [XLF08] are:

– δB = ±(δm4 = 220, δm7 = δm13 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm2 = 28): i = 37, δWS37 ∈ {0, 231};
– δB = ±(δm5 = 210, δm11 = 221): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm5 = 210, δm11 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = (δm5 = 231, δm8 = 231): i = 44, δWS44 ∈ {0, 231};

http://dx.doi.org/10.1007/978-3-642-03356-8_4
http://dx.doi.org/10.1007/978-3-642-03356-8_4
http://dx.doi.org/10.1007/978-3-642-38348-9_15
http://dx.doi.org/10.1007/978-3-642-38348-9_15
http://dx.doi.org/10.1007/978-3-540-89754-5_7
http://dx.doi.org/10.1007/978-3-540-89754-5_7
http://dx.doi.org/10.1007/11426639_2
http://dx.doi.org/10.1007/11426639_2
http://eprint.iacr.org/2009/223
http://eprint.iacr.org/2009/223
http://eprint.iacr.org/2010/643
http://eprint.iacr.org/2010/643
http://eprint.iacr.org/2008/230
http://eprint.iacr.org/2008/230
http://eprint.iacr.org/2008/391
http://eprint.iacr.org/2008/391

– δB = ±(δm2 = 28, δm14 = 231): i = 37, δWS37 ∈ {0, 231};
– δB = (δm4 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = (δm5 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = (δm14 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm4 = 225): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm5 = 210): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm8 = 225): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm11 = 221): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm14 = 216): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm4 = 220): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm6 = 28): i = 50, δWS50 ∈ {0, 231};
– δB = ±(δm9 = 227): i = 50, δWS50 ∈ {0, 231};
– δB = ±(δm5 = 210, δm9 = 227): i = 37, δWS37 ∈ {0, 231};
– δB = (δm5 = 231, δm11 = 231): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm8 = 231, δm11 = 221): i = 44, δWS44 ∈ {0, 231};
– δB = ±(δm8 = 225, δm13 = 231): i = 44, δWS44 ∈ {0, 231}.

B SHA-1 disturbance vector classes

Table B-1. SHA-1 disturbance vectors of type I and type II

disturbance vector I(K, 0),K ∈ Z
i DVK+i DWK+i

.
−14 31 4, 28, 31
−13 − 4, 28, 31
−12 − 28, 31
−11 31 31
−10 − 4
−9 − 29, 31
−8 − 29
−7 31 29, 31
−6 − 4, 29
−5 31 −
−4 − 4, 29
−3 31 29
−2 − 4
−1 31 29

0 − 4
1 − 29, 31
2 − −
3 − 29
4 − 29

5− 14 − −
15 0 0

16 − 5
17 − 0
18 1 1, 30
19 − 6, 30
20 − 1, 30
21 2 2, 31
22 − 7, 31
23 1 1, 2, 31
24 3 0, 3, 6
25 − 0, 1, 8
26 − 0, 3, 31
27 4 1, 4, 31
.

disturbance vector II(K, 0),K ∈ Z
i DVK+i DWK+i

.
−16 − 4, 29
−15 31 29
−14 − 4
−13 30, 31 29, 30
−12 − 3, 4
−11 − 29, 30, 31
−10 31 28, 31
−9 − 4, 28, 29
−8 − 28, 29, 31
−7 − 29
−6 − 29
−5 31 29, 31
−4 − 4
−3 − 31
−2 − 29
−1 − 29

0 − 29
1 31 31
2 − 4
3 31 −
4 − 4, 29
5 − 29, 31
6 − −
7 − 29
8 − 29

9− 14 − −
15 0 0

16 − 5
17 − 0
18 1 1, 30
19 0 0, 6, 30
20 − 1, 5, 30
21 2 0, 2, 31
.

Note: this table describes the bit-positions of all ‘1’-bits of the 32-bit words DVK+i and
DWK+i. The SHA-1 (reverse) message expansion relation is used to extend the above
tables forward (backward). Disturbance vectors I(K, b) and II(K, b) for b ∈ {0, . . . , 31}
are obtained by left rotating all 80 words of disturbance vectors I(K, 0) and II(K, 0),
respectively, by b bit positions [Man11].

C Flame’s differential paths

Table C-1. Differential path of near-collision block 1

t Bitconditions: qt[31] . . . qt[0]

-3-.....

-2 00...... .1.1.01. ...1..+. ..-.10..

-1 110-+..1 .1.-.00. .+.+.... ..-110..

0 +-100..0 .-0+^++1 .0.+0.11 .110-+..

1 0+-++..- .-0++-+0 011-0..1 110+++..

2 +0-0-.00 .-++00+- 0-1-+.1+ 1+-0++^.

3 +010-000 .-+++0+1 +--.+^1+ -+-+++-.

4 -00-10+. .11-+-0+ +++11--0 -101-+0.

5 0-+-++-^ ^0110+1- -110+0-0 -0001+1^

6 ++----+- ---+---- -----+++ ++++++++

7 111.-111 1101011. 110-1001 +0100.00

8 00+0.111 10111101 -1101100 .1110011

9 ..0.1...-.. 0.10+... 0-....0.

10 ..0^...1 ^....0.. 0^0-1... .1....+.

11 ..0-...1 +....-.. .+-01... .0..^.1.

12 .1-1..^+ 1....+.. .0+0....+.1.

13 .0+1..-+ 1....0.. 100....10...

14 .-+...1.1.. 1.+....11...

15 .0+...10 -.0....--...

16 .1+..... .0...... ..^.....

17 ..1..... .1....0. ^......^^...

18 ..0..... .+....1.

19-.

20 0....... .^......

21 0.......^.

22 -.......

23

24 ^.......

25–32

33 0.......

34 1.......

35–59 X.......

60 X.11110.

61 X.11000.001.00.

62 X.+----.0....

63 X.?0??+.--+.+-.

64 X......+ ++++++.. -..-.+-.+-.

δm4 = δm14 = 231, δm11 = 215

Table C-2. Differential path of near-collision block 2

t Bitconditions: qt[31] . . . qt[0]

-3 +.......-.....

-2 -1....+. .1.1.0.. 0....1+. .-+...0.

-1 +01.-.+1 .0-+.0^. 011+---1 -++.0.10

0 1-0.1.+0 ^-0+1+-1 -1011+-0 001.1^-1

1 10-.01.+ +++-0+10 --+111+- +--0-+1-

2 .01.-011 00+-++0+ 0--+.--0 ++10+0+0

3 ..1.-+11 +001++^+ 01-+0110 0+1++0++

4 ..-.1-11 ++1-++-+ -1111--+ ++0+-+-1

5 ^^1^+1-- 10-01011 0+10-1-+ 0-+++000

6 +-++++++ ++++---- ------+- --+-----

7 0010-000 01111011 1011-111 10.10010

8 00000100 1111111+ -1001111 1-010111

9 ...-1... .-.....1 0..1+... .1....^.

10 ...0...0 ^0.....0 1..+0... .0....-.

11 ..0+..^0 -1...^.. ...01...1.

12 .001..-+ 0....-.. ..01....1.

13 .1-1..0- 1....0.. 1^1....11...

14 .-+...100.. 1-+....11...

15 .0+....0 +01....+-...

16 .^+..... .0...... .^^.....

17 ..1..... .1....0. ^......^^...

18 ..0..... .-....1.

19-.

20 0....... .^......

21 0.......^.

22 -.......

23

24 ^.......

25–32

33 1.......

34 0.......

35–58 X.......

59 X.......0.....

60 X.....0.1001. 110.....

61 X....100 ...0.... ...1..1. 00+.....

62 X....1-.-+++. +--.....

63 X....++- ...+.... ...???-. ?+-.....

64-- ..+..... .-....-. .+-....+

δm4 = δm14 = 231, δm11 = −215

Table C-3. Differential path of near-collision block 3

t Bitconditions: qt[31] . . . qt[0]

-3

-2 .1.1010011. 10...... ..0.....

-1 ^0.0101- .1.0^10. 11.0.... ..1.100^

0 ++1-++++ 1001---. --.1.... .1+.110-

1 0-111110 1-1+1+-^ --1+.... .01^++-0

2 10-01110 +++1---+ +10+.... 0-0++++1

3 -0-01^1+ +0+1--10 0-++^^.0 01+0+00.

4 --0++-00 0-0+11++ ++-1-+10 -+00+-1.

5 -1++-0-1 +1-00+1- +0++110- -1--1+^^

6 ++----+- ---+---- -----+++ ++++++++

7 1000-010 00.1010. 101-0101 +0001.00

8 11+1.101 01011100 -1000101 .1000011

9 ..0.1...-.. 0.10+... 0-....0.

10 ..0^...1 ^....0.. 0^0-1... .1....+.

11 ..0-...1 +....-.. .+-01... .0..^.1.

12 .1-1..^+ 1....+.. .0+0....+.1.

13 .0+1..-+ 1....0.. 100....10...

14 .-+...1.1.. 1.+....11...

15 .0+...10 -.0....--...

16 .1+..... .0...... ..^.....

17 ..1..... .1....0. ^......^^...

18 ..0..... .+....1.

19-.

20 0....... .^......

21 0.......^.

22 -.......

23

24 ^.......

25–32

33 1.......

34 1.......

35–59 X.......

60 X.....0.1.

61 X.0110.01....0.

62 X..01.+.0....+.

63 X.+---?--....+.

64 .+...+.-++++ -.....+.-...

δm4 = δm14 = 231, δm11 = 215

Table C-4. Differential path of near-collision block 4

t Bitconditions: qt[31] . . . qt[0]

-3 +.......

-2 +....0+. 000+---. ..000..1

-1 +....+-. 11...-++ ++1101+. 10011..1

0 001.1+-. 01^.^111 -++----0 11+-+11-

1 011.0.+. -+-^++1+ ++0000-1 +--0-11+

2 +--.-0-. -+1+0--0 1+1-1-++ -1-00+--

3 +--1-^1. .+100--+ 10---1+0 ---0++-1

4 -010+-1. 10-1-01+ 0-000-1- 0+-10-1-

5 +00-+00^ 0++-11-0 +++0-111 01-+-100

6 +-++++++ ++++---- ------+- --+-----

7 .111-110 01.010.0 0101-110 1101.011

8 11110110 0101000+ -0101111 0-100111

9 ...-1... .-.....1 0..1+... .1....^.

10 ...0...0 ^0.....0 1..+0... .0....-.

11 ..0+..^0 -1...^.. ...01...1.

12 .001..-+ 0....-.. .111....1.

13 .1-1..0- 1....0.. 100....11...

14 .-+...100.. 1-+....11...

15 .0+....0 +01....+-...

16 .^+..... .0...... .^^.....

17 ..1..... .1....0. ^......^^...

18 ..0..... .-....1.

19-.

20 0....... .^......

21 0.......^.

22 +.......

23

24 ^.......

25–32

33 0.......

34 1.......

35–59 X.......

60 X.....0.00.

61 X.....1. 11....1.

62 X.....-. 10...-+.

63 X.....-. +-...?-.

64-++. +-....-. ..-.+..+

δm4 = δm14 = 231, δm11 = −215

D Replacement differential path 1

Table D-1. Replacement differential path for near-collision block 1

t Bitconditions: qt[31] . . . qt[0]

-3-.....

-2 00...... .1.1.01. ...1..+. ..-.10..

-1 110-+..1 .1.-.00. .+.+.... ..-110..

0 +-100..0 .-0+^++1 .0.+0011 .110-+..

1 1+00-..- .-.+.++. .1.-11.. .0+10-..

2 1--.-..1 ...-.+0. ...1--.^ .-0-1-..

3 .10.0.11 .1.+1+10 1.1+101+ .+0-+.^.

4 .00^+^0. 0..+00+1 1^0+-000 0-1.-1+^

5 ^++++-+^ 0.^+--0+ ----1.+1 10-01.1+

6 -001+1-+ +.+.0-++ +1-++.0- ++0.0.+0

7 100--001 +.001+0. -1+11.01 010...11

8 1.+00.10 -.0..010 -.0+-..0 1-....1.

9 ..0-0... 0....1.. ..11-... .0....1.

10 ..-1...1 +....-.. 0..+.... .1....+.

11 ..++..00 +....-.. ...00...1.

12 ..+1..1++.. ..01....1.

13 ..-1..-+ 0....1.. 1.1....11...

14 ..-...1.1.. 1.+....11...

15 ..+...10 -.1....--...

16 ..+..... .0...... ..1.....

17 ..1..... .1....0. ^......^^...

18 ..0..... .+....1.

19-.

20 0....... .^......

21 0.......^.

22 -.......

23

24 ^.......

δm4 = δm14 = 231, δm11 = −215

	Counter-cryptanalysis

