
Distinguishing Attacks on RC4 and A New
Improvement of the Cipher

Jing Lv
Institute of Software

Chinese Academy of Sciences
Beijing, China

Email:lvjing@is.iscas.ac.cn

Bin Zhang
Institute of Information Engineering

Chinese Academy of Sciences
Beijing, China

Email: zhangbin@is.iscas.ac.cn

Dongdai Lin
Institute of Information Engineering

Chinese Academy of Sciences
Beijing, China

Email: ddlin@iie.ac.cn

Abstract—RC4, designed by Rivest in 1987, is the most widely
deployed stream cipher in practical applications. In this paper,
two new class of statistical biases inherent in RC4 are depicted
and it is shown that the RC4 keystream is distinguishable from
random no matter how many initial bytes have been dumped.
RC4A, proposed by Paul and Preneel at FSE 2004 to strengthen
the security of RC4, is also found to be vulnerable to similar
attacks. Instead, a new pseudorandom bit generator RC4B is
proposed, which is believed to provide better immunity against
the known attacks.

I. INTRODUCTION

RC4, designed by Ron Rivest in 1987, is the most widely
deployed stream cipher in practical applications. Due to its
simplicity and extremely fast software performance, RC4 has
been integrated into TLS/SSL and WEP applications [10]. RC4
takes an interesting design approach which is quite different
from that of LFSR-based stream ciphers. This implies that
many of the analysis methods known for such ciphers cannot
be applied. The internal state of RC4 consists of a table of 2n

n-bit words and two n-bit pointers, where n is a parameter
(for the nominal version, n = 8). The table varies slowly
in time under the control of itself. When n = 8, RC4 has
a huge state of log228!, approximately 1684 bits. It is thus
impractical to guess even a small part of this state,or to use
standard time/memory/data tradeoff attacks. In addition, the
state evolves in a complex non-linear way, and thus it is
difficult to combine partial information about states which are
far away in time. Consequently, all the techniques developed to
attack stream ciphers based on linear feedback shift registers
seem to be inapplicable to RC4.

Since its introduction, RC4 has attracted much attention and
withstood huge efforts of cryptanalysis, to name but a few [2],
[3], [5], [7], [8], [9], [11], [12], [13]. At FSE’2001, Mantin
and Shamir showed that the second output byte of RC4 is not
random. Later at FSE’2004, Paul and Preneel observed that the
first two output bytes are equal with probability significantly
less than expected. Based on these results, it is easy to launch
distinguishing attacks on RC4. To frustrate such attacks, the
first 256 bytes of RC4 are suggested to be dumped. In this
paper, we report two new class of statistical biases inherent
in each keystream word and every two consecutive keystream
words of RC4-N , where N is the length of the internal array,

and construct efficient distinguishers accordingly. Further, it
is shown that RC4A, proposed by Paul and Preneel at FSE
2004 is also vulnerable to similar attacks. Instead, a new
pseudorandom bit generator, RC4B, is proposed, which is
believed to provide better immunity against the above attacks.

This paper is organized as follows. In Section 2, we intro-
duce the RC4 cipher and the notations we use throughout this
paper. We present our theoretical analysis about the biases
in the output in details in Section 3. The corresponding
distinguishers are constructed in Section 4. In Section 5, we
provide our experimental results to verify our analysis on RC4.
Then in Section 6, we analyze the RC4A cipher similarly and
show that it fails to strengthen RC4 in this aspect. Instead,
we propose the RC4B cipher in Section 7 with its analysis.
Finally, some conclusions are presented in Section 8.

II. DESCRIPTION OF RC4
RC4 runs in two phases, the key scheduling phase KSA and

the output keystream generation phase PRGA. The description
is as follows.

1 KSA
2 for i← 0 to N − 1
3 do s[i]← i
4 j ← 0
5 for i = 0 to N − 1
6 do j ← j + s[i] + k[i mod l]
7 swap (s[i], s[j])
8 PRGA
9 while i ≥ 0

10 do i← i+ 1
11 j ← j + s[i]
12 swap (s[i], s[j])
13 output s[s[i] + s[j]]

The KSA swaps N pairs of the array {0,1,2. . .N − 1},
depending on the value of the secret key, where l is the word
length of the secret key. At the end of KSA, we reach an
initial state for PRGA phase, which generates keystream words
of log2N bits. Note that the symbol + denotes the addition
modular N .

We define the state st[l] the lth element of the array after the
swapping at round t in PRGA, zt denotes the tth output word.

The indices it, jt represent the swapping indices at round t.
In this paper, we assume that the permutation is distributed
uniformly, and jt(t > 0) follows the uniform distribution over
[0, N − 1].

III. PREVIOUS ATTACKS ON RC4

There are two approaches in the study of cryptanalysis
of RC4: attacks based on the weakness of the KSA and
attacks based on the weakness of PRGA. Considering PRGA,
Knudsen have attacked versions of RC4 with n < 8 by their
backtracking algorithm in which adversary guess the internal
state and checks if an anomaly occurs in later stage[4]. At
FSE’2001, Mantin and Shamir showed that the second output
byte of RC4 is not random. Though it is a serious weakness
in RC4, it can be avoided by simply dumping the first N
bytes of RC4 keystream[7]. Later at FSE’2004, Paul and
Preneel observed that the first two output bytes are equal with
probability significantly less than expected, they also proposed
similar conclusion when t = 0(modN), which has a smaller
bias[11]. We notice that all the bias proposed in [7] and [11]
are at some special rounds, there are no conclusions about
bias exists at any round or most of the rounds. In [8], it is
proposed to search for special internal states that contains
a pattern consisting of two pointer values and some known
permutation entries, which believed to significantly reduces
the complexity of the algorithm in [4]. In [13], they present
a technique to automatically reveal linear correlations in the
PRGA phase, and then bind the new bias they found with
known KSA weakness to provide key recovery attacks, we
notice that the new bias they found are also exit at some special
rounds.

IV. THE BIASES IN RC4

Several bias about some special words of RC4 are presented
in [5], [6], [7], [11], [13]. Almost all of them are about the
first N words. To the authors’ knowledge, there is no general
rules discovered for the RC4 keystream so far. It is really a
tough work to distinguish RC4 keystream from random just by
some special bytes in the first N words, let alone to recover
the inner state. What’s more, the first N words are dumped
sometimes for the security of the cipher.

In this section, we present our new bias in the RC4
keystream, which gives almost no limit to the time or the index
i. We believe the general rules we discovery can be well used
to attack the cipher. We present our theoretical analysis about
the statistical biases in this section, which will be used in
the next section to construct the corresponding distinguishers.
Here comes our first theorem.

Theorem 1. If st−1[t+ 1] = 0, jt−1 = 0 and st−1[t] 6= t+ 1,
then zt+1 = 0.

Proof. The proof comes from the execution process of the
cipher. First, at round t, we have

it =t,

jt =jt−1 + st−1[it] = st−1[t] 6= t+ 1.

The next step is swap(st−1[t], st−1[jt]). At round t + 1, we
get

it+1 =t+ 1,

jt+1 =jt + st[t+ 1].

Since it, jt 6= t + 1, so st[t + 1] = st−1[t + 1] = 0, thus
jt+1 = jt, so next swap(st[t + 1], st[jt]). From above, we
obtain

zt+1 = st+1[st+1[t+ 1] + st+1[jt]]

= st+1[st[t+ 1] + st[jt]]

= st+1[st−1[t+ 1] + st−1[t]]

= st+1[jt] = st[t+ 1] = st−1[t+ 1] = 0.

This completes the proof.

Corollary 1 immediately follows by noting the fact that j0 =
0.

Corollary 1. If s0[2] = 0 and s0[1] 6= 2, then z2 = 0.

This is a conclusion in [8], we can see it is just a special
case of our Theorem 1.

From Theorem 1, we can compute the bias by using the
total probability formula.

Corollary 2. The probability of the output word is zero can
be approximated by the equation below:

Pr(zt+1 = 0) =

{
1
N (1 + (1− 1

N)2) if t = 1
1
N (1 + 1

N (1− 1
N)2) if t > 1

Proof. Let Bt denote the event st−1[t+ 1] = 0, jt−1 = 0, and
st−1[t] 6= t+ 1. Then

Pr(Bt) =

{
1
N (1− 1

N) if t = 1
1

N2 (1− 1
N) if t > 1

(1)

We prove the result by decomposing the event zt+1 = 0 into
two cases.

Pr(zt+1 = 0)

=Pr(zt+1 = 0|Bt)Pr(Bt) + Pr(zt+1 = 0|B̄t)Pr(B̄t)

=Pr(Bt) + 1/N(1− Pr ¯(Bt))

Where B̄t represents the supplement event of Bt. Substituting
the value of Pr(Bt) in (1), we obtain Corollary 2.

Next, we introduce another bias in RC4 keystream.

Theorem 2. When t 6= −2,−1(modN), if jt−1 = 0,
st−1[it] = t+ 1, then we have zt 6= zt+1.1

Proof. At round t, we have

it = t, jt = jt−1 + st−1[t] = 0 + t+ 1 = t+ 1

then we swap st−1[t] and st−1[t+ 1], and output

zt = st[st[t+ 1] + st[t]] = st[st[t] + t+ 1]

1in [1], it mentions that if it = jt, st[it+1] = 2, then zt = zt+1 without
prove. Unfortunately, it is not true.

At round t+ 1, we have

it+1 = t+ 1, jt+1 = jt +st[t+1] = t+1+ t+1 = 2t+2,

then we swap st+1[t+ 1] and st+1[2t+ 2], and output

zt+1 = st+1[st+1[t+1]+st+1[2t+2]] = st+1[st[2t+2]+t+1].

So if zt = zt+1, there are only two cases:
1) the index of the two output is equal, and neither of them
is the exchange index at round t+ 1, that is to say:

st[t]+t+1 = st[2t+2]+t+1, st[t]+t+1 6= t+ 1, 2t+ 2.

In this case we get st[t] + t+ 1 = st[2t+ 2] + t+ 1, so

t = 2t+ 2, t = −2, s−2[−2] 6= 0,−1.

2) the index of the two output are both the exchange indexes,
that is to say:

st[t] + t+ 1 = t+ 1, st[2t+ 2] + t+ 1 = 2t+ 2

or

st[t] + t+ 1 = 2t+ 2, st[2t+ 2] + t+ 1 = t+ 1;

3) there is in fact no changes happen at the round t+ 1, that
is to say:

it+1 = jt+1.

In the first case, we have

st[2t+ 2] = t+ 1 = st[t+ 1]

t+ 1 = 2t+ 2

t = −1

then s−1[0] = s−1[−1] = 0, which is impossible.

In the second case, we have

st[t] = t+ 1 = st[t+ 1]⇒ t = t+ 1

which is also impossible.
In the third case, we have

t+ 1 = 2t+ 1

⇒ t = −1.

The same as Theorem 1, we consider the situation at initial
time and then calculate the bias.

Corollary 3. If s0[1] = 2, then the first two output words of
RC4 are always different.

It is easy to get this conclusion by noticing the fact that
j0 = 0. Corollary 3 is proved in [11], it is only a special case
of our Theorem 2.

Corollary 4. When t 6= −2,−1(modN),the probability

Pr(zt = zt+1) =

{
1
N (1− 1

N2) if t > 1
1
N (1− 1

N) if t = 1

Proof. Let At note the event jt−1 = 0 and st−1[t] = t + 1.
Then

Pr(At) =

{
1
N if t = 1
1

N2 if t > 1
(1)

when t > 1, we have

Pr(zt = zt+1)

=Pr(zt = zt+1|At)Pr(At) + Pr(zt = zt+1|Āt)Pr(Āt)

=0 ∗ Pr(At) + 1/N(1− Pr(At))

=1/N(1− Pr(At))

Substituting the value of Pr(At) in (1) to the equation above
,we obtain Corollary 4.

V. THE DISTINGUISHERS

Theorem 1 and Theorem 2 immediately give a class of
distinguishers. In this section, we construct our distinguisher
sequences {At}t>1 and {Bt}t>0 using the biases. In order to
calculate how many samples the distinguishers need, we quote
the theorem in [8]. One can find the proof in [8].

Lemma 1. If event e occurs in a distribution X with proba-
bility p and in Y with probability p(1 + q). Then, for small p
and q, O(1/pq2) samples are required to distinguish X from
Y with non-negligible probability of success.

At first, we construct our distinguisher {At}t>1 . Since the
probability that zt = 0 in the RC4 keystream exceeds 1/N .
So when the number of 0 is non-ignorable higher, we think it
is from RC4 keystream. But there is a question, how to define
non-ignorable? In [2], it points out that when the distinct of
the means exceeds the standard deviation, the two distribution
are distinguishable.

Distinguisher At.
For the N1 given keystreams {zi}N1

i=1

Processing:
1: Compute

ct = 0, σ =
√
N1

1
N (1− 1

N), µ = N1/N .
2: For every keystream, if zit = 0, then ct = ct + 1.
3: If ct > µ+ σ, then outputs 1, else outputs 0.

By applying Lemma 1 to the distinguisher, we get the data
complexity for At.

Theorem 3. At needs N1 = O(N3) keystreams to distinguish
RC4 from Random when t > 2, and N1 = O(N) keystreams
when t = 2.

Proof. Since Pr(zt = 0) = 1
N (1 + 1

N (1− 1
N)2) when t > 2,

by Lemma 1 the samples needed is

N1 =
1

1
N (1

N)2(1− 1
N)2

.
= O(N3).

Similar, when t = 2,

N1 = O(
1

1
N (1− 1

N)2
)
.
= O(N).

This completes the proof.

By corollary 4, we get our second distinguisher sequence
{Bt}t>0.

The distinguisher Bt

For the N1 given keystreams.
Processing:
1: Compute

ct = 0, σ =
√
N1

1
N (1− 1

N), µ = N1/N .
2: For every keystream

If zit = zit+1, then ct = ct + 1.
3: If ct < µ− σ, then outputs 1, else outputs 0.

Using the same method we get the data complexity of Bt.

Theorem 4. Bt needs N1 = O(N5) keystreams to distinguish
RC4 from Random when t > 1, and N1 = O(N3) keystreams
when t = 1.

Proof. Since Pr(zt = zt+1) = 1
N (1 − 1

N2) when t > 2, the
samples needed is

N1 = O(N(N2)
2
) = O(N5)

by Lemma 1. Similar, when t = 1,

N1 = O(
1

1
N (1

N)2
) = O(N3)

VI. THE EXPERIMENT RESULT

In [2], it indicates that when |µ−µ0| > σ0, the two streams
are distinguishable, where µ, µ0 represents the mean value and
σ0 the standard deviation. When t ≥ 2, let Xt denotes the
event zt = 0 when the keystream is true. Yt denotes the event
zt = 0 when the keystream is random. In other words,

X(Y)t =

{
1 zt = 0
0 otherwise

We run N1 keystreams for At , by Theorem3, let

N1 =

{
N if t = 2
N3 if t ≥ 3

So we get in the random case:

µ0 = EYt =

{
N · 1/N = 1 t = 2
N3 · 1/N = N2 t ≥ 3

σ0 =
√
DYt =

{ √
N · 1/N(1− 1/N) t = 2√
N3 · 1/N(1− 1/N) t ≥ 3

and in the true keystream case:

µ1 = EXt = N1 · p1 = N1 · nt/N1 = nt

where nt is the number of Xt = 1 in the N1 true keystreams.
Since Pr(zt = 0) > 1/N , when

nt > µ0 + σ0

the two keystreams are distinguishable. We do similar things
for Bt. Let

X(Y)′t =

{
1 zt = zt+1

0 otherwise

We run N ′1 keystreams for Bt,

N ′1 =

{
N3 if t = 1
N5 if t ≥ 2

So,

µ0 = EY ′t =

{
N3 · 1/N = N2 t = 2
N5 · 1/N = N4 t ≥ 3

σ0 =
√
DY ′t =

{ √
N3 · 1/N(1− 1/N) t = 1√
N5 · 1/N(1− 1/N) t ≥ 2

and for the true keystream

µ′1 = EX ′t = N ′1 · p′1 = N ′1 · n′t/N ′1 = n′t

where n′t is the number of X ′t = 1 in the N ′1 true keystreams.
Since when the keystream is true, Pr(zt = zt+1) < 1/N .
When

n′t < µ′0 + σ′0

the two keystreams are distinguishable.
For N = 256, we run N keystreams for A2 212 times,

there are 2422 A2 outputs 1, so the success probability is
2422/4096=59.1%. Next we run N3 keystreams for A3 to
AN , there are 82 At outputs 1, so the success probability
is 82/(N − 2) = 32.3%.

For N = 64, we run N3 keystreams for B1 212 times, there
are 2485 B1 outputs 1, so the success probability is 60.7% .
Next we run N5 keystreams for B2 to BN−1, there are 37
Bt outputs 1, so the success probability is 37/(N − 1)=62.0%
. For N=128, 80 of B2 to BN−1 outputs 1, so the success
probability is 63.0%.

VII. DETECTION OF STATES IN THE KEYSTREAM

Definition 1. An a-state is a partially specified RC4 state, that
includes i, j and a states elements of the RC4 state array s.

The internal a-state can be regarded as an internal event
with probability

Pr[Eint] = N−a−1.

When the internal event occurs, there is an external event
Eext observed in the keystream, which is associated with
the interval event, i.e Pr[Eext|Eint] = 1. In[8], there is a
search algorithm consisting in the sequential search through
the values of internal state components that are consisting
with a given keystream segment, with backtracking in case
of found contradictions. It means one should calculate the

probability Pr[Eint|Eext]. Applying Bayes’ law we can derive
the probability

Pr[Eint|Eext]

=
Pr[Eext|Eint]Pr[Eint]

Pr[Eext]

=
Pr[Eint]

Pr[Eext]
.

Theorem 5. If zt+1 = 0, then Pr(st−1[t + 1] = 0, jt−1 =
0) > 1

N −
1

N2 ≈ 1
N .

Proof. By Theorem 1, we have

Pr[zt+1 = 0|st−1[t+ 1] = 0, jt−1 = 0, st−1[t] 6= t+ 1] = 1,

so

Pr[st−1[t+ 1] = 0, jt−1 = 0|zt+1 = 0]

>Pr[st−1[t+ 1] = 0, jt−1 = 0, st−1[t] 6= t+ 1|zt+1 = 0]

=
Pr[st−1[t+ 1] = 0, jt−1 = 0, st−1[t] 6= t+ 1]

Pr[zt+1 = 0]

=
1

N2 (1− 1
N)

1
N

=
1

N
(1− 1

N
)

Theorem 6. When t 6= −1,−2(modN), if zt 6= zt+1, then
Pr[st−1[it] = t+ 1, jt−1 = 0] = 1

N .

Proof. When t 6= −1,−2(modN), by Theorem 2, we have

Pr[zt¬zt+1|st−1[it] = t+ 1, jt−1 = 0] = 1,

so

Pr[st−1[it] = t+ 1, jt−1 = 0|zt 6= zt+1]

=
Pr[st−1[it] = t+ 1, jt−1 = 0]

Pr[zt 6= zt+1]

=
1/N2

1/N
=

1

N

In [8], the algorithm search special inner states from the
keystream segment. As we known, when t = 0, i, j is initial
with zero, so there are totally N ! of initial state, including
i, j, and the state array s[N]. Since the algorithm of RC4 is
invertible, in every step t, there are (N − 1)N ! impossible
states. In [1], there is an example about an impossible cycle.
So when searching for a patten in [8], wether it is a possible
state should be take into consideration. Our conclusion present
in the above two theorem meet the experiment result well.

VIII. THE RC4A

In [1], they construct a new cipher RC4A in order to avoid
the weakness in Corollary 3. The RC4A contains of two arrays,
s1 and s2, using the key k1 and k2 respective in the KSA. And
the new PRGA is defined as follow:

1 i← 0, j1 ← 0, j2 ← 0
2 while i ≥ 0
3 do i+ +
4 j1 ← j1 + s1[i]
5 swap (s1[i], s1[j1])
6 output z = s2[s1[i] + s1[j1]]
7 j2 ← j2 + s2[i]
8 swap (s2[i], s2[j2])
9 output s1[s2[i] + s2[j2]]

We can see from the algorithm what different from RC4
cipher is that the index produced by one array is output through
the other array. The way of exchange the array is totally the
same as RC4, in other words, the array is update just by itself,
it has nothing to do with another array. This lead to the same
problem as RC4.

Theorem 7. Assuming that the arrays s1, s2 of RC4A are
distributed uniformly , then Pr(z1 = z3) = 1

N (1− (1
N)2).

Proof. Let C denotes the event s10[1] = 2, s20[1] = 1. We
consider the situation when C happens. Let

X = s10[2], Z = s10[4].

At round 1,
i = 1, j11 = s10[1] = 2,

so we swap (s10[1], s10[2]), and output z1 = s20[X + 2].

j2 = s20[1] = 1 = i,

so s20 = s21, and output z2.
At round 2,

i = 2, j1 = 2 + s11[2] = 4,

so we swap (s11[2], s11[4]), since s1[4] hasn’t been changed in
the swap, s11[4] = s10[4] = Z, so we output

z3 = s21[2 + Z] = s20[2 + Z].

Since X 6= Z so z1 6= z3. From above we compute the
probability as follows

Pr(z1 = z3)

=Pr(z1 = z3|C)Pr(C) + Pr(z1 = z3|C̄)Pr(C̄)

=0 ∗ Pr(C) +
1

N
(1− (

1

N
)2)

=
1

N
(1− (

1

N
)2)

This completes the proof.

Considering the situation when j2t = t, s1t−1[t] = t+ 1 and
j1t−1 = 0, we can get Theorem 6 in a similar way.

Theorem 8. Assuming that the arrays s1, s2 of RC4A are
distributed uniformly , then

Pr(z2t−1 = z2t+1) =
1

N
(1− (

1

N
)3), for all t > 1.

We conclude from Theorem 5 and Theorem 6 that RC4A
cipher is better than RC4 cipher in resisting the distinguish
attack. But we can still construct a distinguish attack using
O(N5) keystreams when we know the first output word, and
O(N7) keystreams when we know other output word. The
reason is that RC4A cipher doesn’t alter RC4’s shuffle model,
it means that the state array will be changed in the same way
the RC4 cipher.

IX. THE RC4B

From the analysis about RC4A, we conclude that in order to
avoid the weakness we mentioned in the previous section, we
have to change the way of the array’s update. In this section,
we introduce a new cipher RC4B, which also based on the
RC4’s exchange shuffle model. Like RC4A, it also consists
of two arrays s1, s2, what’s more, the KSA of RC4B is the
same as RC4A. But different from RC4A, RC4B mixes the
two arrays’ state. The algorithm of RC4B is as follows:

1 i← 0, j1 ← 0, j2 ← 0
2 while i ≥ 0
3 do i+ +
4 j1 ← j1 + s2[i]
5 swap (s1[i], s1[j1])
6 output z ← s2[s1[i] + s1[j1]]
7 j2 ← j2 + s1[i]
8 swap (s2[i], s2[j2])
9 output s1[s2[i] + s2[j2]]

RC4B generates keystream faster than RC4. To produce two
successive output word. The i pointer stays the same, while
the j pointer increment two times the same as RC4.

In RC4 and RC4A, the arrays are changed by themselves,
that is to say, the exchange index i, j is increment by the same
array. We can see from our analysis that this is an important
reason for the above attack. In RC4B, which elements to swap
at each step is determined by the other array. If we apply the
proof of Theorem 5 to RC4B, then at round 2, we have no
idea about the value of j1, the reason is that the value of s21 is
unknown. We believe it can resist the attack above. RC4B mix
the two arrays more sufficient than RC4A, the advantage of
two arrays instead of one is markedly. The number of different
states is N ! ∗N ! ∗N3, this is approximately 23388 when N =
256. This is a very huge state space. More analysis for RC4B
will be present in the full vision.

X. CONCLUSIONS

In this paper, we have depicted two new classes of biases in
the RC4 keystream and built distinguishers accordingly. Our
results indicate that the RC4 keystream is far from random
even if the initial keystream bytes have been dumped. This
is an very important weakness in RC4. Similar weakness in

RC4A is also proposed and a new pseudorandom bit generator
RC4B is proposed, which we believe will be much better than
RC4 and RC4A in security.

REFERENCES

[1] Hal Finney ”an RC4 cycle that can’t happen.”sci.crypt 1994.
[2] E.Biham, Y.Carmeli ”Efficient reconstruction of RC4 keys from Internal

states” Fast Software Encryption-FSE’2008 LNCS vol.5086, pp. 270-288,
Springer-Verlag, 2008.

[3] A.Klein ”Attacks on the RC4 stream cipher” Designs, Codes and Cryp-
tography vol.48, issue 3, pp. 269-286, September 2008.

[4] Knudsen,L.R.,Meier”Analysis methods for (alleged) RC4.” ASIACRYPT
1998 LNCS, Vol. 1514, pp. 327-341. Springer, Heidelberg 1998.

[5] S.Maitra, G.Paul ”New form of permutation bias and secret key leakage
in keystream bytes of RC4” Fast Software Encryption-FSE’2008 LNCS
vol.5086, pp. 253-269, Springer-Verlag, 2008.

[6] S.Maitra, G.Paul ”Attack on Broadcast RC4 Revisted” Fast Software
Encryption-FSE’2011 LNCS vol.6733, pp. 199-217, Springer-Verlag,
2011.

[7] I.Mantin, A.Shamir ”A practical attack on broadcast RC4” Fast Software
Encryption-FSE’2001 LNCS vol. 2355, pp. 152-164, 2002.

[8] A. Maximov and D.Khovratovich ”New state recovery attack on RC4”
Advances in Cryptology-Crypto’2008, LNCS vol. 5157, pp.297-316,
Springer-Verlag, 2008.

[9] I.Mironov ”Not so random shuffle of RC4” Advances in Cryptology-
Crypto’2002 LNCS vol.2442, pp. 304-319, Springer-Verlag, 2002.

[10] R. Rivest, ”RSA Security response to weaknesses in key scheduling
algorithm of RC4” Technical note available from RSA Security, Inc. site,
http://www.rsasecurity.com/rsalabs/technotes/wep.html, 2001.

[11] S.Paul, B.Preneel “A New weakness in the RC4 keystream generator
and an approach to improve the security of the cipher,” Fast Software
Encryption-FSE’2004 LNCS vol. 3017, pp. 245-259, Springer-Verlag,
2004.

[12] P.Sepehrdad, S.Vaudenay, and M.Vuagnoux ”Statistical attack on RC4
Distinguishing WPA” Advances in Cryptology-Eurocrypt’2011, LNCS
vol. 6632, pp. 343-363, Springer-Verlag, 2011.

[13] P.Sepehrdad, S.Vaudenay and M.Vuagnoux ”Discovery and exploitation
of new bias in RC4” Selected Areas in Cryptography-SAC 2010, LNCS
vol. 6544, pp. 74-91, Springer-Verlag, 2011

