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Abstract. Katz and Vaikuntanathan recently improved smooth projective hash functions in order to build one-
round password-authenticated key exchange protocols (PAKE). To achieve security in the UC framework they
allowed the simulator to extract the hashing key, which required simulation-sound non-interactive zero-knowledge
proofs that are unfortunately inefficient.
We improve the way the latter extractability is obtained by introducing the notion of trapdoor smooth projective
hash function (TSPHF). A TSPHF is an SPHF with a trapdoor, which may not allow to recover the complete
hashing key, but which still allows to compute the hash value, which is enough for an application to PAKE with
UC-security against static corruptions. We additionally show that TSPHFs yield zero-knowledge proofs in two flows,
with straight-line extractability.
Besides those quite interesting applications of TSPHF, we also show how to generically build them on languages of
ciphertexts, using any ElGamal-like encryption. Our concrete instantiations lead to efficient one-round UC-secure
PAKE, extractable zero-knowledge arguments, and verifiable encryption of Waters signatures. In the case of the
PAKE, our construction is the most efficient one-round UC-secure PAKE to date.
Keywords. Authenticated Key Exchange, Zero-Knowledge Arguments, Verifiable Encryption, Trapdoor Smooth
Projective Hash Functions.

1 Introduction

Smooth Projective Hash Functions (SPHFs) were introduced by Cramer and Shoup [CS02] in order
to achieve IND-CCA security from IND-CPA encryption schemes, which led to the first efficient IND-CCA
encryption scheme provably secure in the standard model under the DDH assumption [CS98]. They can be
seen as a kind of implicit designated-verifier proofs of membership [ACP09, BPV12]. Basically, SPHFs are
families of pairs of functions (Hash,ProjHash) defined on a language L. These functions are indexed by a pair
of associated keys (hk, hp), where hk, the hashing key, can be seen as the private key and hp, the projection
key, as the public key. On a word W ∈ L, both functions should lead to the same result: Hash(hk,L,W ) with
the hashing key and ProjHash(hp,L,W,w) with the projection key only but also a witness w that W ∈ L. Of
course, if W 6∈ L, such a witness does not exist, and the smoothness property states that Hash(hk,L,W ) is
independent of hp. As a consequence, even knowing hp, one cannot guess Hash(hk,L,W ).

Password-Authenticated Key Exchange (PAKE) protocols have received a lot of attention since the
seminal paper of Bellovin and Merritt [BM92]. PAKE protocols indeed allow two players to agree on a common
session key while using a simple password (a low-entropy secret) as authentication means. For such protocols,
on-line dictionary attacks, for which testing a new password requires a new interaction, are unavoidable but
their impact can be reduced by organizational means. They should be made the best possible attacks, and
in particular, off-line dictionary attacks should definitely be prevented. Gennaro and Lindell [GL03] proposed
a generic construction of PAKE in the Bellare-Pointcheval-Rogaway [BPR00] (BPR) security model. This is
a generalization of the Katz-Ostrovsky-Yung protocol [KOY01]. The Gennaro-Lindell framework for PAKE
basically consists, for each player, in sending a commitment of the password, and a projection key to check the
validity of the partner’s commitment. Unfortunately, the language membership to check was then a Cramer-
Shoup encryption of a specific word, and no SPHF was known for this language. They relaxed the initial
Cramer-Shoup SPHFs (latter named CS-SPHFs) into GL-SPHFs that allow the projection key to be specific
to the word whose language membership has to be proven.
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Their framework has thereafter been applied to the Universal Composability (UC) framework by Canetti,
Halevi, Katz, Lindell and MacKenzie [CHK+05], and improved by Abdalla, Chevalier and Pointcheval [ACP09]
to resist adaptive corruptions, still with GL-SPHFs. Since the projection keys could be generated only after
having seen the word (a ciphertext of the password), three successive flows were a minimum.

More recently, one-round PAKE protocols have been proposed by Katz and Vaikuntanathan [KV11], still
using the Gennaro-Lindell framework, but such that the commitment of the password and the projection key
can be sent simultaneously, in one flow, by each player. Because of the independence of flows, new constraints
appear on the SPHF, and a new definition was required: KV-SPHF, where the projection key depends on the
hashing key only, as for CS-SPHF, and the smoothness holds even if the word is chosen after having seen
the projection key. Katz and Vaikuntanathan first proposed a PAKE construction in the BPR model. Their
construction received a much more efficient instantiation in [BBC+13], with only 6 group elements to be sent
by each player.

Katz and Vaikuntanathan [KV11] also proposed a second construction provably secure against static
corruptions in the UC framework. To this aim, each player additionally encrypts his hashing key to allow the
key recovery by the simulator, so that it can compute the hash value even when a wrong password has initially
been committed, whereas a success is expected. While this is the first one-round PAKE provably secure in the
UC framework, hashing key recovery requires quite costly simulation-sound extractable NIZK (non-interactive
zero-knowledge proof). Although, the latter can be improved by a more recent work [JR12], the UC-secure
one-round PAKE is still much more costly than the BPR-secure protocol.

Zero-Knowledge Proofs/Arguments are essential tools in many cryptographic protocols. They are used
to convince a verifier that some statement or word x is in a given NP-language L, defined by a polynomial
time relation R: L = {x | ∃(w, y), R(x, (w, y)) = 1}. This means that a word x is valid if there exists a witness
(w, y) such that R(x, (w, y)) = 1. The witness is divided in two parts w and y. We want to prove we know
some w, i.e., that some w can be extracted from a run of the protocol, such that there exists y, such that
(w, y) is a valid witness. We use the notation of [CKS11] and write this as:

Kw, ∃y, R(x, (w, y)) = 1.

This formalism generalizes both extractable arguments of knowledge (when y = ⊥) and non-extractable
zero-knowledge arguments (when w = ⊥).

More precisely, we are interested in (partially) extractable zero-knowledge proofs or arguments (E-ZK)
and their variants. E-ZK have to be complete, sound, (partially) extractable and zero-knowledge. Completeness
states that an honest verifier always accepts a proof made by an honest prover for a valid statement and
using a valid witness. Soundness states that no adversary can make an honest verifier accept a proof of a
false statement x, either statistically (for proofs) or computationally (for arguments). However, in this paper,
we do not distinguish between proofs and arguments and always talk about arguments. Partial extractability
states that there exists an extractor able to simulate a verifier and to output a valid partial witness w from
any successful interaction with an adversary playing the role of a prover. Finally, the zero-knowledge property
ensures that it is possible to simulate a prover for any true statement x even without access to a witness (w, y)
for this statement x.

In many protocols, the extractor and/or the zero-knowledge simulator have to rewind the proving adversary
or the verifier adversary, respectively. In this paper, we will focus on protocols for which the extractability
and the zero-knowledge properties are achieved without rewinding the players (and also in a black-box way).
This is useful when such proofs are used in concurrent settings or as building blocks in protocols to be proven
in the UC framework [Can01]. Formal definitions can be found in Appendix B.1.

Our Results. In this paper, we introduce a novel extension of SPHFs, called Trapdoor SPHF, or TSPHF. In
addition to showing that an SPHF with an additional encryption of the hashing key and a simulation-sound
extractable NIZK, as used in the UC-secure PAKE of Katz-Vaikuntanathan, can be seen as an inefficient
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TSPHF, we provide efficient instantiations of TSPHF. To this aim, we extend the generic framework proposed
in [BBC+13] for SPHFs to TSPHFs on languages of ciphertexts.

To illustrate efficiency of the TSPHFs, we use them in the one-round PAKE framework from [KV11]: we
obtain a scheme which consists of 11 group elements in each direction (actually, 6 group elements in G1 and 5
group elements in G2 in an asymmetric bilinear setting, using the Cramer-Shoup encryption). It is secure in
the UC framework against static corruptions under the SXDH assumption with a CRS, and just twice as more
costly than the best BPR-secure PAKE [BBC+13], which makes it the most efficient one-round UC-secure
PAKE to date.

While SPHFs can provide only honest-verifier zero-knowledge arguments (E-ZK, where the zero-knowledge
protocol only holds when then verifiers is honest) for more expressive language than the Groth-Sahai method-
ology [GS08], and which are also more efficient than Groth-Sahai NIZK and sometimes rely on weaker as-
sumptions, they do not lead to E-ZK. On the other hand, TSPHFs do help to construct efficient two-flow
E-ZK protocols, for restricted languages, but at cost (in transmission complexity) comparable or better (de-
pending on the exact language) than Groth-Sahai NIZK for the same languages. In addition, it is possible
to slightly change these protocols to have an additional property called true-simulation extractabilty. Fur-
thermore the E-ZK protocols and the true-simulation extractable variant have a cost comparable or better
than Ω-protocols [GMY06], which are extractable variants of Σ-protocols, which are themself classical con-
structions for honest-verifier zero-knowledge arguments. A concrete instantiation of these constructions is an
efficient E-ZK to prove the correct encryption of a valid Waters signature. This E-ZK can find applications in
optimistic fair exchange of digital signatures [ASW98].
Outline. In Section 2, we recall the definition of SPHFs. Then in Section 3, we introduce the definition
of TSPHF, with two constructions in Section 4. The latter is based on the generic framework for SPHFs
introduced in [BBC+13]. In Section 5 we first apply this new tool to PAKE in the UC-framework. Eventually,
we deal with zero-knowledge proofs, first for honest verifiers in Section 6, where SPHFs are enough, and
then, in Section 7, we show how TSPHFs provide extractable zero-knowledge proofs. We provide a concrete
instantiation to prove the correct encryption of a valid Waters signature in Section 8.

2 Preliminaries

2.1 General Definition of SPHFs

Let us consider a language L ⊆ Set , where words C are in L if there exists some witness w proving so. This
language L is not the same as L, the language considered for zero-knowledge arguments, in the introduction.
A smooth projective hash function (SPHF) system for the language L is defined by four algorithms:

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk,L, C) derives the projection key hp, possibly depending on the word C;
– Hash(hk,L, C) outputs the hash value of the word C from the hashing key;
– ProjHash(hp,L, C, w) outputs the hash value of the word C from the projection key hp, and the witness
w that C ∈ L.

We write Π the set of hash values, which is supposed to be of size at least 2K, with K the security parameter.
The correctness of the SPHF assures that if C ∈ L with w a witness of this membership, then the two ways
to compute the hash values give the same result: Hash(hk,L, C) = ProjHash(hp,L, C, w). On the other hand,
the security is defined through the smoothness, which guarantees that, if C 6∈ L, the hash value is statistically
indistinguishable from a random element of Π, even knowing hp. According to [BBC+13], depending on the
exact definition of smoothness, there are three types of SPHFs:

– KV-SPHF: hp does not depend on C —word-independent key— and the smoothness holds even if C is
chosen after having seen hp —adaptive smoothness—;
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– CS-SPHF: hp does not depend on C —word-independent key— but the smoothness holds only if C is
chosen before having seen hp —non-adaptive smoothness—;

– GL-SPHF: hp can depend on C —word-dependent key— and so the smoothness is correctly defined only
if C is chosen before having seen hp —non-adaptive smoothness—.

2.2 SPHFs on Languages of Ciphertexts

Languages of Ciphertexts. In the following, we focus on languages of ciphertexts (LofC), where the
witnesses are the random coins used for encryption of the plaintexts and possibly other values. The languages
LofCfull-aux will thus be defined by full-aux = (crs, aux), where crs will correspond to some fixed public
parameters and aux will correspond to parameters which can change. The first part crs will at least contain the
global parameters, the encryption key ek, and possibly additional parameters on the relation the plaintexts
should satisfy. Contrary to the definition in [BBC+13], HashKG and ProjKG can use aux, since nothing is
required to be kept private in the definition of the language. We write Enc(`, ek,M ; r) the encryption of the
plaintext M with the optional label ` and the random coins r.

Labeled Cramer-Shoup Encryption Scheme (CS). In this article, we use the ElGamal [ElG85] IND-CPA
encryption scheme and the Cramer-Shoup [CS98] labeled IND-CCA encryption scheme.

Here, we briefly review the CS labeled encryption scheme, where we combine all the public information in
the encryption key. We thus have a group G of prime order p, with two independent generators (g1, g2)

$← G2,
a hash function HK

$← H from a collision-resistant hash function family onto Z∗p, and a reversible mapping G
from {0, 1}n to G. From 5 scalars (x1, x2, y1, y2, z)

$← Zp5, one also sets c = gx11 g
x2
2 , d = gy11 g

y2
2 , and h = gz1 .

The encryption key is ek = (G, g1, g2, c, d, h,HK), while the decryption key is dk = (x1, x2, y1, y2, z). For a
message m ∈ {0, 1}n, with M = G(m) ∈ G, the labeled Cramer-Shoup ciphertext is:

C def= CS(`, ek,M ; r) def= (u = (gr1, g
r
2), e = M · hr, v = (cdξ)r),

with ξ = HK(`,u, e) ∈ Z∗p.

Vector Encryptions. As explained in Appendix A.3, to encrypt vectors of messages, as we will do in
the sequel, one can concatenate independent ElGamal or Cramer-Shoup ciphertexts (with some common
parameter ξ for the Cramer-Shoup encryption scheme in order to keep the global non-malleability) or re-use
random coins [BBS03]. This second method yields more compact ciphertexts at the expense of slightly larger
keys.

3 Definition of Computational Smoothness and TSPHF

In this section, we introduce TSPHFs, which are SPHFs with a trapdoor enabling a simulator to compute
the hash value of any valid word C without knowing hk nor any witness, but only knowing hp. TSPHFs also
provide a way to ensure that hp is valid, which prevents the attack against the witness-indistinguishability
described in the previous section. It can be seen that, intuitively, in most cases, a TSPHF cannot be statistically
smooth, and so, before introducing TSPHFs, we need to introduce a new notion of smoothness: computational
smoothness.

3.1 Computationally-Smooth SPHF

Let us first suppose there exists an algorithm Setup which takes as input the security parameter K and outputs
a CRS crs together with a trapdoor τ , which is not the trapdoor of the TSPHF, but just a trapdoor of crs. The
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Initialize(1K)

(crs, τ)
$← Setup(1K)

return crs, τ

ProjKG(aux, C)

(aux′, C′)← (aux, C)
full-aux← (crs, aux)

hk
$← HashKG(full-aux)

hp← ProjKG(hk, full-aux, C)
return hp

Hash(C)

aux← aux′ ; full-aux← (crs, aux)
C ← C′ . if non-adaptively-smooth SPHF
if b = 0 or C ∈ LofCfull-aux then

H ← Hash(hk, full-aux, C)

else H $← Π
return H

Finalize(b′)
return b′

Fig. 1. Games Expsmooth−b
K (A) (b = 0 or 1) for computational smoothness

trapdoor τ can be ⊥, but in our article, the trapdoor will contain at least the decryption key of the encryption
scheme, and possibly other data such that, for any C ∈ Set , it is possible to check whether C ∈ LofCfull-aux
or not, in polynomial time.

Let us then consider the two games Expsmooth−b
K (A) (with b = 0 or 1) depicted in Figure 1, where Π

denotes the set of hash values. There are two variants of the games: whether the SPHF is adaptively-smooth
(KV-SPHF) or not (CS-SPHF and GL-SPHF).

Let us first explain the games for a non-adaptively-smooth SPHF. The procedure Initialize generates and
outputs the CRS crs and its trapdoor τ . It is important to notice that computational smoothness has to hold
even when the adversary knows the trapdoor, and so may depend on what is in the trapdoor τ .

During the execution of the game, the adversary is allowed to make one query ProjKG(aux, C) to get
a projection key hp associated with aux and C, and then one query Hash(⊥) to get the hash value of
C. If C ∈ LofCfull-aux, smoothness does not apply, thus Hash(C) really returns the hash value H of C:
H = Hash(hk, full-aux, C), for a hashing key hk associated with hp. Otherwise, the smoothness should apply
with a real-or-random indistinguishability game, and thus, if b = 0 the real hash value is returned too, whereas
a random value inΠ is returned when b = 1. Eventually, the adversary ends the game by querying the Finalize
procedure with its guess b′ for b. We remark that the procedure Hash may or may not be polynomial time,
depending on τ , since it is not necessarily possible to efficiently check whether C ∈ LofCfull-aux.

For the adaptively-smooth variant, the adversary does not need to provide the word C when it makes a
query to ProjKG. It gives ⊥ instead and can choose C adaptively after having seen hp, as input to the Hash
query.

Formally, an SPHF is (t, ε)-smooth if for all adversary A running in time at most t:∣∣∣Pr
[
Expsmooth−1

K (A) = 1
]
− Pr

[
Expsmooth−0

K (A) = 1
]∣∣∣ ≤ ε.

The classical statistical-smoothness implies the (t, ε)-smoothness for any t, and any non-negligible ε (and
whatever is the trapdoor τ).

3.2 Trapdoor SPHF

A TSPHF is an extension of a classical SPHF with an additional algorithm TSetup, which takes as input the
CRS crs and outputs an additional CRS crs′ and a trapdoor τ ′ specific to crs′, which can be used to compute
the hash value of words C knowing only hp. For TSPHF, we assume full-aux = (crs, crs′, aux), although the
language LofCfull-aux still does not depend on crs′. Formally, a TSPHF is defined by seven algorithms:

– TSetup(crs) takes as input the CRS crs (generated by Setup) and generates the second CRS crs′, together
with a trapdoor τ ′;
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– HashKG, ProjKG, Hash, and ProjHash behave as for a classical SPHF;
– VerHP(hp, full-aux, C) outputs 1 if hp is a valid projection key, and 0 otherwise. When hp does not depend

on C (word-independent key), the input C can be replaced by ⊥;
– THash(hp, full-aux, C, τ ′) outputs the hash value of C from the projection key hp and the trapdoor τ ′.

It must verify the following properties:

– Correctness is defined by two properties: hash correctness, which corresponds to correctness for classical
SPHFs, and an additional property called trapdoor correctness, which states that, for any C ∈ Set ,
if hk and hp are honestly generated, we have: VerHP(hp, full-aux, C) = 1 and Hash(hk, full-aux, C) =
THash(hp, full-aux, C, τ ′), with overwhelming probability;

– Smoothness is exactly the same as for SPHFs, except that in the Initialize procedure, TSetup is also
called, but while τ ′ is dropped, crs′ is forwarded to the adversary (together with crs and τ);

– The (t, ε)-soundness property says that, given crs, τ and crs′, no adversary running in time at most t
can produce a projection key hp, a value aux, a word C and valid witness w such that hp is valid (i.e.,
VerHP(hp, full-aux, C) = 1) but THash(hp, full-aux, C, τ ′) 6= ProjHash(hp, full-aux, C, w), with probability
at least ε. The perfect soundness states that the property holds for any t and any ε > 0.

It is important to notice that τ is not an input of THash and it is possible to use THash, while generating
crs with an algorithm which cannot output τ (as soon as the distribution of crs output by this algorithm is
indistinguishable from the one output by Setup, obviously). For example, if τ contains a decryption key, it is
still possible to use the IND-CPA game for the encryption scheme, while making calls to THash.

4 Constructions of TSPHFs

In this section, we show two ways of constructing TSPHFs from SPHFs. The first way uses NIZK, and works
for any SPHF but is very inefficient for generic SPHFs, and inefficient for most SPHFs. This is essentially the
approach of [KV11]. The second way is much more efficient and works for most SPHFs based on the generic
framework for SPHFs introduced in [BBC+13] and recalled in Section E.1.

4.1 Construction of TSPHFs using NIZK

A naive solution to transform any SPHF into a TSPHF consists in replacing the projection key hp by a pair
(hp, π), where π is an ENIZK (a non-interactive E-ZK) proof of the knowledge ( K) of a hashing key hk such
that hp is the projection key of hk. In Appendix F.1, we show that this provides a correct, smooth and sound
TSPHF. Intuitively the hash correctness directly comes from the correctness of the original SPHF, the trapdoor
correctness and the soundness come from the extractability of the ENIZK (and may not be perfect) and the
smoothness comes from the zero-knowledge property of the ENIZK.

In Appendix F.1, we also show some improvements for this naive construction to make quite efficient
TSPHF, and in particular to avoid having to do bit-by-bit Groth-Sahai ENIZK. These improvements can be
seen as a generalization of the method proposed by Jutla and Roy in [JR12, Section 8]. But even with these
improvements, this naive construction is still less efficient than the constructions described in the sequel.

4.2 Generic Framework for GL-SPHF/KV-SPHF

In [BBC+13], the authors introduced a formal framework for SPHFs using a new notion of graded rings, derived
from [GGH12]. It enables to deal with cyclic groups, bilinear groups (with symmetric or asymmetric pairings),
or even groups with multi-linear maps. In particular, it helps to construct concrete SPHFs for quadratic pairing
equations over ciphertexts, which enable to construct efficient LAKE [BBC+13] for any language handled by
the Groth-Sahai NIZKs, and so for any NP-language.
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This generic framework is recalled in Appendix E.1. For the sake of simplicity, we focus here on cyclic
groups, with the basic intuition only, and provide some illustrations. While we keep the usual multiplicative
notation for the cyclic group G, we use an extended notation: r � u = u � r = ur, for r ∈ Zp and u ∈ G,
and u ⊕ v = u · v, for u, v ∈ G. Basically, ⊕ and � correspond to the addition and the multiplication in the
exponents, that are thus both commutative. We then extend this notation in a natural way when working on
vectors and matrices.

Our goal is to deal with languages of ciphertexts LofCfull-aux: we assume that crs is fixed and we write
Laux = LofCfull-aux ⊆ Set where full-aux = (crs, aux).

Language Representation. For a language Laux, we assume there exist two positive integers k and n, a
function Γ : Set 7→ Gk×n, and a family of functions Θaux : Set 7→ G1×n, such that for any word C ∈ Set ,
(C ∈ Laux)⇐⇒ (∃λ ∈ Z1×k

p such that Θaux(C) = λ�Γ (C)). In other words, we assume that C ∈ Laux, if and
only if, Θaux(C) is a linear combination of (the exponents in) the rows of some matrix Γ (C). For a KV-SPHF,
Γ is supposed to be a constant function (independent of the word C). Otherwise, one gets a GL-SPHF.

We furthermore require that a user, who knows a witness w of the membership C ∈ Laux, can efficiently
compute the above linear combination λ. This may seem a quite strong requirement but this is actually
verified by very expressive languages over ciphertexts such as ElGamal, Cramer-Shoup and variants.

We briefly illustrate it on a KV-SPHF for the language of CS ciphertexts encrypting a message M = aux.
Words in the language Laux are ciphertexts C = (u1 = gr1, u2 = gr2, e = M · hr, v = (cdξ)r), with r ∈ Zp and
ξ = HK(`,u, e) ∈ Z∗p. We choose k = 2, aux = M , n = 5, and:

Γ =

(
g1 1 g2 h c
1 g1 1 1 d

)
λ = (r, rξ)

λ� Γ = (gr1, g
rξ
1 , g

r
2, h

r, (cdξ)r)

ΘM (C) = (u1, u
ξ
1, u2, e/M, v).

Essentially, one tries to make the first columns of Γ (C) and the first components of Θaux(C) to completely
determine λ. In our illustration, the first two columns with u1 = gr1 and uξ1 = grξ1 really imply λ = (r, rξ), and
the three last columns help to check the language membership: we want u2 = gr2, e/M = hr, and v = (cdξ)r,
with the same r as for u1.

Smooth Projective Hash Function. With the above notations, the hashing key is a vector hk = α =
(α1, . . . , αn)ᵀ

$← Znp , while the projection key is, for a word C, hp = γ(C) = Γ (C)�α ∈ Gk (if Γ depends on
C, this leads to a GL-SPHF, otherwise, one gets a KV-SPHF). Then, the hash value is:

Hash(hk, full-aux, C) def= Θaux(C)�α = λ� γ(C) def= ProjHash(hp, full-aux, C, w).

Our above Γ , λ, and ΘM immediately lead to the KV-SPHF on CS, introduced in [BBC+13]: with hk =

(η1, η2, θ, µ, ν)
$← Z5

p, the product with Γ leads to: hp = (hp1 = gη11 g
θ
2h

µcν , hp2 = gη21 d
ν) ∈ G2, and

H = Hash(hk, (ek,m), C) def= u
(η1+ξη2)
1 uθ2(e/G(m))µvν

= (hp1hp
ξ
2)
r def= ProjHash(hp, (ek,m), C, r) = H ′.

A security analysis that proves the above generic SPHF is perfectly smooth can be found in [BBC+13].
Intuitively, for a word C 6∈ Laux and a projection key hp = γ(C) = Γ (C) � α, the vector Θaux(C) is not in
the linear span of Γ (C), and thus H = Θaux(C)�α is independent from Γ (C)�α = hp.

4.3 Efficient Construction of TSPHFs under DDH

We now explain how to construct a TSPHF in a bilinear group (p,G1,G2,GT , e), from any SPHF constructed
via the above framework, provided the SPHF does not require pairings (as all the SPHFs described in this
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paper), and under an additional assumption detailed later (for the smoothness to hold). To this aim, we
extend our notations with g1 � g2 = g2 � g1 = e(g1, g2), and scalars can operate on any group element as
before. Intuitively, our TSPHF construction is such that all the “SPHF” part of the TSPHF is in G1, whereas
the trapdoor part is in G2. And the trapdoor part simply contains some representation of α, representation
which cannot be used without knowing the trapdoor τ ′.

The second CRS is a random element crs′ = ζ
$← G2, and its trapdoor is its discrete logarithm τ ′,

such that ζ = gτ
′

2 = τ ′ � g2. The hashing key hk = α is the same as before. The projection key is the
ordered pair hp = (γ,χ), where γ is the same as before, and χ = ζ � α. The projection key is valid (i.e.,
VerHP(hp, full-aux, C) = 1) if and only if

χ ∈ Gn
2 and ζ � γ = Γ � χ, (1)

Then, for any word C ∈ Lfull-aux with witness w corresponding to the vector λ, the hash value is

Hash(hk, full-aux, C) def= Θ(C)�α� g2 = λ� γ � g2 def= ProjHash(hp, full-aux, C, w).

Equation (1) means that χ can be written χ = τ ′ �α′, with α′ ∈ Znp verifying γ = Γ �α′, i.e., hk′ = α′ is
a valid hashing key for γ. We do not have necessarily α = α′, however, for any word C ∈ Lfull-aux, we have
and we set

λ� γ � g2 = Θ(C)�α′ � g2 = τ ′−1 �Θ(C)� χ def= THash(hp, full-aux, C, τ ′).

In Appendix E.3, we prove the resulting TSPHF is computationally smooth under the DDH assumption in
G2, if the discrete logarithms of Γaux(C) can be computed from τ . This latter assumption on Γaux(C) and τ is
required for technical reasons in the proof of smoothness. The correctness and the perfect soundness are easy
to prove from the construction, and so the resulting TSPHF is correct, smooth and sound.

4.4 TSPHF on Cramer-Shoup Ciphertexts

To illustrate this generic transformation, we apply it to extend the KV-SPHF on Cramer-Shoup ciphertexts
(the example in Section 4.2) into a TSPHF. Let (p,G1,G2,GT , e) be a bilinear group. We consider the same
language and use the same notations as in Section 4.2 except we replace G by G1, g1 and g2 by g1,1 and g1,2
resp., and h by h1, while g2 is a generator of G2.

To get a TSPHF, we choose a random scalar τ ′ in Zp and set crs′ = ζ = gτ
′

2 . Then the hashing key, the
projection key and the hash value of the TSPHF are defined as follows:

hk = (η1, η2, θ, µ, ν)
$← Z5

p

hp = (hp1 = gη11,1g
θ
1,2h

µ
1c
ν , hp2 = gη21,1d

ν , hp3) ∈ G2
1 ×G5

2

where hp3 = (χ1,1 = ζη1 , χ1,2 = ζη2 , χ2 = ζθ, χ3 = ζµ, χ4 = ζν) ∈ G5
2

Hash(hk, (ek,m), C) = e(u1
(η1+ξη2)u2

θ(e/G(m))µvν , g2)

ProjHash(hp, (ek,m), C, r) = e((hp1hp2
ξ)r, g2)

The projection key is valid if and only if: e(hp1, ζ) = e(g1,1, χ1,1) ·e(g1,2, χ2) ·e(h1, χ3) ·e(c, χ4) and e(hp2, ζ) =
e(g1,1, χ1,2) · e(d, χ4). For any C ∈ LofC(crs,aux), the hash value can be computed from C and τ ′ as

THash(hp, (ek,m), C, τ ′) =
(
e(u1, χ1,1 · χξ1,2) · e(u2, χ2) · e(e/G(m), χ3) · e(v, χ4)

)1/τ ′
.

The resulting TSPHF is smooth under the DDH in G2, hence the global SXDH assumption.
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5 One-Round UC-Secure PAKE from TSPHFs

In this section, we introduce a direct application of the previous KV-TSPHF on Cramer-Shoup ciphertexts:
an efficient UC-secure PAKE. Before that, we describe a generic UC-secure one-round PAKE scheme from any
IND-CCA encryption scheme with an associated TSPHF. Our efficient UC-secure PAKE is an instantiation of
this generic PAKE.

5.1 Generic One-Round UC-Secure PAKE

The ideal functionality of a Password-Authenticated Key Exchange (PAKE) is depicted in Figure 2. It has
been proposed in [CHK+05].

The functionality FpwKE is parameterized by a security parameter k. It interacts with an adversary S
and a set of parties P1,. . . ,Pn via the following queries:

– Upon receiving a query (NewSession : sid, ssid, Pi, Pj, pw) from party Pi:
Send (NewSession : sid, ssid, Pi, Pj) to S. If this is the first NewSession query, or if this is the second
NewSession query and there is a record (sid, ssid, Pj , Pi, pw

′), then record (sid, ssid, Pi, Pj , pw) and
mark this record fresh.

– Upon receiving a query (TestPW : sid, ssid, Pi, pw
′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark the record
compromised and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and
reply with “wrong guess”.

– Upon receiving a query (NewKey : sid, ssid, Pi, sk) from the adversary S:
If there is a record of the form (sid, ssid, Pi, Pj , pw), and this is the first NewKey query for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, ssid, sk) to

player Pi.
• If this record is fresh, and there is a record (Pj , Pi, pw

′) with pw′ = pw, and a key sk′ was
sent to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, ssid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length K and send (sid, ssid, sk′) to Pi.
Either way, mark the record (sid, ssid, Pi, Pj , pw) as completed.

Fig. 2. Ideal Functionality for PAKE FpwKE

Our generic PAKE is a slight variant of the one-round PAKE from [KV11], where the SPHF and the SS-NIZK
are replaced by a TSPHF. It is depicted in Figure 3 It is secure in the UC framework against static corruptions,
with a common reference string for any TSPHF on the language of a valid ciphertext on a message m under an
IND-CCA-secure labeled encryption scheme. The full proof is provided in Appendix D.1. It is in the same vein
as the KV’s proof but a bit more intricate for two reasons: we do not assume a prior agreement of the session
ID which makes our scheme a truly one-round protocol; our TSPHF does not guarantee the smoothness (even
computationally) when the trapdoor τ ′ is known, and then, we have to modify the order of the games to use
this trapdoor at the very end only.

One can remark that the original scheme in [KV11] can be seen as an instantiation of our scheme with
a naive TSPHF based on NIZK (Section 4.1). Therefore, the security of the original KV’s PAKE protocol is
actually implied by our proof. And our proof also shows that their construction can be simplified by removing
the commitment of hk and replacing the SS-NIZK by an ENIZK for the knowledge of hk. However, even with
these improvements and the improvements of Appendix F.1, the resulting construction is still less efficient
than the one just below.
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CRS crs = ek and crs′ where (crs′, τ ′)
$← TSetup(crs)

Common password: pw
User U User U ′

full-aux← (crs, crs′, pw) full-aux← (crs, crs′, pw)

hk
$← HashKG(full-aux) hk′

$← HashKG(full-aux)
hp← ProjKG(hk, full-aux,⊥) hp′ ← ProjKG(hk′, full-aux,⊥)
`← (U,U ′, hp) `′ ← (U ′, U, hp′)
C ← Enc(`, ek, pw; r) C′ ← Enc(`′, ek, pw; r′)

hp′, C′←−−−−−−−−−−→
hp, C

abort if VerHP(hp′, full-aux,⊥) = 0 abort if VerHP(hp, full-aux,⊥) = 0
`′ ← (U ′, U, hp′) `← (U,U ′, hp)
skU ← Hash(hk, full-aux, C′) skU′ ← Hash(hk′, full-aux, C)

·ProjHash(hp′, full-aux, C, r) ·ProjHash(hp, full-aux, C′, r′)

Fig. 3. Generic UC-Secure One-Round PAKE

5.2 Efficient Instantiation

Let us now instantiate this generic PAKE with a Cramer-Shoup encryption scheme and our KV-TSPHF on
Cramer-Shoup ciphertexts. The resulting scheme is depicted in Figure 4. The communication complexity is
of 6 elements in G1 and 5 elements in G2 only in each direction, which makes it the most efficient one-round
UC-secure PAKE to date.

6 Zero-Knowledge Arguments from SPHFs

In this section, we show how to construct honest-verifier zero-knowledge arguments (HVE-ZK) from SPHFs.
A HVE-ZK is a weak variant of E-ZK, for which the zero-knowledge property only needs to hold with honest
verifiers.

We then present the limitations of this construction, namely the fact that the resulting argument is even
not witness-indistinguishable, i.e., a malicious prover may be able to distinguish which witness has been used
by an honest prover1, in general.

6.1 Honest-Verifier Zero-Knowledge Arguments from SPHFs

The idea of the construction is that a prover, who knows some valid statement x together with a valid witness
(w, y), encrypts w, using an IND-CPA encryption scheme, in some ciphertext C, under some encryption key
ek contained in crs. Then, using an SPHF, he shows that the ciphertext C is an encryption of a valid partial
witness w for the word x: the verifier chooses some hashing key hk and sends the corresponding projection key
hp to the prover; the prover sends back the hash value H of the ciphertext C computed from hp, w, y and the
random coins used in C, using ProjHash; and the verifier checks he gets the same hash value from hk, using
Hash. If the SPHF is a KV-SPHF, the prover can send the ciphertext C together with H after receiving hp from
the verifier. This yields a two-flow protocol. More precisely, we use a KV-SPHF for the following language:

LofCfull-aux = {C | ∃w, ∃r, ∃y, C = Enc(ek, w; r) and R(x, (w, y))},

where aux is the statement x, and crs contains the encryption key ek and possibly some global parameters
related to the language L associated with the relation R. The complete protocol is depicted in Figure 5.
1 The formal definition of witness-indistinguishability can be found in Appendix B.1.
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CRS: ek = (p,G1,G2,GT , e, g1,1, g1,2, c, d, h,HK), ζ ∈ G2 Common password: pw
Both users do the same:

– U , with expected partner U ′, generates hk, hp and C:

hk = (αu1,1, αu1,2, αu2 , αe, αv)
$← Z5

p

hp = (hp1 = g
αu1,1

1,1 g
αu2
1,2 hαecαv , hp2 = g

αu1,2

1,1 dαv , hp3) ∈ G2
1 ×G5

2

where hp3 = (χu1,1 = ζαu1,1 , χu1,2 = ζαu1,2 , χu2 = ζαu2 , χe = ζαe , χv = ζαv ) ∈ G5
2

C = (`,u = (gr1,1, g
r
1,2), e = G(pw) · hr, v = (cdξ)r) ∈ G4

1 where ` = (U,U ′, hp) and ξ = HK(`,u, e)

– U sends hp ∈ G2
1 ×G5

2 and C ∈ G4
1

– Upon receiving hp′ = (hp′1, hp
′
2, χ
′
u1,1, χ

′
u1,2, χ

′
u2
, χ′e, χ

′
v) ∈ G2

1 ×G5
2 and C′ = (u′ = (u′1, u

′
2), e

′, v′) ∈ G4
1,

U checks whether

e(hp′1, ζ) = e(g1,1, χ
′
u1,1) · e(g1,2, χ

′
u2
) · e(h, χ′e) · e(c, χ′v) and e(hp′2, ζ) = e(g1,1, χ

′
u1,2) · e(d, χ

′
v)

– If one equality does not hold, U aborts,otherwise U sets `′ = (U ′, U, hp′) and ξ′ = HK(`′,u′, e′)
– U computes

skU = e(u′1
(αu1,1+ξ

′αu1,2)u′2
αu2 (e′/G(pw))αev′

αv , g2) · e((hp′1hp
′
2
ξ
)r, g2)

Fig. 4. UC-Secure One-Round PAKE based on DDH

Prover Verifier
Input: (aux = x, (w, y)) Input: aux = x

hp←−−−−−−−−−−−−−−−
hk

$← HashKG(full-aux)
hp← ProjKG(hk, full-aux,⊥)

C ← Enc(ek, w; r)
H ← ProjHash(hp, full-aux, C, (w, r, y))

C,H−−−−−−−−−−−−−−−→
H ′ ← Hash(hk, full-aux, C)
if H = H ′ then accept
else reject

Fig. 5. HVE-ZK Argument from KV-SPHFs

It is possible to use a GL-SPHF instead of a KV-SPHF for the above language, if the ciphertext C is sent
before hp. The protocol becomes three-flow but can require fewer bits to be transmitted, because GL-SPHFs
are often more efficient than KV-SPHFs. It is depicted in Figure 6.

Completeness comes from the correctness of the SPHF and soundness comes from the statistical smooth-
ness of the SPHF. The extractor just acts as an honest verifier and decrypts the ciphertext C of the adversarial
prover at the end. The simulator for the honest-verifier zero-knowledge property just encrypts an arbitrary
value in C and computes H using hk: H = Hash(hk, full-aux, C). The IND-CPA property of the encryption
scheme used for C ensures the simulator transcripts are computationally indistinguishable from real tran-
scripts, and so the proposed construction is honest-verifier zero-knowledge.

6.2 Instantiations

Multi-Exponentiation Equations in Cyclic Group G. In Appendix C.1, we show a KV-SPHF which
yields an efficient HVE-ZK for the following language:

K(X1, . . . , Xn) ∈ Gn, ∃(y1, . . . , ym) ∈ Zmp , ∀k ∈ {1, . . . , t},
n∏
i=1

X
ak,i
i =

m∏
j=1

A
yj
k,j ·Bk,
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Prover Verifier
Input: (aux = x, (w, y)) Input: aux = x

C ← Enc(ek, w; r)
C−−−−−−−−−−−−−−−→

hp←−−−−−−−−−−−−−−−
hk

$← HashKG(full-aux)
hp← ProjKG(hk, full-aux, C)

H ← ProjHash(hp, full-aux, C, (w, r, y)) H−−−−−−−−−−−−−−−→
H ′ ← Hash(hk, full-aux, C)
if H = H ′ then accept
else reject

Fig. 6. HVE-ZK Argument from GL-SPHFs

where a statement x is a tuple containing all the constants ak,i, Ak,j and Bk, or some of them (in this case,
the other constants are in crs).

Let us now compare the transmission complexity of the resulting HVE-ZK, when ElGamal ciphertexts
with reuse of randomness are used, with the transmission complexity of Groth-Sahai NIZK [GS08] and Ω-
protocols [GMY06]. The ciphertext C of (X1, . . . , Xn) requires n + 1 elements in G, the projection key hp
requires m+1 elements in G and the hash value H is 1 element in G, which gives a total of n+m+3 elements
in G.

For the same language, the corresponding Groth-Sahai NIZK cannot make reuse of randomness, requires
to use bilinear groups (p,G = G1,G2,GT , e) and to commit (g

yj
2 )j , and so requires at least n more elements

in G1, 2m more elements in G2 (and m fewer in G1 but elements of G2 are at least twice larger than elements
in G1), but is non-interactive and zero-knowledge instead of two-flow and honest-verifier zero-knowledge. We
also remark that Groth-Sahai NIZK requires the SXDH assumption, whereas our construction only needs the
DDH assumption in G. The corresponding Ω-protocol, which is an HVE-ZK as our protocol, uses n + t + 2
elements in G and m+ 2 in Zp, which is t+ 1 elements more than our protocol, as shown in Appendix C.2.

A detailed and concrete application of this HVE-ZK for multi-exponentiation equations, will be given in
Section 8, together with a concrete comparison with Ω-protocols and Groth-Sahai NIZK.

Pairing Product Equations in Bilinear Groups. SPHF constructions in [BBC+13] yield efficient two-
flow HVE-ZK able to deal with systems of pairing product equations. These systems are more expressive than
the languages by Groth-Sahai NIZK in [GS08]: in addition to all what can be done using these NIZK, they
also handle unknowns in GT .

6.3 Limitations of SPHFs

Unfortunately, without any extra property on the SPHF, the above construction is not witness indistinguish-
able, and so not zero-knowledge, in general. The main problem is that, for some SPHFs, it may be possible
to generate hp in such a way that the hash value H computed by the prover (through ProjHash) depends
on the witness used. This happens, in particular, when the language LofCfull-aux of the SPHF (and also the
language L of the HVE-ZK) is a disjunction of two languages and when the generic construction of [ACP09]
for disjunctions is used to construct the SPHF.

Let us indeed consider the following language: KX, X = X0 or X = X1, with X0 and X1 two distinct
constants, which are two distinct witnesses. This language is completely trivial, but our attack works for more
interesting cases such as languages KX such that X is a signature on a message m0 or on another message
m1.

For the previous HVE-ZK construction, we need an SPHF for the following language:

LofCfull-aux = {C | ∃r, C = Enc(ek, X0; r) or C = Enc(ek, X1; r)}.
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Suppose we have two SPHFs (HashKGb,ProjKGb,Hashb,ProjHashb) for the languages of ciphertexts of Xb, for
b ∈ {0, 1} and suppose we use the generic disjunction method of [ACP09] to construct an SPHF for LofCfull-aux.
The resulting SPHF works as follows. Let hk0 and hk1 be two hashing keys of the previous SPHFs, and hp0
and hp1 the corresponding projection keys (generated by HashKG0,HashKG1,ProjKG0,ProjKG1). Then, for
LofCfull-aux, we can use the hashing key hk = (hk0, hk1) and sets:

hp def= (hp0, hp1, H⊕) where H⊕ def= Hash0(hk0, full-aux, C)⊕ Hash1(hk1, full-aux, C)

H def= Hash0(hk0, full-aux, C)

H ′ def=

{
ProjHash0(hp0, full-aux, C, r) if C = Enc(ek, X0; r)

H⊕ ⊕ ProjHash1(hp0, full-aux, C, r) if C = Enc(ek, X1; r),

with ⊕ the exclusive or. Let us now show that the resulting protocol is not witness-indistinguishable, i.e., a
malicious verifier can know if the prover used X0 or X1 as witness. A malicious verifier can indeed pick H⊕ = 0
(or a uniformly random value). Then an honest prover will send back H = ProjHash0(hp0, full-aux, C, r), if he
encrypted X = X0 in C and H = 0 ⊕ ProjHash(hp1, full-aux, C, r) otherwise. These two values are different
with high probability, and so the malicious verifier can distinguish X0 from X1. We notice that this attack
works whatever the encryption scheme is.

The previous problem does not happen for SPHFs where it is easy distinguish valid hp from invalid ones,
such as for the SPHFs constructed in [BBC+13]. However, even in this case, we do not see how to prove that
the resulting generic construction yields a zero-knowledge argument, because, if the simulator does not have
access to hk, but only to hp, there is no trivial way to compute H.

7 Zero-Knowledge Arguments from TSPHFs

Let us now show how TSPHFs enable to construct E-ZK and true-simulation extractable zero-knowledge
arguments (tSE-ZK). A tSE-ZK is a E-ZK in which extractability holds even if the adversary has access to
simulated proofs for any valid statement. tSE-ZK is a relaxation of the notion of simulation-extractable zero-
knowledge arguments2, in which the adversary has access to simulated proofs of any statement (valid or
invalid). But as shown in [Har11], tSE-ZK are sufficient for most applications, and can often be more efficient
than SE-ZK. Formal definitions can be found in Appendix B.1.

7.1 Generic Construction

Let us now introduce our generic two-flow constructions for E-ZK and tSE-ZK, depicted in Figure 7. They are
similar to the generic construction of HVE-ZK from SPHFs of Section 6.1, except the KV-SPHF is replaced
by a KV-TSPHF and the verifier aborts if the received hp is not valid. Furthermore, the tSE-ZK version uses
a labeled IND-CCA encryption scheme (instead of an IND-CPA encryption scheme) and the language of the
KV-TSPHF has to be restricted to ciphertexts with the expected label `.

It is also possible to use a GL-TSPHF (instead of a KV-TSPHF), at the expense of requiring three flows
instead of two and using an additional one-time signature to prevent the adversary from mixing flows from
different sessions (only for the tSE-ZK variant). The E-ZK three-flow variant is depicted in Figure 9, whereas
tSE-ZK three-flow variant is depicted in Figure 9. The tSE-ZK three-flow variant requires a one-time signature
(see Section A.3) to prevent the adversary from mixing flows. The parameters param

$← Setup(1K) of the
one-time signature are supposed to be in the CRS crs.

As for the construction of Section 6.1, completeness comes from the correctness of the SPHF and the
extractor acts as an honest verifier and decrypts the ciphertext of the adversary. The simulator consists in en-
crypting an arbitrary value in C and computing H using hp and the trapdoor τ ′: THash(hp, full-aux, C, τ ′). The
2 Also called non-malleable arguments of knowledge when y = ⊥ in [GMY06].



14

Prover Verifier
Input: (aux = x, (w, y)) Input: aux = x

hp←−−−−−−−−−−−−−−−
hk

$← HashKG(full-aux)
hp← ProjKG(hk, full-aux,⊥)

if VerHP(hp, full-aux,⊥) = 0 then
abort

`← (x, hp) . only for tSE-ZK
C ← Enc(`, ek, w; r)
H ← ProjHash(hp, full-aux, (`, C), (w, r, y))

C,H−−−−−−−−−−−−−−−→
`← (x, hp) . only for tSE-ZK
H ′ ← Hash(hk, full-aux, (`, C))
if H = H ′ then accept
else reject

Fig. 7. E-ZK and tSE-ZK Arguments from KV-TSPHF (for the E-ZK version, the label ` is not used).

Prover Verifier
Input: (aux = x, (w, y)) Input: aux = x

C ← Enc(ek, w; r)
vk, C−−−−−−−−−−−−−−−→

hp←−−−−−−−−−−−−−−−
hk

$← HashKG(full-aux)
hp← ProjKG(hk, full-aux, C)

if VerHP(hp, full-aux, C) = 0 then
abort

H ← ProjHash(hp, full-aux, C, (w, r, y)) H−−−−−−−−−−−−−−−→
H ′ ← Hash(hk, full-aux, C)
if H = H ′ then accept
else reject

Fig. 8. E-ZK Argument from GL-TSPHFs.

Prover Verifier
Input: (aux = x, (w, y)) Input: aux = x

(vk, sk)
$← OT.KeyGen(param)

`← vk
C ← Enc(`, ek, w; r)

vk, C−−−−−−−−−−−−−−−→

hp←−−−−−−−−−−−−−−−
hk

$← HashKG(full-aux)
hp← ProjKG(hk, full-aux, (`, C))

if VerHP(hp, full-aux, C) = 0 then
abort

H ← ProjHash(hp, full-aux, (`, C), (w, r, y))

σ
$← OT(sk, (x, vk, C, hp, H))

H,σ−−−−−−−−−−−−−−−→
`← vk
H ′ ← Hash(hk, full-aux, (`, C))
b← OT.Ver(vk, (x, vk, C, hp, H), σ)
if H = H ′ and b = 1 then accept
else reject

Fig. 9. tSE-ZK Argument from GL-TSPHFs.

IND-CPA property of the encryption scheme used for C ensures the simulator transcripts are computationally
indistinguishable from real transcripts, which proves the zero-knowledge property of our constructions.
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Soundness, extractability and true-simulation extractability (for the tSE-ZK variant) are slightly more
complex. For them to be true, we require that, for any w and x, knowing τ provides a way to test whether x is
valid and w is a partial witness of x, with overwhelming probability. This property is actually always verified by
TSPHF constructed as in Section 4.3, as shown in Appendix F.2. In addition, the true-simulation extractability
requires the IND-CCA property of the labeled encryption scheme (contrary to all previous properties). Proofs
are given in Appendix D.2.

7.2 An Instantiation

The KV-SPHF and the HVE-ZK for multi-exponentiation equations in Section 6.1 and Appendix C.1 can
directly be transformed into a KV-TSPHF and an E-ZK, respectively (supposing G = G1 where (p,G1,G2,GT )
is an asymmetric bilinear group, where the DDH assumption holds in G1 and G2), if all constants Ak,j are in
crs, and crs be generated in such a way their discrete logarithm is known. It is important to notice that neither
the simulator nor the extractor uses τ , which contains these discrete logarithms. These discrete logarithms
are only required in the proof of security of the soundness and of the extractability.

We remark that for the used KV-TSPHF, the hash value H is in GT . To avoid sending such a large
element, instead of sending H, the prover can extract the entropy of H and send to the prover the result of
the extraction (instead of H), which is smaller than an element of G1 and so considered as an element of G1,
in the comparison below.

Let us now analyze the transmission complexity of our constructions. The E-ZK just requires t + 1 more
elements in G2 for hp (with ElGamal ciphertexts with reuse of randomness). Therefore it requires t+ 1 more
elements in G2 and t+1 fewer elements in G1 or Zp than the corresponding Ω-protocol, but is zero-knowledge
instead of being just honest-verifier zero-knowledge. And it still requires fewer elements or about the same
number of elements (depending on the exact equations) than Groth-Sahai NIZK.

In addition, if, in the above E-ZK protocol, the ElGamal encryption scheme is replaced by a Cramer-Shoup
encryption scheme with reuse of randomness, we get a tSE-ZK. The full scheme can be found in Appendix C.3.
We remark that, compared to the E-ZK scheme, the tSE-ZK scheme just requires 2 elements (in G1) more for
the ciphertext C, and 1 element more in G1 and 4 more in G2 for hp. And therefore, its transmission complexity
is still comparable to the corresponding Ω-protocol, and still better or comparable than Groth-Sahai NIZK,
in most cases, while being tSE-ZK instead of only E-ZK.

8 Verifiable Encryption of Waters Signatures

In this section, we show a concrete instantiation of our constructions of HVE-ZK and E-ZK of Sections 6.2
and 7.2, for the language of ciphertexts of valid Waters signatures in an asymmetric bilinear group (defined in
Section A.4). These constructions can be used, for example, in optimistic fair exchanges of signatures [ASW98].
We remark that, for this language w = ⊥, and so tSE-ZK are equivalent to E-ZK.

We first precisely describe the language we are interested in, and then describe the obtained HVE-ZK and
E-ZK protocols and compare them to Groth-Sahai NIZK and Σ-protocols.

8.1 Language L

Let us suppose crs contains ek = (g1,1, g1,2, c, d, h,HK) a public key for the Cramer-Shoup encryption scheme
(in G1), and param = (g1, g2,f , h) parameters for the Waters signature scheme. The trapdoor τ will contain
the discrete logarithm of all the elements of ek and param in base g1 for elements in G1 and in base g2 for
elements in G2, and so, in particular the decryption key dk can be computed from τ . It is important to notice
that the encryption key ek is not the one we previously used to encrypt w (in C) in the generic HVE-ZK
construction from Section 6, since w = C = ⊥.

Let us now consider the following language of words x = (`, vk,M,E1,σ2) where:



16

– ` is a label;
– vk = (gz1 , g

z
2) is a public key for the Waters signature scheme3;

– M is a message in {0, 1}k;
– E1 = (u = (u1 = gr1,1, u2 = gr1,2), e = hr · σ1, v = (cdξ)r) is a Cramer-Shoup encryption under label ` of

some element σ1 ∈ G1 (ξ = HK(`,u, e));
– σ2 = (σ2,1, σ2,2) ∈ G1 ×G2;

such that: σ = (σ1,σ2) is a valid Waters signature of M under vk, i.e., e(σ1, g2) = e(h, vk2) · e(F(M), σ2,2),
and e(σ2,1, g2) = e(g1, σ2,2).

We do not encrypt σ2, since it is not necessary in most application, because Waters signature can be
randomized in such a way σ2 is a completely random ordered pair, such that e(σ2,1, g2) = e(g1, σ2,2). We
remark that, anyone can check the condition e(σ2,1, g2) = e(g1, σ2,2) without knowing any secret value and
so it is not necessary to check this condition in the language L of the HVE-ZK or E-ZK. Furthermore, the
condition e(σ1, g2) = e(h, vk2) · e(F(M), σ2,2), can be rewritten

∃z, s, vk1 = gz1 , σ2,1 = gs1, and σ1 = hz · F(M)s,

since vk1 = gz1 and vk2 = gz2 for some z. This rewriting avoids using pairing and is of the form of a system of
multi-exponentiation equations (in G1) as defined in Section 6.2.

Notice this rewriting requires the prover to know z and s, which is not a problem in applications such as
optimistic fair exchange, where the Waters signature is issued by the user who encrypts it and proves it has
been encrypted correctly.

Let us now formally show the resulting language L:

∃r, z, s,

{
u1 = gr1,1, u2 = gr1,2, and v = (cdξ)r

vk1 = gz1 , σ2,1 = gs1, and e = hr · hz · F(M)s

which is also of the form of a system of multi-exponentiation equations (in G1). Therefore, we can use HVE-ZK
and E-ZK instantiations of Sections 6.2 and 7.2.

8.2 HVE-ZK

In this section, we completely write down the SPHF used in the HVE-ZK construction, and also the corre-
sponding Σ-protocol (which is the classical way to do such a HVE-ZK).

SPHF. Since w = ⊥, C = ⊥ and we can simplify the construction of Appendix C.1 and choose:

Γ =

g1,1 g1,2 cdξ 1 1 h
1 1 1 g1 1 h
1 1 1 1 g1 F(M)

 Θaux = (u1, u2, v, vk1, σ2,1, e)

λ = (r, z, s)

λ · Γ =
(
gr1,1, g

r
1,2, (cd

ξ)r, gz1 , g
s
1, h

r · hz · F(M)s
)
,

which yields the following projection keys and hash value:

hp = (gα1
1,1 · g

α2
1,2 · (cd

ξ)α3 · hα6 , gα4
1 · h

α6 , gα5
1 · F(M)α6)

H = uα1
1 · u

α2
2 · v

α3 · vkα4
1 · σ

α5
2,1 · e

α6 = hpr1 · hpz2 · hps3 = H ′.

We remark that the resulting SPHF has only one word: C = ⊥ (Set = {⊥}). So the SPHF is just used to prove
that aux = x = (`, vk,M,E1,σ2) is “valid”: if aux is valid, C = ⊥ is valid, and otherwise C = ⊥ is invalid.
3 The public key is supposed to be valid, i.e., (g1, g2, vk1, vk2) is supposed to be a valid DDH tuple. This can be verified using a
pairing.
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Σ-Protocol. An Σ-protocol is a three-flow honest-verifier extractable, where the prover first sends a message
com called commitments, then the verifier sends back a message C called challenge, and finally the prover
answers with a message resp called response. Notice that w =⊥, and so we do not need a Ω-protocol for the
language L of Cramer-Shoup ciphertexts of Waters signature. Details on Σ-protocols and Ω-protocols can be
found in B.2.

Here is the complete Σ-protocol.

– commitment: com = (u′1, u
′
2, v
′, vk′1, σ

′
2,1, e

′), where u′1 = gr
′

1,1, u′2 = gr
′

1,2, v′ = (cdξ)r
′ , vk′1 = gz

′
1 , σ′2,1 = gs

′
1

and e′ = hr
′ · hz′ · F(M)s

′ with r′, z′, s′ $← Zp;
– challenge: C $← Zp;
– response: resp = (r′′, z′′, s′′) with r′′ = r′ + Cr mod p, z′′ = z′ + Cz mod p and s′′ = s′ + Cs mod p;
– verification:

uC1 · u′1 = gr
′′

1,1 uC2 · u′2 = gr
′′

1,2 vC · v′ = (cdξ)r
′′

vkC1 · vk′1 = gz
′′

1 σC2,1 · σ′2,1 = gs
′′

1 eC · e′ = hr
′′ · hz′′ · F(M)s

′′
.

8.3 E-ZK.

Let us completely write down the TSPHF for the E-ZK construction. The projection hash and the hash values
are:

hp = (gα1
1,1 · g

α2
1,2 · (cd

ξ)α3 · hα6 , gα4
1 · h

α6 , gα5
1 · F(M)α6 , χ1 = ζα1 , . . . , χ6 = ζα6)

H = e(uα1
1 · u

α2
2 · v

α3 · vkα4
1 · σ

α5
2,1 · e

α6 , g2) = e(hpr1 · hpz2 · hps3, g2) = H ′,

where τ ′ $← Zp and crs′ = ζ = gτ
′

2
$← G2. The projection key is valid if and only if:

e(hp1, ζ) = e(g1,1, χ1) · e(g1,2, χ2) · e(cdξ, χ3) · e(h, χ6)

e(hp2, ζ) = e(g1, χ4) · e(h, χ6)

e(hp3, ζ) = e(g1, χ5) · e(F(M), χ6)

and the hash value can also be computed as:

H = (e(u1, χ1) · e(u2, χ2) · e(v, χ3) · e(vk1, χ4) · e(σ2,1, χ5) · e(e, χ6))
τ ′−1

= H ′′.

8.4 Comparison.

In Table 1, we compare the transmission complexity of our constructions of HVE-ZK and E-ZK from SPHFs
and TSPHFs to corresponding Σ-protocol and Groth-Sahai NIZK. The cost of Groth-Sahai NIZK is computed
from tables given in [GS08] (the 6 elements in G2 are for commitments of r, z and s, whereas the 6 elements
in Zp are for the 6 linear multi-exponentiation equations in G1).

We recall that for the E-ZK version, H is an element of GT , and that the prover does not send H but uses
a randomness extractor (as explained in Section 7.2). The resulting element is smaller than an element of G1

and we count it as an element of G1 in our comparison.
Our HVE-ZK outperforms the Σ-protocol and the Groth-Sahai NIZK. Our E-ZK outperforms the Groth-

Sahai NIZK and is still competitive with the Σ-protocol, though being a two-flow E-ZK instead of only a
three-flow HVE-ZK.
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Table 1. Transmission complexity of arguments for encryption of a Waters signature.

Zp G1 G2

HVE-ZK from SPHFs 0 4 0
E-ZK from SPHFs 0 4 6
Σ-protocol (HVE-ZK) 4 6 0
Groth-Sahai NIZK (E-ZK) 6 0 6
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A Preliminaries

This appendix reviews the classical notations used in this paper, with the concrete ElGamal and Cramer-Shoup
encryption schemes, secure under the DDH assumption, and the Waters signature.

A.1 Statistical Distance

Let D1 and D2 be two probability distributions over a finite set S and let X and Y be two random variables
with these two respective distributions. The statistical distance between D1 and D2 is also the statistical
distance between X and Y :

Dist(D1,D2) = Dist(X,Y ) =
∑
x∈S
|Pr [X = x ]− Pr [Y = x ]| .

If the statistical distance between D1 and D2 is less than or equal to ε, we say that D1 and D2 are ε-close
or are ε-statistically indistinguishable. If the D1 and D2 are 0-close, we say that D1 and D2 are perfectly
indistinguishable.

A.2 Bilinear Groups

Let us consider three multiplicative cyclic groups G1,G2,GT of prime order p. Let g1 and g2 be two generators
of G1 and G2 respectively. (p,G1,G2,GT , e, g1, g2) or (p,G1,G2,GT , e) is called a bilinear group if e : G1 ×
G2 −→ GT is a bilinear map (called a pairing) with the following properties:

– Bilinearity. For all (a, b) ∈ Z2
p, we have e(ga1 , gb2) = e(g1, g2)

ab;
– Non-degeneracy. The element e(g1, g2) generates GT ;
– Efficient computability. The function e is efficiently computable.

It is called a symmetric bilinear group if G1 = G2 = G. In this case, we denote it (p,G,GT , e) and we suppose
g = g1 = g2. Otherwise, if G1 6= G2, it is called an asymmetric bilinear group.

http://eprint.iacr.org/2007/074.pdf
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A.3 Formal Definition of the Primitives

Hash Function Family. A hash function family H is a family of functions HK from {0, 1}∗ to a fixed-length
output, either {0, 1}k or Zp. Such a family is said collision-resistant if for any adversary A on a random
function HK

$← H, it is hard to find a collision. More precisely, we denote

SucccollH (A) = Pr[HK
$← H, (m0,m1)← A(HK) : HK(m0) = HK(m1)], SucccollH (t) = max

A≤t
{SucccollH (A)}.

Labeled Encryption Scheme. A labeled public-key encryption scheme E is defined by four algorithms:

– Setup(1K), where K is the security parameter, generates the global parameters param of the scheme;
– KeyGen(param) generates a pair of keys, the encryption key ek and the decryption key dk;
– Enc(`, ek,m; r) produces a ciphertext c on the input message m ∈ M under the label ` and encryption

key ek, using the random coins r;
– Dec(`, dk, c) outputs the plaintext m encrypted in c under the label `, or ⊥.

An encryption scheme E should satisfy the following properties

– Correctness: for all key pairs (ek, dk), all labels `, all random coins r and all messages m,

Dec(`, dk,Enc(`, ek,m; r)) = m.

– Indistinguishability under chosen-ciphertext attacks:
this security notion (IND-CCA) can be formalized by
the following security game, where the adversary A
keeps some internal state between the various calls
FIND and GUESS, and makes use of the oracle ODec:

• ODec(`, c): This oracle outputs the decryption of
c under the label ` and the challenge decryption
key dk. The input queries (`, c) are added to the
list CT .

Expind-cca−bE,A (K)

param← Setup(1K)
(ek, dk)← KeyGen(param)
(`∗,m0,m1)← A(FIND : ek,ODec(·, ·))
c∗ ← Enc(`∗, ek,mb)
b′ ← A(GUESS : c∗,ODec(·, ·))
if (`∗, c∗) ∈ CT then return 0
else return b′

The advantages are

Advind-ccaE (A) = Pr[Expind-cca−1E,A (K) = 1]− Pr[Expind-cca−0E,A (K) = 1]

Advind-ccaE (t, qd) = max
A≤t,qd

{Advind-ccaE (A)},

where we bound the adversaries to work within time t and to ask at most qd decryption queries.

In some cases, indistinguishability under chosen-plaintext attacks (IND-CPA) is enough. This notion is similar
to the above IND-CCA except that the adversary has no decryption-oracle ODec access:

Advind-cpaE (A) = Pr[Expind-cpa−1E,A (K) = 1]− Pr[Expind-cpa−0E,A (K) = 1]

Advind-cpaE (t) = max
A≤t
{Advind-cpaE (A)},

where we bound the adversaries to work within time t: Advind-cpaE (t) = Advind-ccaE (t, 0).



21

Signature Scheme and One-Time Signature Scheme. A signature scheme is defined by four algorithms:

– Setup(1K), where K is the security parameter, generates the global parameters param of the scheme;
– KeyGen(param) generates a pair of keys, the verification key vk and the signing key sk;
– Sign(sk,m; s) produces a signature σ on the input message m, under the signing key sk, and using the

random coins s;
– Ver(vk,m, σ) checks whether σ is a valid signature on m, w.r.t. the public key vk; it outputs 1 if the

signature is valid, and 0 otherwise.

A signature scheme S should satisfy the following properties

– Correctness: for all key pair (vk, sk), all random coins s and all messages m, Ver(vk,m,Sign(sk,m; s)) = 1.

– Existential unforgeability under (adaptive) chosen-message attacks:
this security notion can be formalized by the following security
game, where it makes use of the oracle OSign:

• OSign(m): This oracle outputs a valid signature on m under
the signing key sk. The input queries m are added to the list
SM.

Expeuf−cma
S,A (K)

param← Setup(1K)
(vk, sk)← KeyGen(param)
(m∗, σ∗)← A(vk,OSign(·))
b← Ver(vk,m∗, σ∗)
if M ∈ SM then return 0
else return bThe success probabilities are

Succeuf−cma
S (A) = Pr[ExpeufS,A(K) = 1] Succeuf−cma

S (t, qs) = max
A≤t,qs

{Succeuf−cma
S (A)},

where we bound the adversaries to work within time t and to ask at most qs signing queries.

A one-time signature scheme (OT.Setup,OT.KeyGen,OT.Sign,OT.Ver) is similar to a signature scheme
(Setup,KeyGen, Sign,Ver) except that, in the experiment for existential unforgeability, the adversary is allowed
to do at most one signature query to OSign: qs ≤ 1.

A.4 Concrete Instantiations

In the body of this paper, we focus on the sole decisional Diffie-Hellman (DDH) assumption:

Definition 1 (Decisional Diffie-Hellman (DDH)). The Decisional Diffie-Hellman assumption says that,
in a group (p,G, g), when we are given (ga, gb, gc) for unknown random a, b

$← Zp, it is hard to decide whether
c = ab mod p (a DH tuple) or c $← Zp (a random tuple). We define by Advddhp,G,g(t) the best advantage an
adversary can have in distinguishing a DH tuple from a random tuple within time t.

For asymmetric bilinear groups (p,G1,G2,GT , e), we also use the SXDH assumption which states that the
DDH assumption holds both in G1 and in G2

IND-CPA Encryption: ElGamal. The ElGamal encryption scheme [ElG85] is defined as follows:

– Setup(1K) generates a group G of order p, with a generator g;
– KeyGen(param) generates dk = z

$← Zp, and sets, ek = h = gz;
– Enc(ek,M ; r), for a messageM ∈ G and a random scalar r ∈ Zp, the ciphertext is C = (u = gr, e = M ·hr);
– Dec(dk, C): one computes M = e/uz and outputs M .

This scheme is indistinguishable against chosen-plaintext attacks (IND-CPA), under the DDH assumption.
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IND-CCA Encryption: Cramer-Shoup (CS). The Cramer-Shoup encryption scheme [CS98] can be turned
into a labeled public-key encryption scheme:
– Setup(1K) generates a group G of order p, with a generator g;
– KeyGen(param) generates (g1, g2)

$← G2, dk = (x1, x2, y1, y2, z)
$← Z5

p, and sets, c = gx11 g
x2
2 , d = gy11 g

y2
2 ,

and h = gz1 . It also chooses a collision-resistant hash function HK in a hash familyH (or simply a Universal
One-Way Hash Function). The encryption key is ek = (g1, g2, c, d, h,HK);

– Enc(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the ciphertext is C = (`,u =
(gr1, g

r
2), e = M · hr, v = (cdξ)r), where v is computed afterwards with ξ = HK(`,u, e).

– Dec(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether ux1+ξy11 · ux2+ξy22
?= v. If the equality

holds, one computes M = e/uz1 and outputs M . Otherwise, one outputs ⊥.
This scheme is indistinguishable against chosen-ciphertext attacks (IND-CCA), under the DDH assumption
and if one uses a collision-resistant hash function H.

Randomness-Reuse. When one wants to encrypt vectors of messages, one can concatenate independent
ciphertexts, with possibly a common ξ for the Cramer-Shoup encryption scheme in order to keep the global
non-malleability. But for efficiency considerations, one can also re-use random coins [BBS03]: if one wants to
encrypt (Mi)i ∈ G`, where i ranges from 1 to `,
– for the ElGamal encryption scheme, if one chooses dk = (zi)i, and sets, ek = (hi = gzi)i, the encryption

of (Mi)i can be done as Enc(ek, (Mi)i; r) = (u = gr, (ei = Mi · hri )i);
– for the Cramer-Shoup encryption scheme, if one chooses dk = (x1, x2, y1, y2, (zi)i), and sets ek = (g1, g2,
c, d, (hi = gzi1 )i,HK) as above except for (hi)i, the encryption of (Mi)i can be done as Enc(`, ek, (Mi)i; r) =
(u = (gr1, g

r
2), (ei = Mi · hri )i, v = (cdξ)r), where v is computed afterwards with ξ = HK(`,u, (ei)i).

This is much more compact: for ElGamal, the ciphertext consists of `+1 group elements instead of 2`, whereas
for Cramer-Shoup, the ciphertext consists of `+3 group elements instead of 4`, but still with the same security
level: IND-CPA for the former, and IND-CCA for the latter, both under the DDH assumption.

Waters Signature in Asymmetric Bilinear Groups. In Section 8, we use the Waters signature scheme
for asymmetric bilinear group, which has been proposed and proved in [BFPV11]:
– Setup(1K): generates a bilinear group (p,G1,G2,GT , e, g1, g2, gT ), and chooses a random vector f =

(f0, . . . , fk)
$← Gk+1

1 that defines the Waters hash function F(M) = f0
∏k
i=1 f

Mi
i for M ∈ {0, 1}k, and an

extra generator h $← G1. The global parameters param consists of (p,G1,G2,GT , e, g1, g2,f , h);
– KeyGen(param) chooses a random scalar z $← Zp, which defines the public vk = (gz1 , g

z
2), and the secret

key sk = hz;
– Sign(sk,M ; s) outputs, for some random s

$← Zp, σ = (σ1 = sk · F(M)s,σ2 = (gs1, g
s
2));

– Ver(vk,M, σ) checks whether e(σ1, g2) = e(h, vk2) · e(F(M), σ2,2), and e(σ2,1, g2) = e(g1, σ2,2).

This scheme is unforgeable under the following variant of the CDH assumption:
Definition 2 (The Advanced Computational Diffie-Hellman problem (CDH+)). In an asymmetric
bilinear group (p,G1,G2,GT , e, g1, g2, gT ). The CDH+ assumption states that given (g1, g2, g

a
1 , g

a
2 , g

b
1), for ran-

dom a, b ∈ Zp, it is hard to compute gab1 .

B Zero-Knowledge Arguments

B.1 Zero-Knowledge Arguments

In this section, we give some formal definitions for partially-extractable zero-knowledge arguments, using
the formalism of Garay-MacKenzie-Yang (GMY) in [GMY06], after briefly recalling this formalism. These
definitions are simple adaptations of classical definitions.
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GMY Formalism. For two probabilistic interactive Turing machines (ITM) A and B, 〈A,B〉σ(in) is the
local output of B after an interactive execution with A using CRS σ and common input in. The transcript
tr of a machine is a tuple composed of its common input in, the messages received on its input tape and
the messages sent through its output tape. If the ordered input messages of a transcript tr correspond to the
ordered output messages of a transcript tr′ and vice versa, we say that tr and tr′ match and we write tr ./ tr′.
If tr and tr′ do not match, we write tr 6./ tr′.

For any ITM A, we also denote by A its multi-session extension or protocol wrapper. A works as follows:

– on input message (START, `, in, priv), A starts a new interactive machine A with label `, common input
in, private input priv and fresh random tape;

– on input message (MSG, `,m), A sends the message m to the interactive machine with label ` (if it
exists), and returns the output message of this machine.

All machines A started by A use the same CRS σ.
Let A 1 be the single-session extension of A, which works as A , except it only accepts one START query.

The output of A 1 is the tuple (in, tr, v) where in is the common input, tr is the transcript of the machine A
started by A 1 and v is the output of A. The output of A is a tuple (in, tr,v) of three vectors, such that
(ini, tri, vi) is the tuple that A 1 would have output for the ith machine started by A .

Two ITM B and C are said to be coordinated if they have a single control (and, in particular, a common
state), but two distinct sets of input/output communication tapes. For four interactive Turing machines A, B,
C and D, with B and C coordinated, (〈A,B〉, 〈C,D〉)σ is the local output of D after an interactive execution
with C and an interactive execution between A and B, all using the CRS σ.

(Partially Extractable) Zero-Knowledge Arguments (E-ZK). An (unbounded partially extractable)
zero-knowledge argument (E-ZK) system for a witness relation R (defined as in Section 1) is a tuple Π =
(Setup,Prove,Ver,Sim = (Sim1, Sim2),Ext), where:

– Setup is a probabilistic polynomial-time TM (PPT) which takes the security parameter K in unary as
input and outputs a CRS σ;

– Prove is a polynomial-time ITM which takes a statement x ∈ L as common input and a valid witness
(w, y) as private input (i.e., R(x, (w, y)) = 1) and is able to run a protocol (with a verifier Ver) to prove
that x ∈ L;

– Ver is a polynomial-time ITM which takes a statement x as common input, is able to run a protocol (with
a prover Prove) and outputs 1 if it accepts the proof of the prover and 0 otherwise;

– Sim1 is a PPT which takes the security parameter K as input and outputs a simulated CRS σ together
with a trapdoor τ ;

– Sim2 is a polynomial-time ITM which takes the trapdoor τ as private input and a statement x as common
input, and is able to simulate a run of Prove (without knowing w nor y);

– Ext is a polynomial-time ITM which takes as private input the trapdoor τ and as common input a
statement x, and is able to simulate a run of Ver in such a way that, if Ver accepts, it is able to extract
a valid partial witness w for x. Ext outputs a pair (b, w) where b is the status of the statement and w is
the witness;

such that the following properties are verified:

– Completeness. Π is ε-complete, if for all x ∈ L and all valid witnesses (w, y) of x:

Pr
[
σ

$← Setup(1K) ; 〈Prove((w, y)),Ver〉σ(x) = 1
]
≥ 1− ε;
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– Soundness. Π is (t, ε)-sound, if for all adversary A running in time at most t, and for all words x /∈ L:

Pr
[
σ

$← Setup(1K) ; 〈A,Ver〉σ(x) = 1
]
≤ ε;

– Reference String Indistinguishability. Π is (t, ε)-reference-string-indistinguishable if for any adversary A
running in time at most t:∣∣∣Pr

[
σ

$← Setup(1K) ; A(σ) = 1
]
− Pr

[
σ

$← Sim1(1
K) ; A(σ) = 1

]∣∣∣ = 1;

– Extractor Indistinguishability. Π is extractor-indistinguishable if, for any τ ∈ {0, 1}∗, for any (unbounded)
adversary A, the distribution of 〈A, Ver 1〉 is identical to the distribution of 〈A, Ext1(τ)

1
〉 when we

restrict the output of Ext1 to the first element b of the ordered pair (b, w);
– (Partial) Extractability. Π is (t, ε)-(partially)-extractable if, for any adversary A running in time at most
t, Pr

[
Expext

A (K) = 1
]
≤ ε, where the experiment Expext

A is defined as follows:

Expext
A (K)

(σ, τ)
$← Sim1(1

K)

(x, tr, (b, w))
$← 〈A, Ext(τ)

1
〉σ

if b = 1 and ∀y, R(x, (w, y)) = 0 then
return 1

else
return 0

– (Unbounded) Zero-Knowledge. Π is (t, ε)-(unbounded)-zero-knowledge if, for any adversary A running
in time at most t, |Pr

[
Expzk-0

A (K) = 1
]
− Pr

[
Expzk-1

A (K) = 1
]
| ≤ ε, where the experiments Expzk−0

A and
Expzk−1

A are defined as follows:

Expzk−0
A (K)

σ
$← Setup(1K)

return 〈 Prove ,A〉σ

Expzk−1
A (K)

(σ, τ)
$← Sim1(1

K)

return 〈 Sim′(τ) ,A〉σ

where Sim′(τ) takes as common input a statement x and as private input a witness (w, y), runs Sim2(τ)
with common input x if R(x, (w, y)) = 1 and aborts otherwise. We remark this means the zero-knowledge
property only holds for valid statements.

We remark that the soundness is implied by the partial extractability, while the extractor indistinguisha-
bility and the reference string indistinguishability are implied by the zero-knowledge property. However, we
keep the soundness for simplicity and we keep the reference string indistinguishability, because it is useful for
weaker variants of E-ZK, when the zero-knowledge property is no more enforced.

We often forget mentioning the extractor indistinguishability and the reference string indistinguishability
in the proofs, for the sake of simplicity. For example, when we say that some property comes from the partial
extractability, it means it comes from the partial extractability, the extractor indistinguishability and the
reference string indistinguishability.

Honest-Verifier Zero-Knowledge Arguments (HVE-ZK). An honest-verifier zero-knowledge argument
(HVE-ZK) system for a witness relation R is a tuple Π = (Setup,Prove,Ver, Sim = (Sim1,Sim2),Ext), which
verifies the same properties as an E-ZK, except the zero-knowledge property is replaced by the following weaker
property:
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– Honest-Verifier Zero-Knowledge. Π is (t, ε)-honest-verifier-zero-knowledge if, for any adversary A running
in time at most t, |Pr

[
Exphvzk-0

A (K) = 1
]
−Pr

[
Exphvzk-1

A (K) = 1
]
| ≤ ε, where the experiments Exphvzk−0

A
and Exphvzk−1

A are defined as follows:

Exphvzk−0
A (K)

σ
$← Setup(1K)

(st, x, (w, y))
$← A(σ)

b
$← 〈Prove((w, y)),Ver〉σ(x)

let tr be the previous transcript
let r be the random tape of Ver
return A(st, tr, r, b)

Exphvzk−1
A (K)

(σ, τ)
$← Sim1(1

K)

(st, x, (w, y))
$← A(σ)

b
$← 〈Sim2(τ),Ver〉σ(x)

let tr be the previous transcript
let r be the random tape of Ver
return A(st, tr, r, b)

where st is the state of the adversary.

Witness-Indistinguishable Arguments (WIE-ZK). A witness-indistinguishable argument (WIE-ZK) sys-
tem for a witness relation R is a tuple Π = (Setup,Prove,Ver, Sim = (Sim1,Sim2),Ext), which verifies the
same properties as an E-ZK, except the zero-knowledge property is replaced by the following weaker property:

– Witness-Indistinguishable Zero-Knowledge. Π is (t, ε)-witness-indistinguishable if, for any adversary A
running in time at most t, |Pr

[
Expwi-0

A (K) = 1
]
− Pr

[
Expwi-1

A (K) = 1
]
| ≤ ε, where the experiments

Expwi−b
A (with b ∈ {0, 1}) are defined as follows:

Expwi−b
A (K)

σ
$← Setup(1K)

(st, x, (w0, y0), (w1, y1))
$← A(σ)

if R(x, (w0, y0)) = 0 or R(x, (w1, y1)) = 0 then
b′

$← {0, 1}
else

b′
$← 〈Prove((wb, yb)),A(st)〉σ(x)

return b′

where st is the state of the adversary.

Simulation-(Partially)-Extractable Zero-Knowledge Arguments (SE-ZK). A simulation-(partially)-
extractable zero-knowledge arguments (SE-ZK) system for a witness relation R is a tuple Π = (Setup,Prove,
Ver,Sim = (Sim1,Sim2),Ext), which verifies the same properties as an E-ZK and an additional property:

– Simulation (Partial) Extractability. Π is (t, ε)-simulation-(partially)-extractable if, for any adversary A =
(A1,A2), where A1 and A2 are coordinated and run in time at most t, Pr

[
Expsim-ext

A (K) = 1
]
≤ ε, where

the experiment Expsim-ext
A is defined as follows:

Expsim-ext
A (K)

(σ, τ)
$← Sim1(1

K)

(x, tr, (b, w))
$← (〈 Sim2(τ) ,A1〉, 〈A2, Ext 1〉)σ

let Q be the set of transcripts of Sim2

if b = 1 and ∀y, R(x, (w, y)) = 0 and ∀tr′ ∈ Q, tr 6./ tr′ then
return 1

else
return 0
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True-Simulation-(Partially)-Extractable Zero-Knowledge Arguments (tSE-ZK). A true-simulation-
(partially)-extractable zero-knowledge arguments (tSE-ZK) system for a witness relation R is a tuple Π =
(Setup,Prove,Ver,Sim = (Sim1,Sim2),Ext), which verifies the same properties as an E-ZK and an additional
property:

– True Simulation (Partial) Extractability. The argument Π is (t, ε)-true-simulation-(partially)-extractable
if, for any adversary A = (A1,A2), where A1 and A2 are coordinated and run in time at most t,
Pr
[
Exptsim-ext

A (K) = 1
]
≤ ε, where the experiment Exptsim-ext

A is defined as follows:

Exptsim-ext
A (K)

(σ, τ)
$← Sim1(1

K)

(x, tr, (b, w))
$← (〈 Sim′(τ) ,A1〉, 〈A2, Ext 1〉)σ

let Q be the set of transcripts of Sim′

if b = 1, ∀y, R(x, (w, y)) = 0 and ∀tr′ ∈ Q, tr 6./ tr′ then
return 1

else
return 0

where Sim′(τ) takes as common input a statement x and as private input a witness (w, y), runs Sim2(τ)
with common input x if R(x, (w, y)) = 1 and aborts otherwise.

The only difference between true simulation extractability and simulation extractability is that the latter
holds when the adversary has access to proofs of any statements (including false statements) whereas the
former holds only when the adversary has access to proofs of true statements.

B.2 Σ-Protocols and Ω-Protocols

Let us recall the definition of Σ-protocols and Ω-protocols (as defined in [GMY06]).

Σ-Protocol. Let us consider a language L defined by a relation R as in Section 1. For Σ-protocols, we
suppose that there is no extractable part of the witness, i.e., w = ⊥. A Σ-protocol is a three-flow honest-
verifier zero-knowledge proof, where the prover first sends a message com called commitments, then the verifier
sends back a message C called challenge, and finally the prover answers with a message resp called response.
In this article, the challenge C is always a random element of Zp.

In addition to completeness, soundness and honest-verifier zero-knowledge, Σ-protocol has to verify the
following additional property: weak special soundness, which says that if (com,C, resp) and (com,C′, resp′),
with C 6= C′, are two accepting transcripts for some word x, then necessarily, x ∈ L. It is easy to see that the
weak special soundness directly implies the soundness.

Ω-Protocol. Ω-protocols are extensions of Σ-protocols which are in addition partially extractable. Therefore
an Ω-protocol is a HVE-ZK. We remark that what we call Ω-protocols in our article are called f -extracting
Ω-protocols in [GMY06], with f defined as follows: f((w, y)) = w.

In our article, Ω-protocols are always constructed as follows: the prover encrypts the partial witness w
under an encryption key ek in the CRS crs and proves, using a Σ-protocol, that he has done so.
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C Details on Zero-Knowledge Arguments from SPHFs and TSPHFs

C.1 SPHFs for Multi-Exponentiation Equations

In this section, we show there exists a KV-SPHF for languages of ElGamal ciphertexts (with or without reuse
of randomness) of elements (X1, . . . , Xn) ∈ Gn verifying:

∃(y1, . . . , ym) ∈ Zmp , ∀k ∈ {1, . . . , t},
n∏
i=1

X
ak,i
i =

m∏
j=1

A
yj
k,j ·Bk,

where the ak,i’s and Ak,i’s are constants. This yields an HVE-ZK for the multi-exponentiation equations
language described in Section 6.2. In this section i, j and k will always range respectively from 1 to n, from
1 to m and from 1 to t.

Without Reuse of Randomness. Let us write C = (C1, . . . , Cn) the ciphertext of the plaintext (X1, . . . ,
Xn) with Ci = (ui = gri , ei = hri ·Xi). We build the KV-SPHF as follows:

Γ =



g

1
. . .
1
g

h

1
. . .
1
h

1
A1,1 · · · At,1
...

...
A1,m · · · At,m


Θaux(C) =

((∏n
i=1 u

ak,i
i

)
k
,
(∏n

i=1 e
ak,i
i /Bk

)
k

)
λ = ((

∑n
i=1 ak,iri)i, (yj)j)

λ · Γ =
(

(
∏n
i=1 g

ak,iri)k ,
(∏n

i=1 h
ak,iri ·

∏m
j=1A

yj
k,j

)
k

)
.

With Reuse of Randomness. Let us write C = (u = gr, e1 = hr1 · X1, . . . , en = hrn · Xn). We build the
KV-SPHF as follows:

Γ =


g
∏n
i=1 h

a1,i
i · · ·

∏n
i=1 h

at,i
i

1
...
1

A1,1 · · · At,1
...

...
A1,m · · · At,m


Θaux(C) =

(
u,
(∏n

i=1 e
ak,i
i /Bk

)
k

)
λ = (r, (yj)j)

λ · Γ =
(
gr,
(∏n

i=1 h
ak,ir
i ·

∏m
j=1A

yj
k,j

)
k

)
.

C.2 Ω-Protocols for Multi-Exponentiation Equations

In this section, we present Ω-protocols for the multi-exponentiation equations language described in Sec-
tion 6.2:

K(X1, . . . , Xn) ∈ Gn, ∃(y1, . . . , ym) ∈ Zmp , ∀k ∈ {1, . . . , t},
n∏
i=1

X
ak,i
i =

m∏
j=1

A
yj
k,j ·Bk.

The first one uses ElGamal ciphertexts without reuse of randomness and the second one uses ElGamal cipher-
texts with reuse of randomness. In this section i, j and k will always range respectively from 1 to n, from 1
to m and from 1 to t. The two constructions use classical methods from [Sch91].
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Without Reuse of Randomness.

– commitment: com = (C, (u′k)k, (e
′
k)k) with C = (C1, . . . , Cn) an ElGamal ciphertext of the plaintext

(X1, . . . , Xn) (Ci = (ui = gri , ei = hri · Xi)), u′k = g
∑n
i=1 ak,ir

′
i and e′k = h

∑n
i=1 ak,ir

′
i ·
∏m
j=1A

y′j
k,j with

ri, r
′
i, y
′
j

$← Zp;
– challenge: C $← Zp;
– response: resp = ((r′′k)k, (y

′′
j )j) with r′′k =

∑n
i=1 ak,i(r

′
i + Cri) and y′′j = y′j + Cyj ;

– verification:
n∏
i=1

u
Cak,i
i · u′k = gr

′′
k

n∏
i=1

e
Cak,i
i · e′k = hr

′′
k ·

m∏
j=1

A
y′′j
k,j ·B

C
k .

With Reuse of Randomness.

– commitment: com = (C, u′, (e′k)k) with C = (u = gr, e1 = hr1 ·X1, . . . , en = hrn ·Xn) an ElGamal ciphertext

of the plaintext (X1, . . . , Xn), u′ = gr
′ , e′k =

∏n
i=1 h

ak,ir
′

i ·
∏m
j=1A

y′j
k,j with r, r

′, y′j
$← Zp;

– challenge: C $← Zp;
– response: resp = (r′′, (y′′j )j) with r′′ = r′ + Cr and y′′j = y′j + Cyj ;
– verification:

uC · u′ = gr
′′

n∏
i=1

e
Cak,i
i · e′k =

n∏
i=1

h
ak,ir

′′

i ·
m∏
j=1

A
y′′j
k,j ·B

C
k .

C.3 Instantiations of tSE-ZK

In this section, we extend the multi-exponentiation KV-SPHF of Appendix C.1 from ElGamal ciphertexts with
reuse of randomness to Cramer-Shoup ciphertexts with reuse of randomness4. This construction is done as
explained in [BBC+13], with some additional optimizations. This yields an efficient tSE-ZK. We use the same
notation as in the original construction, except for ciphertexts.

Let us write C = (u1 = gr1, u2 = gr2, e1 = hr1 · X1, . . . , en = hrn · Xn, v = (cdξ)r), for which we know
(y1, . . . , ym) ∈ Zmp such that

∀k ∈ {1, . . . , t},
n∏
i=1

X
ak,i
i =

m∏
j=1

A
yj
k,j ·Bk.

We build the KV-SPHF as follows:

Γ =


g1 1 g2

∏n
i=1 h

a1,i
i · · ·

∏n
i=1 h

at,i
i c

1 g1 1 1 · · · 1 d

1
...
1

1
...
1

1
...
1

A1,1 · · · At,1
...

...
A1,m · · · At,m

1
...
1


Θaux(C) =

(
u1, u

ξ
1, u2,

(∏n
i=1 e

ak,i
i /Bk

)
k
, v
)

λ = (r, rξ, (yj)j)

λ · Γ =
(
gr1, g

rξ
1 , g

r
2,
(∏n

i=1 h
ak,ir
i ·

∏n
j=1A

yj
k,j

)
k
, (cdξ)r

)
.

4 The case without reuse of randomness is easier and cannot be easily optimized contrary to the case with reuse of randomnness.
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D Security Proofs

D.1 Proof for Our Generic One-Round UC-Secure PAKE

In this section, we prove the our generic one-round PAKE described in Section 5.1 is secure in the UC framework
against static corruptions, with a common reference string for any TSPHF on the language of a valid ciphertext
on a messagem under a IND-CCA-secure labeled encryption scheme. More precisely, for any environment trying
to distinguish a real execution from an ideal one with the simulator given below, within time t, one can show
that its advantage ε is bounded by

q ×
(

(q + 1) · Advsmooth(t) + 3 · Advind-cca(t, qS) + Advsound(t)
)
,

where qS is the number of sessions and q the number of activated players, and Advsmooth(t) is the best advantage
one can get in the smoothness security game within time t, while Advind(t, q) is the best advantage one can
get in the IND-CCA security game within time t, and with at most q decryption queries, and Advsound(t) is
the best advantage one can get in the soundness security game within time t.

The proof follows that of [KV11], but it is a bit more involved for two reasons:

– we do not assume a prior agreement of the session ID. Such an assumption would limit the interest of a
one-round protocol since this prior agreement would need an additional round of nonces;

– our TSPHF does not guarantee the smoothness when the trapdoor τ ′ is known, and then, we have to
modify the order of the games to use this trapdoor at the very end only.

We insist we are in the static-corruption model, the adversary can only corrupt players before the execution
of the protocol. We thus assume players to be honest or not at the beginning, and they cannot be corrupted
afterwards. However, this does not prevent the adversary from modifying flows coming from the players:
following [CHK+05], we say that a flow is oracle-generated if it was sent by an honest player and not altered.
Otherwise, we say it is non-oracle-generated.

Description of the Simulator S The simulator S first generates the CRS, with an encryption key ek, while
knowing the decryption key dk, and the parameters crs for the TSPHF, with the trapdoor τ ′. Note that ek
might be included in crs. We furthermore assume 1 can never be a valid password. Otherwise, we can replace
1 by any other value.

Receiving a (NewSession : sid, Pi, Pj) from the ideal functionality. This indicates that Pi should initiate the
protocol with Pj . S generates hashing and projection keys (hk, hp) for Pi, as well as an encryption C of 1,
with the label ` = (Pi, Pj , hp). It sends the message (hp, C) to A.

Receiving a message (hp′, C ′) from A. Let us denote Pi the uncorrupted player to whom A sent this message.

1. if (hp′, C ′) has been oracle-generated, and more precisely by S on behalf of Pj , then S sends (NewKey :
sid, Pi,⊥) to the functionality. This makes Pi to receive a random session key if it terminates before Pj
or if the passwords differ, or otherwise the same session key as the one sent to Pj .

2. Otherwise, S uses dk to extract pw′ from C ′. Then S asks for (TestPW : sid, Pi, pw
′) to the functionality

and gets back either "correct guess" or "wrong guess". If the reply is "correct guess", then full-aux =
(crs, pw′) and S uses the global trapdoor τ ′ to compute H = THash(hp′, full-aux, C, τ ′) and can compute
H ′ = Hash(hk, full-aux, C ′), and sk = H ·H ′. Finally, S sends (NewKey : sid, Pi, sk) to the functionality,
which makes Pi to receive sk. If the reply is "wrong guess", then S sends (NewKey : sid, Pi,⊥) to the
functionality, which makes Pi to receive a random session key.
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Sequence of Games We now provide the complete proof by a sequence of games, that starts from the real
game and ends with the above simulation. Each steps are shown indistinguishable under specific assumptions.

Game G0: This is the real game, where the CRS is correctly generated and every flow from honest players
are generated correctly by the simulator which knows the inputs sent by the environment to the players:
– Upon receiving a (NewSession : sid, Pi, Pj) from the ideal functionality, S generates hashing and

projection keys (hk, hp) for Pi, and encrypts pw into C with random coins r, under the label ` =
(Pi, Pj , hp). It sends (hp, C) to A;

– Upon receiving (hp′, C ′) from A on behalf of Pj , S computes H = ProjHash(hp′, full-aux, C, r) and
H ′ = Hash(hk, full-aux, C ′), where full-aux = (crs, crs′, pw), with the appropriate labels, and provides
sk = H ·H ′ to Pi.

Game G1: In this game, the CRS is generated by the simulator that knows the decryption key dk. This
does not change anything, and thus keeps the game perfectly indistinguishable.

Game G2: Upon receiving (hp′, C ′) from A on behalf of Pj , either oracle-generated with password pw′ and
hashing key hk′, or non-oracle-generated, with C ′ that decrypts to pw′ (possibly ⊥), S compares pw with
pw′. If they are different, S chooses H ′ at random instead of H ′ = Hash(hk, full-aux, C ′).
Using the hybrid argument with the smoothness security game (where the decryption key dk is known
and thus allows to test the language-membership), one shows this game is indistinguishable from the
former one since the Hash evaluation with a ciphertext not in the language is used in this case only, all
the other evaluations are for ciphertexts in the language: the distance is bounded by q · εsmooth, where
q is the number of activated players and thus less than twice the number qS of sessions, and εsmooth is
the best advantage against the smoothness one can get within the execution time of the full game (the
initial running time of the environment plus the simulations that essentially make additional decryption
evaluations).

Game G3: Upon receiving (hp′, C ′) from A on behalf of Pj , either oracle-generated with password pw′ and
hashing key hk′, or non-oracle-generated, with C ′ that decrypts to pw′ (possibly ⊥), S compares pw with
pw′. If they are different, S does not compute anymore H and H ′, but chooses sk at random. This game
is perfectly indistinguishable from the former one, since sk was the product of H with a random H ′.

Game G4: Upon receiving (hp′, C ′) from A on behalf of Pj , either oracle-generated by S on behalf of a
player with password pw′ and hashing key hk′, or non-oracle-generated, with C ′ that decrypts to pw′

(possibly ⊥) and unknown hashing key, we thus note hk′ = ⊥, S compares pw with pw′. If they are the
same, S computes H = ProjHashL(hp′, hk′, full-aux, C, r), instead of H = ProjHash(hp′, full-aux, C, r), and
H ′ = HashL(hk, full-aux, C ′) instead of H ′ = Hash(hk, full-aux, C ′), where HashL and ProjHashL work as
follows with a list ΛH initially set to an empty:
– for a query HashL(hk, full-aux, C ′), if there is h such that (hk, full-aux, C ′;h) ∈ ΛH , then h is returned,

otherwise one computes h = Hash(hk, full-aux, C ′), then (hk, full-aux, C ′;h) is appended to ΛH , and h
is returned;

– for a query ProjHashL(hp, hk, full-aux, C ′, r′), if there is h such that (hk, full-aux, C ′;h) ∈ ΛH , then
h is returned, otherwise one computes h = ProjHash(hp, full-aux, C ′, r′), then (hk, full-aux, C ′;h) is
appended to ΛH , and h is returned.

Because of the hash correctness, this game is perfectly indistinguishable from the former one since some
evaluations of ProjHash(hp′, full-aux, C, r) are replaced by Hash(hk′, full-aux, C) (or vice-versa, when al-
ready computed), but only for associated hashing and projection keys on valid ciphertexts.

Game G5: Upon receiving (hp′, C ′) from A on behalf of Pj , but oracle-generated by S on behalf of a player
with password pw′ and hashing key hk′, S compares pw with pw′. If they are the same, S still computes
H = ProjHashL(hp′, hk′, full-aux, C, r) but H ′ = HashL′(hk, full-aux, C ′) instead of using HashL, where one
chooses h at random when not yet defined.
In order to prove the indistinguishability of this game from the former one, a series of hybrid games is
required: In G(i), upon receiving the j-th oracle-generated flow (hp′, C ′) from A with identical passwords,
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if j ≤ i, one uses HashL′, otherwise one uses HashL. One can note that G(0) is G4, and G(q) is G5, where
q is the number of activated players, and thus less than twice the number qS of sessions.
For any i, let us name G(i) as GA, where we also name the i-th oracle-generated flow (hp′, C ′) from A
with identical passwords the critical flow (note that the same pair can be sent multiple times, but we
focus on a flow, defined by the generator and the receiver). We additionally name the generator of this
flow Pa (where a is the index of the NewSession-query for this player), and the receiver of this flow Pb
(where b is the index of the NewSession-query for this player).
In this game, we guess the index a. We thus expect the a-th NewSession-query to generate the pair (hp′, C ′)
sent in the critical flow. In case of bad guess, one aborts and restarts. We succeed with probability greater
than 1/q.
We stress that rewinding is not possible in the UC framework, but here, we just want to show that no
environment can distinguish the games. If an environment can, by aborting some executions (at random,
which is the case here since the guess is independent from the execution), we just have a distinguisher that
either makes q more time, on average, to answer, with the same bias; or within the same time answers
with a bias reduced by a factor q (by simply answering at random in case of abort).
– In GB, when Pa (the generator) receives its flow, one uses ProjHashL′, instead of ProjHashL, where

in the evaluation of ProjHashL′(hp′, hk′, full-aux, C, r), h is computed as Hash(hk′, full-aux, C) instead
of ProjHash(hp′, full-aux, C, r). Actually, ProjHashL′(hp′, hk′, full-aux, C, r) = HashL(hk′, full-aux, C).
Under the hash correctness, this game is perfectly indistinguishable from GA, since one evaluation of
ProjHash(hp′, full-aux, C, r) might be replaced by Hash(hk′, full-aux, C) but only for associated hashing
and projection keys on a valid ciphertext: note that here, C is the ciphertext in the critical flow.

– In GC , for the a-th NewSession-query, one encrypts 1 instead of pw.
Under the IND-CCA-security of the encryption scheme, one can show this game is indistinguishable
from GB. We note that we can apply IND-CCA security game on the encryption that generates C ′

from the critical flow: one first remarks that the random coins r of this ciphertext are not needed in
ProjHashL′ for Pa, and so the ciphertext can be generated by the encryption oracle. Furthermore, if A
tries to replay the ciphertext, it can either be with the same projection key, and then no decryption
is needed since this is an oracle-generated flow, or with a different projection key and thus under a
different label, which allows the decryption query. The distance is thus bounded by εind, the advantage
an adversary can have within the same time as our distinguisher, against the IND-CCA security of
the encryption scheme after at most qS decryption queries, where qS is the number of sessions.

– In GD, when Pb receives its flow (the critical flow), one uses HashL′, instead of HashL.
With the smoothness security game on the specific keys generated by S on behalf of Pb, we can show
that the distance is bounded by εsmooth. In addition, we know that this is always a word non in the
language.
But again, to apply the smoothness security game on the good keys, one has to guess b and to either
restart in case of bad guess or output a random answer for the distinction between the real or random
hash value.

– In GE , for the a-th NewSession-query, one encrypts back pw instead of 1.
Exactly as above, under the IND-CCA-security of the encryption scheme, one can show this game is
indistinguishable from the GD and the distance is thus bounded by εind.

– In GF , when Pa (the generator) receives its flow, one uses back ProjHashL, instead of ProjHashL′.
Under the hash correctness, this game is perfectly indistinguishable from GE , since one evaluation of
Hash(hk′, full-aux, C) might be replaced by ProjHash(hp′, full-aux, C, r) but only for associated hashing
and projection keys on a valid ciphertext: note that here, C is the ciphertext in the critical flow.

If we assume we answer a random bit when aborting, the distance betweenGF andGA is q·εsmooth+2·εind.
Game G6: Upon receiving (hp′, C ′) from A on behalf of Pj , but oracle-generated by S on behalf of a player

with password pw′ and hashing key hk′, S compares pw with pw′. If they are the same, S chooses sk at
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random, and will provide the same key at the partner, when it will receive (hp, C) from A on behalf of
Pi.
This game is perfectly indistinguishable from the former one, since the first player that computes sk makes
a product of H ′ with a random H. And because of the list ΛH in ProjHashL and HashL′, the partner will
compute the same H and H ′, and thus the same sk.

Game G7: In this game, the CRS is fully generated by the simulator that then knows both the decryption
key dk and the general trapdoor τ ′.
This keeps this game perfectly indistinguishable from the former one.

Game G8: Upon receiving (hp′, C ′) from A on behalf of Pj , non-oracle-generated, with C ′ that decrypts to
pw′ (possibly ⊥), S compares pw with pw′. If they are the same, S computesH = THash(hp′, full-aux, C, τ ′)
instead of H = ProjHash(hp′, full-aux, C, r), but still H ′ = Hash(hk, full-aux, C ′).
Because of the soundness, this game is indistinguishable from the former one.

Game G9: Upon receiving a (NewSession : sid, Pi, Pj) from the ideal functionality, S generates hashing and
projection keys (hk, hp) for Pi, and encrypts 1 (instead of pw) into C, under the label ` = (Pi, Pj , hp). It
sends (hp, C) to A.
Under the IND-CCA-security of the encryption scheme, one can show this game is indistinguishable from
the former one. To apply the IND-CCA security game, one first remarks that the random coins r are
not needed anymore to compute H in any case, and so C can be generated by the encryption oracle.
Furthermore, if A tries to replay a ciphertext C generated by the challenger on behalf of Pj with password
pw′, it can either be with the same projection key, and then no decryption is needed since this is an
oracle-generated flow, or with a different projection key and thus under a different label, which allows the
decryption query. The distance is thus bounded by q · εind.
The current game is thus the following one:
– Upon receiving a (NewSession : sid, Pi, Pj) from the ideal functionality, S generates hashing and

projection keys (hk, hp) for Pi, and encrypts 1 into C. It sends (hp, C) to A;
– Upon receiving (hp′, C ′) from A on behalf of Pj ,
• if (hp′, C ′) is oracle-generated with password pw′ and hashing key hk′, S compares pw with pw′.
∗ If they are the same, S chooses sk at random, and will give the same key at the partner;
∗ If they are different, S chooses sk at random.

• if (hp′, C ′) is non-oracle-generated, with C ′ that decrypts to pw′ (possibly ⊥), S compares pw
with pw′.
∗ If they are the same, the simulator S computes H = THash(hp′, full-aux, C, τ ′), and H ′ =

Hash(hk, full-aux, C ′), where full-aux = (crs, crs′, pw), and provides sk = H ·H ′ to Pi;
∗ If they are different, S chooses sk at random.

Game G10: In this game, S now uses the ideal functionality as explained in the description of the simulator
in Appendix D.1. It is easy to see that this game is perfectly indistinguishable from the former one.

D.2 Proof for the E-ZK and tSE-ZK Construction

In this section, we prove the true-simulation extractability of the two tSE-ZK constructions from TSPHFs
in Section 7.1. Using the last experiments of both proofs, we can derive a proof for the soundness and the
extractability of the E-ZK constructions.

Two-Flow Construction. Here is a sequence of indistinguishable experiments proving the true-simulation
extractability of the two-flow construction.

Experiment E0: This first experiment is the experiment of the definition of true-simulation extractability
(Section B.1). In particular, on input (x, (w, y)), Sim′ checks whether R(x, (w, y)) = 1, and if it is the
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case, it simulates the argument using Sim2, which encrypts an arbitrary value in C instead of w and
which uses THash and the trapdoor τ ′ of the TSPHF to compute its hash value. In parallel, Ext simulates
a verifier against the adversary A2 playing the role of a prover for some word x, and extracts a partial
witness w (or ⊥ if the decryption fails) for this word x, by decrypting the ciphertext of the adversary.
The adversary A = (A1,A2) wins if it manages to make Ext accept and extract an invalid w (i.e., such
that ∀y,R(x, (w, y)) = 0) without simply “copying” a transcript of a simulated proof.

Experiment E1: Let tr = (x, (hp), (C,H)) be the transcript between A1 and Ext. In this experiment, the
adversary also looses (the experiment returns 0) when the pair (` = (x, hp), C) has been used by one
instance of the simulator Sim′. This does not change anything. Indeed, let us suppose (`, C) has been used
by one instance of Sim′, and let us write tr′ = (x, (hp), (C,H ′)) the transcript of this instance. Then either
H ′ = H and tr ./ tr′, and so the adversary also looses; either H ′ 6= H and so Ext would have rejected
the proof of A1, because only one hash value is valid, and H ′ is the valid hash value (since it has been
computed using THash, which is the same as computed using Hash thanks to the trapdoor correctness
and the fact hp has been honestly generated).

Experiment E2: In this experiment, we change the simulator Sim′ to correctly encrypt the partial witnesses
w instead of encrypting an arbitrary value. This experiment is indistinguishable from the previous one,
because of the encryption scheme is IND-CCA.

Experiment E3: In this experiment, we change the simulator Sim′ to use ProjHash instead of THash (pos-
sible since it knows the witness (w, y) and the encryption is done correctly). This experiment is indistin-
guishable from the previous one, thanks to the soundness of the TSPHF.

Experiment E4: In this experiment, we change Ext to check whether the extracted w is a valid partial
witness for x. This is possible using τ . If it is not the case, instead of comparing the hash value H
returned by the adversary A2 with H ′ ← Hash(hk, full-aux, (`, C)) and accepting the proof if and only if
H = H ′, we compare it with H ′ $← Π. This experiment is indistinguishable from the previous one, thanks
to the computational smoothness of the TSPHF.

The adversary cannot win this last experiment with non-negligible because H ′ is random and independent
from H.

Three-Flow Construction. The same proof can be done, except for the justification that the two first
games are indistinguishable. For this justification, we just need to remark that, since the one-time signature
is unforgeable, the adversary A2 cannot output a ciphertext C and a label ` = vk′ already generated by some
instance Sim′, without copying the whole transcript tr′ or forging a signature under vk.

E Generic Framework for SPHFs and TSPHFs

In this appendix, we first recall the generic framework introduced in [BBC+13], and sketched in Section 4.2.
Then, we extend our construction of TSPHFs of Section 4.3 to the full generic framework, and prove the
smoothness of the resulting TSPHFs.

This appendix is very formal and technical. We strongly recommend the reader to first read Sections 4.2
and 4.3, or [BBC+13] (even better) where we give the intuition.

E.1 Recall of the Generic Framework for SPHFs of [BBC+13]

Graded Rings. Before introducing the generic framework, we first need to recall the notion of graded
ring introduced in [BBC+13]. Graded rings are a generalization of bilinear settings and a practical way to
manipulate elements of various groups involved with pairings, and more generally, with multi-linear maps.
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Indexes Set. Let us consider a finite set of indexes Λ = {0, . . . , κ}τ ⊂ Nτ . In addition to considering the
addition law + over Λ, we also consider Λ as a bounded lattice, with the two following laws:

sup(v,v′) = (max(v1,v
′
1), . . . ,max(vτ ,v

′
τ )) inf(v,v′) = (min(v1,v

′
1), . . . ,min(vτ ,v

′
τ )).

We also write v < v′ (resp. v ≤ v′) if and only if for all i ∈ {1, . . . , τ}, vi < v′i (resp. vi ≤ v′i). Let
0̄ = (0, . . . , 0) and > = (κ, . . . , κ), be the minimal and maximal elements.

Graded Ring. The (κ, τ)-graded ring for a commutative ring R is the set G = Λ×R = {[v, x] |v ∈ Λ, x ∈ R},
where Λ = {0, . . . , κ}τ , with two binary operations (+, ·) defined as follows:

– for every u1 = [v1, x1], u2 = [v2, x2] ∈ G: u1 + u2
def= [sup(v1,v2), x1 + x2];

– for every u1 = [v1, x1], u2 = [v2, x2] ∈ G: u1 · u2 def= [v1 + v2, x1 · x2] if v1 + v2 ∈ Λ, or ⊥ otherwise, where
⊥ means the operation is undefined and cannot be done.

We remark that · is only a partial binary operation and we use the following convention: ⊥ + u = u + ⊥ =
u · ⊥ = ⊥ · u = ⊥, for any u ∈ G ∪ {⊥}. We then denote Gv the additive group {u = [v′, x] ∈ G |v′ = v} of
graded ring elements of index v. We will make natural use of vector and matrix operations over graded ring
elements.

Cyclic Groups and Pairing-Friendly Settings. In the sequel, we consider graded rings over R = Zp only, because
we will use the vectorial space structure over Zp in the proof of the smoothness of our generic construction
of SPHF. This means we cannot directly deal with constructions in [GGH12] yet. Nevertheless, graded rings
enable to easily deal with cyclic groups G of prime order p, and bilinear groups.

Cyclic groups : κ = τ = 1. More precisely, elements [0, x] of index 0 correspond to scalars x ∈ Zp and
elements [1, x] of index 1 correspond to group elements gx ∈ G.

Symmetric bilinear groups (p,G,GT , e, g): κ = 2 and τ = 1. More precisely, we can consider the following
map: [0, x] corresponds to x ∈ Zp, [1, x] corresponds to gx ∈ G and [2, x] corresponds to e(g, g)x ∈ GT .

Asymmetric bilinear groups (p,G1,G2,GT , e, g1, g2): κ = 1 and τ = 2. More precisely, we can consider the
following map: [(0, 0), x] corresponds to x ∈ Zp, [(1, 0), x] corresponds to gx1 ∈ G1, [(0, 1), x] corresponds
to gx2 ∈ G2 and [(1, 1), x] corresponds to e(g1, g2)x ∈ GT .

Projections. We also consider the two following projections: I : G → Λ and L : G → R, which on input
u = [v, x] output respectively the index v of u and the x part of u, which can be seen as the discrete
logarithm of u (hence the notation L). We remark that for every u1, u2 ∈ G, L(u1 +u2) = L(u1) +L(u2) and,
if u1 · u2 6= ⊥, L(u1 · u2) = L(u1) · L(u2). The projections I and L can be applied component-wise on vectors
and matrices.

Generic Framework for SPHF. In this section, we recall the generic framework for SPHFs for languages
of ciphertexts in [BBC+13], with slight modifications, because in this article, hp can depend on aux. Our
goal is to deal with languages of ciphertexts LofCfull-aux: we assume that crs is fixed and we write Laux =
LofCfull-aux ⊆ Set where full-aux = (crs, aux).

Language Representation. For a language Laux, we assume there exist two positive integers k and n, and
two families of functions Γaux : Set 7→ Gk×n, and Θaux : Set 7→ G1×n, such that for any word C ∈ Set ,
(C ∈ Laux) ⇐⇒ (∃λ ∈ G1×k such that Θaux(C) = λ · Γ (C)). If Γaux is a constant function (independent of
the word C), this defines a KV-SPHF, otherwise this defines a GL-SPHF. However, in any case, we need the
indexes of the components of Γaux(C) to be independent of C. We furthermore require that a user, who knows
a witness w of the membership C ∈ Laux, can efficiently compute λ.
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Smooth Projective Hash Function. With the above notations, the hashing key is a random vector hk = α =
(α1, . . . , αn)ᵀ

$← Znp , while the projection key is, for a word C, hp = γ(C) = Γ (C) · α ∈ Gk (if Γ does not
depend on C, hp does not depend on C either). Then, the hash value is:

H = Hash(hk, full-aux, C) def= Θaux(C) ·α =λ · γ(C) def= ProjHash(hp, full-aux, C, w) = H ′.

The set Π of hash values is exactly GvH , the set of graded elements of index vH , the maximal index of the
elements of Θaux(C). It is shown in [BBC+13], that the resulting SPHF is a perfectly smooth KV-SPHF if Γaux
is a constant function and is a perfectly smooth GL-SPHF otherwise. In the sequel, we often write γ instead
of γ(C) and Γ or Γaux instead of Γaux(C).

E.2 Efficient Construction of TSPHFs under DDH

In this section, we describe more formally the construction of TSPHFs under DDH of Section 4.3, and, in the
same time, we generalize it to SPHFs constructed using the above full generic framework.

More precisely, we show how to construct a TSPHF from any SPHF constructed via the previous framework,
under the three following conditions:

– there exists an index v∗ > 0̄ such that vH = I(H) ≤ >− v∗ (i.e., vH 6= >);
– it is possible to compute L(Γaux(C)), for any C and aux if τ is known;
– the DDH assumption holds in the group Gv∗ of graded elements of index v∗.

The two last conditions are only required for the smoothness to hold, and the last condition, the DDH
assumption, can be relaxed to the κ-Lin assumption, as shown in Appendix F.3.

We remark these three conditions hold for quite a lot of SPHFs. They holds obviously for the KV-SPHF
on Cramer-Shoup ciphertexts (example of Section 4.2). And they also hold, in particular, for our KV-SPHF
for multi-exponentation equations cited in Section 6.2 and described in Appendix C.1, when all Ak,j are in
crs and can be generated in such a way we know their discrete logarithm (to be able to compute L(Γ )), and
when the group G is replaced by a group G1 with (p,G1,G2,GT , e) an asymmetric bilinear group (and DDH
holds in G2). In both cases, GvH = G1 and Gv∗ = G2.

Intuitively, our TSPHF construction is such that all the “SPHF” part of the TSPHF is in GvH , whereas
the trapdoor part is in Gv∗ . And the trapdoor part simply contains some representation of α, representation
which cannot be used without knowing the trapdoor τ ′.

The second CRS is a random graded ring element crs′ = ζ of index v∗, and its trapdoor is τ ′ = L(ζ). The
hashing key hk = α is the same as before. The projection key is the ordered pair hp = (γ,χ), where γ is the
same as before, and χ = ζ ·α. The projection key is valid (i.e., VerHP(hp, full-aux, C) = 1) if and only if

χ ∈ Gn
v∗ and ζ · γ = Γ · χ, (2)

Then, for any word C ∈ Lfull-aux with witness w corresponding to the vector λ, the hash value is

H = Hash(hk, full-aux, C) def= 1v∗ ·Θ(C) ·α =1v∗ · λ · γ def= ProjHash(hp, full-aux, C, w) = H ′, (3)

where 1v∗ = [v∗, 1]. Equation (2) means that χ can be written χ = L(ζ) · 1v∗ · α′, with α′ ∈ Znp verifying
γ = Γ · α′, i.e., hk′ = α′ is a valid hashing key for γ. We do not have necessarily α = α′, however, for any
word C ∈ Lfull-aux, we have and we set

H = 1v∗ ·Θ(C) ·α = 1v∗ · λ · γ = 1v∗ ·Θ(C) ·α′ = L(ζ)−1 ·Θ(C) · χ def= THash(hp, full-aux, C, τ ′) = H ′′.

In Appendix E.3, we prove the resulting TSPHF is computationally smooth under the DDH assumption
in Gv∗ , if L(Γaux(C)) can be computed from τ . The correctness and the perfect soundness are easy to prove
from the construction, and so the resulting TSPHF is correct, smooth and sound.
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E.3 Smoothness of the Efficient TSPHF under DDH

In this section, we prove the computationally smoothness of the TSPHF described in Section E.2 (which is
a formalization of the TSPHF described in Section 4.3), under the DDH assumption in Gv∗ , and assuming
that τ is such that L(Γaux(C)) can be computed efficiently. The computational smoothnees of our TSPHF can
be reduced to the following computational assumption: it is hard to distinguish the two games (the one with
b = 0 and the one with b = 1) depicted in Figure 10, where the procedure O can be called at most once. The
games work as follows. The procedure Initialize generates and outputs the CRS crs. Then the adversary can
make one query (aux, C) to the oracle O to get a tuple (A,B,γ) such that:

– if b = 0, α = β is a random tuple of Znp , and γ = Γ · α, A = α · ζ and B = β · 1v∗ . In his case, we say
that (ζ,A,B,γ) has been generated according to distribution 0;

– if b = 1, α and β are random tuples of Znp such that γ = Γ · α = Γ · β, A = α · ζ and B = β · 1v∗ . In
this case, we say that (ζ,A,B,γ) has been generated according distribution 1.

Eventually, the adversary ends the game by querying the procedure Finalize with its guess b′ for b.

Initialize(K)

(crs, τ)
$← Setup(1K)

τ ′
$← Zp

crs′ = ζ ← τ ′ · 1v∗
return (crs, τ, crs′)

Finalize(b′)
return b = b′

O(aux, C)
Γ ← Γaux(C)

α
$← Znp

A← α · ζ
if b = 0 then
β ← α

else
β

$← α+ kerΓ ?

B ← β · 1v∗
γ ← Γ ·α
return (A,B,γ)

? This generates a random vector β such that Γ ·α = Γ · β.

Fig. 10. Games used for the proof of smoothness under DDH (b = 0 or 1).

The reduction works as follows:

– on a ProjKG(hp, C) query, we do as in the original smoothness game in Figure 1 except for the generation
of hp, for which we call O to get a tuple (A,B,γ) and set hp ← (γ,A). Since we do not know α, we
store B instead hk = α.

– on a Hash(hp, aux, C), we do as in the original game except for the computation of H where we compute
H as H = Θ(C) ·B. We remark that H = 1v∗ · Θ(C) · β and so, if b = 0, H = 1v∗ · Θ(C) · α and H is
computed as it would have been computed using hk. Otherwise, if b = 1:
• if C /∈ Lfull-aux, L(Θ(C)) is independent of the rows of L(Γ ) and L(1v∗ ·Θ(C) ·β) and so 1v∗ ·Θ(C) ·β

is completely random given α, γ, and a fortiori given only hp;
• otherwise, Θ(C) ·α = Θ(C) · β, because Γ ·α = Γ · β, and so H is computed as it would have been

computed using hk.

Let us now show that the above computational assumption can be reduced to the DDH problem, which
will prove the computational smoothness of the TSPHF.

We first remark that, γ is completely determined by L(γ) and can be computed from L(γ) by multiplying
it by some vector (1v1 , . . . , 1vk)ᵀ ∈ Gk (depending on Γ ). Let G be the set of all possible γ: G = {γ′ ∈
Gk | ∃α′ ∈ Gn, γ′ = Γ · α′} and L(G) = {L(γ′) ∈ Zkp |γ′ ∈ G}. It is clear that γ is uniformly distributed in
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G. Furthermore, for all γ ∈ G, there exists a matrix ∆γ ∈ Zn×(m+1)
p , with m = n− k, such that the solutions

of the equation L(γ) = L(Γ ) · α (where α ∈ Znp is the unknown) are the vectors ∆ · δ̃, for δ ∈ Zmp , where

x̃ =

(
x

[0̄, 1]

)
∈ Gm+1, for any colon vector x ∈ Gm ([0̄, 1] is the unitary element in Zp).

Let (ζ, d, e) be an instance of the DDH problem in Gv∗ . Let us write d = δ · ζ and e = η ·1v∗ . We just need
to show how to generate one tuple (ζ,A,B,γ) with distribution 0 if (ζ, d, e) is a DDH tuple, and distribution
1 otherwise. The self-randomisability of the DDH problem enables us to generate (d, e) ∈ G2m

v∗ a completely
random tuple if (ζ, d, e) is not a DDH tuple and a tuple such that δ = η otherwise, where d = δ · ζ and
e = η · 1v∗ .

Then to generate (ζ,A,B,γ), we just need to choose L(γ) ∈ Zkp uniformly at random in L(G) and to set
A = ∆γ · d̃, B = ∆γ · ẽ.

F More on TSPHFs

In this appendix, we give details on particular technical points related to TSPHFs. We first show the con-
struction of TSPHFs using NIZK in details. We then show that the TSPHFs constructed using our generic
framework (Section 4.3) are always such that τ enables to decide efficiently if a word C is in the language
LofCfull-aux or not. Finally, we present an extension of the construction of TSPHFs based on our generic
framework, for which the smoothness property can be proven under DLin or κ-Lin, instead of DDH.

F.1 Construction of TSPHFs using NIZK

In this section, we give details of the construction of TSPHFs using NIZK, sketched in Section 4.1.

ENIZK. Groth-Sahai NIZK [GS08] are actually ENIZK: when the CRS is in the perfectly sound mode, it is
possible to extract witnesses which are group elements (but not witnesses y which are scalars in Zp, for which
it is only possible to extract gy1 or gy2 , where g1 and g2 are generators of G1 and G2). Therefore, a Groth-Sahai
ENIZK for the knowledge of some scalars requires to use one variable for each bit of the scalar, and makes the
ENIZK very inefficient.

Generic Construction. To transform any SPHF into a TSPHF, it is sufficient to add to hp an ENIZK proof
of the knowledge ( K) of an hashing key hk such that hp is the projection key of hk. Such an hp is valid, if
and only if the ENIZK proof is valid. The CRS crs′ of the TSPHF contains a CRS σΠ for the ENIZK. The
trapdoor τ ′ is the extraction trapdoor of the ENIZK. To compute the hash value of a valid word C, knowing
only hp = (hp′, π), it is sufficient to extract a hashing key hk from π and to use it.

Let us prove that this construction yields a valid TSPHF. The hash correctness of the new TSPHF directly
comes from the correctness of the SPHF. The trapdoor correctness comes from the completeness and the
extractability of the ENIZK. The soundness comes from the extractability of the ENIZK. Finally, the compu-
tational smoothness of the SPHF can be reduced to the smoothness of the TSPHF. The reduction consists in
generating a simulated CRS for the ENIZK, and on a ProjKG(aux, C) query, to get a projection key hp′ for
the original SPHF by calling the ProjKG oracle of the SPHF smoothness game and to return hp = (hp′, π),
with π a simulated ENIZK that hp is valid.

Improved Constructions for our Generic SPHF Framework. In all our practical constructions, we
remark that we can use Groth-Sahai methodology for ENIZK proofs. But the hashing key hk is a tuple of
scalars. Thus the ENIZK has to be bit-by-bit and this makes it not very efficient.
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In [JR12], the authors show that it is possible to avoid doing a bit-by-bit ENIZK, for the SPHF they use,
if the hash value is slightly changed. This trick can be further extended to any SPHF based on our generic
framework, as soon asH is in some group G1, where (p,G1,G2,GT , e) is a bilinear group. The idea just consists
in replacing the hash value H by e(H, g2) and to remark that, knowing α′ = g2 �α = (gα1

2 , . . . , gαn2 ) ∈ Gn
2 is

sufficient to compute the hash value:

H = e(Θ(u)�α, g2) = Θ(u)�α� g2 = Θ(u)�α′.

Then, to transform this new SPHF into a TSPHF, it is sufficient to add, to hp = γ, an ENIZK proof that
one knows α′ such that Γ � α′ = γ � g2, i.e., the logarithm of α′ is some α such that hk = α is a valid
hashing key. The Groth-Sahai methodology can be used to construct the ENIZK. Since α′ is a vector of group
elements, the construction is very efficient.

Actually, the idea of “storing” the hashing key in G2 is one of the basic idea of our efficient TSPHF
construction of Section 4.3. But the latter construction is a lot more efficient than the above construction
because it only requires to add one group element to hp, for each αi, instead of a Groth-Sahai ENIZK proof,
which requires at least a commitment of one group element for each αi, where each commitment requires two
group elements.

F.2 Remark on τ

Our TSPHF construction requires that τ enables to compute efficiently the “discrete logarithm of Γ (C)”
(L(Γ (C))). Let us show that this implies it is possible to know whether a word C ∈ Set is in Lfull-aux or not,
using τ , with overwhelming probability.

Since L(Γ ) is known, it is possible to choose two random hashing keys hk = α and hk′ = α′ such that
L(Γ ) ·(α−α′) = 0, so that hk and hk′ correspond to the same projection key. For any ciphertext C ∈ Laux, the
hash value of C under hk is the same as the hash value of C under hk′. And for any ciphertext C ∈ Set \Laux,
the hash values of C under hk and under hk′ are two independent uniform random variables, and are equal
with probability at most 1/p.

This implies that the condition, in Section 7.1, that for any w and x, knowing τ provides a way to test
whether x is valid and w is a partial witness of x, with overwhelming probability, is actually always verified
for TSPHF generated using the method of Section 4.3.

F.3 Extension of the TSPHF Construction to κ-Lin

We present an extension of the construction of TSPHFs based on our generic framework, for which the
smoothness property can be proven under DLin or κ-Lin, instead of DDH. We use the notations of the full
generic framework in Appendix E.

DLin and κ-Lin Assumptions. Before showing this extension of TSPHF, let us first recall the DLin and the
κ-Lin assumptions.

Definition 3 (Decisional Linear Problem (DLin)). The Decisional Linear Problem [BBS04] says that,
in a group (p,G, g), when we are given (gx, gy, gxa, gyb, gc) for unknown random x, y, a, b

$← Zp, it is hard to
decide whether c = a+ b mod p (a linear tuple) or c $← Zp (a random tuple). We define by Advdlinp,G,g(t) the best
advantage an adversary can have in distinguishing a linear tuple from a random tuple within time t.

The latter problem has been generalized into the κ-Lin [HK07,Sha07]:
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Definition 4 (Decisional κ-Linear Problem (κ-Lin)). The Decisional κ-Linear Problem says that, in
a group (p,G, g), when we are given (gx1 , . . . , gxκ , gx1y1 , . . . , gxκyκ , gz) for unknown random xi, yi

$← Zp,
i = 1, . . . , κ, it is hard to decide whether z =

∑
yi mod p (a κ-linear tuple) or z $← Zp (a random tuple). We

define by Advκ-linp,G,g(t) the best advantage an adversary can have in distinguishing a linear tuple from a random
tuple within time t.

One can note that 1-Lin = DDH and 2-Lin =DLin, and also, the larger is κ, the weaker is the κ-Lin assumption.

Construction. The CRS crs′ contains κ random elements ζ1, . . . , ζκ of index v∗. The trapdoor τ ′ is the tuple
of the discrete logarithms of these elements: τ ′ = (L(ζ1), . . . ,L(ζκ)). The idea is to duplicate hk and hp κ-time
and to use the product of the hash values for all these keys as hash value.

More precisely, the hashing key hk is a tuple of κ hashing key of the original scheme αl (for l = 1, . . . , κ) i.e.,
α1, . . . ,ακ are independant random vectors of Znp (we write αl,i for the ith coefficient of αl). The projection
key hp is the κ-tuple of the corresponding projection keys hpl = (γl,χl) (for l ∈ {1, . . . , κ}). It can be verified
by verifying the κ projections keys hp1, . . . , hpκ.

Then the hash value is:

H = Hash(hk, full-aux,u) def=
κ∑
l=1

1v∗ ·Θ(u) ·αl =
κ∑
l=1

1v∗ · λᵀ
l · γl

def= ProjHash(hp, full-aux, w) = H ′.

This value can also be computed using the trapdoor τ ′ and χ:

H ′ =
κ∑
l=1

L(ζl)
−1 ·Θ(u) · χl def= THash(τ ′, hp, full-aux,⊥) = H ′′.

Proof of Security. The proof is very similar to the DDH case. Figure 11 shows the main games in the proof.

Initialize(K)

(crs, τ)
$← Setup(1K)

τ ′ = (t1, . . . , tκ)
$← Zκp

crs′ = (ζ1, . . . , ζκ)← (t1 · 1v∗ , . . . , tκ · 1v∗)
b

$← {0, 1}
return (crs, τ, crs′)

Finalize(b′)
return b = b′

O(aux, C)
full-aux← (crs, aux)
Γ ← Γaux(C)
for l = 1, . . . , κ do
αl

$← Znp
Al ← αl · ζl

if b = 0 then
β ← α1 + · · ·+ακ

else
β

$← α1 + · · ·+ακ + kerΓ

B ← β · 1v∗
γ ← Γ ·α
return (A1, . . . ,Aκ,B,γ)

Fig. 11. Games used for the proof of smoothness under κ-Lin (b = 0 or 1).
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