
Remotegrity: Design and Use of an End-to-End Verifiable Remote
Voting System?

Filip Zagórski1, Richard T. Carback2, David Chaum3,
Jeremy Clark4, Aleksander Essex5, and Poorvi L. Vora6

1 Wroc law University of Technology
2 Draper Laboratory

3 Voting System Institute
4 Carleton University
5 Western University

6 The George Washington University

Abstract. We propose and implement a cryptographically end-to-end verifiable (E2E) remote voting
system for absentee voters and report on its deployment in a binding municipal election in Takoma
Park, Maryland. Remotegrity is a hybrid mail/internet extension to the Scantegrity in-person voting
system, enabling secure, electronic return of vote-by-mail ballots. It provides voters with the ability to
detect unauthorized modifications to their cast ballots made by either malicious client software, or a
corrupt election authority—two threats not previously studied in combination. Not only can the voter
detect such changes, they can prove it to a third party without giving up ballot secrecy.

1 Introductory Remarks

In 2009, the city of Takoma Park in Maryland, United States, became the first election authority (EA)
to use a cryptographically end-to-end verifiable (E2E) voting system in a public election [4]. This system,
Scantegrity II [7], allows voters to verify their votes were counted correctly, while maintaining ballot secrecy.
Scantegrity also provides a dispute resolution mechanism: in the event either the voter or the EA behaves
maliciously, parties that follow the protocol should be able to prove their honesty to a third party (such
as a democracy watch group). These integrity and dispute resolution protections afforded by the in-person
nature of Scantegrity II, however, do not immediately extend to absentee voters submitting ballots by mail
or online.

Shifting from in-person to remote voting introduces new threats, including the possibility of malicious
software on the voter’s computer making unauthorized (and potentially undetected) modifications to ballot
selections. Although this threat has been well studied in isolation, a major complication arises when simul-
taneously considering the problem of dispute resolution: a malicious EA caught cheating could spuriously
blame the voters’ clients for the malfeasance.

In this paper we tackle the problem of protecting against malicious software on the voter’s computer
while simultaneously offering a dispute resolution procedure. To that end we present Remotegrity, a remote
voting extension for Scantegrity designed to extend similar protections to absentee voters as those of voters
attending the polling place. We propose the Remotegrity protocol and describe an implementation which
was fielded in Takoma Park’s municipal election in November 2011.

Contributions. The main contributions of this paper include:

1. The Remotegrity protocol, a remote voting system providing voters with the ability to detect and prove
unauthorized changes made to their ballots by malicious client software or a corrupt election authority,

2. An implementation and case study of Remotegrity in a municipal election,
3. Lessons learned from the real-world deployment of voting systems research.

? An extended abstract of this paper appears in ACNS 2013. Zagórski was funded in part by NSF Awards 0937267
and 1137973 and by the Polish National Science Center (NCN) scientific project 2010-2013 with grant number N
N206 369839. Clark and Essex acknowledge funding through NSERC PDF awards.

2 Background

Absentee Voting. A reality of elections is that a certain portion of the electorate will be unable to physically
attend a polling place during the election period, e.g., due to illness, travel, or residing out of the district.
Four common methods for enfranchising absentees exist. Early voting is most appropriate for travellers but
does not assist the ill or non-resident. Vote-by-proxy breaches ballot secrecy and is not generally used in
public-sector elections. Hosting a polling place abroad is suitable when a large contingency of absentees are
local to the area, such as a military base or embassy in a large foreign city. It is less suitable for small-scale,
e.g., municipal-level, elections.

Most EAs use both early voting and a fourth method: remote voting. Remote voting could be either (i)
available only to voters demonstrating a need, (ii) available to any voter, or (iii) mandatory for all voters.
In the United States, there are respectively 27, 21, and 2 states/capital districts in these categories at the
time of writing.7 In addition 33 offer early voting.

The primary method for delivering and receiving ballots from remote voters in the United States is the
postal system. Vote-by-mail enables threats not present in polling place voting: ballots could be mailed to
the wrong address or lost before being received by voters; voters can demonstrate how they vote for payment
or be coerced into voting a certain way; there may not be a strong mechanism to authenticate that a ballot
was filled out by the intended voter (or distinguish a real ballot from impersonated fake ballots); ballots
could be lost, delayed, or tampered with during their return to EA; and there are only weak guarantees of
ballot secrecy from the election officials receiving the ballots.

Online Voting. Of the issues with vote-by-mail, the most significant is arguably that ballots are not
always received in time—19% of mail-in ballots cast in the 2008 US election were not received in time to
be counted. In response, election officials are interested in enabling electronic channels, such as email, fax,
or the internet for voters to receive and return ballots. In addition to subsuming most of the issues with
postal ballots, online voting introduces several of its own. Malware on a voter’s computer may undetectably
alter the voter’s choices. Email and fax do not provide secure transport for ballots, and while websites can,
this requires the assumption that voters can correctly authenticate the server (e.g., voters do not fall prey
to phishing, SSL-stripping, or man-in-the-middle attacks with illegitimately obtained certificates [12]). The
EA servers may be made inaccessible through a denial-of-service attack. Most importantly, a compromise of
the server could allow all cast ballots to be undetectably modified.

Hybrid Internet/Mail Voting. The delay introduced by the postal system can be partially addressed by
utilizing an electronic channel only for ballot receipt, or ballot return. In many U.S. counties and states, blank
ballots can be downloaded and submitted by mail.8 Conversely, ballots are received by mail and submitted
online in Remotegrity. Given that the date a voter receives a blank ballot is a soft deadline, whereas the date
the EA must receive the returned ballot is a hard deadline, it is arguably preferable to use the electronic
channel for ballot return. Further, this enables voters to experience the full campaign before voting, and
better addresses the human tendency toward procrastination. The primary concern with electronic return
is security; something most commercial systems do not fully address. Remotegrity is an electronic-return
voting system designed to provide secure and reliable transport, even in the presence of client-side malware,
server compromise, or a corrupt EA.

End-to-End Verifiability. The use of cryptographic techniques to provide a verifiable tally while maintain-
ing strong voter privacy has developed substantially since first proposed by Chaum in 1981 [5]. E2E polling
place systems like Prêt à Voter [9] and Scantegrity [7] have been refined and are suitable for governmental
elections [4,3]. E2E internet voting systems like Helios [1] and SCV [23] have been tested in binding student
and organizational elections [2]. Helios is not designed to provide strong integrity when a voter’s computer
is malicious, and proof-of-concept vote-stealing malware has been proposed [14].

7 Absentee and Early Voting. National Conference of State Legislators, 4 Sept 2012.
8 http://www.fvap.gov/resources/media/evswfactsheet.pdf

2

http://www.fvap.gov/resources/media/evswfactsheet.pdf

Client-side vulnerabilities can be addressed through a technique called code-voting, proposed by Chaum
in 2001 [6]. With code-voting, voter choices are denoted with a set of random codes distributed to the voter
out-of-band. Without knowledge of the codes, malicious devices cannot sensibly modify voter choices. Many
proposals have refined this approach [16,18,17,24,19,26,15,25]. While these systems protect the voter from
client-side vulnerabilities, they do not protect against a malicious EA (which knows all the codes), nor do
they provide dispute resolution (see below). Remotegrity extends the code voting approach to satisfy these
additional security properties.

The literature also addresses the tangential problem of coercion-resistance in the unsupervised, remote
voting setting. This line of research originated with Juels et al. [20]. Recent improvements include more
efficient tallying [27] and the use of panic passwords [11]. These systems all assume the voter votes on a
trusted machine. By contrast, code voting does not address coercion. Addressing both threats simultaneously
is an open problem.

Dispute Resolution. One less obvious property an E2E voting system should provide is dispute-freeness [21]
(or accountability [22]). If the verification of some aspect of the election fails, implying an error or fraud, the
voter should be able to demonstrate that it failed and which entity is responsible. With online voting, the
EA cannot assume accountability for the state of voters’ computers. If vote verification fails, the EA must
ensure that it is not incorrectly blamed for compromised voter machines. Likewise, voters want assurance
that a malicious EA cannot modify ballots and blame the voters’ computers if the modification is detected.
It is also important that voters or political parties cannot easily fabricate false evidence that an election has
been compromised, casting doubt on the final tally.

3 Remotegrity

Overview. Remotegrity is not a full voting system. Rather, it is a component that is combined with a
traditional E2E paper ballot system like Scantegrity or Prêt à Voter to provide integrity to the process of
ballot delivery. Even when ballots are submitted from an untrusted computer over an untrusted network to
an untrusted EA, voters can have the same assurance that their vote will be counted correctly as they would
if they cast their ballot in-person.

It utilizes two primary security mechanisms. The first is code voting which prevents malicious devices
from sensibly modifying voter selections. However this is not sufficient as a fully corrupt EA could determine
the set of codes and modify voter selections reliably. The second mechanism we use is that of providing
each voter with a lock-in code placed under a scratch-off surface. The lock-in code is posted on the election
website by the voter to indicate that his or her vote is correctly recorded. The scratch-off surface operates as
a tamper-evident seal. If a malicious EA locks in a ballot entry that does not reflect the voter’s selections,
the scratch-off surface still covers the code providing physical evidence of EA malfeasance.

3.1 Cryptographic Preliminaries

Remotegrity utilizes a distributed key generation protocol DKG to generate threshold shares of a secret seed
s amongst a set of trustees (e.g., party officials or election observers); a pseudo-random generator, PRG(s),
to expand the seed into psuedo-randomness; and a cryptographic commitment function, Comm(m, r), that
is hiding and binding for message m and randomness r (for brevity, we denote a randomized commitment
to m as JmK).

As in Scantegrity, we assume trustees can use a semi-trusted ‘blackbox’ computation to generate election
values. This computation is not assumed to be correct, but it is assumed to keep all inputs and intermediate
values private. No private state is ever stored; trustees always regenerate the state from their shares. The
trade-off between the practicality offered by this model and the strong cryptographic guarantees of using a
multiparty computation have been discussed elsewhere [13]. Finally we assume the existence of an append-
only broadcast channel, called a bulletin board (BB).

3

Fig. 1. Remotegrity ballot package. Left: marked Scantegrity II ballot showing a vote for candidate 3. Right:
Remotegrity authorization card showing the AuthSerial and AckCode as well as an AuthCode and the LockCode as
scratched off by the voter during the ballot casting protocol.

3.2 Protocol

Voters receive a ballot package by mail which contains two parts, as shown in Figure 1. The first is a paper
ballot, similar or identical to the ones used for polling place voting. In this section, we will consider composing
Remotegrity with Scantegrity II ballots. Scantegrity II ballots consist of a serial number, VoteSerial, and a
set of short confirmation codes, 〈VoteCode1,VoteCode2, . . .〉. There is one code per candidate and the codes
are randomly assigned to candidates and ballots. Two voters will, with high probability, receive different
codes, invariant to whether they voted for the same candidate or different candidates. The codes are printed
with invisible ink and revealed when the voter marks a particular candidate with a special pen (we describe
how we modified the system to avoid having to mail pens to each voter in Section 4). For simplicity, we
assume a single contest ballot in our description; extension to multi-contest ballots is trivial.

The second part of the ballot package is the Remotegrity authorization card. The card consists of a serial
number, a set of authentication codes under scratch-off (denoted with a grey box), a short acknowledgement
code, and a lock-in code under scratch-off. With e.g., four authentication codes, the authorization card is
denoted as: 〈

AuthSerial, AuthCode1 , AuthCode2 , AuthCode3 , AuthCode4 ,AckCode, LockCode
〉

Serials are assigned sequentially and all codes are assigned random; the length of the codes should provide
resistance from repeated guessing (while “short” codes only resist a single guess). The purpose of each code is
not likely apparent from inspection but each code and scratch-off surface plays an integral part in preventing
certain attacks; thus we will explain the protocol concurrently to a security analysis. The vote casting process
is described in Protocol 1, and how the codes are derived by the EA is described in Protocol 2.

Remotegrity protocol serves a single function: to allow voters to verify that their Scantegrity ballot,
〈VoteSerial,VoteCode〉, is correctly posted to Scantegrity’s BB. If voters could post 〈VoteSerial,VoteCode〉
without interference from a client-side malware or a malicious EA, Remotegrity would not be required. The

4

Ballot Casting

Each voter performs the following steps:

1. The voter enters the ballot and authorization card serial numbers 〈VoteSerial,AuthSerial〉 into the voting
platform’s user interface. The voting platform checks that neither serial number was previously posted to
the BB.

2. Using the ballot, the voter selects the VoteCode appearing next their chosen candidate. Using the autho-
rization card, the voter selects an AuthCode at random and to scratch-off. The voter enters the following
information into the voting platform, which is posted by the platform to the BB:

〈VoteCode,AuthCode〉.

Upon receiving a new BB Entry, the trustees do the following:

3. The trustees check AuthCode. If it has not been used in a previously signed BB Entry and it contains valid
codes, the trustees append AckCode and sign the tuple. The BB entry now reads:

〈VoteSerial,VoteCode,AuthSerial,AuthCode,AckCode, Sig(%)〉,
where Sig(%) denotes a digital signature on all preceding elements in the tuple. If it does not contain valid
codes, it marks it as invalid and signs it.

Upon receiving acknowledgement from the trustees, the voter does the following:

4. The voter checks that no modifications have been made to the BB Entry. The voter verifies AckCode and the
signature. If correct, the voter submits LockCode. The BB Entry is now finalized as:

〈VoteSerial,VoteCode,AuthSerial,AuthCode,AckCode, Sig(%), LockCode〉.

After the election closes, the trustees do the following:

5. For the tuples containing a correct LockCode, the trustees input 〈VoteSerial,VoteCode〉 to the vote tallying
system (e.g., Scantegrity’s BB).

Protocol 1: The vote casting procedure in Remotegrity.

codes and features of the Remotegrity authorization card and vote casting protocol can be split into two
sets. The first set contains the mechanisms for addressing a malicious voting platform: a single AuthCode
and AckCode. The second set contains mechanisms for detecting malicious EA actions: multiple AuthCode’s,
LockCode, scratch-off surfaces, and the trustees signature.

Validating Ballot Codes. The protocol assumes that the EA can determine if a VoteCode for a given
VoteSerial is valid: one of the VoteCode’s appearing on the ballot. To provide certain assurances, Remotegrity
uses the fact that a guessed VoteCode will, with high probability, be invalid. Scantegrity has its own dispute
resolution process, which can determine precisely this. Assuming the systems are governed by the same set
of trustees, they can work in an online fashion to validate the VoteCode in Remotegrity ballots as they are
submitted. An alternative approach is append a short message authentication code to each VoteCode, which
will be stripped off when the accepted and locked-in Remotegrity ballots are posted to Scantegrity’s BB.
This allows validation of the codes without requiring that all the confirmation codes be online and accessible
to the trustees.

Initial BB Check. In the first step of Protocol 1, the voter checks if her VoteSerial has already been voted.
If the VoteSerial appears but has been rejected by the EA for having an invalid AuthCode, the voter can
ignore the entry and proceed to vote with an actual AuthCode. If the VoteSerial has been voted and accepted

5

Election Set-up

Prior to the election, all trustees do the following with a blackbox computation:

1. The trustees use DKG to derive threshold shares of a master secret.
2. The trustees use PRG to expand the master secret into a sufficient number of random codes for two autho-

rization cards per voter.
3. For each authorization card, the trustees publish on the BB the serial number and a commitment (again

using PRG for the randomness) to each code on the card:

〈AuthSerial, JAuthCode1K, JAuthCode2K, . . . , JAckCodeK, JLockCodeK〉

After the pre-election commitments are published, the EA does:

4. The EA prints the authorization cards, potentially printing more than needed and allowing a random print
audit of a fraction of the cards.

5. Each eligible absentee voter is assigned and mailed a Scantegrity ballot and an authorization card. The EA
retains the binding between the voter ID, VoteSerial, and AuthSerial. For each ballot, it at least publishes:
〈VoteSerial,AuthSerial〉. The EA can also publish which voter received which VoteSerial without compromising
ballot secrecy. In either case, the number of these tuples should match the number of absentee voters.

After the election closes, an authorized set of trustees open all the commitments to authorization card codes.

Protocol 2: The trustee and EA procedures in Remotegrity.

by the EA (i.e., with a published AckCode and signature), it must have been posted by an insider with
knowledge of the correct authorization code or the EA signed off on something invalid. In either case, the
voter can demonstrate that no authorization codes have been scratched off on her card, which is publicly
linked to the serial number of the ballot, and thus the EA is accountable for the wrongfully accepted ballot.

Malicious Voting Client. Provided the VoteSerial is not on the BB, we first consider the case where the
EA is honest but the voter uses a malicious voting client. Since only the voter and the EA know the values
of the codes on the ballot and authorization card, the voting client cannot cast a ballot without the voter’s
involvement or repeatedly guessing VoteCode and AuthCode pairs. Since VoteCode is short (e.g., 2 characters),
AuthCode should be of a length sufficient for protection from repeated guessing (e.g., 12 characters).

When the voter enters VoteCode and AuthCode, the computer could keep AuthCode and modify VoteCode.
It could further simulate the voter’s view of the BB to make it appear that the BB Entry was not modified.
To provide detection, the voter can rely on receiving back AckCode. Since the voting client does not know the
VoteCode on the ballot corresponding to its preferred candidate, at best it can chose a VoteCode randomly.
With moderately high (since the code is short) probability, the EA will reject the BB Entry and not post
AckCode. The voting client will then have to guess AckCode which will also fail with moderate probability.
Since receiving a wrong AckCode code suggests the computer is malicious, the client has only one chance to
guess and thus AckCode can be short. Diligent voters can check the BB from a secondary device to detect
modifications, even in the unlikely case that the computer issues a correct guess. If such detection occurs,
the voter will not lock-in the ballot. Like AuthCode, LockCode should be of a length sufficient for protection
from repeated guessing.

Malicious EA. We now consider a malicious EA. First, a point of clarification: a malicious EA could be
comprised of colluding trustees who reconstruct the codes, the officials who print the authorization cards, or
the officials who mail them. Since the EA is ultimately accountable for all of these officials, the Remotegrity
protocol protects against all of them without distinguishing which exact official is responsible.

6

Code Issue Blame Resolution

VoteSerial

Missing Device Voter votes from a different device.
False Accept N/A BB Entry belongs to another voter.
False Reject EA Voter retains authentication card and ballot as evidence.
True Reject Device Voter votes from a different device.

VoteCode
False Accept EA Voter attempts to change vote using another AuthCode.
False Reject EA Voter retains ballot as evidence.
True Reject Device Voter votes from a different device.

AuthSerial
False Accept EA Publicly apparent since link between VoteSerial and AuthSerial is pub-

lic.
False Reject EA Publicly apparent since link between VoteSerial and AuthSerial is pub-

lic.
True Reject Device Voter votes from a different device.

AuthCode
False Accept EA Voter retains unscratched AuthCode codes as evidence.
False Reject EA Link between AuthCode and AuthSerial is decommitted after election.
True Reject Device Voter votes from a different device.

AckCode Invalid Device Voter accesses ABB from a different device.

Sig(%) Invalid EA Publicly apparent. Voter can request new signature.

LockCode False Accept EA Voter keeps unscratched LockCode as evidence.
False Reject EA Voter retains authentication card as evidence.
True Reject Device Voter locks-in from a different device.

Table 1. Overview of the dispute resolution process in Remotegrity.

A malicious EA knows all of the codes on the voter’s authorization card, however it cannot undetectably
use a code unless it is assured the voter has scratched it off. Assume an EA generated/modified BB Entry is
locked-in on the BB. If the voter did not try and lock something in, LockCode is still sealed and the voter
can hold the EA accountable. If the voter has scratched-off LockCode, it must be the case that the voter’s
correct BB Entry did appear at some point on the BB and was accepted and signed by the EA. The EA
cannot apply LockCode to any BB Entry other than the one intended by the voter without signing a new BB
Entry. However, signing a new BB Entry requires the entry to have an unused AuthCode. Therefore, if the
EA waits for the voter to submit LockCode and immediately fabricates a new BB Entry to which it applies
LockCode, it would have to use a previously unused AuthCode and any unused AuthCode would still be sealed
on the voter’s authentication card.

Print Audit. Voters can resolve disputes by demonstrating that codes are still sealed on the physical ballots
and authorization cards they have received. However, if the EA is forced to correctly commit to the contents
of the cards, many disputes can be resolved without the physical records. In order to check this consistency, a
random selection of authorization cards should be audited using a publicly verifiable challenge to determine
the selection [10]. For full voter-verifiability, voters could be mailed two authorization cards: one to use and
the one to audit.

3.3 Other Security Properties

Dispute Resolution. We say the EA accepts a BB Entry if it provides an AckCode and signs the BB Entry.
If the EA accepts the BB Entry as cast by the voter, we call it a true accept. If it accepts a BB Entry that is
modified from the voter’s intent, or a BB Entry it manufactured without the voter’s knowledge or consent,
we call it a false-accept. If the EA rejects a BB Entry with correct values (e.g., as a denial-of-service), we call
it a false reject. Finally, if the EA correctly rejects a BB Entry containing incorrect codes (e.g., one modified
by a malicious computer, as above), we call it a true reject.

We iterate through all the various issues with each code and how it is resolved in Table 1. The EA
can always force a denial-of-service, which is unsurprising as it can accomplish this without resorting to

7

manipulating codes. What Remotegrity does not allow is the EA to fully accept (i.e., accept and lock) any
ballot the voter did not cast without the voter being able to dispute it.

If the voter enters values and does not see them on the BB, he or she tries again from another computer.
All true rejects occur because the EA received false values. This happens because of a malicious voting
computer or an erring human. If a voter sees false code(s) displayed on the BB and rejected by the EA, and
knows it was not erroneously entered, he or she can attempt to enter the code(s) again from another computer.
If, in spite of repeated attempts, the voter always experiences a similar reject, he or she is experiencing a
distributed denial of service attack from voting computers.

A false reject occurs because an EA rejects a correct code claiming that it is incorrect; that is, the
voter sees the correct code on the BB but the EA rejects it. The correspondence between AuthSerial and
VoteSerial is public. Additionally, commitments to valid codes—all information on an authentication card;
the correspondences between VoteCode and VoteSerial (though not between VoteCode and candidates)— are
opened at the end of the election. Because the EA knows the correct correspondences, the EA is shown to
be cheating. A voter may also experience a reject because of a previous use (not by the voter) of AuthSerial,
VoteSerial, AuthCode, or LockCode or all—this would correspond to a previous false accept by the EA.

All false accepts are accepts of either (a) invalid codes or (b) valid codes (in either case, the accept is
false because the code was not entered by the voter, but can be seen on the BB). Case (a) is immediately
apparent when the commitments for valid codes are opened, in a case converse to that described in false-
rejects above. Because the EA knows an invalid code, its acceptance indicates a cheating EA and this is
proven when the commitments are opened. For Case (b), if the false acceptance is of the VoteCode, the voter
can try to re-enter the VoteCode from another computer. Because it is a short code, the computer might
have guessed it correctly and used the correct VoteSerial, AuthSerial and AuthCode entered by the voter.
For all other false-accepts—false accepts of LockCode or AuthCode—as well as repeated false accepts of the
VoteCode, the voter should retain the unscratched-off authorization card and ballot to prove that the EA
is cheating. (Here it is possible that a network of colluding dishonest voting computers would have guessed
a VoteCode correctly and would repeatedly thwart the voter’s attempt to change an incorrect VoteCode,
but the probability is considered negligible). Note that incorrect correspondences between VoteSerial and
AuthSerial are easily detected as being Case (a).

If the voter does not receive the correct AckCode, he or she attempts to vote again from another computer.
Repeated failure implies an EA attempting a denial-of-service, assuming that the voter has access to at
least one honest computer. This is proven when all the commitments are opened. If the voter receives an
invalid signature, the entry is checked from a different computer. An invalid signature is apparent to anyone
examining the BB.

Ballot Secrecy. No part of Remotegrity is dependent on the voter’s selection. Secrecy of the voter’s selection
is fully subsumed by the Scantegrity system (or whatever E2E voting system Remotegrity is composed with).
In particular, Scantegrity assumes that the printer can be trusted with knowledge of confirmation numbers,
and that confirmation numbers printed in invisible ink are not visible unless exposed.

Physical Attacks on Scratch-Off Surfaces. Remotegrity does assume the integrity of scratch-off surfaces.
If voters can retrieve codes without scratching-off the surface or can reapply an indistinguishable surface,
they could falsely incriminate an entity for election tampering. The use of invisible ink and scratch-off
is interchangeable. We present the ballots with invisible ink as per the original Scantegrity proposal, but
use scratch-offs with Remotegrity as that is what was used in the election. Other physical technologies for
providing tamper-resistant sealing of printed codes may be used with Remotegrity.

3.4 Optimizations

We avoid doubling-up the functionality of any of the codes to provide the clearest mapping between each
code and the security functionality it serves. However to reduce the number of codes a voter must enter,
codes can be combined. The serial numbers of the ballot and authorization card can be harmonized to the
same value. If VoteCode and AuthCode are unique across all ballots/cards, serial numbers can be eliminated

8

entirely. Finally, a unique AuthCode-length code could be assigned to each candidate, eliminating the need
for VoteCode at all. Note that this results in a fully-modified ballot style. Remotegrity is designed to interface
with an existing type of ballot style, so that vote tallying can be conducted across all ballots: in-person and
absentee together.

4 Deployment

Takoma Park is a municipality, sharing a city line with Washington D.C., with about 17,000 residents and
11,000 registered voters. The choice of voting system is formally made by the City Council, on recommenda-
tion by a Board of Elections (BOE) with 7 members. Ballots for municipal elections are provided in English
and Spanish. Any voter can request to vote with an absentee ballot.

4.1 Preparations

We began discussion with the BOE in the early part of 2011 toward using Remotegrity in the November
2011 election. We attended their monthly board meetings and made many changes to the protocol based on
their feedback.

System Test. The proposed system was tested on June 8, 2011 in the Takoma Park Community Center.
The City announced the test in the city newspaper and in the senior newsletter. The test was open to
anyone, and not restricted to Takoma Park voters or residents. We provided voters with a survey to fill out
after they had tried the voting system. About 20 individuals participated in the test—including some BOE
members—and about 17 responded to the survey on Remotegrity. From our perspective, the purpose of the
test was to receive feedback on usability. It also served as an opportunity to educate potential voters on the
system; as a result, we interacted significantly with voters using the system. We did not use the results as
an indication of usability, due to the test’s informality and small sample size, but the subjective feedback
was very useful in making changes to the user interface and instructions. As one example, we modified the
system so that voters did not need to enter both AuthSerial and VoteSerial; just AuthSerial.

The test was reported in the media and we presented the results to the BOE in the June meeting. The
BOE outlined a number of concerns, centred around usability and security (because of the protocol’s use
of the internet, and the problems Washington DC had had with an internet voting trial [28]). In the July
meeting, the Board members communicated to us that they had confidence in the technology, but they were
concerned about the procedures, which appeared ad hoc, about potential security mishaps, and that the
system had not been peer-reviewed. In this meeting, they communicated that they were leaning towards not
using Remotegrity, but would go ahead with a mail-in Scantegrity ballot.

System Adaptations. In the August Board meeting, we proposed (to which they agreed) that the city
provide voters with the option to use Remotegrity in addition to mailing back marked ballots. Only marked
ballots would be counted, but voters using Remotegrity could test/“audit” the system, and, if they chose to
lock-in their vote, could communicate that the system was accurately recording their vote. Instructions for
“voting” and “auditing” would be sent in separate envelopes in the same package, with appropriate marking,
so as not to overwhelm voters not interested in the audit.

Thus the system we finally used had some major differences with the protocol described in Section 3.2.
Voters were not required to lock-in (this means that, in practice, an EA changing the vote using another
AuthCode belonging to the voter could not be distinguished from the voter by a third party). Second, the
Remotegrity system included ballots with visible codes (these ballots correspond to the original version of
Scantegrity [8]). This avoids the requirement of mailing invisible ink development pens, however dispute
resolution in the specific case of a wrong VoteCode is not possible. Third, voters needed to submit marked
paper ballots by mail for votes to be counted; this eliminated any dependence on the internet, but made it
possible for the EA to ignore a mailed-in ballot. However, the Scantegrity codes of the votes were posted on
the election website and voters could check if their votes made it in the count.

9

4.2 Implementation and Server Infrastructure

Backend. The backend of the Remotegrity system contains a module, written in Java, that has similar
functionality to the Scantegrity backend. Before the election, it is responsible for generating the Remotegrity
data, commitments, and PDFs for printing the authorization cards. After the election, it is used to open the
commitments.

Printing the Cards. The BOE anticipated that about 120 absentee voters would register. Because of the
small-scale, around 200 authorization cards were printed by the Remotegrity team on a regular inkjet printer
on card stock, and scratch-off stickers were applied manually. The back of each card had a printed overlay
of “noise” to obfuscate the possibility of the reading of codes through the scratch-off surface using a very
bright source of light.

Web-interface. The web interface was implemented with PHP and the Smarty template engine. During the
election, the system was hosted in Amazon Elastic Cloud (EC2). It consisted of a load balancer that served
the page over HTTPS9, two instances of Apache servers (monitored in realtime, with auto-scale option), and
one instance of an Amazon RDS (MySQL). Each server instance was only granted the right to INSERT data
into the database. If needed, additional webservers could be started from the same image.

Bulletin Board. Another EC2 instance ran a signing daemon written in Java. As data received from voters
was inserted into the table by the webservers, the daemon would fetch and digitally sign it in realtime,
inserting the signed data to a different table. This happened independently of the EA deciding to accept a
ballot. Auditors had direct access to the second table.

An offline signing server (OSS) checked the validity of the submitted codes and was granted access to the
AckCode codes corresponding to each possible AuthCode code. If the ballot submission was well-formed, it
would sign it. As input, the OSS took an XML file containing data signed by the signing daemon, and output
in XML an AckCode and signature on the entries it accepted. Both input and output files were transported
to/from the OSS on a flash drive manually every 4 hours.

Testing. Both, the web interface and the backend of the system that was used during the pilot were tested
by two independent researchers: Marco Ramilli and Marco Prandini. They found several security issues
related to the web-interface, e.g., visible system path and session control issues. These issues were fixed.

4.3 The Election

Voters were required to return their absentee ballots by mail, which still provides voters with the ability to
verify correct receipt of their ballot (but limits their ability to respond and correct the ballot if it is not
correct). In addition, they could opt-in to submitting their ballots electronically.

Procedure. Takoma Park election officials mailed two types of paper cards—a Scantegrity ballot and
a Remotegrity authorization card—to each voter. Both cards were sent to the voter by regular mail
in a single package. The ballots and authorization cards were paired at random and commitments to
〈VoteCode,AuthCode〉 were published. The EA assigned at random a package to a voter. They put the
package into an outer envelope, stuck the voter’s address on this envelope and wrote down the serial number
of the authorization card next to a voter’s name on a roster (this could help to remove a vote from the tally if
it was intercepted by an unauthorized person and detected by a voter). Unused packages were later audited.

Result. The Remotegrity BB contains 123 entries which correspond to 119 voters. Only 5 ballots were
submitted online, and two of these were not counted as the corresponding paper ballots were not mailed
in. While the number of voters who used the online system was small, full preparation and a complete
implementation were required to deploy the system.

9 http://takoma.remotegrity.org

10

http://takoma.remotegrity.org

Post-Election. Remotegrity ballots were included in the same tally as Scantegrity ballots that were cast
during election day. Both aspects of the election were audited by independent voting system experts selected
by Takoma Park (on recommendation of the Remotegrity/Scantegrity teams). Neal McBurnett and Roberto
Araujo conducted the audit, which included verifying the Remotegrity commitments during the pre- and
post-election audit procedures. Neal McBurnett additionally audited all the unsent absentee packages.

5 Lessons Learned and Concluding Remarks

The design of secure internet voting systems is non-trivial. One of the most important lessons learned
concerns the importance of a good working relationship between the system designers and the election
officials. We benefitted from Takoma Park’s feedback on the user interface. We believe that they, in turn,
came to appreciate some of the more subtle security properties we were attempting to provide, and that
their involvement helped to promote an increased sense of pride and ownership of the outcome. The other
important lesson pertains to adapting voting research systems for real-world use. For example, most E2E
schemes presuppose the existence of a public append-only bulletin board. Implementing this, however, proved
to be a major technical challenge, which invariably leads to a relaxation of security properties. Designers of
such systems must be able to adapt accordingly.

In future work, while considering scalability of the system for larger elections, we do not foresee problems
and observe that it is as scalable as vote-by-mail. Also interesting from the perspective of future work is the
problem of rigorous definitions and property proofs for the protocol, in a model that takes into account the
properties of paper and scratch-off surfaces. Another important open problem is that of a coercion-resistant
version of Remotegrity.

Finally, it was exciting to work with an election jurisdiction that sees merit in cryptographic election
verification. But this was not just a case of early adoption—Takoma Park had run an E2E election before,
and for the first time, we caught an exciting glimpse into the future of electronic voting in which E2E
verification is the new normal.

Acknowledgements. The authors acknowledge the contributions of the voters of Takoma Park, the City
Clerk, the Assistant City Clerk, and all Board of Elections members. We would like to thank Ron Rivest
for his valuable remarks. The authors thank Zbigniew Golebiewski for implementing OSS and moving data
between online and offline instances, sometimes in the middle of the night.

References

1. B. Adida. Helios: web-based open-audit voting. In USENIX Security Symposium, pages 335–348, 2008. 2
2. B. Adida, O. d. Marneffe, O. Pereira, and J.-J. Quisquater. Electing a university president using open-audit

voting: Analysis of real-world use of Helios. In EVT/WOTE, 2009. 2
3. C. Burton, C. Culnane, J. Heather, T. Peacock, P. Ryan, S. Schneider, S. Srinivasan, V. Teague, R. Wen, and

Z. Xia. Using Pret a Voter in Victoria State elections. In EVT/WOTE, 2012. 2
4. R. T. Carback, D. Chaum, J. Clark, J. Conway, A. Essex, P. S. Hernson, T. Mayberry, S. Popoveniuc, R. L.

Rivest, E. Shen, A. T. Sherman, and P. L. Vora. Scantegrity II election at Takoma Park. In USENIX Security
Symposium, 2010. 1, 2

5. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM,
24(2):84–90, 1981. 2

6. D. Chaum. Surevote: Technical overview. In WOTE, 2001. 2
7. D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest, P. Y. A. Ryan, E. Shen, and A. T.

Sherman. Scantegrity II: end-to-end verifiability for optical scan election systems using invisible ink confirmation
codes. In EVT, 2008. 1, 2

8. D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. T. Sherman, and P. Vora. Scantegrity: End-to-end
voter verifiable optical-scan voting. IEEE Security and Privacy, 6(3):40–46, May/June 2008. 4.1

9. D. Chaum, P. Y. A. Ryan, and S. Schneider. A practical voter-verifiable election scheme. In ESORICS, 2005. 2
10. J. Clark and U. Hengartner. On the use of financial data as a random beacon. In EVT/WOTE, 2010. 3.2

11

11. J. Clark and U. Hengartner. Selections: Internet voting with over-the-shoulder coercion-resistance. In Financial
Cryptography, 2011. 2

12. J. Clark and P. v. Oorschot. SSL and HTTPS: Revisiting past challenges and evaluating certificate trust model
enhancements. In IEEE Symposium on Security and Privacy, 2013. 2

13. A. Essex, J. Clark, U. Hengartner, and C. Adams. Eperio: Mitigating technical complexity in cryptographic
election verification. In EVT/WOTE, 2010. 3.1

14. S. Estehghari and Y. Desmedt. Exploiting the client vulnerabilities in internet e-voting systems: Hacking Helios
2.0 as an example. In EVT/WOTE, 2010. 2

15. S. Heiberg, H. Lipmaa, and F. v. Laenen. On e-vote integrity in the case of malicious voter computers. In
ESORICS, 2010. 2

16. J. Helbach and J. Schwenk. Secure internet voting with code sheets. In VOTE-ID, 2007. 2
17. J. Helbach, J. Schwenk, and S. Schage. Code voting with linkable group signatures. In EVOTE, 2008. 2
18. R. Joaquim and C. Ribeiro. Codevoting: protection against automatic vote manipulation in an uncontrolled

environment. In VOTE-ID, 2007. 2
19. R. Joaquim, C. Ribeiro, and P. Ferreira. Veryvote: A voter verifiable code voting system. In VOTE-ID, 2009. 2
20. A. Juels, D. Catalano, and M. Jacobsson. Coercion-resistant electronic elections. In WPES, 2005. 2
21. A. Kiayias and M. Yung. Self-tallying elections and perfect ballot secrecy. In PKC, 2002. 2
22. R. Kusters, T. Truderung, and A. Vogt. Accountability: Definition and relationship to verifiability. In CCS, 2010.

2
23. M. Kuty lowski and F. Zagórski. Scratch, Click & Vote: E2E voting over the internet. In Towards Trustworthy

Elections, volume 6000 of LNCS, 2010. 2
24. R. Oppliger, J. Schwenk, and C. Lohr. Captcha-based code voting. In EVOTE, 2008. 2
25. S. Popoveniuc. Speakup: remote unsupervised voting. In ACNS, 2010. 2
26. P. Y. A. Ryan and V. Teague. Pretty good democracy. In Workshop on Security Protocols, 2009. 2
27. O. Spycher, R. Koenig, R. Haenni, and M. Schlapfer. A new approach towards coercion-resistant remote e-voting

in linear time. In Financial Cryptography, 2011. 2
28. S. Wolchok, E. Wustrow, D. Isabel, and J. A. Halderman. Attacking the Washington, D.C. internet voting

system. In Financial Cryptography, 2012. 4.1

A Ballots and Authentication Cards: Takoma Park

Fig. 2. The second contest from the Scantegrity absentee ballot for Ward 2. Note that because the ballot is cropped
to this contest, the serial number (2-456922) is not visible.

The Remotegrity package mailed to voters in the 2011 Takoma Park municipal election contained a
Scantegrity ballot (see Figure 2) and a Remotegrity authorization card (see Figure 3). The terms for the
various codes differ somewhat from the names provided in Section 3.2. Each AuthCode is called a ‘One-Use-
Password’ and LockCode is called an ‘Audit Code.’ The ballot contained two LockCodes for legacy reasons.
AckCode is called a ‘unique serial number’ and is contained in the instructions (EB3C15). The card also
contains AuthSerial at the bottom of the instructions, however it was used in a slightly different way. Each
AuthCode was unique and served as a serial number (as mentioned in Section 3.4), leaving AuthSerial to act
as a second acknowledgement code.

12

Internet Confirmation Confirmación de Internet

Audit Code (choose one at random)

Código de Auditoría (escoje uno por acaso)

Audit Code (choose one at random)

Código de Auditoría (escoje uno por acaso)

One-Use-Password #2

Código de un solo uso #2

One-Use-Password #3

Código de un solo uso #3

One-Use-Password #4

Código de un solo uso #4

One-Use-Password #1

Código de un solo uso #1

The passwords on this card allow

you to post the confirmation

numbers printed on your ballot to

the verification website. You must

still mail in the marked ballot for

your vote to be counted.

Go to:

takoma.remotegrity.org

and follow the instructions. The

page will display your unique

card serial number 7FFDA6 that

confirms your vote has reached

the city’s verification system.

Note that it may take up to 3

hours to process your request and

display the number.

Optional: if you wish to further

assist in verifying the election

outcome, you may also access the

website from another computer

and apply your Audit Codes.

Once your ballot is scanned the

following code will be online next

to the confirmation codes:

6928 1047 6978 6506.

Las contraseñas en esta tarjeta que le

permite enviar los números de

confirmación en su boleta a la página

web de la verif cación. Si su papeleta

se pierde en el correo electrónico,

publicación de estos úmeros se

asegura de que su voto será grabado

correctamente.

Vaya a la página:

takoma.remotegrity.org

y siga las instrucciones. La página de

internet mostrará su número de serie

única 7FFDA6 que confirma que su

voto fue recibido por el sistema de

verificación de la ciudad. Tome en

cuenta que puede tomar hasta 3

horas para procesar y mostrar el

número.

Opcional: si desea más ayuda en

verficar los resultados de la elección,

puede usar otra computadora para

acceder la página de internet e

intreducir su código de auditoría.

Después de escaniar su boleta, el

código que sigue estrará en la página

de internet al lado del número de

confirmación:

6928 1047 6978 6506.

�

EB3C15

EB3C15

3509-4903-4326-6264

3509-4903-8255-89379768 6033 7275 4008

9768 6033 7275 4008

9764-5930-4195-1472

5163-4617-0375-6449

6969-3738-5597-4072

1689-7855-8151-2015

Fig. 3. Remotegrity authentication card for absentee ballots. All codes in the centre column were covered with
individual scratch-off surfaces. The name of the codes differ somewhat from Section 3.2 (See the text).

B User Interface: Takoma Park

Here we provide some screen captures of the voting interface. Figure 4a shows the VoteCodes, 6055 and 2392

being entered into a web form by the voter. Figure 4b shows the AuthCode, 6969-3738-5597-4072 being
entered by the voter. Figure 5a shows the AckCode, EB3C15 returned to the voter as well as a confirmation
of the cast VoteCodes: code 3598 corresponds to the voter’s selection in the first contest, codes 6055 and
2392 correspond to the voter’s selections in the second contest (i.e., council member for Ward 2). Finally,
Figure 5b shows a confirmation of the submitted LockCode, 3509-4903-8255-8937 as well as the VoteSerial,
2-456922.

13

(a) Entering VoteCodes

(b) Entering AuthCode

Fig. 4. Screenshots of Remotegrity implementation: Entering VoteCodes and AuthCode

14

(a) Confirming AckCode

(b) Confirming LockCode

Fig. 5. Screenshots of Remotegrity implementation: Confirming AckCode and LockCode

15

	Remotegrity: Design and Use of an End-to-End Verifiable Remote Voting System

