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Abstract

Oblivious RAM (ORAM) allows a client to access her data on a remote server while hiding
the access pattern (which locations she is accessing) from the server. Beyond its immediate
utility in allowing private computation over a client’s outsourced data, ORAM also allows mu-
tually distrustful parties to run secure-computations over their joint data with sublinear on-line
complexity. In this work we revisit the tree-based ORAM of Shi et al. [20] and show how to
optimize its performance as a stand-alone scheme, as well as its performance within higher level
constructions. More specifically, we make several contributions:

• We describe two optimizations to the tree-based ORAM protocol of Shi et al., one reduc-
ing the storage overhead of that protocol by an O(k) multiplicative factor, and another
reducing its time complexity by an O(log k) multiplicative factor, where k is the security
parameter. Our scheme also enjoys a much simpler and tighter analysis than the original
protocol.

• We describe a protocol for binary search over this ORAM construction, where the entire
binary search operation is done in the same complexity as a single ORAM access (as
opposed to log n accesses for the naive protocol). We then describe simple uses of this
binary-search protocol for things like range queries and keyword search.

• We show how the ORAM protocol itself and our binary-search protocol can be implemented
efficiently as secure computation, using somewhat-homomorphic encryption.

Since memory accesses by address (ORAM access) or by value (binary search) are basic and
prevalent operations, we believe that these optimizations can be used to significantly speed-up
many higher-level protocols for secure computation.
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1 Introduction

Oblivious RAM. Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [9, 16, 11],
allows a client to outsource her data to a remote server (e.g., “the cloud”) and access it efficiently
and privately. In particular, the client can access individual elements of her data without revealing
to the server which elements she is accessing. The efficiency of the client and server on each such
data access should be small and essentially independent of (polylogarithmic in) the size of the
entire client data. Using ORAM, a client can privately execute arbitrary RAM computations over
her remotely stored data, without having to download the data from the server in its entirety. In
particular, the client/server computation and communication is essentially only proportional to
the time-complexity of the RAM computation itself (with polylogarithmic overhead). Therefore
ORAM offers tremendous savings when the client wants to execute simple computations (e.g.,
binary search) over huge amounts of data.

ORAM for Multiparty Computation. Another use of ORAM is to speed up secure multi-
party computation (MPC) protocols (e.g., [21, 10] etc.), where two or more parties want to execute
some computation over their inputs without revealing the inputs to each other. When the total size
of the input is large (e.g., one of the inputs is a large database), one may often want to compute
functions whose running time on a RAM is sublinear in the total size of the input. However, secure
computation protocols that use either Boolean or arithmetic circuits as a representation of the
evaluated functionality, inherently incur computation complexity at least linear in the total size
of the input for each secure evaluation. This is also the case for secure computation based on
fully homomorphic encryption [6, 5, 4, 3, 7] that uses arithmetic circuits. Several works [17, 14]
have demonstrated that ORAM can be used to construct secure computation protocols whose
(amortized) complexity can be sub-linear in the total size of the input. In particular, the efficiency
of these protocols is proportional to the time-complexity of the underlying computation on a RAM
(which may be sublinear in the input size), in contrast to traditional approaches whose efficiency
is proportional to the circuit size of the underlying computation (which cannot be sublinear in the
input size).

Efficiency of ORAM. Although there has been much recent progress in constructing progres-
sively more efficient ORAM schemes [18, 12, 20, 13], the concrete computation and storage overhead
introduced by ORAM is usually significant in practice. Most ORAM schemes are based on a hierar-
chical structure of [11]. Despite their asymptotic efficiency, these schemes suffer in practice due to
their reliance on fairly complex “sorting networks”. (Some constructions also have large “spikes”
of complexity, where every so often the client and server need run a maintenance procedure of
complexity linear in the entire data set.) A recent solution of Shi et al. [20] (which we describe in
Section 2) takes a very different approach over these other schemes. Despite having worse asymp-
totic performance, it is significantly simpler to implement (and understand conceptually), and is
deemed to be more efficient in practice because it does not hide any large constant factors. It has
been implemented and used in past projects [14]. The client/server computation and communi-
cation needed to perform each operation in this protocol is O(k log2N), and the server storage is
O(kN), where N is the size of the client data and k is the “security parameter.” (Roughly in every
operation we incur at most a 2−k-probability of privacy loss. Clearly to support M operations we
need k � logM where M is the number of operations; a typical setting may be k ∈ [50, 80].)
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1.1 Our Results

We propose some significant optimizations to the ORAM construction of Shi et al. [20] and its use
in performing private RAM computation over outsourced data and secure multiparty computation.
These optimizations improve both asymptotic and concrete efficiency of the scheme. We briefly
describe each of these optimizations below.

Reduced Storage and Query Time. One of the main disadvantages of the Shi et al. scheme is
the large O(k) multiplicative storage overhead on the server. We show a very simple modification to
the scheme that gets rid of this overhead; the server only needs to store O(N) bits for N bits of client
data (the hidden constant is no more than 4). Another modification improves the computation
and communication complexity by a factor of log k from O(k log2N) to O(k log2N/ log k), and
also greatly simplifies and tightens the analysis. Since we usually assume that N = kc for some
small constant c, our improved time/communication complexity simply becomes O(k logN). These
improvements only require relatively minor changes to the scheme of Shi et al., and do not introduce
any hidden complexity to its implementation (in fact they may make it even easier to implement).
Together, these changes yield a scheme whose asymptotic efficiency matches the best “hierarchal
ORAM” construction, while being significantly simpler and with much better concrete efficiency.

Optimized Binary Search. One of the most commonly used sub-linear time operations over
large data is binary search. This operation is performed whenever executing any query over an
indexed database (or sorted data) and only accesses logarithmic number of elements in the database.
A direct execution of binary search using ORAM requires a logarithmic number of ORAM queries.
We propose a modification for the ORAM scheme of Shi et al. [20] (or our variant of it) that allows
the execution of binary search with the efficiency of a single ORAM query.

Optimizations Using Homomorphic Encryption. Lastly, we show that it is possible to opti-
mize the asymptotic communication complexity and the client’s computation time using homomor-
phic encryption (HE) [6]. Moreover, by only relying on very limited low-complexity homomorphic
operations, these optimizations can be made practically efficient using somewhat homomorphic
encryption schemes. In particular, the client’s computation and the communication complexity
per data access is reduced from at least O(k log2N/ log k) to O(k logN). This may provide a
constant-factor savings even for N = kc, and the saving gets larger for larger value of N .

2 Tree ORAM Construction

In this section we summarize the oblivious RAM (ORAM) construction of Shi et al. [20]. Recall
that an ORAM construction allows a client to request storage blocks from a server in a way that
hides the access pattern. Roughly, the server should not be able to discern if an access query refers
to the same storage block as a previous query, or to a new block that was not queried before. The
original protocol of Shi et al. uses O(k · DN logN) storage on the server to store a database of
N elements, each of which is D-bits long, with security parameter k (i.e., with failure probability
exp(−k)). The client only needs O(k log n(D + logD)) memory,1 and the time complexity of the

1The client memory can be made as small as O(k + D + logN), but in the variant that we describe here the
server’s messages can be as long as O(k logN(D + logN)) so the client needs this much memory just to store them.
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protocol is O(k log2N(D + logN)) per access.
We note that most prior work assumed a computation model with D-bit word size, so the

expressions above become O(kN logN) and O(k log2N), respectively, but here we stick to the more
accurate notation that includes also the D factors. We also note that in [20] they use k = O(logN),
but again here we follow the more standard convention of having a separate security parameter,
unrelated to the database size.

2.1 Recursive Structure

At the heart of the construction of Shi et al. is the following recursive structure: Suppose that we
have an underlying basic ORAM protocol, where the client stores a table of N “addresses” of size
logN bits in order to implement oblivious access to a database of N elements of size D > 2 logN
bits (and moreover, a single ORAM access to the database only requires a accessing a single address
in the table). Since the client’s table is at most half the size of the database, it suggests storing
the table itself in the same ORAM structure recursively, reducing the client storage by a factor of
two with every level of recursion.

In more detail, in level 0 of the recursion the client “outsources” a database consisting of
N0 := N values of D bits each, using a client-stored table consisting of N0 addresses of size logN0

bits each. In each future level, the client outsources the table of the previous level using the
underlying scheme. In level i + 1 of the recursion, the client outsources a table with Ni entries of
size logNi bits, by thinking of it as a database of Ni+1 = dNi/2e elements, each of of size 2 logNi

bits. This is done using the underlying basic ORAM construction, in which the client only needs
to store a level i + 1 table of Ni+1 entries of logNi+1 bits each. Repeating this for logN levels of
recursion reduces the client table to only a constant number of entries.

To access the j’th entry of the level-i table, the client computes the address of that entry in the
level-(i + 1) database (with Ni+1 = dNi/2e elements), specifically that address is j′ = bj/2c. The
client uses the level-(i + 1) basic ORAM to fetch that element, and extracts from it the desired
entry. For that instance of the basic ORAM protocol, the client needs to access a single entry of
its level-(i + 1) table, and this is done recursively using the level-(i + 1) basic ORAM. Therefore,
altogether, the recursive scheme uses at most logN accesses of the underlying ORAM.

Clearly, the same recursive structure can be applied with any integer factor τ ≥ 2 between the
size of successive levels. Specifically, we store the i-level client table (with Ni entries) as a database
of Ni+1 = dNi/τe elements of size τ logNi bits, accessing the j’th entry of the level-i table is done
by retrieving the element j′ = bj/τc in the corresponding database, and we use logτ (N) levels
of recursion. The drawback of using a large value of τ is that the size of elements in the i-level
database grows linearly with τ , which impacts the running time of the underlying basic ORAM
protocol. Below we assume that τ is a small constant, e.g., τ = 4.

2.2 The Underlying Basic ORAM

The underlying basic ORAM protocol from [20] has the server keeping an N -element database in
a complete binary tree of depth logN , where each node in the tree contains a bucket large enough
to store k data elements (k is the security parameter). Of course, the content of all the buckets
is encrypted under the client’s key, in particular the server does not know how many elements are
actually stored in each bucket.
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Each database element with logical address v ∈ [N ] is associated with a random leaf Lv, and
the client keeps an N -entry table of the mapping v 7→ Lv. (I.e., entry v in the table contains the
leaf number Lv.)

Denote by dv the data corresponding to logical address v. Throughout the protocol we maintain
the invariant that the triple (Lv, v, dv) is stored in one of the buckets on the path from the root
to the leaf Lv. (Initially it is stored at the leaf itself.) Access to logical address v consists of two
subroutines, one for doing the actual access and another one to clean up after the first.

Access. To access the data associated with logical address v, the client looks up Lv in its table and
asks the server for the entire path from the root to leaf Lv. Upon receiving all the buckets in
this path, the client decrypts them, finds a triple of the form (Lv, v, dv) in one of the buckets
(for some dv), and this value dv is the requested data.

The client either leaves the data unchanged (if the operation is a read) or overwrites it with a
new value (if it is a write), and we denote the resulting data by d′v. In either case, it chooses
a new random leaf L′v ∈ [N ] and updates its table with the new L′v value. The client then
removes the triple (Lv, v, dv) from the bucket where it was found, and instead puts the triple
(L′v, v, d

′
v) in the root bucket. Finally it re-encrypts all the buckets and send them back to

the server, who replaces all the buckets on the path to Lv by the new encrypted buckets.

Observe that since the new triple is placed at the root, then this operation does not violate
the tree invariant that we maintain.

Eviction. To prevent the root bucket from overflowing, the client and server run a “maintenance”
subroutine whose goal is to evict triples from their current buckets and push them to buckets
lower down the tree. Specifically, the client chooses at random two nodes from every level
of the tree except the leaves. For every chosen node, it asks the server for the buckets in
that node and its two children. The client decrypts these buckets, and if the parent bucket
contains any triples then it chooses one of them at random, which we denote by (Lv, v, dv).
The client removes that triple from the parent bucket, and pushes it to the bucket of one of
the two children.

The child to which this triple is evicted is determined by Lv. Namely, the tree invariant
tells us that this triple is currently found in some node on the path from the root to leaf
number Lv, and the client just pushes it one level down on that path. Clearly, this operation
maintains the tree invariant. The client then re-encrypts the buckets of the parent and its
two children and send them back to the server, who stores the new buckets in place of the
old ones.

Shi et al. proved in [20] that the probability of any bucket overflowing is small. Specifically, the
probability of an overflow in m operations is bounded by O(mN/ exp(k)). They also proved that
as long as no overflow occurs, the view of the server is computationally independent of the access
pattern (assuming the security of the encryption scheme).

2.3 Putting it Together

In the complete construction of [20], the server keeps `− 1 = dlogτ (N)e − 1 complete binary trees,
with the level-i tree having τ `−i leaves (rounded up to a power of 2). Each node in every tree has
a bucket large enough to store k “entries”, each entry is assigned a (changing) random leaf of the
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tree, and we maintain the invariant that each entry can be found in one of the buckets on the path
from the root to “its leaf.”

In the largest tree (i = 0), each entry corresponds to one logical address v ∈ {0, . . . , N−1}, and
it contains the user data for that logical address. For the next tree (i = 1), each entry corresponds
to a size-τ interval of logical addresses, and it contains the τ leaf-numbers in the largest tree that
are currently assigned to the entries of those τ logical addresses. More generally, each entry in the
tree at level i+1 corresponds to the union of τ level-i intervals (which is itself a size-τ i+1 interval of
logical addresses), and that entry contains τ leaf-numbers of the level-i tree, namely the leaves that
are currently assigned to the entries of those τ level-i intervals. With each entry in every tree we
store also the first logical address of the interval of that entry, as well as the leaf that is currently
assigned to that entry. Thus each entry is of the form

level-0 :
(

L∗, v, user-data
)

level > 0 :
(

L∗, v, (L1, L2, . . . , Lτ )
)

where L∗ is the leaf currently assigned to that entry, [v, v + τ i) is its interval, and (L1, L2, . . . , Lτ )
are the leafs in the next tree that are currently assigned to the τ sub-intervals

[v, v + τ i−1), [v + τ i−1, v + 2τ i−1), [v + 2τ i−1, v + 3τ i−1), . . .

Of course, all of the buckets in all of the trees are encrypted under a key known to the client.
The “tree at the last level `”, which has a single node, is kept by the client. That tree has just

a single entry, corresponding to the interval [0, τ `), and containing τ leaf-numbers of the tree at
level `− 1 that are currently assigned to the entries of the sub-intervals [0, τ `−1), [τ `−1, 2τ `−1), . . .

ORAM Access Query. To access the logical address v, the client looks up in its level-` “tree”

for the list (L
(`−1)
1 , . . . , L

(`−1)
τ ), and determines the level-(` − 1) sub-interval containing v, namely

j such that (j − 1)τ `−1 ≤ v < jτ `−1. The client sets v`−1 = (j − 1)τ `−1 and L(`−1) = L
(`−1)
j ,

chooses at random a new leaf L̂(`−1) and replaces L
(`−1)
j by this new value in the list. Then the

client proceeds iteratively for i = `− 1 down to 0:

1. Request from the server all the buckets on the path from the root of the level-i tree down to
the leaf L(i). Decrypt them and find in them an entry of the form (L(i), vi, data).

2. If i > 0 do the following:

(a) Parse data = (L
(i−1)
1 , . . . , L

(i−1)
τ ), choose a new random leaf in the next tree, L̂(i−1).

(b) Determine the level-(i−1) sub-interval containing v, namely j such that vi+(j−1)τ i−1 ≤
v < vi + jτ i−1. Set vi−1 = vi + (j − 1)τ i−1 and L(i−1) = L

(i−1)
j .

(c) Replace L
(i−1)
j by L̂(i−1) inside data, denoting the result by data′.

Else (i = 0), if this is a write operation then set data′ to be the new value. Otherwise (read),
set data′ = data.

3. Remove the entry (L(i), vi, data) from the bucket where is was found, and instead place in the
root bucket the entry (L̂(i), vi, data

′). Re-encrypt all the buckets and send to the server.
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Finally, the client and server run the Eviction subroutine for each of the trees i = 0, 1, . . . , `− 1. If
this was a read operation then the return value is the data value from the last level i = 0.

The complexity of this protocol is essentially linear in the amount of information sent between
the client and server. This infomration consists of a constant number of buckest from every level
in every tree. Since the (` − i)’th tree has depth log2(τ

i) = i log2 τ , then the number of buckets
sent is

log2 τ ·
`−1∑
i=0

i = O(log τ · `2) = O(log τ · (logN/ log τ)2) = O(log2N/ log τ)

(with logN buckets sent in the largest tree). Each bucket has size either O(k(D + logN)) (for
the largest tree) or O(kτ logN) (for all the smaller trees), hence the total communication (and
computation) complexity is

O(log2N/ log τ) ·O(kτ logN) + log2N ·O(k(D + logN)) = O
(
k log2N(D + τ logN/ log τ)

)
.

Using a small constant for τ , we get the claimed complexity of O(k log2N(D + logN)).

3 Parameter Optimizations for the Tree ORAM Scheme

In this section we present two optimization for the underlying basic tree-based ORAM construction
of Shi et al. [20]. First we describe in Section 3.1 a very simple optimization that saves a factor of
O(k) in the storage overhead of the protocol. Then in Section 3.2 we describe a somewhat more
involved optimization that reduces the time complexity per access by a factor of O(log k), and also
considerably simplifies and tightens the overflow-probability analysis.

3.1 Reducing the Height of the ORAM Tree

The construction from [20] uses an N -leaf tree to store an N -element database. We first observe that
increasing just slightly the capacity of the buckets, one can achieve the same overflow probability
for many more elements than leaves. Note that the buckets in [20] are large enough to keep O(k)
elements, but the expected number of elements in each bucket in only O(1), which is the reason for
the O(k) overhead in storage. We observer, however, that we can increase the expected number of
elements per bucket to any desired number m, while keeping the overflow probability at exp(−k),
simply by making the bucket capacity O(m+ k), thus reducing the overhead to O(m/k). Hence by
setting m = k, we reduce the storage overhead to only O(1).

Specifically, by making the capacity of each bucket be 2k (rather than k as in [20]), we can use
a shallower tree with only n/k leaves to store n elements. We reduce the number of nodes by a
factor of k while increasing the bucket size by only a factor of 2, thus getting a factor k/2 saving
in storage.

For this new setting, it is enough to analyze the overflow probability only in the leaves, since
all the internal nodes have the exact same behavior as in the original construction of [20]. For the
leaves we have the following:

Lemma 1. Fix one particular leaf (out of the n/k leaves in the tree) and one particular access
operation. With the bucket of that leaf having size 2k, the overflow probability for this leaf in that
operation is at most e−k/3.
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Proof. For any fixed access operation, we can model the content of the leaves as having n balls
thrown randomly into n/k bins. The expected number of balls in a bin is k, and using Chernoff
bound [1] we get that the probability that any particular bin has more than 2k balls is upper-
bounded by e−k/3 ≈ 2−k/2.

(We remark that to improve the bound from 2−k/2 to 2−k, it suffices to increase the size of each
bucket from 2k to just under 2.6k.)

3.2 Increasing the Degree of the Tree

Our next observation is that instead of using just binary trees as in [20], we can use higher-degree
trees. Specifically, we propose increasing the branching factor of the trees to k, and decreasing
their depth accordingly to logk(n/k) = (log n/ log k) − 1. Clearly, this modification reduces the
running time of the Access subroutine from Section 2.2 by a log k factor (simply because the tree is
shallower, and hence the size of the paths that the server sends is decreased). However, this would
increase the complexity of the Evict procedure by a factor of k, since each eviction operation now
involves a parent and all of its d children (rather than just two children as in [20]). We therefore
change the eviction algorithm so as to avoid the increased computation cost, as described next.

3.2.1 A New Eviction Procedure

Notations. Below we denote [k] = {0, 1, . . . , k−1}, and use the standard notation where we name
each node in a degree-d tree using the path from the root to that node, represented as a sequence of
integers in [k]. For example the root is the empty sequence (), child number 3 of the root it (3), the
child number 2 of that node is (3, 2), etc. Formally, the nodes of a complete k-ary tree of height h
are [k]≤h, where each internal node v ∈ [k]<h is the parent of all the nodes {(v, i) : i ∈ [k]}.

With these notations, the least common ancestor of two nodes u, v, denoted LCA(u, v), is just
the longest common prefix in the names of these two nodes.

We also use the notation DigitReversek(t) to denote the order-reversal of the base-k digits of
the integer t, for example in decimal representation we have DigitReverse10(1234) = (4, 3, 2, 1).
Formally, if t < kh, t =

∑h
j=1 ijk

j−1 for unique ii < k, then DigitReversek(t) = (ih, . . . , i2, i1) ∈ [k]h.

The push-to-leaf procedure. We replace the randomized eviction procedure of Shi et al. with
a deterministic procedure that just picks one leaf L in every time step (in a specific order to be
described shortly), and tries to push items down along the path to L as far as they can go. Namely,
if somewhere on the path from the root to L we found an item that is assigned to leaf L′, then we
push that item down the path to the node LCA(L,L′), i.e., the least common ancestor where the
paths to L and L′ diverge.

For example, if we choose leaf L = (1, 2, 0, 3), and in the root we found an item (L′, v, data)
that is assigned to leaf L′ = (1, 2, 3, 3), then we remove that item from the root and push it down
to the internal node two levels below LCA(L,L′) = (1, 2). We do the same for all the items on the
path from the root to L. Notice that during the entire procedure, we only access nodes along this
one path.

We observe that if our tree satisfies the tree invariant before the push-to-L procedure (i.e., every
item in the tree is found on the path from the root to its assigned node), then it still satisfies that
invariant also after the procedure. Moreover no item is ever pushed up by that procedure, only
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Evict(tree = [k]≤h, step t ∈ N):

1. Set t′ = t mod kh, and L = DigitReversek(t
′); // L is a leaf

2. For every item I = (L′, v, data) in any bucket on the path to L, do: // push-to-L
3. Remove I from its current bucket and push it to the bucket of node LCA(L,L′).

Figure 1: Our new eviction procedure

down (or not at all). We also note that it is possible to implement the push-to-leaf procedure in
time complexity linear in the size of a root-to-leaf path.

Ordering the leaves. The deterministic order in which we pick the leaves for eviction is just
the digit-reversed lexicographic order. For example, with k = 3, h = 2, we use the order

(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2), (0, 0), (1, 0), . . .

Specifically, for a degree-k, height-h tree, we pick at every step t ∈ N the leaf whose name is
L = DigitReversek(t mod kh). The new eviction procedure, using this ordering of the leaves, is
described in Figure 1. The main property of this ordering is that, at each level i of the tree, these
paths cycle through the ki−1 nodes of that level periodically every ki−1 steps.

3.2.2 Overflow Analysis

The overflow analysis for the leaves does not change from the previous section. For internal nodes,
we now prove that if we set the bucket size in the internal nodes to 2k, then with the eviction
procedure from Figure 1 the overflow probability is exponentially small in k. Surprisingly, the
analysis for our deterministic evacuation procedure turns out to be a rather easy, quite similar to
the analysis for the leaves. In particular we do not need any of the “heavy” queuing-theory tools
that were used in the analysis of the original protocol in [20].

Lemma 2. Fix one particular internal node in the tree, v ∈ [k]<h, and one particular access
operation. With the bucket of v having size 2k, the overflow probability for this node in that
operation is at most e−k/3.

Proof. We think of the evolution of data items in internal nodes as a game, in which in every step
we throw a ball in the root and associate to it a random leaf, and then perform our deterministic
evacuation procedure. Assume that the node v in question is at level i in the tree, which means
that there are exactly ki−1 nodes in that level (and exactly ki nodes one level below).

Fix some step t ≥ ki, and denote by St(v) the set of all balls in the system that satisfy (a) the
path from the root to the leaves of these balls go through the internal node v, and (b) the balls
are at level i or above at time t. We prove that Pr[|St(v)| > 2k] < e−k/3, which clearly implies the
lemma (since St(v) is a superset of the balls in v at time t).

The property of the digit-reversed lexicographic order that we need for the analysis, is that every
consecutive interval of ki steps covers each length-i prefix exactly once. This means in particular,
that every node at the level i+ 1 was on exactly one eviction path during the sequence of ki steps
[t − ki + 1, . . . , t − 1, t]. Hence every ball that entered the system before that interval must have
been evicted to level i+ 1 or below, and therefore in not in St(v).
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It remains to consider only the last ki balls. For each of these balls we assign an indicator
random variable χj (j ∈ [t − ki + 1, . . . , t]), which is 1 if the path of that ball goes though v and
0 otherwise. Clearly the χj ’s are i.i.d. and Pr[χj = 1] = k−i+1 for all j. Moreover only balls with
χj = 1 can belong to St(v), hence |St(v)| <

∑t
j=t−ki+1 χj . Since the expected value of the sum is

E[
∑

j χj ] = ki · k−i+1 = k, we can use Chernoff bound to conclude that

Pr[|St(v)| > 2k] ≤ Pr

[( t∑
j=t−ki+1

χj

)
> 2k

]
< e−k/3.

3.2.3 Complexity Analysis

It remains to analyze the complexity of our new variant. As usual, the time complexity is governed
by the communication complexity of the protocol. To analyze the communication, we recall the
different parameters in our system:

We have security parameter k, and an N -element database, each element of size D bits. The
largest tree has dN/ke leaves, and each subsequent tree is smaller than the previous one by a
constant factor of τ , hence the i’th tree has

⌈
N/(kτ i)

⌉
leaves and we have ` = dlogτ (N/k)e trees.

The trees have branching degree k, thus the height of the i’th tree is logk(
⌈
N/(kτ i)

⌉
) ≈ (logN −

i log τ)/ log k. Every node in the largest tree contains 2k entries, each of size D + O(logN), for
a total size of O(k(D + logN)). In the smaller trees, every node contains 2k entries, each of size
O(τ logN), for a total size of O(kτ logN).

Recall that in our protocol, for each access request the parties send to each other two paths in
every tree (one for the access itself and another one for eviction). Hence the total communication
complexity per access in our protocol is

O(logN/ log k) ·O(k(D + logN)) +
`−1∑
i=1

O((logN − i log τ)/ log k) ·O(kτ logN)

=
k logN

log k
·O
(
D + logN + τ` logN

)
=

k logN

log k
·O
(
D + logN + (τ/ log τ) log2N

)
= O

(
k logN(D + log2N)/ log k

)
,

where in the first two equalities above we assumed that N > k2 (say), so that log(N/k) = O(logN),
and in the last equality we used the fact that τ was a constant, hence (τ/ log τ) = O(1). As noted
above, in the word model where we can process a D-bit word in one operation (and D ≥ logN),
the above bound can be replaced by O(k log2N/ log k).

4 Oblivious Binary Search

Oblivious RAM lets us retrieve a value from the database by specifying its logical address, but in
some applications we may want to retrieve the data by its key (or tag) rather than address. In such
applications, we may initially sort the elements by their tags, then use binary search to retrieve the
tag that we want in log n steps. Implementing this procedure obliviously is similarly going to take
log n ORAM accesses, which may be quite expensive. Here we present a modification of the tree
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ORAM protocol from before that lets us to implement a binary search query with only a single
ORAM access. For a logical address v (in the actual database) denote by (tv, dv) the tag and data
that are associated with that address, respectively.

Consider the recursive structure of the tree ORAM construction from [20]. In this structure,
an entry in the tree at level i+ 1 contains a list of τ leaf numbers in the next tree at level i, and a
client that fetches that entry chooses one of these leaves (based on the logical address that it wants
to access) and then fetches that leaf (and the path to it) from the next tree. To enable efficient
binary search, we need to add some information to let the client decide what leaf to fetch next,
based on its tag rather than on its virtual address.

For an interval I of logical addresses, denote by t↓(I), t↑(I) the smallest and largest of the tags
associated with I, namely t↓(I) = min{tv : v ∈ I} and t↑(I) = max{tv : v ∈ I}. Since the database
is sorted by tags, we know that an address v ∈ [N ] belongs to I if and only if the corresponding
tag tv satisfies t↓(I) ≤ tv ≤ t↑(I).

Consider an entry in the tree at level i+ 1, let [v, v + τ i+1) be the interval of logical addresses
corresponding to that entry, and also let I1, . . . , Iτ be the corresponding level-i sub-intervals, namely
Ij = [v + (j − 1)τ i, v + jτ i). We modify the ORAM protocol by storing the tags t↓(Ij) together
with the leaf numbers Lj that are currently assigned to these sub-intervals. Namely, an entry in
the tree has the form

Level-0 : ( L∗, v, (tv, dv) )

Level-i > 0 :
(

L∗, v,
(
{L(i)

1 , t↓(I1)}, {L
(i)
2 , t↓(I2)}, . . . , {L

(i)
τ , t↓(Iτ )}

) )
When accessing some tag t, the client fetches some level-(i+1) entry, compares the tag t against

all the τ tags t↓(Ij) in that entry, and based on that comparison decides which of the leaves Lj
to get from the next tree. Specifically, we replace the Access subroutine from Section 2.3 by the
following:

Binary Search. To access the data for tag t (if exists), the client looks up in its level-` “tree” for

the list ({L(`−1)
1 , t↓(I1)}, . . . , {L

(`−1)
τ , t↓(Iτ )}), and let j be the largest index such that t↓(Ij) ≤ t.

(Such an index must exist since t↓(I1) is the smallest tag in the database.) The client sets v`−1 =

(j − 1)τ `−1 and L(`−1) = L
(`−1)
j , chooses at random a new leaf L̂(`−1) and replaces L

(`−1)
j by this

new value in the list. Then the client proceeds iteratively for i = `− 1 down to 0:

1. Request from the server all the buckets on the path from the root of the level-i tree down to
the leaf L(i). Decrypt them and find in them an entry of the form (L(i), vi, data).

2. If i > 0 do the following:

(a) Parse data = ({L(i−1)
1 , t1}, . . . , {L(i−1)

τ , tτ}), choose a new random leaf L̂(i−1).

(b) Let j be the largest index such that tj ≤ t. (Such an index must exists since t1 is
equal to the t↓(·) value from the previous iteration.) Set vi−1 = vi + (j − 1)τ i−1 and

L(i−1) = L
(i−1)
j .

(c) Replace L
(i−1)
j by L̂(i−1) inside data, denoting the result by data′.

Else (i = 0), parse data = (tv, dv). if tv = t and this is a write operation then set data′ =
(tv, d

′
v) where d′v is the new value. Else set data′ = data.
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3. Remove the entry (L(i), vi, data) from the bucket where is was found, and instead place in the
root bucket the entry (L̂(i), vi, data

′). Re-encrypt all the buckets and send to the server.

As before, the client and server then run the Eviction subroutine for each of the trees. If this
was a read operation then the return value is either dv from level-0 (if tv = t) or ⊥ (if tv 6= t).

Complexity. The binary-search algorithm above is nearly identical to the ORAM access from
Section 2.3, except in the way that the next label is chosen from the current entry (i.e., the choice
of j in Step 2(b)). While in the original ORAM tree the client can compute j directly from its
logical address, in the binary search algorithm the client needs to compare its tag against all the
tags in the entry to find the index j. Still, the complexity of this algorithm is linear in the size of
the messages that the server sends, and if the tags are short (of size O(log n) bits) then that size is
asymptotically the same as for the ORAM access. We also note that the same ORAM modification
can also be used for regular queries that access logical address, for example if we want to handle a
sparse set of addresses out of a large universe.

4.1 Applications

Range queries. Another type of query we can perform on sorted data is a range query. Given
a sorted databased stored in an ORAM and an interval [tl, tr], we can retrieve all database items
with search tag in the interval [tl, tr] with computational complexity proportional to the size of
the result set times the cost of a single ORAM access. To do this we just run the binary-search
algorithm from above on the tag tl, and this returns both the first tag t ≥ tl in the database as
well as its logical address v. We then just access logical addresses v + 1, v + 2, . . . until we get the
first tag t > tr. (It is easy to avoid that last extra query by paying attention to the values t↓(I)
throughout the queries.)

Assuming that the client has enough memory to store the result set, we can modify the ORAM
binary search algorithm to implement a range query with fewer communication rounds (namely,
have the client accesses each tree only once). This is done by the client requesting not just one leaf

from each level, but also all the leaves L
(i)
j with larger tag values, as long as their tj values satisfy

tj ≤ tr. In addition to saving communication rounds, this approach also saves on the total number
of leaves accessed (especially in the small trees), since we do not access the same leaf more than
once.

Keyword search. The keyword search problem is to retrieve all the records from a database that
contain a given keyword. One solution is to build an (inverted) index, namely a list of all the words

in the database, and for each word w keep a list of addresses of all the documents D
(w)
1 , . . . , D

(w)
i

that contain w. Having this index reduces the problem of keyword search to finding the keyword in
the list of the inverted index, which can be done in sublinear time using binary search. With this
setup we can use our binary search algorithm for an efficient access hiding algorithm for keyword
search.

5 Secure Computation using HE-Over-ORAM

An exciting application of ORAM is secure computation with sublinear online complexity [17, 14].
In this setting, we have two players who first engage in an “offline” setup protocol, at the end
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of which one of them is holding the server state of the oblivious RAM, while the client state is
shared between them so that no single player knows it. Then, in the “online” phase, the players
just carry out secure computation for the evolving finite state of the control (i.e., the client state),
and implement any memory access that the computation needs using the underlying ORAM. Using
this configuration, the online complexity of the protocol is related to the amount of data which
is actually accessed during this computation, rather that to the overall amount of data held by
the server. This configuration was first mentioned by Ostrovsky and Shoup [17], and recently
an optimized version was described and implemented by Gordon et al. [14], working over the
ORAM protocol of Shi et al. [20]. A crucial difference between the standard ORAM setting and
this configuration of MPC-over-ORAM is that in the latter, the client is not allowed to know in
the clear the logical addresses that are accessed or the values that are returned. Instead, that
information is shared between the two parties, and is processed by the secure-computation protocol
in this shared format.

In this section we show how to leverage homomorphic encryption to reduce the communication
and interaction between the client and the server in the during our ORAM protocol (which itself
may be embedded inside a larger secure computation protocol). A practical concern is that the
complexity of contemporary HE schemes degrades quickly with the complexity of the functions
that are computed (especially the multiplicative depth). We show how the functions used inside
ORAM can be expressed as low-depth functions that can be evaluated by somewhat homomorphic
encryption [6] schemes, which are weaker but much faster than fully homomorphic encryption
schemes.

5.1 Our High-Level Approach to Sublinear Secure Computation

In our system, we have a client and a server. The server roughly plays the role of the ORAM-server
and the client roughly plays the role of the ORAM-client, but the mapping is not quite one-to-one.
Below we say “client” and “server” when referring to the two parties in our secure computation
protocol, and “ORAM-client” and “ORAM-server” when referring to the roles in the underlying
oblivious RAM construction.

Just as in the underlying ORAM construction, for our protocol the content of the database
is stored at the server. In our optimized version, the content is encrypted using a HE scheme
to which the client holds the secret key. Since we are implementing secure computation rather
than just ORAM, the client in our case cannot hold in the clear the address-to-leaf mapping for
the smallest tree (since this will leak to the client information about the logical addresses being
accessed). Instead, this table is shared between the two players in a simple two-out-of-two fashion:
if in the underlying construction the ORAM-client has a table with the i’th entry being some value
li, in our protocol the server holds a random mask value mi and the client holds li ⊕mi.

When implementing the access protocol, the client and server cooperate to jointly compute the
ORAM-client messages in the clear. Note that this does not leak any information due to the privacy
property of oblivious RAM. In our case, each message of the ORAM-client consists of a single leaf
address in one of the trees. In the underlying construction the server would reply by returning the
full path to that leaf, but in our system the server will return much less than that. In some cases
the server will compute the entire ORAM-client logic homomorphically, returning to the client in
our protocol just the encrypted result (namely the leaf address in the next tree). In some cases we
need to hide even this final result from the client (e.g., the actual data in the largest tree), so the
server will blind it using a random mask, and send to the client this blinded value to be decrypted.

14



This will again result in the server holding a random mask m and the client holding the value v⊕m
(where v is the value that the ORAM-client was supposed to get).

Note that homomorphic encryption allows us to save considerably on bandwidth. Below, we
describe in more detail the implementation of the various sub-protocols involved.

5.2 ORAM Access

In the ORAM scheme of [20], the data that is stored in each node in any of the trees consists of pairs
(vi, di), where di is either the data element corresponding to logical address vi (if this is the largest
tree), or leaf identifiers in the next tree (if this is an intermediate tree). In the underlying ORAM
construction the ORAM-client holds an address v, it gets from the ORAM-server an entire path in
the tree, and it decrypts all the nodes and search for an entry matching that logical address v that
it holds.

In our case, the client holds a masked logical address u = v ⊕ m and the server holds the
corresponding mask m. The client encrypts its values u and sends to the server, who uses (additive)
homomorphism to add-in its mask, thus obtaining a HE ciphertext encrypting v.

The server next evaluates homomorphically the client logic that selects the one entry from all
of the nodes that match the logical address v. Specifically, for every encrypted entry of the form
(vi, di), the server first compute a single “choice bit” ci which is one if vi = v and zero otherwise.
This can be done naively by comparing each bit of vi to the corresponding bit of v, then taking an
AND of all the resulting bits. The bit-wise comparison is just a NOT XOR operation (hence it is
linear), and the big AND has depth logarithmic in the size of v. Note that current homomorphic
encryption schemes [3, 7, 8, 2] can evaluate arithmetic circuits of polynomial depth even without an
expensive procedure called “bootstrapping”, and that a scheme capable of evaluating logarithmic
depth is realizable using comparatively small parameters. Alternatively, if the size of v is too large
and one wants to lower the depth of the circuit further, one can use a low-degree approximation
of the AND function, such as the approximation due to Ben-Or described, e.g., in Example 2.4 of
[15]. (The example is a low-degree approximation of OR, but it is straightforward to convert it to
a low-degree approximation of AND.) For a soundness parameter k, this low-degree approximation
introduces an error probability of 2−k, but it can be computed in depth only log k. Once the server
computes all the choice bits ci, it then evaluates homomorphically the MUX function

out =
∑
i

ci · di

thus obtaining only the value d that matches the logical address v. (Note that the ci’s are individual
bits, but the di’s are bit-string. The operation ci ·di thus refers to multiplying by ci each of the bits
of di.) This last computation only adds one to the depth of the multiplication depth of the circuit.

The harder part of the access procedure is removing the entry (vi, di) from its current interme-
diate node putting the corresponding (vi, d

′
i) at the root of the tree. To enable this homomorphic

procedure, we keep with each entry in every node also an encrypted “full-bit” which is 1 if that
entry is full and zero if it is empty (and this full-bit is used also in the comparison calculation
above). After computing the choice bits ci, we just multiply the negation of each ci back into the
corresponding full-bit, thus “removing” the entry from its current node. Choosing a new leaf value
for the next tree (as needed for the intermediate trees) is done by both the client and server choos-
ing random values, and the new address being the XOR of the two strings (this can be computed
using additive homomorphism).

15



To put it in the top node, we compute for each entry in the top node a bit signaling whether
that entry is the first empty entry in the node. This can be done naively in depth equal to the
logarithm of the bucket size, namely for each entry we AND the negation of its full-bit with all the
full-bits of previous entries. Here again we can use the Ben-Or trick to compute these bits in only
log k depth, with k the security parameter. Once we compute these “first available” bits (call them
ai), we compute for each entry of the form (v, d) in the top node another MUX function, setting
the new value of that entry to

(v′′, d′′) = ai · (vi, d′i) + (1− ai) · (v, d)

We note that repeated accesses gradually increase the noisiness of the encryptions of the data
stored in the tree, hence they need to be periodically refreshed, which can be done using bootstrap-
ping [6]. Alternatively, we can use an interactive protocol where the server blinds the encrypted data
using additive homomorphism, then send it to the client to be decrypted and freshly re-encrypted,
and finally remove the blinding factors.

ORAM Evictions. If we use HE for encryption of the data in the ORAM, then the evictions
can be done completely noninteractively by the server. Given a node chosen for eviction, the
server homomorphically evaluates a function that pushes each of the items stored in the node to
an available slot in the least-common-ancestor of the “current eviction leaf” and the leaf associated
with that item. The operations involved with eviction are simlar to those required on read, and in
particular can be implemented using functions of depth log k + log logN .

5.3 Binary Search

In our extension of the ORAM scheme for more efficient binary search, we need to check not for
exact match but whether the searchable address is within a given interval. For this purpose we can
define a function:

gv1...vk(x1, . . . , xk) = (x1 − v1)x1 + (x1 − v1 + 1)gv2...vk(x2, . . . , xk), (1)

where the bits of x and v are ordered most significant to least significant. The function gv(x) takes
value 1, if x > v and 0, otherwise. Now, in order to implement a selection condition that v is in
the interval (vl, vr) we can set fv(x) = gvl(v) · gv(vr) for the selection function in Equation 1.
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