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Abstract

In this paper, we present a new cube root algorithm in finite field Fq with q a power of
prime, which extends the Cipolla-Lehmer type algorithms [4, 5]. Our cube root method is
inspired by the work of Müller [8] on quadratic case. For given cubic residue c ∈ Fq with
q ≡ 1 (mod 9), we show that there is an irreducible polynomial f(x) = x3 − ax2 + bx− 1

with root α ∈ Fq3 such that Tr(α
q2+q−2

9 ) is a cube root of c. Consequently we find an
efficient cube root algorithm based on third order linear recurrence sequence arising from
f(x). Complexity estimation shows that our algorithm is better than previously proposed
Cipolla-Lehmer type algorithms.

Keywords : finite field, cube root, linear recurrence relation, Tonelli-Shanks algorithm,
Cipolla-Lehmer algorithm, Adleman-Manders-Miller algorithm

MSC 2010 Codes : 11T06, 11Y16, 68W40

1 Introduction

Finding r-th root in finite field Fq has many applications in computational number theory and
in many other related topics. For square root computation, which is the simplest case among
all r-th root extraction problems, there are two standard algorithms; the Tonelli-Shanks [1, 2]
and the Cipolla-Lehmer [4, 5] algorithms. Due to the cumbersome extension field arithmetic
needed in the Cipolla-Lehmer algorithm, one usually prefers the Tonelli-Shanks algorithm, and
other related researches [8, 11, 12, 17, 18] exist.

There is also the Adleman-Manders-Miller [3] algorithm which is a straightforward gen-
eralization of the Tonelli-Shanks to the case of cube roots and r-th roots. Improving the
Tonelli-Shanks or the Adleman-Manders-Miller algorithm via efficient computation of discrete
logarithm in F×

q are reported in [13, 14]. However it should be mentioned that the worst case

complexity of the Tonelli-Shanks is O(log4 q) while the Cipolla-Lehmer can be executed in
O(log3 q). Other view points on r-th root extraction different from the Adleman-Manders-
Miller and the Cipolla-Lehmer are suggested in [15, 16].

Müller [8] proposed a fast and simple square root algorithm which is a refinement of the
Cipolla-Lehmer. Müller’s idea is to use a special type of Lucas sequence with the polynomial
x2−Px+1 instead of the general f(x) = x2−Px+Q required in the original Cipolla-Lehmer.
The Cipolla-Lehmer algorithm is based on the simple idea that, when f is irreducible over

Fq, then a square root of Q is given by α
q+1
2 with f(α) = 0, so the arithmetic in Fq2 or the

recurrence relation technique can be used to find a square root. However it is not clear to find
an obvious (or natural) candidate for square root of Q when one use the polynomial x2−Px+1.
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Müller successfully find a suitable P for given Q so that the square roots of Q can be found
efficiently.

For cubic case, it seems that there is not so many works regarding Cipolla-Lehmer algorithm
other than that of Nishihara [9] for constructing cubic irreducible polynomials to speed up the
Cipolla-Lehmer method.

In this paper, we propose a new cube root algorithm over Fq with prime power q ≡ 1
(mod 9) by extending Müller’s result on quadratic case. For the case q ̸≡ 1 (mod 9), we
have a simple closed formula (cost of one exponentiation in Fq) for cube root. We show
that, for given cubic residue c ∈ Fq, we can efficiently construct an irreducible polynomial

f(x) = x3 − ax2 + bx − 1 with root α ∈ Fq3 such that Tr(α
q2+q−2

9 ) is a cube root of c, where

Tr(β) = TrFq3/Fq
(β) = β + βq + βq2 . Such element Tr(α

q2+q−2
9 ) can be computed via the

recurrence relation found in [7].
The remainder of this paper is organized as follows: In Section 2, we introduce the root ex-

traction algorithms in Fq. In Section 3, we describe the third order linear recurrence sequences.
In Section 4, we propose a new cube root algorithm based on the third order linear recurrence
relation. In Section 5, we discuss the complexity estimation of the proposed algorithm and the
implementation results. Finally, in Section 6, we give a conclusion.

2 Root Extraction Algorithms in Fq

In this section, we introduce two standard algorithms for computing cube roots in finite field,
that is, the Tonelli-Shanks [1, 2], the Adleman-Manders-Miller [3] algorithms and the Cipolla-
Lehmer algorithm [4, 5]. Also, Müller’s square root algorithm [8] will be briefly sketched.

2.1 Tonelli-Shanks and Adleman-Manders-Miller algorithm

The Tonelli-Shanks algorithm [1, 2] or the Adleman-Manders-Miller algorithm [3] is described
in Table 1. Its complexity is O(ν3(q−1) log3 q), where ν3(q−1) denotes the largest non-negative
power ν satisfying 3ν |q − 1. The Tonelli-Shanks algorithm has the complexity O(log3 q) when
ν3(q − 1) is small while has the worst complexity O(log4 q) when ν3(q − 1) ≈ log3 q.

2.2 Cipolla-Lehmer algorithm

The Cipolla-Lehmer algorithm [4, 5] is described in Table 2. Its complexity is O(log3 q), which
does not depend on ν = ν3(q − 1) unlike the case of the Tonelli-Shanks. However, for small
ν = ν3(q − 1), the Tonelli-Shanks algorithm runs faster than the Cipolla-Lehmer because the
Cipolla-Lehmer relies on the relatively heavy extension field arithmetic in Fq3 . Hence the
refinements of the Cipolla-Lehmer is desirable.

To find a cube root of c ∈ Fq with q ≡ 1 (mod 3), the Cipolla-Lehmer algorithm needs an
irreducible cubic polynomial f(x) = x3− ax2 + bx− c with constant term −c. Letting α ∈ Fq3

be a root of f , we get α1+q+q2 = c so that α
1+q+q2

3 is a cube root of c. The irreducibility

testing of f and the exponentiation α
1+q+q2

3 in Fq3 (or computing x
1+q+q2

3 (mod f(x))) need
many multiplications in Fq, and the number of such multiplications depends on the coefficients
of f . Nishihara [9] showed that a speed-up can be achieved if one use an irreducible cubic
trinomials with constant term −c, and that Dickson’s method [6] (Table 3) can be used to test
the irreducibility of the trinomial. Dickson’s irreducibility criterion for f(x) = x3+ bx− c says
that f(x) is irreducible over Fq if and only if the following two conditions are satisfied:
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Table 1: Adleman-Manders-Miller cube root algorithm

Input: A cubic residue a in Fq with odd characteristic
Output: A cube root of a

Step 1:
Let q − 1 = 3st with t = 3l ± 1

Step 2:
Select a cubic non-residue b in Fq

c← bt

c′ ← c3
s−1

Step 3: (Computation of the cube root of (at)−1 )
h ← 1, r ← at

for i = 1 to s− 1

d← r3
s−i−1

if d = 1, then k ← 0
else if d = c′, then k ← 2
else k ← 1
h ← h · ck, r ← r · (c3)k
c ← c3

end for

Step 4:
r ← al · h
if t = 3l + 1, then r ← r−1

Return r

Table 2: Cipolla-Lehmer cube root algorithm

Input: A cubic residue c in Fq

Output: A cube root of c

Step 1:
Choose a, b randomly in Fq

Step 2:
f(x)← x3 − ax2 + bx− c
if f is reducible, then go to Step 1

Step 3:

Return x
q2+q+1

3 (mod f(x))

1. D = −(4b3 + 27c2) is nonzero quadratic residue in Fq

2. 1
2(c+ 3−2

√
−3D) is a cubic non-residue in Fq

For the cube root computation x
q2+q+1

3 (mod f(x)) of c, this method is more efficient
than the one using random cubic polynomial because f(x) has a low hamming weight (i.e.,
trinomial).
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Table 3: Dickson’s irreducibility testing of cubic polynomial

Input: A cubic residue c in Fq

Output: An irreducible cubic polynomial with constant term −c
Step 1:
Choose b randomly in Fq

f(x) ← x3 + bx− c, D(f) ← −(4b3 + 27c2)

Step 2:
if D(f) is zero or a quadratic non-residue, then go to Step 1

else α ← 1
2(c+ 3−2

√
−3D(f))

(i.e., α: a root of x2 − cx− 3−3b3 = 0)

Step 3:
if α is a cubic non-residue in Fq, then return f(x)
else go to Step 1

2.3 Müller’s square root algorithm with Lucas sequences

For given irreducible quadratic f(x) = x2 − Px + Q ∈ Fq[x] with roots α and β, one has the
corresponding Lucas sequence sk = αk+βk. Computing sk via the relation sk = Psk−1−Qsk−2

can be simple if one lets Q = 1, that is, if f(x) = x2 − Px+ 1.
Let Q be a square in Fq. Assume that q ≡ 1 (mod 4) and f(x) = x2 − Px + 1 with

P = Q − 2 is irreducible over Fq. Letting α, α−1 be roots of f(x), Müller [8] found a square
root of Q as

s2q−1
4

= (α
q−1
4 + α− q−1

4 )2

= α−1α
q+1
2 + αα− q+1

2 + 2

= α−1 + α+ 2 = P + 2 = Q.

For detailed explanation, see [8]. The cost of computing s q−1
4

is small because it comes from

x2−Px+1 not from x2−Px+Q. In fact, it is shown [8] that one needs 2 log2 q multiplications
in Fq to compute s q−1

4
. Our purpose is to generalize and extend Müller’s idea [8] to the cubic

case, and it will be shown in the next two sections.

3 The Third Order Linear Recurrence Sequences

Let f(x) = x3−ax2+bx−c (a, b, c ∈ Fq) be irreducible over Fq. A third-order linear recurrence
sequence sk with characteristic polynomial f(x) is defined as

sk = ask−1 − bsk−2 + csk−3, k ≥ 3.

If sk has the initial state s0 = 3, s1 = a, and s2 = a2 − 2b, then sk is called the characteristic
sequence generated by f(x). Letting f(α) = 0, the characteristic sequence sk can be expressed
as

sk = Tr(αk) = αk + αkq + αkq2 .

When it is needed to emphasize that the characteristic sequence sk comes from the polynomial
f , we denote such sk using various notations such as sk(f), sk(a, b, c), or sk(α). It is well-known
[7] that the sequence sk satisfies
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1. s2n = s2n − 2cns−n,

2. sn+m = snsm − cmsn−ms−m + cmsn−2m

As in the case of second order recurrence relation, the exponentiation cn gives extra burden to
the computation of sk. Therefore we are mainly interested in the polynomial f(x) with c = 1,
i.e. f(x) = x3 − ax2 + bx− 1. Note that, to apply the Cipolla-Lehmer for the computation of
the cube root of c, one has to use the polynomial x3 − ax2 + bx − c, so letting the constant
term −1 makes it impossible to use the Cipolla-Lehmer. However, as is done by Müller for the
quadratic case, an wise choice of f gives a way to find the cube root of c ∈ Fq as will be shown
in the next section.

From now on, we will consider the characteristic sequence sk which comes from the irre-
ducible cubic f(x) = x3 − ax2 + bx− 1. Then the sequence sk has much simpler relation;

A. s2n = s2n − 2s−n,

B. sn+m = snsm − sn−ms−m + sn−2m

Now Let k =
∑r

i=0 ki2
r−i be a binary representation of k, and let the partial sum zj be

defined as z0 = k0 = 1, zj = 2zj−1 + kj , j = 1, 2, · · · , r. Then one has zr = k, and sk can be
computed using the above two relations A and B as follows (See [7] for more explanation):

If kj = 0, then szj = s2zj−1 so let

1. szj−1 = szj−1szj−1−1 − bs−zj−1 + s−(zj−1+1)

2. szj = s2zj−1
− 2s−zj−1

3. szj+1 = szj−1szj−1+1 − as−zj−1 + s−(zj−1−1)

If kj = 1, then szj = s2zj−1+1 so let

1. szj−1 = s2zj−1
− 2s−zj−1

2. szj = szj−1szj−1+1 − as−zj−1 + s−(zj−1−1)

3. szj+1 = s2zj−1+1 − 2s−(zj−1+1)

An algorithm realizing the above relations is given in Table 5. The complexity of computing
both of sk and s−k is 9 log2 k multiplications in Fq on average. Also when a is a small integer as
will be shown in the next section, the complexity is further reduced to 7 log2 k multiplications
in Fq. Moreover if one considers the cost using both squarings and multiplications, then the
case kj = 1 has the cost of 3 squarings using Karatsuba type technique (i.e., 2szj−1szj−1+1 =
(szj−1 + szj−1+1)

2 − s2zj−1
− s2zj−1+1). Therefore the average cost is further reduced to 4 log2 k

multiplications and 3 log2 k squarings in Fq. Note that our method of using the recurrence

relation is much more efficient than the method of directly computing x
1+q+q2

3 (mod f(x)),
since computing (b2x

2 + b1x+ b0)
2 (mod f(x)) already requires at least 12 multiplications in

Fq.
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4 New Cube Root Algorithm

Let b be in Fq and let f(x) = x3 − 3x2 + bx − 1 be irreducible over Fq with q ≡ 1 (mod 3).
Suppose f(α) = 0. Then the norm of f (the product of all the conjugates of α) is

α1+q+q2 = 1.

A classical result of Hilbert Theorem 90 [19] or direct calculation over the field extension
Fq3/Fq says that there exists β ∈ Fq3 such that β3 = α. More precisely, using the property

α1+q+q2 = 1, one can show that

α(1 + α+ α1+q)q = 1 + α+ α1+q.

Therefore putting β = (1 + α+ α1+q)
1−q
3 , we get

β3 = (1 + α+ α1+q)1−q = α. (1)

Letting h(x) = x3 + (b− 3)x− (b− 3), it is easy to check h(1−α) = 0 since Tr(α) = 3. In
fact, one has h(1− x) = −f(x). Therefore, the irreducibility of f implies the irreducibility of
h and vice versa.

Theorem 1. Assuming f(α) = 0 and q ≡ 1 (mod 3), we have α
1+q+q2

3 = 1.

Proof. Since h(x) = x3 + (b− 3)x− (b− 3) is also irreducible over Fq,

(1− α)1+q+q2 = (b− 3). (2)

On the other hand, from 0 = h(1− α) = (1− α)3 + (b− 3)(1− α)− (b− 3), we get

(1− α)3 = (b− 3)α (3)

By taking 1+q+q2

3 -th power to both sides of the above expression,

(1− α)1+q+q2 = (b− 3)
1+q+q2

3 α
1+q+q2

3 (4)

Comparing two expressions (2) and (4), we get

α
1+q+q2

3 = (b− 3)−
q2+q−2

3 = (b− 3)−
(q−1)(q+2)

3 = 1 (5)

since q ≡ 1 (mod 3) and b− 3 ∈ Fq.

Now letting g(x) = x3 − a′x2 + b′x − c′ (a′, b′, c′ ∈ Fq) be the irreducible polynomial of β
over Fq, we get c′ = 1 from the above theorem because

c′ = β1+q+q2 = α
1+q+q2

3 = 1. (6)

Lemma 1. b′3 = b+ 3b′a′ − 3

6



Proof. Using the following simple identity

(A+B + C)3 = A3 +B3 + C3 + 3(A+B + C)(AB +BC + CA)− 3ABC

with A = β1+q, B = βq+q2 , C = β1+q2 , we get

(β1+q + βq+q2 + β1+q2)3 =

α1+q + αq+q2 + α1+q2 + 3(β1+q + βq+q2 + β1+q2)(β + βq + βq2)− 3
(7)

which can be rewritten as
b′3 = b+ 3b′a′ − 3. (8)

Corollary 1. s q2+q−2
3

(β)3 = sq+1(β)
3 = b′3

Proof. Letting β
1+q+q2

3 = ω, we have ω3 = β1+q+q2 = 1 and ωq = ω. Therefore

s q2+q−2
3

(β)3 = Tr(β
q2+q−2

3 )3 = (β
q2+q−2

3 + βq q2+q−2
3 + βq2 q2+q−2

3 )3

= (ωβ−1 + ωqβ−q + ωq2β−q2)3

= (βq+q2 + β1+q2 + β1+q)3 = sq+1(β)
3 = b′3.

(9)

Corollary 2. If q ≡ 1 (mod 9), then s q2+q−2
9

(α)3 = b′3.

Proof.

s q2+q−2
9

(α)3 = Tr(α
q2+q−2

9 )3 = Tr((β3)
q2+q−2

9 )3

= Tr(β
q2+q−2

3 )3 = s q2+q−2
3

(β)3 = b′3
(10)

If b− 3 is a cubic residue in Fq, one can also show a′ = 0 as follows.

Corollary 3. Assume b− 3 is a nonzero cube in Fq. Then one has β + βq + βq2 = 0.

Proof. Since α = β3 ∈ Fq3 , we may rewrite the equation (3) as

(1− α)3 = (b− 3)β3 (11)

Assume b− 3 = u3 for some u in Fq. Then from (1− α)3 = u3β3, we get

(1− α) = ω0uβ (12)

for some cube root of unity ω0 in Fq. Therefore we get

ω0uTr(β) = Tr(ω0uβ) = Tr(1− α)

= (1− α) + (1− α)q + (1− α)q
2

= 3− (α+ αq + αq2) = 0.

(13)

Since u ̸= 0, we get a′ = Tr(β) = 0.
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Table 4: New cube root algorithm for Fq with q ≡ 1 (mod 9)

Input: A cubic residue c in Fq

Output: s satisfying s3 = c

Step 1:
t← 1, b← ct3 + 3,
f(x)← x3 − 3x2 + bx− 1

Step 2:
while f(x) is reducible over Fq

Choose random t ∈ Fq

b← ct3 + 3, f(x)← x3 − 3x2 + bx− 1
end while

Step 3:
s← s q2+q−2

9

(f) · t−1

Table 5: Algorithm for computing sm

Input: b ∈ Fq and m =
∑l

j=0 kj2
j

Output: sm

Step 1: (Initialize)
d0 ← 3, d1 ← 3, d2 ← 9− 2b
a0 ← 3, a1 ← b, a2 ← b2 − 6

Step 2: (Iterate on j)
for j from l − 1 down to 1 do
if kj = 0 then d0 ← a2 − ba1 + d0d1, d1 ← d21 − 2a1, d2 ← a0 − 3a1 + d1d2

a0 ← d2 − 3d1 + a0a1, a1 ← a21 − 2d1, a2 ← d0 − bd1 + a1a2
if kj = 1 then d0 ← d21 − 2a1, d1 ← a0 − ba1 + d1d2, d2 ← d22 − 2a2

a0 ← a21 − 2d1, a1 ← d0 − 3d1 + a1a2, a2 ← a22 − 2d2
end for

Step 3: (Evaluate)
w1 ← a0 − ba1 + d1d2, w2 ← d21 − 2a1
if k0 = 1 then return w1, else return w2

Finally, combining Lemma 1 and Corollary 2,3, we have the following theorem.

Theorem 2. Suppose that q ≡ 1 (mod 9) and f(x) = x3 − 3x2 + bx − 1 is an irreducible
polynomial over Fq with f(α) = 0. Assume b− 3 is a cubic residue in Fq. Then s q2+q−2

9

(α)3 =

b− 3.

Proof. We have
s q2+q−2

9

(α)3 = b′3 = b+ 3b′a′ − 3 = b− 3,

where the first equality is the Corollary 2, the second equality is the Lemma 1, and the third
equality holds because of the Corollary 3.
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Now using the polynomial f(x) = x3− 3x2+ bx− 1, we can find a cube root for given cube
c in Fq. For given cubic residue c ∈ Fq, define b = c + 3. If f(x) with given coefficient b is
irreducible, then s q2+q−2

9

(f) is a cube root of c. That is,

s q2+q−2
9

(f)3 = b− 3 = c.

If the given f is not irreducible over Fq, then we may twist c by random t ∈ Fq until we get
irreducible f with b = ct3 + 3. Then

s q2+q−2
9

(f)3 = b− 3 = ct3,

which implies t−1s q2+q−2
9

(f) is a cube root of c. Table 4 shows our proposed cube root algorithm

and Table 5 explains the algorithm for computing sm.
Our proposed algorithm works only for those primes q ≡ 1 (mod 9). However, when q ̸≡ 1

(mod 9), one has a much simpler formula for the cube root of c as follows; When q ≡ 2

(mod 3), a cube root of c is given as c
2q−1

3 . When q ≡ 4 (mod 9), a cube root of cubic residue

c is given by c
2q+1

9 . When q ≡ 7 (mod 9), a cube root of cubic residue c is given by c
q+2
9 .

Thus the computational cost of finding cube root of c when q ̸≡ 1 (mod 9) is just one
exponentiation in Fq. In fact, this kind of approach can be generalized following the manner
of Atkin [11], Kong et al. [12] and Müller [8] for quadratic case. Atkin showed that the cost
of finding a square root of c ∈ Fq is just one exponentiation when q ≡ 5 (mod 8), and Müller
extended Atkin’s result by showing that the cost is two exponentiations when q ≡ 9 (mod 16).
However, our method is slightly different from [8, 11, 12] and is rather a simplified version of
the Tonelli-Shanks in the sense that we need only one exponentiation even in the case of q ≡ 9
(mod 16) by fixing primitive 8-th root of unity in Fq. We state the result for the case of cube
root computation.

Proposition 1. Suppose that q ≡ 1 (mod 9) but q ̸≡ 1 (mod 27), and suppose that ξ is a
primitive 9-th root of unity in Fq. Then one can find a cube root of c ∈ Fq with cost of one
exponentiation in Fq.

Proof. From the condition on q, we have either q ≡ 10 (mod 27) or q ≡ 19 (mod 27). Thus
we may write q ≡ 9ϵ+ 1 (mod 27) where ϵ = 1 or 2. Now define

b =
(
c3−ϵ

) q−9ϵ−1
27 , and ζ = b3c2. (14)

Since ζ = b3c2 = ((c3−ϵ)
q−9ϵ−1

27 )3c2 = c
(3−ϵ)(q−9ϵ−1)+18

9 = (c(3−ϵ))
q−1
9 with ϵ = 1, 2 and c is a cubic

residue in Fq, we get ζ3 = 1. Therefore, we have either ζ = 1 or ξ3 = ζj for some j ∈ {1, 2} .
Then a cube root of c is given by bc (when ζ = 1) and ξ3−jbc (when ξ3 = ζj) because

(bc)3 = b3c2c = ζc = c (ζ = 1), (15)

(ξ3−jbc)3 = ζj(3−j)b3c2c = ζj(3−j)+1c = c (ξ3 = ζj), (16)

where ζj(3−j)+1 = ζ3 = 1 if j = 1, 2. The computational cost (other than several multiplica-
tions) is just one exponentiation needed for computing b.
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Table 6: Running time (in seconds) for cube root computation with p ≈ 23000

ν3(p− 1) 100 300 500 700 1000 1400 1800

Adleman et al. 2.12 6.30 14.76 27.58 53.80 105.22 172.76

Cipolla-Lehmer 6.78 6.36 6.21 6.36 6.25 6.27 6.87

Proposed Alg. 5.24 5.09 5.02 4.89 4.93 5.07 4.93

Table 7: Running time (in seconds) for cube root computation with p ≈ 24000

ν3(p− 1) 100 300 500 700 1000 1500 2000 2500

Adleman et al. 2.96 9.14 21.67 40.36 80.78 177.89 316.84 486.99

Cipolla-Lehmer 9.78 9.78 9.97 10.04 9.97 9.95 9.97 9.84

Proposed Alg. 7.63 7.61 7.85 7.69 7.75 7.66 7.75 7.69

Table 8: Running time (in seconds) for cube root computation with p ≈ 25000

ν3(p− 1) 100 300 500 700 1000 1500 2000 2500 3000

Adleman et al. 4.02 12.37 29.72 55.35 109.12 241.71 430.45 671.40 989.10

Cipolla-Lehmer 15.54 15.07 15.07 15.32 15.04 15.01 14.93 15.08 15.07

Proposed Alg. 11.92 11.62 11.59 11.70 11.53 11.46 11.50 11.76 11.53

Example: The above result says that, when q ≡ 10 (mod 27), a cube root of c is given as

1. bc when ζ = 1, because (bc)3 = (b3c2)c = ζc = c

2. ξ2bc when ξ3 = ζ, because (ξ2bc)3 = ζ2(b3c2)c = ζ2ζc = c

3. ξbc when ξ3 = ζ2, because (ξbc)3 = ζ2(b3c2)c = ζζ2c = c

Remark: Using similar technique, one can actually compute a cube root in Fq with just one
exponentiation when q ≡ 1 (mod 3s) and q ̸≡ 1 (mod 3s+1) for small s. However, this method
suddenly loses its merit when s gets larger because the the number cases we consider increases
exponentially.

5 Complexity Estimation

A randomly selected monic polynomial over Fq of degree 3 with nonzero constant term is
irreducible with probability 1

3 (For an explanation, see [21]). Even if our choice of f is not
really random, experimental evidence implies that one third of such f is irreducible.

As is mentioned at the end of Section 3, the cost of computing s q2+q−2
9

needs 7 log2
q2+q−2

9 ≈
14 log2 q Fq-multiplications. The cost of irreducibility testing, using Dickson’s formula in Table
3, needs essentially 2 log2 q Fq-multiplications, which is the cost of square root computation
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via Müller’s recurrence relation in step 2 of Dickson’s algorithm. Step 3 of Dickson’s algorithm
asks one to find the cubic residuosity of certain a ∈ Fq. An obvious way of determining cubic

residuosity is computing a
q−1
3 whose cost is one exponentiation. However, similarly as in the

case of quadratic residuosity, one can use the cubic reciprocity law and Euclidean algorithm

in the ring Z + Z−1+
√
−3

2 to reduce the cost to constant number of multiplications. Detailed
explanation is given by Damg̊ard and Frandsen [10].

Therefore the total cost of our algorithm including irreducibility testing is (2·3+14) log2 q =
20 log2 q multiplications in Fq. Tables 6,7,8 show the comparison of the implementation results
with Maple of the 3 algorithms; the Adleman-Manders-Miller algorithm, the Cipolla-Lehmer
algorithm, and the proposed algorithm (in Table 4). The implementation was performed on
Pentium(R) Dual-Core 2.70GHz with 2GB memory.

For convenience, we used prime fields Fp with three different size of primes p: 3000, 4000, 5000
bits. Average timings for 5 different inputs c ∈ Fp are computed for those cases ν3(p − 1) =
100, 300, 500, · · · , etc. As one can see in the tables, the timings of Adleman-Manders-Miller
increase drastically as ν3(p− 1) becomes larger, while the timings of the Cipolla-Lehmer and
our algorithm are independent of ν3(p−1). Also, the tables show that our proposed algorithm
is consistently faster than the Cipolla-Lehmer. For example, when p ≈ 25000, the average
timing of the Cipolla-Lehmer is 15.13 (seconds) which are 30% slower than the average timing
11.62 (seconds) of our algorithm.

6 Conclusions and Future Works

We proposed a new cube root algorithm in Fq using a linear recurrence relation arising from a
cubic polynomial with constant term −1, which is an improvement over the original Cipolla-
Lehmer algorithm. The related linear recurrence is easy to compute and has low computa-
tional complexity. Complexity estimation shows that the proposed algorithm is better than
the Adleman-Manders-Miller algorithm when ν3(q − 1) is sufficiently large. Our idea can be
generalized to the case of r-th root extraction. We obtained a closed formula for r-th root for
any positive integer r. More precisely, for given r-th power c ∈ Fq, we showed that there exists

α ∈ Fqr such that Tr

(
α

(
∑r−1

i=0
qi)−r

r2

)r

= c where Tr(α) = α+ αq + · · ·+ αqr−1
and α is a root

of irreducible f(x), where f(x) = (x− 1)r + (b− r)x if r = odd and f(x) = (x+ 1)r − (b+ r)x
if r = even. Bottleneck of our approach is efficient ”double and add” formula for r-th order
linear recurrence sequence, which is more or less similar to the one in Section 3. Other than
the cases for r = 2, 3, it seems difficult to find an efficient ”double and add” formula for general
r and further study is needed to settle this problem.
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