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Abstract

In this work, we provide the first construction of Attribute-Based Encryption (ABE) for gen-
eral circuits. Our construction is based on the existence of multilinear maps. We prove selective
security of our scheme in the standard model under the natural multilinear generalization of
the BDDH assumption. Our scheme achieves both Key-Policy and Ciphertext-Policy variants
of ABE. Our scheme and its proof of security directly translate to the recent multilinear map
framework of Garg, Gentry, and Halevi.

This paper is the result of a merge of the works of Garg, Genry, and Halevi [GGH12a] and
of Sahai and Waters [SW12], and subsumes both these works.

1 Introduction

In traditional public key encryption a sender will encrypt a message to a targeted individual recip-
ient using the recipient’s public key. However, in many applications one may want to have a more
general way of expressing who should be able to view encrypted data. Sahai and Waters [SW05]
introduced the notion of Attribute-Based Encryption (ABE). There are two variants of ABE: Key-
Policy ABE and Ciphertext-Policy ABE [GPSW06]. (We will consider both these variants in this
work.) In a Key-Policy ABE system, a ciphertext encrypting a message M is associated with an
assignment x of boolean variables. A secret key SK is issued by an authority and is associated with
a boolean function f chosen from some class of allowable functions F . A user with a secret key for
f can decrypt a ciphertext associated with x, if and only if f(x) = 1.

Since the introduction of ABE there have been advances in multiple directions. These in-
clude: new proof techniques to achieve adaptive security [LOS+10, OT10, LW12], decentralizing
trust among multiple authorities [Cha07, CC09, LW11], and applications to outsourcing computa-
tion [PRV12].

However, the central challenge of expanding the class of allowable boolean functions F has
been very resistant to attack. Viewed in terms of circuit classes, the work of Goyal et al [GPSW06]
achieved the best result until now; their construction achieved security essentially for circuits in
the complexity class NC1. This is the class of circuits with depth log n, or equivalently, the class
of functions representable by polynomial-size boolean formulas. Achieving ABE for general circuits
is arguably the central open direction in this area1.

Difficulties in achieving Circuit ABE and the Backtracking Attack. To understand why
achieving ABE for general circuits has remained a difficult problem, it is instructive to examine
the mechanisms of existing constructions based on bilinear maps. Intuitively, a bilinear map allows

1We note that if collusions between secret key holders are bounded by a publicly known polynomially-bounded
number in advance, then even stronger results are known [SS10, GVW12]. However, throughout this paper we will
deal only with the original setting of ABE where unbounded collusions are allowed between adversarial users.
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one to decrypt using group elements as keys (or key components) as opposed to exponents. By
handing out a secret key that consists of group elements, an authority is able to computationally
hide some secrets embedded in that key from the key holder herself. In contrast, if a secret key
consists of exponents in Zp for a prime order group p, as in say an ElGamal type system, then the
key holder or collusion of key holders can solve for these secrets using algebra. This computational
hiding in bilinear map based systems allows an authority to personalize keys to a user and prevent
collusion attacks, which are the central threat.

Using GPSW [GPSW06] as a canonical example we illustrate some of the main principles of
decryption. In their system, private keys consist of bilinear group elements for a group of prime
order p and are associated with random values ry ∈ Zp for each leaf node y in the boolean formula
f . A ciphertext encrypted to descriptor x has randomness s ∈ Zp. The decryption algorithm
begins by applying a pairing operation to each “satisfied” leaf node and obtains e(g, g)rys for each
satisfied node y. From this point onward decryption consists solely of finding if there is a linear
combination (in the exponent) of the ry values that can lead to computing e(g, g)αs, which will
be the “blinding factor” hiding the message M . (The variable e(g, g)α is defined in the public
parameters.) The decryption algorithm should be able to find such a linear combination only if
f(x) = 1. Of particular note is that once the e(g, g)rys values are computed the pairing operation
plays no further role in decryption. Indeed, it cannot since it is intuitively “used up” on the initial
step.

Let’s now take a closer look at how GPSW structures a private key for a given boolean formula.
Suppose inside a particular boolean formula there exists an OR gate T that received inputs from
gates A and B. Then the authority will associate gate T with a value rT and gates A,B with values
rA = rB = rT to match the OR functionality. Now suppose that on a certain input assignment x
that gate A evaluates to 1, but gate B evaluates to 0. The decryptor will then learn the “decryption
value” e(g, g)srA for gate A and can interpolate up by simply by noting that e(g, g)srT = e(g, g)srA .
While this structure reflects an OR gate, it also has a critical side effect. The decryption algorithm
also learns the decryption value e(g, g)srB for gate B even though gate B evaluates to 0 on input
x. We call such a discovery a backtracking attack.

Boolean formulas are circuits with fanout one. If the fanout is one, then the backtracking
attack produces no ill effect since an attacker has nowhere else to go with this information that
he has learned. However, suppose we wanted to extend this structure with circuits of fanout of
two or more, and that gate B also fed into an AND gate R. In this case the backtracking attack
would allow an attacker to act like B was satisfied in the formula even though it was not. This
misrepresentation can then be propagated up a different path in the circuit due to the larger fanout.
(Interestingly, this form of attack does not involve collusion with a second user.)

We believe that such backtracking attacks are the principle reason that the functionality of
existing ABE systems has been limited to circuits of fanout one. Furthermore, we conjecture that
since the pairing operation is used up in the initial step, that there is no black-box way of realizing
general ABE for circuits from bilinear maps.

Our Results. We present a new methodology for constructing Attribute-Based Encryption sys-
tems for circuits of arbitrary fanout. Our method is described using multilinear maps. Cryp-
tography with multilinear maps was first postulated by Boneh and Silverberg [BS02] where they
discussed potential applications such as one round, n-way Diffie-Hellman key exchange. However,
they also gave evidence that it might be difficult or not possible to find useful multilinear forms
within the realm of algebraic geometry. For this reason there has existed a general reluctance among
cryptographers to explore multilinear map constructions even though in some constructions such
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as the Boneh-Goh-Nissim [BGN05] slightly homomorphic encryption system, or the Boneh-Sahai-
Waters [BSW06] Traitor Tracing scheme, there appears to exist direct generalizations of bilinear
map solutions.

Very recently, Garg, Gentry, and Halvei [GGH13a] (see [GGH12b] for full version) announced a
surprising result. Using ideal lattices they produced a candidate mechanism that would approximate
or be the moral equivalent of multilinear maps for many applications. Speculative applications
include translations of existing bilinear map constructions and direct generalizations as well as
future applications. While the development and cryptanalysis of their tools is at a nascent stage,
we believe that their result opens an exciting opportunity to study new constructions using a
multilinear map abstraction. The promise of these results is that such constructions can be brought
over to their framework or a related future one. We believe that building ABE for circuits is one of
the most exciting of these problems due to the challenges discussed above and that existing bilinear
map constructions do not have a direct generalization.

Our circuit ABE construction and its proof of security directly translate to the framework
of [GGH12b].

We construct an ABE system of the Key-Policy variety where ciphertext descriptors are an
n-tuple x of boolean variables and keys are associated with boolean circuits of a max depth `,
where both ` and n are polynomially bounded and determined at the time of system setup. Our
main construction exposition is for circuits that are layered (where gates at depth j get inputs from
gates at depth j− 1) and monotonic (consisting only of AND plus OR gates). Neither one of these
impacts our general result as a generic circuit can be transformed into a layered one for the same
function with a small amount of overhead. In addition, using De Morgan’s law one can build a
general circuit from a monotone circuit with negation only appearing at the input wires. We sketch
this in Section 2. We finally note that using universal circuits we can realize “Ciphertext-Policy”
style ABE systems for circuits.

We use a framework of leveled multilinear maps is that a party can call a group generator
G(1λ, k) to obtain a sequence of groups ~G = (G1, . . . ,Gk) each of large prime2 order p > 2λ where
each comes with a canonical generator g = g1, . . . , gk. Slightly abusing notation, if i + j ≤ k we
can compute a bilinear map operation on gai ∈ Gi, g

b
j ∈ Gj as e(gai , g

b
j) = gabi+j . These maps can be

seen as implementing multilinear maps3. It is the need to commit to a certain k value which will
require the setup algorithm of our construction to commit to a maximum depth ` = k − 1. We
will prove security under a generalization of the decision BDH assumption that we call the decision
k-multilinear assumption. Roughly, it states that given g, gs, gc1 , . . . , gck it is hard to distinguish

T = g
s
∏

j∈[1,k] ck
k from a random element of Gk.

Our Techniques. As discussed there is no apparent generalization of the GPSW methods for
achieving ABE for general circuits. We develop new techniques with a focus on preventing the
backtracking attacks we described above. Intuitively, we describe our techniques as “move forward
and shift”; this replaces and subsumes the linear interpolation method of GPSW decryption. In
particular, our schemes do not rely on any sophisticated linear secret sharing schemes, as was done
by GPSW.

Consider a private key for a given monotonic4 circuit f with max depth ` that works over a

2We stress that our techniques do not rely on the groups being of prime order; we only need that certain ran-
domization properties hold in a statistical sense (which hold perfectly over groups of prime order). Therefore, our
techniques generalize to other algebraic settings.

3We technically consider the existence of a set of bilinear maps {ei,j : Gi × Gj → Gi+j | i, j ≥ 1; i + j ≤ k}, but
will often abuse notation for ease of exposition.

4Recall that assuming that the circuit is monotonic is without loss of generality. Our method also applies to
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group sequence (G1, . . . ,Gk). Each wire w in f is associated by the authority with a random value
rw ∈ Zp. A ciphertext for descriptor x will be associated with randomness s ∈ Zp. A user should
with secret key for f should be able to decrypt if and only if f(x) = 1.

The decryption algorithm works by computing gsrwj+1 for each wire w in the circuit that evaluates
to 1 on input x. If the wire is 0, the decryptor should not be able to obtain this value. Decryption
works from the bottom up. For each input wire w at depth 1, we compute gsrw2 using a very similar
mechanism to GPSW.

We now turn our attention to OR gates to illustrate how we prevent backtracking attacks.
Suppose wire w is the output of an OR gate with input wires A(w), B(w) at depth j. Furthermore,
suppose on a given input x the wire A(w) evaluates to true and B(w) to false so that the decryptor
has g

srA(w)

j , but not g
srB(w)

j . The private key components associated with wire w are:

gaw , gbw , g
rw−aw·rA(w)

j , g
rw−bw·rB(w)

j

for random aw, bw. To move decryption onward the algorithm first computes

e
(
gaw , g

srA(w)

j

)
= g

sawrA(w)

j+1 .

This is the move forward step. Then it computes

e
(
gs, g

rw−aw·rA(w)

j

)
= g

s(rw−awrA(w))

j+1 .

This is the shift step. Multiplying these together gives the desired term gsrwj+1.
Let’s examine backtracking attacks in this context. Recall that the attacker’s goal is to compute

g
srB(w)

j even though wire B(w) is 0, and propagate this forward. From the output term and the
fourth key component the attacker can actually inverse the shift process on the B side and obtain

g
sbwrB(w)

j+1 . However, since the map e works only in the “forward” direction, it is not possible to
invert the move forward step and complete the attack. The crux of our security lies in this idea.
In the main body of this paper we give our formal proof that captures this intuition.

The AND gate mechanism has a similar shift and move forward structure, but requires both
inputs for decryption. If this process is applied iteratively to an output gate w̃, then one obtains
gsrw̃k . A final header portion of the key and decryption mechanism is used to obtain the message.
This portion is similar to prior work.

1.1 Other Related Work

Other recent functionality in a similar vain to ABE includes spatial encryption [Ham11] and reg-
ular language functionality [Wat12]. Neither of these seem to point to a path for achieving the
general case of circuits. Indeed, [Wat12] argues that backtracking attacks are the reason that the
constructions can only support Deterministic Finitie Automata and not Nondeterministic Finite
Automata.

An interesting challenge going forward is whether new techniques can be applied to the general
case of functional encryption [SW08, BSW11]. In this setting we would like to hide the input x as
well as the message. So far the strongest functionality in this setting has been the inner product
functionality of Katz, Sahai, and Waters [KSW08] and different variants of this [OT12].

There have been different lattice based constructions of IBE, HIBE, Fuzzy IBE, and ABE [CHKP10,
ABB10, ABV+12, Boy13]. While the high level proof structures of these systems follow the earlier

general circuits that involve negations. See Section 2.
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bilinear map counterparts closely, the analogies seem to break down at lower level mechanisms.
For example, there is more asymmetry in the construction of keys and ciphertexts — in bilinear
maps they were both bilinear group elements. Rothblum [Rot12] considers the problem of circular
security from bit encryption systems from `-multilinear maps. He considers a different form than
us where ` group elements of different types are input at once to a multilinear map function. The
assumption used is a variant of XDH.

Parno, Raykova and Vaikuntanathan [PRV12] note that delegation from ABE can be achieved
from a system that is not collusion resistant, however, they were not able to leverage this to go
beyond the boolean formulas of [GPSW06]. The fact that the backtracking attacks described
above do not use collusion attacks, but are attacks within a key might help explain this. In our
construction the size of group elements and computational cost of group operations grows with the
sequence number k and thus the depth of the circuit. Using our system combined with the PRV
techniques one can achieve delegated computation where the delegator’s work grows only with the
depth of the circuit and not the size of the circuit. Since the number of multilinear levels must be
bounded at setup, it is not clear if our techniques can be used to improve ABE-type applications
in the uniform setting. [Wat12].

Concurrent Work. Concurrent to and independent of our work Gorbunov, Vaikuntanathan, and
Wee [GVW13] achieve ABE for circuits5. One nice feature of their result is that they reduce security
to the Learning with Errors (LWE) problem [Reg05]. Both our result and theirs has “succinct”
ciphertexts in that the ciphertext size grows with the maximum depth of the circuits and not the
size. Goldwasser, Kalai, Popa, Vaikuntanathan, and Zeldovich [GKP+13] show how to combine
such an ABE with fully homomorphic encryption into a succinct single use functional encryption
scheme. This in turn implies results for reusable Yao garbled circuits and other applications.

Subsequent Work. Subsequent to our work Garg, Gentry, Sahai, and Waters [GGSW13] showed
that a general primitive they termed witness encryption implies circuit ABE if we have witness
indistinguishable proofs. Their techniques of moving from witness encryption to ABE are quite
different from our direct construction. A drawback of using witness encryption is that current
GGSW constructions rely on a different assumption for each NP instance. In addition, the schemes
are significantly less practical due to the reduction to the Exact Cover problem.

1.2 Roadmap

We start by providing preliminary definition in Section 2. We give our construction based on (ideal)
multilinear maps and its proof of security in Section 3 and Section 4 respectively. We provide the
translation of the scheme and the proof to the GGH framework [GGH12b] in Section 5 and Section 6
respectively.

2 Preliminaries

In this section we provide some preliminaries. These include definition of ABE for circuits, discus-
sion of monotone versus general circuits, our multilinear map convention and assumptions, and our
circuit notation.

5Historical note: The present paper which merges [GGH12a] and [SW12] contains only a technical scheme and
analysis already present in these works, with some additional elaboration. Thus the scheme and analysis presented
here remains independent of [GVW13], and was developed concurrently to it.
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2.1 Definitions for ABE for Circuits

We now give a formal definition of our Attribute-Based Encryption for circuits. Our security
definition essentially follows [GPSW06] with the exception that access structures are circuits. Our
definition is fit for bounded circuits.

Setup(1λ, n, `) The setup algorithm takes as input the security parameter, the length n of input
descriptors from the ciphertext and a bound ` on the circuit depth. It outputs the public parameters
PP and a master key MSK.

Encrypt(PP, x ∈ {0, 1}n,M) The encryption algorithm takes as input the public parameters
PP, a bit string x ∈ {0, 1}n representing the assignment of boolean variables, and a message m. It
outputs a ciphertext CT.

Key Generation(MSK, f = (n, q,A,B, GateType)) The key generation algorithm takes as input
the master key MSK and a description of a circuit f according to the conventions established in
Section 2, where the depth of f is at most `. The algorithm outputs a private key SK.

Decrypt(SK,CT). The decryption algorithm takes as input a secret key SK and ciphertext CT.
The algorithm attempts to decrypt and outputs a message M if successful; otherwise, it outputs a
special symbol ⊥.

Correctness Consider all messages M , strings x ∈ {0, 1}n, and depth ` circuits f where f(x) = 1.
If Encrypt(PP, x,M) → CT and KeyGen(MSK, f) → SK where PP,MSK were generated from a
call to the setup algorithm, then Decrypt(SK,CT) = M .

Security Model for ABE for circuits. We now describe a game-based security definition for
ABE for circuits. As in other similar systems (e.g. [BF03, SW05, GPSW06]), an attacker will be
able to query for multiple keys, but not ones that can trivially be used to decrypt a ciphertext. In
this case the attacker can repeatedly ask for private keys corresponding any circuit f of his choice,
but must encrypt to some string x∗ such that every circuit f for which a private key was requested
for we have f(x∗) = 0. The security game follows.

Setup. The challenger first runs the setup algorithm and gives the public parameters, PP to the
adversary and keeps MSK to itself.

Phase 1. The adversary makes any polynomial number of private keys queries for circuit descrip-
tions f of its choice. The challenger returns KeyGen(MSK, f).

Challenge. The adversary submits two equal length messages M0 and M1. In addition, the adver-
sary gives a challenge string x∗ such that for all f requested in Phase 1 we have that f(x∗) = 0.
Then the challenger flips a random coin b ∈ {0, 1}, and computes Encrypt(PP, x∗,M)→ CT∗.
The challenge ciphertext CT∗ is given to the adversary.

Phase 2. Phase 1 is repeated with the restriction that for all f requested f(x∗) = 0.

Guess. The adversary outputs a guess b′ of b.
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The advantage of an adversary A in this game is defined as Pr[b′ = b] − 1
2 . We note that the

definition can easily be extended to handle chosen-ciphertext attacks by allowing for decryption
queries in Phase 1 and Phase 2.

Definition 2.1. An attribute-based encryption scheme for circuits is secure if all polynomial time
adversaries have at most a negligible advantage in the above game.

Definition 2.2. We say that a system is selectively secure if the system is secure in a game where
we add an Init stage before setup where the adversary commits to the challenge string x∗.

2.2 General Circuits vs. Monotone Circuits

We begin by observing that there is a folklore transformation that uses De Morgan’s rule to trans-
form any general Boolean circuit into an equivalent monotone Boolean circuit, with negation gates
only allowed at the inputs. For completeness, we sketch the construction here.

Given a Boolean circuit C, consider the Boolean circuit C̃ that computes the negation of C.
Note that such a circuit can be generated by simply recursively applying De Morgan’s rule to each
gate of C starting at the output gate. The crucial property of this transformation is that in this
circuit C̃ each wire computes the negation of the corresponding original wire in C.

Now, we can construct a monotone circuit M by combining C and C̃ as follows: take each nega-
tion gate inside C, eliminate it, and replace the output of the negation gate by the corresponding
wire in C̃. Do the same for negation gates in C̃, using the wires from C. In the end, this will
yield a monotone circuit M with negation gates remaining only at the input level, as desired. The
size of M will be no more than twice the original size of C, and the depth of M will be identi-
cal to the depth of C, where depth is computed ignoring negation gates. The correctness of this
transformation follows trivially from De Morgan’s rule.

As a result, we can focus our attention on monotone circuits. Note that inputs to the circuit
correspond to boolean variables xi, and we can simply introduce explicit separate attributes cor-
responding to xi = 0 and xi = 1. Honest encryptors are instructed to only set one of these two
attributes for each variable xi.

Because of this simple transformation, in the sequel we will only consider ABE for monotone
circuits.

2.3 Multilinear maps

We assume the existence of a group generator G, which takes as input a security parameter n and a
positive integer k to indicate the number of allowed pairing operations. G(1λ, k) outputs a sequence
of groups ~G = (G1, . . . ,Gk) each of large prime order p > 2λ. In addition, we let gi be a canonical
generator of Gi (and is known from the group’s description). We let g = g1.

We assume the existence of a set of bilinear maps {ei,j : Gi ×Gj → Gi+j | i, j ≥ 1; i+ j ≤ k}.
The map ei,j satisfies the following relation:

ei,j

(
gai , g

b
j

)
= gabi+j : ∀a, b ∈ Zp.

We observe that one consequence of this is that ei,j(gi, gj) = gi+j for each valid i, j.
When the context is obvious, we will sometimes abuse notation drop the subscripts i, j, For

example, we may simply write:

e
(
gai , g

b
j

)
= gabi+j .

We define the k-Multilinear Decisional Diffie-Hellman (k-MDDH) assumption as follows:
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Assumption 2.3 (k-Multilinear Decisional Diffie-Hellman: k-MDDH). The k-Multilinear Deci-
sional Diffie-Hellman (k-MDDH) problem states the following: A challenger runs G(1λ, k) to gen-
erate groups and generators of order p. Then it picks random s, c1, . . . , ck ∈ Zp.

The assumption then states that given g = g1, g
s, gc1 , . . . , gck it is hard to distinguish T =

g
s
∏

j∈[1,k] cj

k from a random group element in Gk, with better than negligible advantage (in security
parameter λ).

2.4 Circuit Notation

We now define our notation for circuits that adapts the model and notation of Bellare, Hoang, and
Rogaway [BHR12] (Section 2.3). For our application we restrict our consideration to certain classes
of boolean circuits. First, our circuits will have a single output gate. Next, we will consider layered
circuits. In a layered circuit a gate at depth j will receive both of its inputs from wires at depth
j − 1. Finally, we will restrict ourselves to monotonic circuits where gates are either AND or OR
gates of two inputs. 6

Our circuits will be a five-tuple f = (n, q,A,B, GateType). We let n be the number of inputs
and q be the number of gates. We define inputs = {1, . . . , n}, Wires = {1, . . . , n+ q}, and Gates =
{n + 1, . . . , n + q}. The wire n + q is the designated output wire. A : Gates → Wires/outputwire
is a function where A(w) identifies w’s first incoming wire and B : Gates→Wires/outputwire is a
function where B(w) identifies w’s second incoming wire. Finally, GateType : Gates→ {AND,OR}
is a function that identifies a gate as either an AND or OR gate.

We require that w > B(w) > A(w). We also define a function depth(w) where if w ∈ inputs
depth(w) = 1 and in general depth(w) of wire w is equal to the shortest path to an input wire
plus 1. Since our circuit is layered we require that for all w ∈ Gates that if depth(w) = j then
depth(A(w)) = depth(B(w)) = j − 1.

We will abuse notation and let f(x) be the evaluation of the circuit f on input x ∈ {0, 1}n. In
addition, we let fw(x) be the value of wire w of the circuit on input x.

3 Our Construction: Multilinear maps

We now describe our construction. Our main construction is of the Key-Policy form where a key
generation algorithm takes in the description of a circuit f and encryption takes in an input x and
message M . A user with secret key for f can decrypt if and only if f(x) = 1. The system is of the
“public index” variety in that only the message M is hidden, while x can be efficiently discovered
from the ciphertext, as is standard for ABE. We will also discuss how our KP-ABE scheme yields
a Ciphertext-Policy ABE scheme for bounded-size circuits.

The setup algorithm will take as inputs a maximum depth ` of all the circuits as well as the
input size n for all ciphertexts. All circuits f in our system will be of depth ` (have the output
gate at depth `) and be layered as discussed in Section 2.4. Using layered circuits and having all
circuits be of the same depth is primarily for ease of exposition, as we believe that our construction
could directly be adapted to the general case. The fact that setup defines a maximum depth ` is
more fundamental as the algorithm defines a k = `+ 1 group sequence a k pairings.

We also use the convention here that (multi-bit) messages are be encoded as group elements.
In Section 5 we will translate this construction to the GGH setting.

6These restrictions are mostly useful for exposition and do not impact functionality. General circuits can be built
from non-monotonic circuits. In addition, given a circuit an equivalent layered exists that is larger by at most a
polynomial factor.
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Setup(1λ, n, `). The setup algorithm takes as input a security parameter λ, the maximum depth
` of a circuit, and the number of boolean inputs n.

It then runs G(1λ, k = ` + 1) that produces groups ~G = (G1, . . . ,Gk) of prime order p, with
canonical generators g1, . . . , gk. We let g = g1. Next, it chooses random α ∈ Zp and h1, . . . , hn ∈ G1.

The public parameters, PP, consist of the group sequence description plus:

gαk , h1, . . . , hn.

The master secret key MSK is (gk−1)
α.

Encrypt(PP, x ∈ {0, 1}n,M ∈ Gk). The encryption algorithm takes in the public parameters,
an descriptor input x ∈ {0, 1}n, and a message bit M ∈ Gk. We use the convention that M is a
group element.

The encryption algorithm chooses a random s ∈ Zp. It then sets CM = M · (gαk )s. We let S be
the set of i such that xi = 1.

The ciphertext is created as

CT = (CM , g
s, ∀i ∈ S Ci = hsi ).

KeyGen(MSK, f = (n, q,A,B, GateType)). The algorithm takes in the master secret key and a
description f of a circuit. Recall that the circuit has n + q wires with n input wires, q gates and
the wire n+ q designated as the output wire.

The key generation algorithm chooses random r1, . . . , rn+q ∈ Zp, where we think of randomness
rw as being associated with wire w. The algorithm produces a “header” component

KH = (gk−1)
α−rn+q .

Next, the algorithm generates key components for every wire w. The structure of the key
components depends upon whether w is an input wire, an OR gate, or an AND gate. We describe
how it generates components for each case.

• Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. The key generation
algorithm chooses random zw ∈ Zp.
The key components are:

Kw,1 = grwhzww , Kw,2 = g−zw .

• OR gate
Suppose that wire w ∈ Gates and that GateType(w) = OR. In addition, let j = depth(w)
be the depth of wire w. The algorithm will choose random aw, bw ∈ Zp. Then the algorithm
creates key components:

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−aw·rA(w)

j , Kw,4 = g
rw−bw·rB(w)

j .

• AND gate
Suppose that wire w ∈ Gates and that GateType(w) = AND. In addition, let j = depth(w)
be the depth of wire w. The algorithm will choose random aw, bw ∈ Zp. The components are:

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−aw·rA(w)−bw·rB(w)

j .
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We will sometimes refer to the Kw,3,Kw,4 of the AND and OR gates as the “shift” components.
This terminology will take on more meaning when we see how they are used during decryption.

The secret key SK output consists of the description of f , the header component KH and the
key components for each wire w.

Decrypt(SK,CT). Suppose that we are evaluating decryption for a secret key associated with
a circuit f = (n, q,A,B, GateType) and a cipherext with input x. We will be able to decrypt if
f(x) = 1.

We begin by observing that the goal of decryption should be to compute gαsk . One can then
recover M by computing M = CM/g

αs
k . First, there is a header computation where we compute

E′ = e(KH), gs) = e(g
α−rn+q

k−1 , gs) = gαsk g
−rn+q ·s
k Our goal is now reduced to computing g

rn+q ·s
k .

Next, we will evaluate the circuit from the bottom up. Consider wire w at depth j; if fw(x) = 1
then, our algorithm will compute Ew = (gj+1)

srw . (If fw(x) = 0 nothing needs to be computed for
that wire.) Our decryption algorithm proceeds iteratively starting with computing E1 and proceeds
in order to finally compute En+q. Computing these values in order ensures that the computation
on a depth j− 1 wire (that evaluates to 1) will be defined before computing for a depth j wire. We
show how to compute Ew for all w where fw(x) = 1, again breaking the cases according to whether
the wire is an input, AND or OR gate.

• Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. Suppose that xw =
fw(x) = 1. The algorithm computes:

Ew = e(Kw,1, g
s) · e(Kw,2, Cw) = e(grwhzww , gs) · e(g−zw , hsw) = gsrw2 .

We observe that this mechanism is similar to many existing ABE schemes.

• OR gate
Consider a wire w ∈ Gates and that GateType(w) = OR. In addition, let j = depth(w) be
the depth of wire w. Suppose that fw(x) = 1. If fA(w)(x) = 1 (the first input evaluated to 1)
then we compute:

Ew = e(EA(w),Kw,1) · e(Kw,3, g
s) = e(g

srA(w)

j , gaw) · e(grw−aw·rA(w)

j , gs) = (gj+1)
srw .

Alternatively, if fA(w)(x) = 0, but fB(w)(x) = 1, then we compute:

Ew = e(EB(w),Kw,2) · e(Kw,4, g
s) = e(g

srB(w)

j , gbw) · e(grw−bw·rB(w)

j , gs) = (gj+1)
srw .

Let’s examine this mechanism for the case where the first input is 1 (fA(w)(x) = 1). In this
case the algorithm “moves” the value EA(w) from group Gj to group Gj+1 when pairing it
with Kw,1. It then multiplies it by e(Kw,3, g

s) which “shifts” that result to Ew.

Suppose that fA(w)(x) = 1, but fB(w)(x) = 0. A critical feature of the mechanism is that
an attacker cannot perform a “backtracking” attack to compute EB(w). The reason is that
the pairing operation cannot be reverse to go from group Gj+1 to group Gj . If this were not
the case, it would be debilitating for security as gate B(w) might have fanout greater than 1.
This type of backtracking attacking is why existing ABE constructions are limited to circuits
with fanout of 1.
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• AND gate
Consider a wire w ∈ Gates and that GateType(w) = AND. In addition, let j = depth(w)
be the depth of wire w. Suppose that fw(x) = 1. Then fA(w)(x) = fB(w)(x) = 1 and we
compute:

Ew = e(EA(w),Kw,1) · e(EB(w),Kw,2) · e(Kw,3, g
s)

= e(g
srA(w)

j , gaw) · e(gsrB(w)

j , gbw) · e(grw−aw·rA(w)−cw·rB(w)

j , gs) = (gj+1)
srw .

If the f(x) = fn+q(x) = 1, then the algorithm will compute En+q = g
rn+q ·s
k . It finally computes

E′ · En+q = gαsk and tests if this equals CM , outputting M = 1 if so and M = 0 otherwise.
Correctness holds with high probability.

A Few Remarks. Our OR and AND key components respectively have one and two “shift”
components. It is conceivable to have a construction with one shift component for the OR and
none for the AND. However, we designed it this way since it made the exposition of our proof (in
particular the distribution of private keys) easier.

Finally, our construction uses a layered circuit, where a wire at depth j gets its inputs from
depth j′ = j−1. We could imagine a small modification to our construction which allowed j′ to be
of any depth less than j. Suppose this were the case for the first input. Then instead of Kw,1 = gaw1
we might more generally let Kw,1 = (gj−j′)

aw . However, we stick to describing and proving the
layered case for simplicity.

4 Proof of Security

We prove (selective) security in the security model given by GPSW [GPSW06], where the key
access structures are monotonic circuits. For a circuit of max depth k − 1 we prove security under
the decision k-multilinear assumption.

We show that if there exist a poly-time attacker A on our ABE system for circuits of depth `
and inputs of length n in the selective security game then we can construct a poly-time algorithm
on the decision ` + 1-multilinear assumption with non-neglgibile advantage. We describe how B
interacts with A.

Theorem 4.1. The construction given in the previous section achieves selective security for arbi-
trary circuits of depth k − 1 in the KP-ABE security game under the k-MDDH assumption.

By using universal circuits, we obtain as an immediate corollary:

Corollary 4.2. There exists a CP-ABE construction for arbitrary circuits of bounded size that
achieves selective security in the CP-ABE security game [GPSW06, BSW07] under the k-MDDH
assumption for suitable k polynomially related to the bound on circuit size.

Proof. This follows by considering a variant of a Universal Circuit Ux where Ux(C) = C(x), where
C is a canonical representation of an arbitrary bounded-size circuit by a bounded-size string. In
the CP-ABE setting, keys correspond to specific inputs x, and ciphertexts correspond to circuits
C. We implement this by using our construction and providing keys corresponding to the circuit
Ux. Thus, when a key is used to decrypt a ciphertext corresponding to a circuit description C, the
user will be able to decrypt iff Ux(C) = C(x) = 1, as desired.

The remainder of this section contains a proof of Theorem 4.1.
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Proof of Theorem 4.1. Our proof follows the “Move Forward and Shift” paradigm that was
described in the Introduction. For intuition on how this works, please refer to the “Our Techniques”
section of the Introduction. Below, we provide the mathematical details behind the proof.

Init. B first receives the ` + 1-multilinear problem where it is given the group description ~G =

(G1, . . . ,Gk) and an problem instance g, gs, gc1 , . . . , gck , T . T is either g
s
∏

j∈[1,k] cj

k or a random
group element in Gk. (Note we slightly changed the variable names in the problem instance to
better suit our proof.)

Next, the attacker declares the challenge input x∗ ∈ {0, 1}n.

Setup. B chooses random y1, . . . , yn ∈ Zp. For i ∈ [1, n] set

hi =

{
gyi if x∗i = 1

gyi+c1 if x∗i = 0
.

Remark. Note that over Zp the above choices of hi are distributed identically with the “real life”
distribution. More generally, what we need is that gyi is either statistically close to or indistin-
guishable from gyi+c1 .

Next, B sets gαk= g
ξ+

∏
i∈[1,k] ci

k , where ξ is chosen randomly. It computes this using gc1 , . . . , gck

from the assumption by means of the iterated use of the pairing function.

Remark. Here we need that g
ξ+

∏
i∈[1,k] ci

k is either statistically close to or indistinguishable from

gξk. This holds perfectly over Zp.

Challenge Ciphertext. Let S∗ ⊆ [1, n] be the set of input indices where x∗i = 1. The reduction
algorithm receives two messages M0,M1 and flips a coin b. B creates the challenge ciphertext as
as:

CT = (Mb · T · gsξk , g
s, ∀j ∈ S∗ Cj = (gs)yj ).

If T = g
s
∏

j∈[1,k] cj

k , then this is an encryption of Mb; otherwise if T was chosen random in Gk

then the challenge ciphertext contains no information about the message from the attacker’s view.

KeyGen Phase. Both key generation phases are executed in the same manner by the re-
duction algorithm. Therefore, we describe them once here. The attacker will give a circuit
f = (n, q,A,B, GateType) to the reduction algorithm such that f(x∗) = 0.

We can think of the proof as having some invariant properties on the depth of the gate we are
looking at. Consider a gate w at depth j and the simulators viewpoint (symbolically) of rw. If
fw(x∗) = 0, then the simulator will view rw as the term c1 · c2 · · · cj+1 plus some additional known
randomization terms. If fw(x∗) = 1, then the simulator will view rw as the 0 plus some additional
known randomization terms. If we can keep this property intact for simulating the keys up the
circuit, the simulator will view rn+q as c1 · c2 · · · ck . This will allow for it to simulate the header
component KH by cancellation.

We describe how to create the key components for each wire w. Again, we organize key com-
ponent creation into input wires, OR gates, and AND gates.

• Input wire
Suppose w ∈ [1, n] and is therefore by convention an input wire.
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If (x∗)w = 1 then we choose rw and zw at random (as is done honestly). The key components
are:

(Kw,1 = grwhzww , Kw,2 = gzw).

If (x∗)w = 0 then we let rw = c1c2 + ηi and zw = −c2 + νi, where ηi and νi are randomly
chosen elements. The key components are:

(Kw,1 = gc1c2+ηwh−c2+νww , Kw,2 = g−c2+νw) = (g−c2yw+ηw+(yw+c1)νw , g−c2+νw).

We note that a cancellation occurred that allowed for the first term to be computed. Observe
that both of these values are simulated consistent with our invariant.

Remark. Here we need that g−c2yw+ηw+(yw+c1)νw is appropriately close to a randomly chosen
element. This holds perfectly over Zp.

• OR gate
Now we consider a wire w ∈ Gates and that GateType(w) = OR. In addition, let j =
depth(w) be the depth of wire w. If fw(x∗) = 1, then we simply set aw, bw, rw at random to
values chosen by B. Then the algorithm creates key components:

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−aw·rA(w)

j , Kw,4 = g
rw−bw·rB(w)

j .

If fw(x∗) = 0, then we set aw = cj+1 + ψw and bw = cj+1 + φw and rw = c1 · c2 · · · cj+1 + ηw,
where ψw, φw, ηw are chosen randomly. Then the algorithm creates key components:

Kw,1 = gcj+1+ψw , Kw,2 = gcj+1+φw ,

Kw,3 = g
ηw−cj+1ηA(w)−ψw(c1···cj+ηA(w))

j , Kw,4 = g
ηw−cj+1ηB(w)−φw(c1···cj+ηB(w))

j .

B is able to create the last two key components due to a cancellation. Since both the A(w)
and B(w) gates evaluated to 0 we had rA(w) = c1 · · · cj + ηA(w) and similarly for rB(w). Note

that computing g
c1···cj
j is possible using the multilinear maps.

Remark. Here we need that g
ηw−ψw(c1···cj)
j is appropriately close to a randomly chosen

element (the given terms dominate the others). This holds perfectly over Zp.

• AND gate
Now we consider a wire w ∈ Gates and that GateType(w) = OR. In addition, let j =
depth(w) be the depth of wire w.

If fw(x∗) = 1, then we simply set aw, bw, rw at random to values known by B. Then the
algorithm creates key components:

Kw,1 = gaw , Kw,2 = gbw , Kw,3 = g
rw−aw·rA(w)−bw·rB(w)

j .

If fw(x∗) = 0 and fA(w)(x
∗) = 0, then B sets aw = cj+1+ψw, bw = φw and rw = c1 ·c2 · · · cj+1+

ηw, where ψw, φw, ηw are chosen randomly. Then the algorithm creates key components:

Kw,1 = gcj+1+ψw , Kw,2 = gφw , Kw,3 = g
ηw−ψwc1···cj−(cj+1+ψw)ηA(w)−φw(rB(w))

j .

B can create the last component due to cancellation. Since the A(w) gate evaluated to 0, we
have rA(w) = c1 ·c2 · · · cj +ηA(w). Note that g

rB(w)

j is always computable regardless of whether

fA(w)(x
∗) evaluated to 0 or 1, since g

c1···cj
j is always computable using the multilinear maps.
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The case where fB(w)(x
∗) = 0 and fA(w)(x

∗) = 1 is performed in a symmetric to what is
above, with the roles of aw and bw reversed.

Remark. Here we need that g
ηw−(ψw+φw)·(c1···cj)
j is appropriately close to a randomly chosen

element (the given terms dominate the others). This holds perfectly over Zp.

For the output gate we chose ηw at random. Thus, at the end we have rn+q =
∏
i∈[1,k] ci + ηn+q

for the output gate. This gives us a final cancellation in computing the “header” component of the
key as KH = (gk−1)

α−rn+q = (gk−1)
ξ−ηw .

Guess. B receives back the guess M ′ ∈ {0, 1} of the message from A. If M ′ = 1 it guesses that
T is a tuple; otherwise, it guesses that it is random.

This immediately shows that any adversary with non-trivial advantage in the KP-ABE selective
security game will have an identical advantage in breaking the k-MDDH assumption. �

5 Our Construction: based on GGH graded algebras

We now describe how to modify our construction to use the GGH [GGH12b] graded algebras
analogue of multilinear maps. The translation of our scheme above is straightforward to the GGH
setting. We start by providing background on Garg et al.’s lattice-based “approximate” multilinear
maps (a.k.a. “graded encoding systems”) [GGH12b].

5.1 Graded Encoding Systems: Definition

Garg, Gentry and Halevi (GGH) [GGH12b] defined an “approximate” version of a multilinear
group family, which they call a graded encoding system. As a starting point, they view gαi in
a multilinear group family as simply an encoding of α at “level-i”. This encoding permits basic
functionalities, such as equality testing (it is easy to check that two level-i encodings encode the same
exponent), additive homomorphism (via the group operation in Gi), and bounded multiplicative
homomorphism (via the multilinear map e). They retain the notion of a somewhat homomorphic
encoding with equality testing, but they use probabilistic encodings, and replace the multilinear
group family with “less structured” sets of encodings related to lattices.

Abstractly, their n-graded encoding system for a ring R includes a system of sets S = {S(α)
i ⊂

{0, 1}∗ : i ∈ [0, n], α ∈ R} such that, for every fixed i ∈ [0, n], the sets {S(α)
i : α ∈ R} are disjoint

(and thus form a partition of Si
def
=
⋃
α S

(α)
i ). The set S

(α)
i consists of the “level-i encodings of α”.

Moreover, the system comes equipped with efficient procedures, as follows:7

Instance Generation. The randomized InstGen(1λ, 1n) takes as input the security parameter λ
and integer n. The procedure outputs (params,pzt), where params is a description of an
n-graded encoding system as above, and pzt is a level-n “zero-test parameter”.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S0, such that

the induced distribution on α such that a ∈ S(α)
0 is statistically uniform.

Encoding. The (possibly randomized) enc(params, i, a) takes i ∈ [n] and a level-zero encoding

a ∈ S(α)
0 for some α ∈ R, and outputs a level-i encoding u ∈ S(α)

i for the same α.

7Since GGH’s realization of a graded encoding system uses “noisy” encodings over ideal lattices, the procedures
incorporate information about the magnitude of the noise.
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Re-Randomization. The randomized reRand(params, i, u) re-randomizes encodings to the same
level, as long as the initial encoding is under a given noise bound. Specifically, for a level

i ∈ [n] and encoding u ∈ S(α)
i , it outputs another encoding u′ ∈ S(α)

i . Moreover for any two

encodings u1, u2 ∈ S
(α)
i whose noise bound is at most some b, the output distributions of

reRand(params, i, u1) and reRand(params, i, u2) are statistically the same.

Addition and negation. Given params and two encodings at the same level, u1 ∈ S
(α1)
i and

u2 ∈ S(α2)
i , we have add(params, u1, u2) ∈ S(α1+α2)

i , and neg(params, u1) ∈ S(−α1)
i , subject to

bounds on the noise.

Multiplication. For u1 ∈ S(α1)
i1

, u2 ∈ S(α2)
i2

, we have mult(params, u1, u2) ∈ S(α1·α2)
i1+i2

.

Zero-test. The procedure isZero(params,pzt, u) outputs 1 if u ∈ S(0)
n and 0 otherwise. Note that

in conjunction with the procedure for subtracting encodings, this gives us an equality test.

Extraction. This procedure extracts a “canonical” and “random” representation of ring elements
from their level-n encoding. Namely ext(params,pzt, u) outputs (say) K ∈ {0, 1}λ, such that:

(a) With overwhelming probability over the choice of α ∈ R, for any two u1, u2 ∈ S
(α)
n ,

ext(params,pzt, u1) = ext(params,pzt, u2),

(b) The distribution {ext(params,pzt, u) : α ∈ R, u ∈ S
(α)
n } is statistically uniform over

{0, 1}λ.

We can extend add and mult to handle more than two encodings as inputs, by applying the binary
versions of add and mult iteratively. Also, we use the canonicalizing encoding algorithm (as defined
in Remark 2 of [GGH12b]) cenc`(params, i, a) which takes as input encoding of a and generates
another encoding according to a “nice” distribution. This parameter ` essentially captures the
noise present in the encodings. In our scheme the maximum value ` takes will be a small constant.

Recall that the k-multilinear assumption for the graded encodings as follows:

Assumption 5.1 (k-Graded Multilinear Decisional Diffie-Hellman Assumption: k-GMDDH [GGH12b]).
The k-Graded Multilinear Decisional Diffie-Hellman (k-GMDDH) assumption states the following:
Given cenc1(params, 1, s), cenc1(params, 1, c1), . . . , cenc1(params, 1, ck), it is hard to distinguish T =
cenc1(params, k, s

∏
j∈[1,k] cj) from T = cenc1(params, k, samp(params)), with better than negligible

advantage (in security parameter λ), where (params,pzt) ← InstGen(1λ, 1k). and s, c1, . . . , ck ←
samp(params).

5.2 Graded Encoding Systems: Realization

Concretely, GGH’s n-graded encoding system works as follows. (This is a whirlwind overview; see
[GGH12b] for details.) The system uses three rings. First, it uses the ring of integers O of the m-th
cyclotomic field. This ring is typically represented as the ring of polynomials O = Z[x]/(Φm(x)),
where Φm(x) is the m-th cyclotomic polynomial, which has degree N = φ(m). Second, for some
suitable integer modulus q, it uses the quotient ring O/(q) = Zq[x]/(Φm(x)), similar to the NTRU
encryption scheme [HPS98]. The encodings live in O/(q). Finally, it uses the quotient ring R =
O/I, where I = 〈g〉 is a principal ideal of O that is generated by g and where |O/I| is a large
prime. This is the ring “R” referred to above; elements of R are what is encoded.

What does a GGH encoding look like? For a fixed random z ∈ O/(q), an element of S
(α)
i – that

is, a level-i encoding of α ∈ R – has the form e/zi ∈ O/(q), where e ∈ O is a “small” representative
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of the coset α + I (it has coefficients that are very small compared to q). To add encodings

e1/z
i ∈ S(α1)

i and e2/z
i ∈ S(α2)

i , just add them in O/(q) to obtain (e1 + e2)/z
i, which is in S

(α1+α2)
i

if e1 + e2 is “small”. To mult encodings e1/z
i1 ∈ S(α1)

i1
and e2/z

i2 ∈ S(α2)
i2

, just multiply them in

O/(q) to obtain e1 ·e2/zi1+i2 , which is in S
(α1·α2)
i1+i2

if e1 ·e2 is “small”. This smallness condition limits
the GGH encoding system to degree polynomial in the security parameter. Intuitively, dividing
encodings does not “work”, since the resulting denominator has a nontrivial term that is not z.

The GGH params allow everyone to generate encodings of random (known) values. The params
include a level-1 encoding of 1 (from which one can generate encodings of 1 at other levels), and
(for each i ∈ [n]) a sufficient number of level-i encodings of 0 to enable re-randomization. To encode
(say at level-1), run samp(params) to sample a small element a from O, e.g. according to a discrete
Gaussian distribution. For a Gaussian with appropriate deviation, this will induce a statistically
uniform distribution over the cosets of I. Then, multiply a with the level-1 encoding of 1 to get
a level-1 encoding u of a ∈ R. Finally, run reRand(params, 1, u), which involves adding a random
Gaussian linear combination of the level-1 encodings of 0, whose noisiness (i.e., numerator size)
“drowns out” the initial encoding. The parameters for the GGH scheme can be instantiated such
that the re-randomization procedure can be used for any pre-specified polynomial number of times.

To permit testing of whether a level-n encoding u = e/zn ∈ Sn encodes 0, GGH publishes a
level-n zero-test parameter pzt = hzn/g, where h is “somewhat small”8 and g is the generator of I.
The procedure isZero(params,pzt, u) simply computes pzt · u and tests whether its coefficients are
small modulo q. If u encodes 0, then e ∈ I and equals g ·c for some (small) c, and thus pzt ·u = h ·c
has no denominator and is small modulo q. If u encodes something nonzero, pzt · u has g in the
denominator and is not small modulo q. The ext(params,pzt, u) procedure works by applying a

strong extractor to the most significant bits of pzt · u. For any two u1, u2 ∈ S(α)
n , we have (subject

to noise issues) u1 − u2 ∈ S(0)
n , which implies pzt(u1 − u2) is small, and hence pzt · u1 and pzt · u2

have the same most significant bits (for an overwhelming fraction of α’s).
Garg et al. provide an extensive cryptanalysis of the encoding system, which we will not

review here. We remark that the underlying assumptions are stronger, but related to, the hardness
assumption underlying the NTRU encryption scheme: that it is hard to distinguish a uniformly
random element from O/(q) from a ratio of “small” elements – i.e., an element u/v ∈ O/(q) where
u, v ∈ O/(q) both have coefficients that are on the order of (say) qε for small constant ε.

5.3 Our Construction

Now we provide our construction in GGH’s n-graded encoding system. For ease of notation
on the reader, we suppress repeated params arguments that are provided to every
algorithm.. Thus, for instance, we will write α ← samp() instead of α ← samp(params). Note
that in our scheme, there will only ever be a single uniquely chosen value for params throughout
the scheme, so there is no cause for confusion.

Setup(1λ, n, `). The setup algorithm takes as input, a security parameter λ, the maximum depth
` of a circuit, and the number of boolean inputs n.

It then runs (pzt) ← InstGen(1λ, 1k=`+1). Recall that params will be implicitly given as input
to all GGH-related algorithms below. Next, it samples α, ĥ1, . . . , ĥn ← samp().

8Its coefficients are on the order of (say) q2/3, while other terms – such as a numerator e or the principal ideal
generator g – are much, much smaller.
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The public parameters, PP, consist of pzt, plus:

H = cenc2(k, α), h1 = cenc2(1, ĥ1), . . . , hn = cenc2(1, ĥn).

The master secret key MSK is α.

Encrypt(PP, x ∈ {0, 1}n,M ∈ {0, 1}). The encryption algorithm takes in the public parameters,
an descriptor input x ∈ {0, 1}n, and a message bit M ∈ {0, 1}.

The encryption algorithm chooses a random s← samp(). If M = 0 it sets CM to be a random
value:

CM = cenc3(k, samp())

otherwise it lets
CM = cenc3(k,H · s).

Next, let S be the set of i such that xi = 1.
The ciphertext is created as

CT = (CM , s̃ = cenc1(1, s), ∀i ∈ S Ci = cenc3(1, hi · s)).

KeyGen(MSK = α, f = (n, q,A,B, GateType)). The algorithm takes in the master secret key
and a description f of a circuit. Recall, that the circuit has n+ q wires with n input wires, q gates
and the wire n+ q designated as the output wire.

The key generation algorithm chooses random r1, . . . , rn+q ← samp(), where we think of ran-
domness rw as being associated with wire w. The algorithm produces a “header” component

KH = cenc3(k − 1, α− rn+q).

Next, the algorithm generates key components for every wire w. The structure of the key
components depends upon if w is an input wire, an OR gate, or an AND gate. We describe how it
generates components for each case.

• Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. The key generation
algorithm chooses random zw ← samp().

The key components are:

Kw,1 = cenc3(1, enc(1, rw) + hw · zw), Kw,2 = cenc3(1,−zw).

• OR gate
Suppose that wire w ∈ Gates and that GateType(w) = OR. In addition, let j = depth(w) be
the depth of wire w. The algorithm will choose random aw, bw ← samp(). Then the algorithm
creates key components:

Kw,1 = cenc3(1, aw), Kw,2 = cenc3(1, bw),

Kw,3 = cenc3(j, rw − aw · rA(w)), Kw,4 = cenc3(j, rw − bw · rB(w)).
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• AND gate
Suppose that wire w ∈ Gates and that GateType(w) = AND. In addition, let j = depth(w)
be the depth of wire w. The algorithm will choose random aw, bw ← samp().

Kw,1 = cenc3(1, aw), Kw,2 = cenc3(1, bw),

Kw,3 = cenc3(j, rw − aw · rA(w) − bw · rB(w)).

We will sometimes refer to the Kw,3,Kw,4 of the AND and OR gates as the “shift” components.
This terminology will take on more meaning when we see how they are used during decryption.

The secret key SK output consists of the description of f , the header component KH and the
key components for each wire w.

Decrypt(SK,CT). Suppose that we are evaluating decryption for a secret key associated with
a circuit f = (n, q,A,B, GateType) and a cipherext with input x. We will be able to decrypt if
f(x) = 1.

We begin by observing that the goal of decryption should be to compute a level k encoding of
α · s such that we can test if this is equal to CM . First, there is a header computation where we
compute E′ = KH · s̃. Note that E′ should thus be a level k encoding of αs−rn+q · s. Our goal is
now reduced to computing a level k encoding of rn+q · s.

Next, we will evaluate the circuit from the bottom up. Consider wire w at depth j; if fw(x) = 1
then, our algorithm will compute Ew to be a level j + 1 encoding of srw. Note that if fw(x) = 0
nothing needs to be computed for that wire, since we have a monotonic circuit. Our decryption
algorithm proceeds iteratively starting with computing E1 and proceeds in order to finally compute
En+q. Computing these values in order ensures that the computation on a depth j − 1 wire (that
evaluates to 1) will be defined before computing for a depth j wire. We show how to compute Ew
for all w where fw(x) = 1, again breaking the cases according to whether the wire is an input, AND
or OR gate.

• Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. Suppose that xw =
fw(x) = 1. The algorithm computes:

Ew = Kw,1 · s̃+Kw,2 · Cw.

Thus, Ew computes a level 2 encoding of (rw + ĥw · zw) · s+ (−zw) · ĥw · s = srw.

• OR gate
Consider a wire w ∈ Gates and that GateType(w) = OR. In addition, let j = depth(w) be
the depth of wire w. Suppose that fw(x) = 1. If fA(w)(x) = 1 (the first input evaluated to 1)
then we compute:

Ew = EA(w) ·Kw,1 +Kw,3 · s̃.

Thus, Ew computes a level j + 1 encoding of srA(w) · aw + (rw − aw · rA(w)) · s = srw.

Alternatively, if fA(w)(x) = 0, but fB(w)(x) = 1, then we compute:

Ew = EB(w) ·Kw,2 +Kw,4 · s̃.

This similarly computes a level j + 1 encoding of srB(w) · bw + (rw − bw · rB(w)) · s = srw.

18



Let’s examine this mechanism for the case where the first input is 1 (fA(w)(x) = 1). In this
case the algorithm “moves” the value EA(w) from level j to level j + 1 when multiplying it
with Kw,1. It then adds it to Kw,3 · s̃ which “shifts” that result to Ew.

Suppose that fA(w)(x) = 1, but fB(w)(x) = 0. A critical feature of the mechanism is that an
attacker cannot perform a “backtracking” attack to compute EB(w). The reason is that the
GGH encoding cannot be reversed to go from level j+ 1 to level j. (See [GGH12b] for details
on why this is the case.) If this were not the case, it would be debilitating for security as gate
B(w) might have fanout greater than 1. This type of backtracking attacking is why existing
ABE constructions are limited to circuits with fanout of 1.

• AND gate
Consider a wire w ∈ Gates and that GateType(w) = AND. In addition, let j = depth(w)
be the depth of wire w. Suppose that fw(x) = 1. Then fA(w)(x) = fB(w)(x) = 1 and we
compute:

Ew = EA(w) ·Kw,1 + EB(w) ·Kw,2 +Kw,3 · s̃.

Note that this computes a level j + 1 encoding of srw in a manner analogous to above.

If f(x) = fn+q(x) = 1, then the algorithm will compute En+q to be a level k encoding of rn+q · s.
It finally computes E′ + En+q which is a level k encoding of αs and tests if this equals CM using
isZero(pzt, E

′+En+q −CM ), outputting M = 1 if so and M = 0 otherwise. Correctness holds with
high probability.

A Quick Remark about Message Length. Our encryption algorithm takes as input a single
bit message. We can extend this to longer messages using the ext algorithm provided by the GGH
encoding (see Section 5.1). We restrict ourselves to single bit messages for clarity of the scheme
and proof of security.

6 Proof of Security in GGH framework

We prove (selective) security in the security model given by GPSW [GPSW06], where the key
access structures are monotonic circuits. For a circuit of max depth k − 1 we prove security under
the GGH analog of the decision k-multilinear assumption.

We show that if there exist a poly-time attacker A on our ABE system for circuits of depth `
and inputs of length n in the selective security game then we can construct a poly-time algorithm
on the GGH-analog of the decision `+1-multilinear assumption with non-negligible advantage. We
describe how B interacts with A.

Theorem 6.1. The construction given in the previous section achieves selective security for arbi-
trary circuits of depth k − 1 in the KP-ABE security game under the k-GMDDH assumption.

By using universal circuits, we obtain as an immediate corollary:

Corollary 6.2. There exists a CP-ABE construction for arbitrary circuits of bounded size that
achieves selective security in the CP-ABE security game [GPSW06, BSW07] under the GMDDH
assumption for suitable k polynomially related to the bound on circuit size.
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Proof. This follows by considering a variant of a Universal Circuit Ux where U(C) = C(x), where
C is a canonical representation of an arbitrary bounded-size circuit by a bounded-size string. In
the CP-ABE setting, keys correspond to specific inputs x, and ciphertexts correspond to circuits
C. We implement this by using our construction, and providing keys corresponding to the circuit
Ux. Thus, when a key is used to decrypt a ciphertext corresponding to a circuit description C, the
user will be able to decrypt iff Ux(C) = C(x) = 1, as desired.

The remainder of this section contains a proof of Theorem 4.1.

Proof of Theorem 6.1. Our proof follows the “Move Forward and Shift” paradigm that was
described in the Introduction. For intuition on how this works, please refer to the “Our Techniques”
section of the Introduction. Below, we provide the mathematical details behind the proof.

Init. B first receives the k = ` + 1-multilinear problem where it is given the encoding descrip-
tion pzt and a problem instance consisting of random level 1 encodings, s̃ = cenc1(1, s), c̃1 =
cenc1(1, c1), . . . , c̃k = cenc1(1, ck), where s, c1, . . . , ck ← samp(), and a level k encoding T . This last
encoding T is either cenc1(k, s

∏
j∈[1,k] cj) or a random encoding cenc1(k, samp()).

Next, the attacker declares the challenge input x∗ ∈ {0, 1}n.

Setup. B chooses random y1, . . . , yn ∈ samp(). For i ∈ [1, n] set

hi =

{
cenc2(1, enc(1, yi)) if x∗i = 1

cenc2(1, enc(1, yi) + c̃1) if x∗i = 0.

Remark. Note that due to rerandomization, the above choices of hi are (jointly) distributed within
negligible statistical distance to the “real life” distribution.

Next, B setsH, which should be a (rerandomized) level k encoding of α, to be cenc2(k, enc(k, ξ)+∏
i∈[1,k] c̃i), where ξ ← samp() is chosen randomly.

Remark. Again, due to rerandomization and the random choice of ξ, the value H above is
distributed within negligible statistical distance to the “real life” distribution, conditioned on all
other choices so far.

Challenge Ciphertext. Let S∗ ⊆ [1, n] be the set of input indices where x∗i = 1. B creates the
challenge ciphertext as:

CT = (cenc3(k, T + enc(k − 1, ξ) · s̃), s̃, ∀j ∈ S∗ Cj = cenc3(1, yj · s̃)).

If T is an encoding of s
∏
j∈[1,k] cj , then this challenge ciphertext is distributed within negligible

statistical distance of an honestly generated encryption of 1; otherwise if T was chosen as a random
level k encoding, then this ciphertext is distributed within negligible statistical distance of an
honestly generated encryption of 0. This follows immediately from rerandomization and the choice
of variables above.

KeyGen Phase. Both key generation phases are executed in the same manner by the re-
duction algorithm. Therefore, we describe them once here. The attacker will give a circuit
f = (n, q,A,B, GateType) to the reduction algorithm such that f(x∗) = 0.

We can think of the proof as having some invariant properties on the depth of the gate we are
looking at. Consider a gate w at depth j and the simulators viewpoint (symbolically) of rw. If
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fw(x∗) = 0, then the simulator will view rw as the term c1 · c2 · · · cj+1 plus some additional known
randomization terms. If fw(x∗) = 1, then the simulator will view rw as zero plus some additional
known randomization terms. If we can keep this property intact for simulating the keys up the
circuit, the simulator will view rn+q as c1 · c2 · · · ck . This will allow for it to simulate the header
component KH by cancellation.

We describe how to create the key components for each wire w. Again, we organize key com-
ponent creation into input wires, OR gates, and AND gates.

• Input wire
Suppose w ∈ [1, n] and is therefore by convention an input wire.

If (x∗)w = 1 then we choose rw and zw at random using samp() (as is done honestly). The
key components are:

Kw,1 = cenc3(1, enc(1, rw) + hw · zw), Kw,2 = cenc3(1, enc(1,−zw)).

If (x∗)w = 0 then we implicitly let rw = c1c2 + ηi and zw = −c2 + νi, where ηi and νi are
randomly chosen elements using samp(). The key components are computed as follows:

Kw,1 = cenc3(1,−c̃2 · yw + enc(1, ηw) + enc(1, yw · νw) + c̃1 · νw),

Kw,2 = cenc3(1,−c̃2 + enc(1, νw)).

Please refer to the previous proof for intuition about the calculations above.

Remark. Note that these keys are distributed within negligible statistical distance to hon-
estly generated keys due to rerandomization and the random choices of ηw and νw.

• OR gate
Now we consider a wire w ∈ Gates and that GateType(w) = OR. In addition, let j =
depth(w) be the depth of wire w. If fw(x∗) = 1, then we simply set aw, bw, rw at random to
values chosen by B using samp(). Then the algorithm creates key components honestly. Note
that if fw(x∗) = 1 then it must be that either fA(w)(x

∗) = 1 or fB(w)(x
∗) = 1. Below, we first

consider the case that both fA(w)(x
∗) = 1 and fB(w)(x

∗) = 1:

Kw,1 = cenc3(1, enc(1, aw)), Kw,2 = cenc3(1, enc(1, bw)),

Kw,3 = cenc3(j, enc(j, rw − aw · rA(w))), Kw,4 = cenc3(j, enc(j, rw − bw · rB(w))).

Note that if fA(w)(x
∗) = 0 or fB(w)(x

∗) = 0, then the computation would be slightly different.
If fA(w)(x

∗) = 0, then rA(w) = c1 · · · cj + ηA(w). Thus, the computation of Kw,3 above would
be:

Kw,3 = cenc3(j, enc(j, rw)− aw · (c̃1 · · · (̃cj) + enc(j, ηA(w)))).

If fB(w)(x
∗) = 0, then a similar calculation would be done for Kw,4.

If fw(x∗) = 0, then we implicitly set aw = cj+1 + ψw and bw = cj+1 + φw and rw = c1 ·
c2 · · · cj+1 + ηw, where ψw, φw, ηw are chosen randomly using samp(). Then the algorithm
creates key components as follows. Below, recall that y is a level 1 encoding of 1 that is
included as part of the params that were provided as part of the assumption.

Kw,1 = cenc3(1, c̃j+1 + enc(1, ψw)), Kw,2 = cenc3(1, c̃j+1 + enc(1, φw)),
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Kw,3 = cenc3(j, enc(j, ηw)− yj−1 · c̃j+1 · ηA(w) − ψw · (c̃1 · · · c̃j + enc(j, ηA(w))))

Kw,4 = cenc3(j, enc(j, ηw)− yj−1 · c̃j+1 · ηB(w) − φw · (c̃1 · · · c̃j + enc(j, ηB(w)))).

For intuition regarding the calculation above, please see the previous proof.

Remark. Again, note that these keys are distributed within negligible statistical distance to
honestly generated keys due to rerandomization and the random choices of ηw, ψw, and φw.

• AND gate
Now we consider a wire w ∈ Gates and that GateType(w) = OR. In addition, let j =
depth(w) be the depth of wire w.

If fw(x∗) = 1, then we simply set aw, bw, rw at random to values known by B using samp().
Then the algorithm creates key components honestly. Note that because both fA(w)(x

∗) = 1
and fB(w)(x

∗) = 1, below the rA(w) and rB(w) are fully known by B.

Kw,1 = cenc3(1, enc(1, aw)), Kw,2 = cenc3(1, enc(1, bw)),

Kw,3 = cenc3(j, enc(j, rw − aw · rA(w) − bw · rB(w))).

If fw(x∗) = 0 then there are three cases to consider. Let us first consider the case that
fA(w)(x

∗) = 0, but fB(w)(x
∗) = 1 then B implicitly sets aw = cj+1 + ψw, bw = φw and

rw = c1 · c2 · · · cj+1 + ηw, where ψw, φw, ηw are chosen randomly using samp(). Then the
algorithm creates key components:

Kw,1 = cenc3(1, c̃j+1 + enc(1, ψw)), Kw,2 = cenc3(1, enc(1, φw)),

Kw,3 = cenc3(j, enc(j, ηw)−ψw · c̃1 · · · c̃j − (yj−1 · c̃j+1 + enc(j, ψw)) · ηA(w)− enc(j, φw · rB(w)).

For intuition regarding the above calculation, please refer to the previous proof.

The case where fB(w)(x
∗) = 0 and fA(w)(x

∗) = 1 is performed in a symmetric manner to
what is above, with the roles of aw and bw reversed.

If both fB(w)(x
∗) = 0 and fA(w)(x

∗) = 0, then the computation is done exactly as above,
except the computation of Kw,3 is as follows:

Kw,3 = cenc3(j, enc(j, ηw)−ψw·c̃1 · · · c̃j−(yj−1·c̃j+1+enc(j, ψw))·ηA(w)−φw·(c̃1 · · · c̃j+enc(j, ηB(w)))).

Remark. Again, note that these keys are distributed within negligible statistical distance to
honestly generated keys due to rerandomization and the random choices of ηw, ψw, and φw.

For the output gate we chose ηw at random, where w = n + q. Thus, at the end we have
rw =

∏
i∈[1,k] ci + ηw for the output gate. This gives us a final cancellation in computing the

“header” component of the key KH , which should be a level k − 1 encoding of α− rw = ξ − ηw.
Thus, we can compute KH = cenc3(k − 1, ξ − ηw). Note that this is distributed identically to the
real distribution of KH .

Guess. B receives back the guess M ′ ∈ {0, 1} of the message from A. If M ′ = 1 it guesses that
T is a tuple; otherwise, it guesses that it is random.

This immediately shows that any adversary with non-trivial advantage in the KP-ABE selec-
tive security game will have an identical advantage in breaking the GGH-analog of the k-MDDH
assumption. �
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