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Abstract. Searchable symmetric encryption (SSE) enables a client to outsource a collection of encrypted docu-
ments in the cloud and retain the ability to perform keyword searches without revealing information about the con-
tents of the documents and queries. Although efficient SSE constructions are known, previous solutions are highly
sequential. This is mainly due to the fact that, currently, the only method for achieving sub-linear time search is the
inverted index approach (Curtmola, Garay, Kamara and Ostrovsky, CCS ’06) which requires the search algorithm
to access a sequence of memory locations, each of which is unpredictable and stored at the previous location in the
sequence. Motivated by advances in multi-core architectures, we present a new method for constructing sub-linear
SSE schemes. Our approach is highly parallelizable and dynamic. With roughly a logarithmic number of cores in
place, searches for a keyword w in our scheme execute in o(r) parallel time, where r is the number of documents
containing keyword w (with more cores, this bound can go down toO(logn), i.e., independent of the result size r).
Such time complexity outperforms the optimalΘ(r) sequential search time—a similar bound holds for the updates.
Our scheme also achieves the following important properties: (a) it enjoys a strong notion of security, namely se-
curity against adaptive chosen-keyword attacks; (b) compared to existing sub-linear dynamic SSE schemes (e.g.,
Kamara, Papamanthou, Roeder, CCS ’12), updates in our scheme do not leak any information, apart from infor-
mation that can be inferred from previous search tokens; (c) it can be implemented efficiently in external memory
(with logarithmic I/O overhead). Our technique is simple and uses a red-black tree data structure; its security is
proven in the random oracle model.

1 Introduction

Cloud storage promises high data availability, easy access to data, and reduced infrastructure costs by storing
data with remote third-party providers. But availability is often not enough, as clients need privacy guaran-
tees for many kinds of sensitive data that is outsourced to untrusted providers. For example, privacy is clearly
important for medical data, enterprise data and secret government documents.

The standard approach to achieving privacy in storage systems is to encrypt data using symmetric en-
cryption. Storage systems based on this approach provide end-to-end privacy in the sense that data is pro-
tected as soon as it leaves the client’s possession. While such a solution provides strong security guarantees,
it induces a high cost in terms of functionality and is therefore inadequate for storage systems that handle
data at large scales. This is because after the data leaves the client’s machine in encrypted form, the server
cannot perform any meaningful computation on it.

To address this, one can either use general-purpose solutions (e.g., fully-homomorphic encryption [7] or
oblivious RAMs [9]) or special-purpose solutions (e.g., searchable encryption). Although general-purpose
solutions have advantages, including generality and stronger security properties, they are mostly of theoret-
ical interest (e.g., recent work [19] has shown that ORAM can be relatively practical). On the other hand,
special-purpose solutions like searchable encryption are practical and aim to provide a reasonable trade-off
between efficiency, functionality and security.

Using a symmetric searchable encryption (SSE) scheme, a client can store a collection of encrypted
documents remotely while retaining the ability to perform keyword searches without revealing any infor-
mation about the contents of either the documents or the queries. There are two high-level approaches to
designing reasonably efficient and secure SSE schemes. The first approach, proposed by Goh [8] and used



in [3], associates to each document an encrypted data structure that can be tested for the occurrence of a
given keyword. This approach naturally results in schemes with search time that is linear in n, where n the
number of documents in the collection. The second approach, introduced by Curtmola et al. [6], associates
an encrypted inverted index to the entire document collection. This approach yields very efficient schemes
since search time isO(r), where r is the number of files that contain the keyword. Note that,O(r) is not only
sub-linear, it is optimal. Due to its efficiency, the inverted index approach has been used in many subsequent
works, including [4,11,13,20].

While the inverted index approach yields the most efficient SSE schemes to date, it has at least two
important limitations. The first is that it is not well-suited to handle dynamic collections (i.e., document col-
lections that must be updated). Although Kamara et al. [11] recently showed how to construct an encrypted
inverted index that handles dynamic data, their construction is very complex and difficult to implement.
In addition, the update operations reveal a non-trivial amount of information. The second limitation of the
inverted index approach is that it is inherently sequential, requiring Ω(r) time even in a parallel model of
computation. This is mainly because the encrypted indexes used by these constructions store data at random
disk locations (for security and space efficiency), and because the associated search algorithms are adaptive
in the sense that they find the next memory location to access at the currently accessed memory location.
In addition, we note that even in the sequential setting, where the O(r) time bound for search is optimal,
these constructions can still introduce significant latency when searching for a very frequent keyword whose
output list contains thousands of documents.

Our contributions. We introduce a new approach for designing SSE schemes that yields constructions with
sub-linear search time but that has none of the limitations of the inverted index approach. In particular, our
approach is simple, highly parallel and can easily handle updates. More precisely, for n documents indexed
over m keywords and with p cores (processors) available, our construction has the following properties:

1. Searches for a keyword w run in O((r/p) log n) parallel time, where r is the number of documents
containing keyword w. Note that for p = ω(log n), our parallel search time is o(r), i.e., less than the
optimal sequential search time.3

2. Updates for a document f containing q unique keywords run in O((m/p) log n) parallel time. Again, in
that case, for p = ω((m/q) log n), our parallel update time is o(q), i.e., less than the optimal sequential
update time.

3. Finally, unlike the updates supported in the works of van Liesdonk et al. [20] and Kamara et al. [11],
the updates of our scheme do not leak information about the keywords contained in a newly added or
deleted document f , apart from information that is leaked through search tokens that have been issued
in the past (updates in our scheme however require one round of interaction, as in [20]). For example, if
we start adding documents into our encrypted index before we perform any search (which is common
in practical applications like streaming), no information is leaked due to these update operations.

We finally note that our scheme enjoys a strong notion of security in this context, namely security against
adaptive chosen-keyword attacks (CKA2), as defined by Curtmola et al. [6] and can also be implemented
efficiently in external memory (with logarithmic I/O overhead).

Our approach. Our approach is based on a new tree-based multi-map data structure we refer to as a keyword
red-black (KRB) tree. As we show in Section 3, KRB trees can index a document collection in such a

3 Taking p = ω(logn) is very reasonable, given that even 64-core CPUs are now available, e.g., see the TILE64 processor at
http://en.wikipedia.org/wiki/TILE64.
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Table 1. Comparison of several SSE schemes, in terms of worst case parallel search time per keyword w. With n we denote the
size of the documents collection, with r the number of documents containing keyword w, with m the size of the keywords space
and with p the number of cores.

scheme dynamism security search time index size
Song et al. [18] static CPA O(n

p
) N/A

Goh [8] dynamic CKA1 O(n
p
) O(n)

Chang and Mitzenmacher [3] static CKA1 O(n
p
) O(mn)

Curtmola et al. [6] (SSE-1) static CKA1 O(r) O(m+ n)

Curtmola et al. [6] (SSE-2) static CKA2 O(r) O(mn)

van Liesdonk et al. [20] dynamic CKA2 O(n) O(mn)

Chase and Kamara [4] static CKA2 O(r) O(mn)

Kurosawa and Ohtaki [13] static UC O(n) O(mn)

Kamara et al. [11] dynamic CKA2 O(r) O(m+ n)

THIS WORK dynamic CKA2 O( r
p
logn) O(mn)

way that keyword search can be performed in O(r log n) sequential time and O( rp log n) parallel time. In
addition, a KRB tree supports efficient updates because all the information it contains about a given file
f can be found and updated in O(log n) time. To construct our SSE scheme, we show how to encrypt
KRB trees based on simple and efficient primitives like pseudorandom functions and permutations and a
random oracle. The resulting scheme is CKA2-secure and preserves the same (asymptotic) efficiency as an
unencrypted KRB tree.

Related work. The problem of searching on symmetrically encrypted data can be solved in its full generality
using the work of Goldreich and Ostrovsky [9] on oblivious RAM (ORAM). In addition to handling any type
of search query, this approach also provides the strongest levels of security, namely the server does not learn
any information about the data or the queries—not even information inferred by the client’s access pattern.
This approach requires interaction and has a high overhead for the server and the client, especially for more
involved functionalities like search. Lorch et al. [14] explored the notion of parallel ORAM and proposed
a parallel ORAM scheme based on a binary tree approach. Finally, while a recently introduced ORAM
scheme [19] has been shown to be relatively practical, it still requires O(

√
n) storage at the client.

Song et al. [18] were the first to explicitly consider the problem of searchable encryption and presented
a non-interactive solution that with search time that is linear in the length of the data collection. Goh [8]
introduced formal security definitions for SSE and proposed a construction based on Bloom filters [1] that
requiresO(n) search time and results in false positives. Chang and Mitzenmacher [3] proposed an alternative
security definition and construction also with O(n) search time but without false positives. While both the
schemes of Goh and of Chang and Mitzenmacher can be naively parallelized, this would require a linear (in
n) number of cores.

Curtmola et al [6]. gave the first constructions (SSE-1 and SSE-2) to achieve sub-linear (and in fact
optimal) search time. Like previous work [8,3], SSE-1 was shown secure against chosen-keyword attacks
(CKA1). In that work, it was noted, however, that CKA1-security does not suffice for practical use. To
address this, the stronger notion of security against adaptive chosen-keyword attacks (CKA2) was proposed
and a CKA2-secure SSE scheme (SSE-2) was proposed. A similar CKA2-secure scheme was also described
by Chase and Kamara [4] but its space complexity is high. Finally, recent work by Kurosawa et al. [13]
shows how to construct a (verifiable) SSE scheme that is universally composable (UC). While UC-security
is a stronger notion of security than CKA2-security, their construction requires linear search time.
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None of the above schemes are “explicitly dynamic”, i.e., to handle dynamic data one must use general
dynamization techniques that are relatively inefficient (except for the scheme of Goh [8] which unfortunately
has linear search time). The first explicitly dynamic scheme was presented by Liesdonk et al. [20], but
unfortunately that construction supports a limited number of updates and can has linear search time in
the worst case. Recently, Kamara et al. [11] constructed an SSE scheme that is CKA2-secure, achieves
optimal search time (with small constants) and is explicitly dynamic, Unfortunately, this construction leaks
the tokens of the keywords contained in an updated document. Our construction avoids such leakage and, in
addition, is considerably simpler. A complete comparison of all the schemes can be found in Table 1.

All the above solutions are either inherently sequential or admit naive parallelization. For example, in
the schemes based on the inverted index approach of Curtmola et al [4,6,11,13,20], in order to retrieve the
documents d1, d2, . . . , dr containing keyword w, the algorithm uses the pointer to d1 along with a special
token t(w) to decrypt the pointer to d2, then it uses the pointer to d2 and the token t(w) to decrypt the
pointer to d3 until the final pointer to dr can be decrypted. Similarly, to delete a document that contains
keywords w1, w2, . . . , wq, the algorithm deletes the entry corresponding to wi only after it deletes the entry
corresponding to wi−1. Both these procedures are sequential in nature.

Although this work focuses on the case of single-keyword equality queries, we note that more complex
queries have also been considered. This includes conjunctive queries in the symmetric key setting [10]; it
also includes conjunctive queries [16,2], comparison and subset queries [2], and range queries [17] in the
public-key setting.

2 Preliminaries

Our construction makes use of several basic cryptographic primitives. A private-key encryption scheme
consists of three algorithms E = (Gen,Enc,Dec) such that Gen(1k; r) is a probabilistic polynomial-time
(PPT) algorithm that takes a security parameter k and randomness r and returns a secret key K; Enc(K,m)
is PPT algorithm that takes a key K and a message m and returns a ciphertext c; Dec(K, c) is a deterministic
algorithm that takes a keyK and a ciphertext c and returnsm ifK was the key under which c was produced.
Informally, a private-key encryption scheme is CPA-secure if the ciphertexts it outputs do not leak any partial
information about the plaintext even to an adversary that can adaptively query an encryption oracle.

In addition to encryption schemes, we also make use of pseudorandom functions (PRF), which are
polynomial-time computable functions that cannot be distinguished from random functions by any PPT

adversary and random oracles, to which we assume all parties have black-box access. We refer the reader to
[12] for formal definitions of CPA-security, PRFs and random oracles.

Keyword hash tables. In our construction we use static hash tables [5] to store some specific information
for each one of the m keywords. The entries of the hash table λ are tuples (key, value), where the key key is
from a domain of exponential size, i.e., from {0, 1}k and value is an encryption of a boolean value. However,
the maximum number of entries in our hash table will be polynomial in k and equal to m, the number of
keywords. If, for a table λ, the key field is from {0, 1}k, and there are at most m entries in λ, then we say λ
is a (k,m) hash table. For each x ∈ {0, 1}k, we denote with λ[x] the value associated with key x, if key x
exists.

Searchable symmetric encryption. SSE allows a client to encrypt data so that it can later generate search
tokens which the server can use to search over the encrypted data and return the appropriate encrypted files.
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The encryption algorithm in an SSE scheme takes as input an index δ, a sequence of n files f =
(fi1 , . . . , fin) that have unique identifiers i = (i1, . . . , in),4 and a universe of keywords w = (w1, . . . , wm).
The index δ efficiently maps a keyword w ∈ w to a set of identifiers iw ⊆ i that correspond to a set
of files fw ⊆ f . The encryption algorithm outputs an encrypted index γ and a sequence of n ciphertexts
c = (ci1 , . . . , cin), corresponding to the identifiers i = (i1, . . . , in). We assume all the ciphertexts include
the identifiers of their plaintext files. All known constructions (except for [18]) can encrypt the files f using
any CPA-secure encryption scheme. The encrypted index γ and the ciphertexts c do not reveal any informa-
tion about f other than the number of files n and their length,5 so they can be stored safely at an untrusted
cloud provider.

To search for a keyword w, the client generates a search token τs and given τs, γ and c, the provider can
find the subset of ciphertexts cw ⊆ c that containw. Notice that the provider learns some limited information
about the client’s query. In particular, it knows that whatever keyword the client is searching for is contained
in whichever files resulted in the ciphertexts cw. A more serious limitation of known SSE constructions
(including ours) is that the tokens they generate are deterministic, in the sense that the same token will
always be generated for the same keyword. This means that searches leak statistical information about the
user’s search pattern. Currently, it is not known how to design efficient SSE schemes with probabilistic
trapdoors.

Our scheme supports parallel keyword search as well as parallel addition and deletion of files. For
updates, we use 1.5 rounds of interaction (i.e., three messages between client and server). For example, to
add a file f , the client generates—with the help of the server—an addition token τa. Given such token and γ,
the server can update the index γ. The same pattern occurs for deletion. To account for this interaction, we
slightly change the definition of CKA2-security for dynamic SSE which was recently presented by Kamara
et al. [11].

Definition 1 (Dynamic SSE). A dynamic SSE scheme is a tuple (Gen,Enc,SrchToken,Search,UpdHelper,
UpdToken,Update,Dec) of eight polynomial-time algorithms such that:

1. K ← Gen(1k): is a probabilistic algorithm that takes as input a security parameter k and outputs a
secret key K.

2. (γ, c) ← Enc(K, δ, f): is a probabilistic algorithm that takes as input a secret key K, an index δ and a
sequence of files f . It outputs an encrypted index γ and a sequence of ciphertexts c.

3. τs ← SrchToken(K,w): is a (possibly probabilistic) algorithm that takes as input a secret key K and a
keyword w and outputs a search token τs.

4. iw ← Search(γ, c, τs): is a deterministic algorithm that takes as input an encrypted index γ, a sequence
of ciphertexts c and a search token τs. It outputs a sequence of identifiers iw ⊆ i.

5. infoi,u ← UpdHelper(i, u, γ, c): is a deterministic algorithm that takes as input a file identifier i, the
update type u ∈ {add, delete}, an encrypted index γ and sequence of ciphertexts c. It outputs helper
information infoi,u for the specific update.

6. τu ← UpdToken(K, fi, infoi,u): is a (possibly probabilistic) algorithm that takes as input a secret key
K, a file fi and the respective helper information infoi,u as output by algorithm UpdHelper. It outputs
an update token τu for the update type u ∈ {add, delete}.

7. (γ′, c′) ← Update(γ, c, τu): is a deterministic algorithm that takes as input an encrypted index γ, a
sequence of ciphertexts c and an update token τu. It outputs a new encrypted index γ′ and new sequence
of ciphertexts c′.

4 The identifiers are chosen uniformly at random and do not reveal any information about the plaintexts they are representing, e.g.,
they can be the i-nodes of the underlying file system. In order not to overload the notation, file fi has identifier i.

5 Note that this information leakage can be mitigated by padding if desired.
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8. f ← Dec(K, c): is a deterministic algorithm that takes as input a secret key K and a ciphertext c and
outputs a file f .

We can now easily define correctness of the above dynamic SSE scheme definition.

Definition 2 (Correctness). Let D be a dynamic SSE scheme consisting of the tuple of eight algorithms
as given in Definition 1. We say that D is correct if for all k ∈ N, for all K output by Gen(1k), for
all tuples (δ, f), for all tuples (γ, c) output by one execution of Enc(K, δ, f) and successive executions
of Update(γ, c, τu), where τu is the update token output by UpdToken(K, fi,UpdHelper(i, u, γ, c)) for all
files fi and all u ∈ {add, delete}, for all keywords w, for all tokens τs output by SrchToken(K,w), for all
iw output by Search(γ, c, τs), the plaintexts fw = {Dec(K, ci) : i ∈ iw} are all the plaintexts in f containing
keyword w.

Security. Intuitively, the security guarantee we require from a dynamic SSE scheme is that (1) given an
encrypted index γ and a sequence of ciphertexts c, no adversary can learn any partial information about
the files f ; and that (2) given, in addition, a sequence of search tokens τ = (τ1, . . . , τt) for an adaptively
generated sequence of keywords q = (q1, . . . , qt) (which can be for the search, add or delete operations), no
adversary can learn any partial information about either f or q. This exact intuition can be difficult to achieve
and most known efficient and non-interactive SSE schemes [3,6,8,11,13,20] reveal the access and search
patterns.6 We therefore need to weaken the definition appropriately by allowing some limited information
about the messages and the queries to be revealed to the adversary. To capture this, we follow the approach
of [4] and [6] and parameterize our definition with a set of leakage functions that capture precisely what is
being leaked by the ciphertext and the tokens. Specifically, the leakage functions we consider in this work
are defined as follows:

1. L1(δ, f): given the index δ and the set of files f (along with the respective identifiers), this function
outputs the number of keywords m, the number of files n, the identifiers i of the file and the size of each
file;

2. L2(δ, f , w, t): this function takes as input the index δ, the set of files f and a keyword w for a search op-
eration that took place at time t. It outputs two different types of information, namely the search pattern
P(δ, q, t) and the access pattern ∆(δ, f , w, t), both of which are described in the following definitions.

Definition 3 (Search pattern). Given a search query for keyword w at time t, the search pattern P(δ, q, t)
is defined as the binary vector of length t with a 1 at location i if the search at time i ≤ t was for w; and 0
otherwise. Namely the search pattern reveals whether the same search was performed in the past or not.

Definition 4 (Access pattern). Given a search query for keywordw at time t, the access pattern∆(δ, f , w, t)
is defined as the identifiers in the set fw at time t.

Discussion on leakage. In our scheme (described in Section 3), if one searches for w at time t, the output
of the leakage function L2(δ, f , w, t) consists of ∆(δ, f , w, t), which includes the identifiers iw of the files
fw that contain keyword w at time t. As we add files to the collection, ∆(δ, f , w, t) is expanded with the
identifiers of the new files that contain w. This is a limitation of our construction since search tokens are
valid even for future documents added to the collection and effectively allow the server to use old tokens to
search over newly-added documents. It is an open problem to construct efficient dynamic SSE schemes that
do not have this limitation.7

6 One exception is the construction described in [4] which leaks only the access and the intersection patterns.
7 The scheme of Chang and Mitzenmacher [3] does not have this limitation but requires linear time search.
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We note that with our construction, if one adds documents to the index before performing any search
operations (which is common in practical applications like streaming), no information is leaked due to the
updates. From a security point of view, this is the main difference between our scheme and the recently
proposed construction of Kamara et al. [11], which always leaks information on an update. In this sense,
our construction satisfies a slightly stronger notion of security since since the leakage of our updates is
conditional on previous operations and does not occur unconditionally. This is also why, unlike [11], we do
not use an explicit leakage algorithm for updates.

Finally, as observed in [6], another issue with respect to SSE security is whether the scheme is secure
against adaptive chosen-keyword attacks (CKA2) or only against non-adaptive chosen keyword attacks
(CKA1). The former guarantees security even when the client’s queries are based on the encrypted index
and the results of previous queries. The latter only guarantees security if the client’s queries are independent
of the index and of previous results. Our scheme achieves the stronger notion of security, namely CKA2-
security. In our definition of security below, we adapt the notion of CKA2-security from [11] to the setting of
dynamic SSE with interactive updates. We model the interaction required by our scheme with an algorithm
UpdHelper.

Definition 5 (CKA2-security). Let D be a dynamic SSE scheme consisting of the tuple of eight algorithms
as given in Definition 1. Consider the following probabilistic experiments, where A is a stateful adversary,
S is a stateful simulator and L1 and L2 are stateful leakage algorithms:

RealA(k): the challenger runs Gen(1k) to generate a keyK.A outputs a tuple (δ, f) and receives (γ, c)←
Enc(K, δ, f) from the challenger. The adversary makes a polynomial number of adaptive queries by
picking q ∈ {w, fi}. If q = w is a search query then the adversary receives from the challenger a search
token τs ← SrchToken(K,w). If q = fi is an update of type u, then the adversary also sends the helper
information infoi,u ← UpdHelper(i, u, γ, c) to the challenger and then receives from the challenger the
update token τu ← UpdToken(K, fi, infoi,u). Finally,A returns a bit b that is output by the experiment.

IdealA,S(k): A outputs a tuple (δ, f). Given L1(δ, f), S generates and sends a pair (γ, c) to A. The
adversary makes a polynomial number of adaptive queries by picking q ∈ {w, fi}. If q = w is a search
query then the simulator is given L2(δ, f , w, t). If q = fi is an update of type u, the simulator is given the
updated output of L2(δ, f , w, t) for all keywords w that have appeared before in the adaptive queries.8

The adversary also sends infoi,u ← UpdHelper(i, u, γ, c) to the simulator. The simulator returns an
appropriate token τ . Finally, A returns a bit b that is output by the experiment.

We say thatD is (L1,L2)-secure against adaptive dynamic chosen-keyword attacks if for all PPT adversaries
A, there exists a PPT simulator S such that

|Pr [RealA(k) = 1 ]− Pr [ IdealA,S(k) = 1 ]| ≤ neg(k).

3 Our Dynamic SSE Construction

In this section we describe our parallel and dynamic construction. Let f = (fi1 , . . . , fin) be a sequence of
documents with corresponding identifiers i = (i1, . . . , in) over a set of keywords w = (w1, . . . , wm). We

8 This will be used to simulate searches for previous tokens, the output of which (of those searches) has changed due to the update.
This is the only leakage that our updates cause.
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view each individual fi document as a bit-string of polynomial length, i.e., fi = {0, 1}poly(k). Recall that an
index δ maps a keyword w ∈ w to a set of documents identifiers iw.

We assume that the universe of keywords is fixed but that the number of documents can grow. In par-
ticular, we assume that the total number of keywords m is much smaller than the number of files n. We
now introduce a standard (i.e., unencrypted) data structure keyword search which we refer to as a keyword
red-black tree. KRB trees will be the basis of our dynamic SSE scheme.

The KRB tree. The KRB tree is a dynamic data structure that—similarly to an inverted index—can be used to
efficiently answer multi-map queries. A KRB tree δ is constructed from a set of documents f = (fi1 , . . . fin)
(which include the identifiers i = (i1, . . . , in)) and a universe of keywords w. The data structure is con-
structed using the following procedure, which we denote as buildIndex(f):

1. Assume a total order on the documents f = (fi1 , . . . , fin), imposed by the ordering of the identifiers
i = (i1, . . . , in). Build a red-black tree T on top of i1, . . . , in. At the leaves, store pointers to the
appropriate documents. We assume the documents are stored separately, e.g., on disk. Note that this is a
slight modification of a red black tree since the tree is constructed on top of the identifiers but the leaves
store pointers to the files.

2. At each internal node u of the tree, store an m-bit vector datau. The i-th bit of datau accounts for
keyword wi, for i = 1, . . . ,m. Specifically, if datau[i] = 1, then there is at least one path from u to
some leaf that stores some identifier j, such that fj contains wi;

3. We guarantee the above property of vectors datau, by computing datau as follows: for every leaf l
storing identifier j, set datal[i] = 1 if and only if document fj contains keyword wi. Now let u be an
internal node of the tree T with left child v and right child z. The vector datau of the internal node u
is computed recursively as follows:

datau = datav + dataz , (1)

where + denotes the bitwise boolean OR operation.

To search for a keyword w in a KRB tree T one proceeds as follows. Assuming that w has position i in the
m-bit vectors stored at the internal nodes, check the bit at position i of node v and examine v’s children if
the bit is 1. When this traversal is over, return all the leaves that were reached.

The intuitive reason the KRB tree is so useful for our purposes is that it allows both keyword-based
operations (by following paths from the root to the leaves) and file-based operations (by following paths
from the leaves to the root). As we will see later, this property is useful for handling updates efficiently. We
now have the following:

Lemma 1 (KRB tree data structure). Let f = (fi1 , . . . , fin) be a set of n documents containing key-
words from a dictionary of m keywords w = (w1, . . . , wm). Then there exists a dynamic data structure for
keyword search such that: (a) the space complexity of the data structure is O(mn); (b) constructing the
data structure takes time O(mn); (c) the search time for a keyword w is O(r log n), where r is the number
of documents containing w; (d) the time to insert and delete a document f is O(q log n), where q is the
number of unique keywords contained in document f ; (e) search and updates take parallel O( rp log n) and
O( qp log n) time, respectively, with p processors in the concurrent-read-exclusive-write (CREW) model of
parallel computation.

Proof. Since the underlying red-black tree has space complexity O(n) and we have to store at each node a
bit-vector ofm bits, it follows that the space complexity of the KRB tree isO(mn). Now due to the property
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of Relation 1, given the document collection f one can start building the data structure following a postorder
traversal. Since a postorder traversal visitsO(n) nodes and the time spent at each node isO(m) (to compute
the OR of two m-bit vectors), the time required for constructing the data structure is O(mn).

Recall that sequential search for a keywordw (corresponding to position i of them-bit vectors) proceeds
as follows: while the bit at position i of node v is 1, examine v’s children. Therefore the search procedure
will traverse as many paths as the documents containing keyword w, namely r paths. Since the maximum
height of the red-black tree is maintained to be O(log n) [5], the search time is O(r log n).

The parallel search is executed as follows. Let 0, 1, . . . , p − 1 be the processors that are available. Pro-
cessor 0 queries the root r of the tree for a specific keyword. If the search is to be continued in both the
subtrees Tu and Tv of the processor’s children u and v, processor 0 continues with one subtree (say Tu)
and assigns the other subtree Tv to be explored by another processor. The same algorithm is recursively
applied for nodes u and v. However, if at some point during the search no more processors are available
(i.e., all p processors are working—this test can be achieved with concurrent read of the same data structure
by all processors, that is why we require CREW model), the current processor simply selects one of its two
possible children to continue, marks the other child c as “unexplored” and pushes c into a local stack of
unexplored nodes so that it can be explored later. All p processors terminate their execution in O(log n)
time, outputting p documents containing the queried keyword. In the second round, each processor i starts
over by popping (and removing) a node c from the processor’s local stack and by resuming the search from
that node c. Again, during that round, each processor pushes nodes it cannot explore into its local stack. At
the end of the second round, at least another p documents are retrieved in O(log n) time. Eventually, after
r/p rounds of logarithmic time, all documents are retrieved (and all the local stacks are guaranteed to be
empty). Therefore, search executes in parallel O( rp log n) time.

The sequential update time follows from the complexity of the update of the red-black tree [5]. Since it
involves bit operations between q independent vector positions, it can be implemented inO( qp log n) parallel
time. This completes the proof. �

We now show the following corollary, establishing the number of processors required for improving the
optimal sequential performance:

Corollary 1 (Number of processors). With ω(log n) processors available, parallel searches take o(r) time
and parallel updates take o(q) time in a KRB tree.

KRB-based dynamic SSE. We now describe in detail our KRB-based parallel and dynamic SSE construction.
Let f = (fi1 , . . . , fin) be the set of documents and w = (w1, . . . , wm) be the set of keywords. We use the
following cryptographic primitives:

1. A pseudo-random function G : {0, 1}k × {w1, . . . , wm} → {0, 1}k;
2. Another pseudo-random function P : {0, 1}k × {w1, . . . , wm} → {0, 1}k;
3. A random oracle H : {0, 1}k × {0, 1} → {0, 1}.

We now describe the algorithms (Gen,Enc, SrchToken, Search,UpdHelper,UpdToken,Update,Dec) of the
DSSE scheme from Definition 1 in detail:

Algorithm K ← Gen(1k): Generate three random k-bit strings K1, K2 and r. Instantiate one private-
key CPA-secure encryption scheme for encrypting documents by calling K3 ← E .Gen(1k; r). Set K :=
(K1,K2,K3);
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Fig. 1. The construction of a dynamic symmetric searchable encryption (DSSE) scheme using the KRB tree data structure, for a
collection of n = 8 documents indexed over m = 5 keywords. Note that for each node v we store two vectors. The encryption of
the actual bit of position i at node v is stored to either hash table λ0v or hash table λ1v , depending on the output of the random
oracle. The red arrows indicate the search for keyword 5, returning documents f3, f6, f7. Note that the two searches displayed can
be parallelized.

Algorithm (γ, c)← Enc(K, δ, f): Let δ ← buildIndex(f) be a KRB tree and proceed as follows:

1. Instantiate a second private-key CPA-secure encryption schemeR. Derive a secret key SKi per keyword
wi by calling SKi = R.Gen(1k;GK2(wi)), for i = 1, . . . ,m.

2. For 1 ≤ j ≤ n, let cij ← E .Enc(K3, fij ), outputting a vector of ciphertexts c;
3. Store c on disk (note that the identifiers i remain the same) and then delete f . For every node v of the

KRB tree T , that has identifier id(v), do the following: (a) Instantiate two (k,m) keyword hash tables
λ0v and λ1v—see Section 2 for the definition of a (k,m) keyword hash table. Store λ0v and λ1v at v;
(b) For every i = 1, . . . ,m, set λbv[PK1(wi)]← R.Enc(SKi,datav[i]), where b = H(PK1(wi), id(v))
is a bit computed as the output of a random oracle and datav is the vector at node v in T ; (c) Store
a random string at λ|1−b|v[PK1(wi)] (namely at each node v, the bit b dictates which hash table (either
λ1v or λ0v) contains the actual entry for keyword wi); (d) Delete vector datav.

4. Output γ := T and c := (ci1 , . . . , cin).

Algorithm τs ← SrchToken(K,wi): Call R.Gen(1k;GK2(wi)) to output the secret key SKi and output the
search token τs := (PK1(wi),SKi);

Algorithm iw ← Search(γ, c, τs): Parse τs as (τ1, τ2). Call search(r), where r is the root of the KRB tree
T . Let v and z be the left and right child of a node u respectively. Algorithm search(u) is recursively defined
as follows:

1. Output a bit b = H(τ1, id(u)) and compute a = R.Dec(τ2, λbu[τ1]);
2. If a = 0, return;
3. If u is a leaf, set cw := cw ∪ cu, where cu is the ciphertext corresponding to file identifier u (and also

stored at node u). Else call search(v) and search(z).

Output cw (note here that, by Lemma 1, this algorithm can be parallelized to execute in O( |cw|p log n) time,
where p is the number of processors).
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Algorithm infoi,u ← UpdHelper(i, u, γ, c): The update u in this algorithm refers to the document fi and is
either an insertion of document fi or a deletion of document fi (with identifier i). To compute the information
infoi,u, the algorithm performs the structural update9 on the KRB tree T . Note that in order to perform the
structural update, no access to the actual content of the documents is required, since such an update is only
based on the identifier i. The information infoi,u consists of the portion T (u) of the KRB tree T that is
accessed during the update. In other words T (u) suffices to perform the update, in absence of the rest of the
tree T −T (u). Moreover, the size of T (u) isO(m log n) in the worst case, given that a red-black tree update
takes O(log n) time in the worst case (see Lemma 1) and therefore it can “touch” as many bits (multiplied
by the size m of the encrypted vectors that are stored at the tree nodes). To give an example, in Figure 1,
info3,u, where u is “deletion of file f3”, contains the nodes r22, r11 and r (along with the encrypted vectors
stored at them).

Algorithm τu ← UpdToken(K, fi, infoi,u): If the update u is an insertion of document fi, compute first an
encryption ci ← E .Enc(K3, fi) of the added document. Now let infoi,u contain the specific portion T (u) of
the KRB tree, as returned by UpdHelper. Perform the structural update on T (u) and let T ′(u) be the new
subtree after the update. Every node v of T ′(u) that has new/modified ancestors (compared to its structure
in T (u)) must also change its encrypted local information, since this is always computed as a function of its
ancestors (in a sense, its encrypted local information is going to be recomputed and rerandomized). Also it
changes its identifier from id(v) to id(v′). Specifically, for every such node v ∈ T ′(u) we do the following:

1. Instantiate two new (k,m) keyword hash tables with random entries λ0v and λ1v. Store λ0v and λ1v at
v;

2. Update the new hash tables by setting λbv[PK1(wi)] ← R.Enc(SKi,datav[i]) (i = 1, . . . ,m), where
b = H(PK1(wi), id(v

′)) is a bit computed as the output of the random oracle and datav is the updated
vector due to the update;

3. Output τu := (T ′(u), ci).

Algorithm (γ′, c′)← Update(γ, c, τu): On input τu, just copy the new information T ′(u) to the already
structurally updated KRB tree T (note that T was structurally updated by the UpdHelper algorithm) and
output the new encrypted index γ′ and the new set of ciphertexts c′.

Algorithm fi ← Dec(K, ci): Output the plaintext fi := E .Dec(K3, ci).

Correctness, security and main result. In this section we prove that our scheme is correct (Lemma 2) and
secure (Lemma 3). Then we give the final result (Theorem 1).

Lemma 2 (Correctness). The dynamic searchable symmetric encryption scheme presented above is correct
according to Definition 2.

Proof. Note that the Update algorithm modifies the encrypted KRB tree in a way that Relation 1 is satisfied,
since the correct value of the bit at each node v is stored as indicated by the random oracle. Since the Search
algorithm will query the same random oracle, it follows that when searching for a keyword w, it will follow
the tree paths that lead to the correct set of documents.

9 The structural update involves the necessary rotations that are performed during an update of a red-black tree, so that its height
can be maintained to be logarithmic. The details of such operations are described in the book by Cormen, Leiserson, Rivest and
Stein (CLRS) [5].
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Lemma 3 (Security). The dynamic searchable symmetric encryption scheme presented above is (L1,L2)-
secure in the random oracle model and according to Definition 5 (CKA-2 security), where L1 leaks the
number of the keywords, the number of the documents, the identifiers of the documents and the size of each
document; and L2 leaks the search pattern and the access pattern, as defined in Definitions 3 and 4.

Proof. We describe a simulator S that interacts with an adversary A in an execution of an IdealA,S(k)
experiment as described in Definition 5. Given the leakage L1(δ, f), it constructs (γ, c) as follows. It sim-
ulates the encrypted files c = (ci1 , . . . , cin) using the simulator SE , which is guaranteed to exist by the
CPA-security of E , together with the value n and the size of each file (both of which are included in the
leakage function). To simulate γ, it constructs a red black tree T using the identifiers i = (i1, . . . , in) in-
cluded in the leakage function. It then picks m random addresses addri ∈ {0, 1}k and generates m keys
(SK1, . . . ,SKm) for R to be used for encrypting the entries of the bit-vectors at the internal nodes of T .
Note that m is also included in the leakage function.

Now, for every node v of the tree T the simulator sets up two (k,m) keyword hash tables Λ0v and Λ1v

as follows: for every i = 1, . . . ,m, the simulator stores (a) either an encryption of a “0” at Λ0v[addri]
and an encryption of a “1” at Λ1v[addri] or, (b) an encryption of “1” at Λ0v[addri] and an encryption
of a “0” at Λ1v[addri]. This is decided, for every node, by flipping a coin. To encrypt bit biti ∈ {0, 1}
at position addri, the simulator uses R, outputting the ciphertext R.Enc(SKi, biti) for all i = 1, . . . ,m.
The simulator also stores this information locally: For each node v of T it stores a vector statev such that
statev[i] = j ∈ {0, 1} if and only if the encryption of “1” was stored at vector Λjv, for all i = 1, . . . ,m.10

Finally, the simulator outputs the encrypted KRB tree γ to the adversary. γ consists of the red black tree
T and the vectors Λ0v and Λ1v for every node v of T . We continue by distinguishing two cases, one for
adaptive queries and one for adaptive updates. Before that we recall that given a search query for keyword
w that takes place at time t, the leakage L2(δ, f , w, t) consists of the search pattern P(δ, q, t) and the access
pattern ∆(δ, f , w, t) (from Definitions 3 and 4):

1. Adaptive queries: Suppose the simulator receives a new query q for a keyword wi. Using L2(δ, f , wi, t)
the simulator knows whether this query has appeared before (due to the search pattern P(δ, q, t)), and if
so, it outputs the same token τs. Else, the simulator picks an address addri that has not been used before.
The simulated token is τs = (addri,SKi). After the adversary receives the token τs = (addri, SKi) =
(τ1, τ2) he is able to execute the search by using the algorithm Search(γ, c, τs), in a way that Search
is accessing exactly the same locations contained in the access pattern ∆(δ, f , wi, t), therefore always
returning the correct answer. We show, that this can be achieved by appropriate use of the random oracle.
Namely, the output b of the random oracle at Step 1 of the Search(γ, c, τs) algorithm (with reference to
node v) is programmed by the simulator in the following manner: if v is contained in the path to an iden-
tifier contained in the access pattern ∆(δ, f , wi, t), then b is the bit such that R.Dec(τ2, Λbv[τ1]) = 1.
Otherwise, b is the bit such thatR.Dec(τ2, Λbv[τ1]) = 0. Note that the appropriate bit can be determined
by the simulator, since it is storing the state vector statev, for every node v of the tree T .

2. Adaptive updates: Suppose the simulator receives a new query q = u = fi for inserting/deleting doc-
ument fi with identifier i. If u is an insertion, the simulator uses SE to simulate ci (note that while fi
is not available to the simulator, its identifier is revealed through the updated leakage L1(δ, f)). Now
let infoi,u be the helper information that is returned during the protocol by UpdHelper. We recall that
infoi,u consists of a certain subtree T (u) of T , namely the portion of the red-black tree T that is ac-
cessed during the update. The simulator can now compute T ′(u) (since he knows the identifier of the

10 Note that the simulator could also retrieve that information without storing it, by using the initial randomness he used to compute
it.
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new document) which is the new subtree after the update. For every node v′ that changes its structure in
the subtree T ′(u) (e.g., it obtains a new child), and has a new identifier id(v′), the simulator does the
following (similar actions taken in the setup phase of the simulation):

(a) it instantiates two (k,m) keyword hash tables with random entries Λ0v′ and Λ1v′ and stores λ0v′ and
λ1v′ at v;

(b) For every i = 1, . . . ,m, the simulator reinitializes the keyword hash tables Λ0v′ and Λ1v′ by storing
(a) either an encryption of a “0” at Λ0v′ [addri] and an encryption of an “1” at Λ1v′ [addri] or,
(b) an encryption of “1” at Λ0v′ [addri] and an encryption of a “0” at Λ1v′ [addri]. This is decided
by flipping a coin. Again, to encrypt bit bi ∈ {0, 1} at position addri, the simulator executes
R.Enc(SKi, bi). Also the simulator updates its state statev′ accordingly.

(c) Output τu := (T ′(u), ci).

After the update, if the adversary searches for keywords for which it has old tokens, the simulator can
again control the search by programming the random oracle appropriately since it gets the updated leakage
∆(δ, f , wi, t) for each previous keyword for which a token was issued at time t.

It remains to show that for all PPT adversaries A, the outputs of a RealA(k) and of an IdealA,S(k)
experiment are negligibly close. This holds for the following reasons. The keys used in the tokens and the
ones used to encrypt the hash table elements are indistinguishable from real keys since they are constructed
with PRFs which are indistinguishable from random functions. Therefore, the CPA-security of E and R
guarantee that the adversary cannot distinguish between the real and simulated encryptions of the files and
bit vectors, respectively. Finally, the answers returned by simulator to the adversary’s random oracle queries
are consistent and are appropriately distributed. �

We now state our final theorem.

Theorem 1 (Parallel and dynamic SSE scheme). There exists a dynamic searchable symmetric encryption
scheme for a collection of n documents indexed over a set of m keywords such that: (a) it is correct accord-
ing to Definition 2 and secure according to Definition 3 and in the random oracle model; (b) searches for
keywords w can be performed in sequential O(r log n) time or parallel O( rp log n) time in the CREW model
of parallel computation, where r is the number of documents containingw and p is the number of processors
available; (c) additions or deletions of a document fi can be performed in sequential O(m log n) time or
parallel O(mp log n) time, with one interaction, and have O(m log n) communication complexity; (d) the
encrypted data structure γ has size O(mn) and the local space needed is O(1).

Proof. Correctness follows from Lemma 2, security follows from Lemma 3 and most complexities (in-
cluding the parallel ones) follow from Lemma 1. Note that the update complexity is not O(q log n), as in
Lemma 1—it is O(m log n), since we do not want to reveal which keywords are contained in the file of the
update. Also, our scheme has interactive updates due to the algorithm UpdHelper in the definition. �

In the following corollary we give the minimum number of processors required so that the parallel operations
of our scheme outperform the optimal sequential complexity.

Corollary 2 (Number of processors). With ω(log n) processors available in the above scheme, parallel
searches take o(r) time. Similarly, with ω(mq log n) processors available, parallel updates take o(q) time.
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4 Extensions and Optimizations

Improving the space complexity. We note here that the space complexity of our encrypted KRB tree is
O(mn), where m is the number of the keywords and n is the number of documents. Since m � n in
practical scenarios, the space complexity can be kept low in practice. However, one way to reduce the size
of the data structure is to use a tree of depth 2 with internal nodes of degree O(

√
n). Similarly to KRB trees,

one can storem-bit vectors at the internal nodes of such a tree and perform search, add and delete operations
in the same manner. Encryption of these trees can also be handled with the same algorithm that encrypts
KRB trees. The space complexity of this structure is O(n + m

√
n), which is O(n) as long as m ≤

√
n.

Note however that this construction increases the search time and communication complexity (for updates)
to O(r

√
n), where r is the number of the documents that contain w.

Supporting I/O-efficient search. In the case of very large indexes that cannot fit into main memory11, our
approach can be implemented in an I/O-efficient way by using a B-tree instead of a red-black tree. With
such a structure, search always requires logB n I/Os. Note that after the disk page has been loaded into main
memory, the encrypted search in main memory can be parallelized. In order now to store the B siblings of
a B-tree node in a single disk page of x bits, one has to choose B such that 2Bm ≤ x. This is because at
each node of the B-tree we need to store two encrypted m-bit vectors, where m is the size of the universe of
keywords.

Verifiability of encrypted searches. Our model assumes an adversary that is curious but honest. However,
we note that our scheme can be potentially extended to support verifiability of results in a scenario where the
adversary is malicious. This could be achieved by turning our KRB tree into a hash-based KRB tree (e.g.,
using Merkle hash trees [15]) and maintaining hashes at the internal nodes of the KRB tree. For verifying
the result the client could access a logarithmic number of hashes and verify the search computation step-by-
step, in logarithmic time (for that, the client also needs to store and update the root hash of the tree). In this
way, a client could be assured that no encrypted documents have been omitted from the results, unless the
adversary is able to break the collision resistance of the hash function. We defer a more formal description
of such a scheme and a proof of security to future work.
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