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Abstract

Over the past decade bilinear maps have been used to build a large variety of cryptosystems.
In addition to new functionality, we have concurrently seen the emergence of many strong assump-
tions. In this work, we explore how to build bilinear map cryptosystems under progressively weaker
assumptions.

We propose k-BDH, a new family of progressively weaker assumptions that generalizes the de-
cisional bilinear Diffie-Hellman (DBDH) assumption. We give evidence in the generic group model
that each assumption in our family is strictly weaker than the assumptions before it. DBDH has been
used for proving many schemes secure, notably identity-based and functional encryption schemes; we
expect that our k-BDH will lead to generalizations of many such schemes.

To illustrate the usefulness of our k-BDH family, we construct a family of selectively secure
Identity-Based Encryption (IBE) systems based on it. Our system can be viewed as a generalization
of the Boneh-Boyen IBE, however, the construction and proof require new ideas to fit the family. We
then extend our methods to produces hierarchical IBEs and CCA security; and give a fully secure
variant. In addition, we discuss the opportunities and challenges of building new systems under our
weaker assumption family.
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1 Introduction

Since the introduction of the Boneh-Franklin [BF03] Identity-Based Encryption (IBE) system a decade
ago, we have seen an explosion of new cryptosystems based on bilinear maps. These systems have
provided a wide range of functionality including: new signature systems, functional encryption, e-
cash, “slightly” homomorphic encryption, broadcast encryption and oblivious transfer to name just a
few. The focus of many of this work was to develop new (and often not realized before) functional-
ity. While Boneh-Franklin and many first IBE systems used “core” assumptions such as the Bilinear
Diffie-Hellman or decisional variants, over time there has been a trend in bilinear map based work to
employ stronger assumptions in order to obtain these functionalities. Examples of these assumptions
range from “q-type” [Gen06] assumptions, assumptions in composite order groups [BGN05], interactive
assumptions [AP05] and proofs that appealed directly on the generic group model [BB04b, Boy08]

Interestingly, even some work that focused on tightening security (versus achieving new function-
ality) have had to employ relatively strong assumptions. For example, Gentry and Halevi [GH09] and
Waters [Wat09] proposed two different approaches for solving the problem of achieving adaptive security
for Hierarchical Identity-Based encryption. To achieve this the former used a q-type assumption where
the strength of the assumption depends on the number of attacker private key queries. The latter used
the decisional-Linear assumption, where the target of the assumption is in the source element of the
bilinear group versus the target element. Both of these assumptions are potentially stronger than the
classic decisional-BDH prior IBE and related systems were built upon.

Our Goals. In this work, we move in the opposite direction of this trend. We will build bilinear map
systems that depend on weaker assumptions than the decisional-BDH assumption. In particular, we
want to create a suitable family of assumptions that becomes progressively weaker as some parameter k
is increased. Therefore one can increase k as a hedge against potential future attacks such as an n-linear
map for n > 2.

A natural starting point for our investigation is the k-Linear family of assumptions [HK07, Sha07],
which generalizes the decisional Diffie-Hellman assumption (DDH) and the decisional Linear assumption
of Boneh, Boyen, and Shacham [BBS04]. For k ≥ 1, a k-Linear problem instance is a tuple (g, g1, . . . , gk,
gr11 , . . . , g

rk
k , T ), where the generators are random in the group G, the exponents in its support Zp, and

the goal is to determine whether T is equal to gr1+···+rk or random. DDH is 1-Linear, and the Linear
assumption is 2-Linear.

The k-Linear assumption family has been successfully used to build chosen ciphertext secure en-
cryption [HK07, Sha07]; to construct pseudorandom functions [LW09, BMR10]; to construct public-key
encryption secure in the presence of encryption cycles [BHHO08, CCS09] and public-key encryption re-
silient to key leakage [NS09, DHLAW10]; to construct lossy trapdoor functions [FGK+10]; to construct
leakage-resilient signatures [BSW11].

While the k-Linear family has been successful in the above contexts, we desire an assumption that
can be used in bilinear map cryptosystems in place of where DBDH has typically been applied. Here
using the k-Linear family does not appear well suited for two reasons. First, since the assumption of
the family operates solely in the source group, the assumption is not even “aware” of bilinear groups.
Therefore it is not clear how it might be applied in certain systems (e.g. an variant of Boneh-Boyen
IBE) where we are hiding a message in the target group. Second, the Linear assumption family has an
inconsistent interaction with the DBDH assumption: the 1, 2-Linear assumptions are actually stronger
than DBDH, but the the k-Linear assumptions for k > 2 are generically incomparable to DBDH. One
reason that the (2-)Linear assumption has proved so useful is that it gives DBDH “for free,” but this is
lost as soon as one increases k beyond 2. If a new IBE system were based on k-Linear and DBDH, it
is not clear that this would provide an improvement in security.1

1Similarly, for attribute-based encryption, if attribute-hiding were established based on k-Linear, but payload-hiding
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Our goals, then, are to find an assumption family that meets the following criteria:

• As we increase the assumption family parameter k, we should become more confident in the
security of our assumption. In particular, we would argue that our k parameterized assumption is
in some sense more secure than both existing decisional assumptions in bilinear groups and more
secure than the k − 1 instance.

• Our family of assumptions should be amenable to building cryptographic systems. Ideally, for any
system built using the DBDH assumption, one could find a variant built using our family.

The k-BDH Family of Assumptions. Our main contribution is a new family of assumptions that
can serve as a weaker generalization of DBDH.

We propose a family of progressively weaker assumptions, the k-BDH assumptions, that generalizes
the DBDH assumption. The 1-BDH assumption is equivalent to DBDH. More generally, the k-BDH
assumption is as follows:

given g, gx, gy, v1, . . . , vk, v
r1
1 , . . . , v

rk
k in G,

decide whether T = e(g, g)(xy)(r1+···+rk) or random in GT .

Here g and {vi} are random generators of G and x, y, and {ri} are random elements of its support Zp.
We consider only the decisional versions of these problems; as with k-Linear, the computational versions
are all equivalent to each other. (This is also why we refer to our assumption family as k-BDH and
not k-DBDH; there is no interesting family of computational assumptions from which our decisional
assumptions must be distinguished.)

We remark that discovering and choosing such a family turned out to be challenging. Initially,
we considered the assumption family in which the adversary, given the same input values in G, must
distinguish

∏
i e
(
g, vi

)xyri from random in GT . This assumption family is easier to use than our k-BDH
because the values vi and vrii are available to pair with gx or gy, the way that in DBDH we can use the
pairing to compute any of e(g, g)xy, e(g, g)xz, e(g, g)yz. However, it turns out that every member of this
alternative assumption family is equivalent to DBDH.2 The fact that the values {gri} are not supplied
in the k-BDH challenge make constructing an IBE from k-BDH more challenging.

We justify our choice by arguing both that the k-BDH assumptions are no stronger than existing
(decisional) assumptions in bilinear groups and that it is plausible that they are strictly weaker. The
former follows in a relatively straightforward by finding appropriate reductions. We can show that in a
given group the k-BDH assumption is no stronger than DBDH and for a given k the k-BDH assumption
is no stronger than the k-Linear assumption, for all values of k.

Arguing that the assumptions are weaker is more nuanced. Whether certain assumptions hold or
do not hold might vary with the choice of a group and clearly if P = NP all assumptions are equally
false. We give evidence that, for each k, the (k+1)-BDH assumption is strictly weaker than the k-BDH
assumption (i.e., the (k + 1)-BDH problem is strictly harder to solve than the k-BDH problem). As
in previous proofs of this sort for Linear [BBS04] and k-Linear [HK07], we rely on an argument in the
generic group model [Nec94, Sho97]. We show that the k + 1-BDH problem is generically hard even in
the presence of an oracle that solves k-BDH.

Using the k-BDH Assumption. We demonstrate the utility of our assumption family, by con-
structing a family of IBEs secure under k-BDH. The size of the public parameters, secret keys, and

were established based on DBDH, then one the assumption for one property would be weakened while the assumption for
the other property would remain strong.

2The reduction makes use of the DBDH tuple (g,
∏
i v
ri
i , gx, gy, C

?
=
∏
i e
(
g, vi

)xyri).
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ciphertexts are all linear in the parameter k. One can view our family as a generalization of the
Boneh-Boyen selectively secure IBE system [BB04a].

Finding a system that is provably secure under the k-BDH assumption is challenging. Our system
requires a novel technique that effectively switches the base of several public parameters.

The main technical difficulty arises because of the inconvenient target value in the k-BDH assump-

tion, (e(g, g)xy
∑k
i=1 ri). This might appear to be a natural embedding of k BDH problems: Given

(g, gx, gy, gri) embed e(g, g)xyri . However, we do not have the value gri for each i (as one might hope to
have in building a straightforward analogy to the Boneh-Boyen IBE). Instead, we have the pair (vi, v

ri
i ),

where vi is a generator not used elsewhere. To overcome this we need to use a a new cancellation trick
to effectively switch the base of the vrii elements.

In Appendix D, an extend our construction family to a hierarchical IBEs. These yield CCA-secure
schemes via standard transformations [BCHK07, BMW05]. In addition, in Appendix E, we show how
to produce a Waters-IBE–style variant [Wat05] that is fully secure in the standard model.

Looking Ahead. In the future, we expect that one will be able to build cryptosystems from our
k-BDH assumption where DBDH was previously used. However, as our experience with IBE has taught
us, this might require new insights or techniques.

One interesting challenge is whether one can build more complex systems using the k-BDH assump-
tion where the performance overhead is additive in k versus a multiplicative factor (which seems more
natural). For instance, in existing (Key-Policy) Attribute-Based Encryption [GPSW06, SW05] systems,
the size of a private key is proportional to a policy expressed as a boolean formula. If, the cost of using
the k-BDH assumption only required adding ≈ k more group elements, this could be a relatively small
key size overhead for reasonably chosen k. This is in contrast to blowing up the entire key size by a
factor of k. A similar argument holds for other parameters such as ciphertext size and decryption time.
In one datapoint suggesting that this might be possible, Freeman et. al. [FGK+10] recently built Lossy
Trapdoor Functions in a novel way from the k-linear assumption which were rather efficient relative to
the “natural” extension of the Peikert and Waters [PW08] DDH construction.

There also exist currently exist several functionalities where there are no known systems that reduce
to DBDH. These include systems that appear to inherently on assumption related to source group
elements such as Decision Linear. Examples of these include Groth-Sahai NIZKs [GS08], dual system
encryption proofs [Wat09], and the Boneh-Goh-Nissim [BGN05] slightly 2-homomorphic encryption
system.

Finally, an interesting question is which k values one might use in practice. For very large k, it might
turn out that bit by bit encryption systems built from using hard core bits [GL89] and Computational
Diffie-Hellman or Computational Bilinear Diffie-Hellman have comparable efficiency. When proposing
systems, it is important to keep in mind where these lines cross. However, we believe for most practical
choices of k the k-BDH assumption will yield more efficient systems.

2 The k-BDH Assumption and Relationships

Throughout this paper we work in a cyclic group G of order p where p is a large prime. g is a generator
of G. e : G×G→ GT denotes an admissible bilinear map where GT is another cyclic group of order p.
Bilinear Maps and well known complexity assumptions BDH, DBDH, Linear and k-Linear are formally
defined in Appendix A.

Definition 1. The k-BDH problem in 〈G,GT , e〉 asks given (g, gx, gy, v1, . . . , vk, vr11 , . . . , vrkk , T ) for
x, y, r1, . . . , rk, c ∈ Z∗p, g, v1, . . . , vk ∈ G and T ∈ GT does T = e(g, g)xy(r1+···+rk) or is it the case that

T = e(g, g)c. An adversary, B outputs 1 if T = e(g, g)xy(r1+···+rk) and 0 otherwise. B has advantage ε
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in solving k-BDH if

|Pr[B(g, gx, gy, v1, . . . , vk, v
r1
1 , . . . , v

rk
k , e(g, g)xy(r1+···+rk)) = 1]−

Pr[B((g, gx, gy, v1, . . . , vk, v
r1
1 , . . . , v

rk
k , e(g, g)c) = 1]| ≥ 2ε.

Where the probability is taken over the random choice of x, y, r1, . . . , rk, c ∈ Z∗p, g, v1, . . . , vk ∈ G and
the random bits consumed by B.

The k-BDH Assumption is that if no t-time algorithm can achieve advantage at least ε in deciding
the k-BDH problem in G and GT .

This is only a decisional problem. We show that, as a corollary of Theorem 4, the computational
version is equivalent to the computational BDH problem.

2.1 k-BDH’s Relationship to Standard Assumptions

In this subsection we state k-BDH’s relationship to standard cryptographic assumptions; the proofs
are straightforward and given in Appendix B. The reductions show that the k-BDH assumption is
both secure and novel. We refer the reader to Section 4 for a discussion of the relative strengths of
assumptions in the k-BDH family.

We also note that k-BDH is a member of the (R,S,T ,f)-Diffie Hellman uber-assumption fam-
ily [Boy08]. Namely: R = S = {1, x, y, a1, . . . , ak, a1r1, . . . , akrk}, T = {1} and f = xy(r1 + · · · + rk)
where vi = gai for 1 ≤ i ≤ k. Being part of this family tells us that it is generically secure, however,
the focus on our work is to understand the relative strengths of assumptions.

2.1.1 k-BDH’s Relationship to k-Linear

We will use the notation Lk to denote the k-Linear problem. If we wish to specify the k-Linear assump-
tion in a specific group G we write LGk , and similarly for GT .

Theorem 1. If the LGk assumption holds, then so does the k-BDH assumption.

Theorem 2. If the k-BDH assumption holds, then so does the LGTk assumption.

Evidence that k-BDH is not equivalent to either LGk or LGTk . From the above theorems, the
natural question arises: Is k-BDH equivalent to the linear assumption in either G or GT ? Such an
equivalence would imply that k-BDH assumption is neither a new assumption nor a new tool to construct
a family of IBEs. Fortunately, separation of the assumptions appears to be related to inverting a bilinear
map. There is strong evidence that inverting a bilinear map is hard [Ver01, Moo09]. We show separation
results for these assumptions in Appendix B.3 in the generic group model.

2.1.2 k-BDH’s Relationship to BDH

Theorem 3. If the DBDH assumption holds, then so does the k-BDH assumption.

Theorem 4. If the Computational k-BDH assumption holds, then so does the Computational BDH
assumption.

Corollary 1. The Computational k-BDH assumption is equivalent to the BDH assumption.

Corollary 2. The DBDH assumption is equivalent to the 1-BDH assumption.
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3 A Selectively Secure IBE system from the k-BDH Assumption

For completeness, the standard definitions of IBE and the selective-ID model are given in Appendix C.
Using the k-BDH assumption in to create an IBE system is not straightforward. The main technical

difficulty arises because the target in the k-BDH assumption, (e(g, g)xy
∑k
i=1 ri), is naturally an embed-

ding of k Computational BDH problems: Given (g, gx, gy, gri) find e(g, g)xyri . However, we do not have
the value gri for each i. Instead, we have the pair (vi, v

ri
i ), where vi is a generator not used elsewhere.

We use a cancellation trick to effectively switch the base of the vrii . The setup algorithm will provide
the values e(gx, vrii ) and vi which are both taken to the same power in the encryption algorithm, namely
yi. The challenge needs to be crafted so that it takes e(gx, gri) to the power y instead of taking e(gx, vrii )
to the power yi. To do this, we provide gy in place of vyii . Since vi = gsi for some value of si we implicitly
set yi = y/si. Using the bilinear property of e, this effectively changes the value of the other term to

e(gx, vrii )yi = e(g, g)
xrisi

y
si = e(gx, gri)y. The product of these values is exactly the target of the k-BDH

assumption.
To ensure the challenge has the proper distribution in the view of the adversary it is required to

randomize gy for every value of k.
Our IBE construction is related to the Boneh-Boyen scheme in the selective-ID model [BB04a],

which is proven secure under the DBDH assumption. To prove our scheme is secure under the k-BDH
assumption requires an alteration to the “Boneh-Boyen trick” for generating the private key for identities
other than the target identity.

The “Boneh-Boyen trick” raises elements of the DBDH instance to cleverly selected random values
to obtain a valid private key. However, constructing the same private key with the KeyGen(ID) algorithm
is impossible as the random selections are unknown. Our construction uses the same idea but using
multiple bases (g, vi) requires three components instead of two for the first term of the private key.

Specifically, we use (vr̂ii )−ti/dvtimii (gx)dmi for the first term. vr̂ii is the randomization of vrii that
permits the challenge have the proper distribution. The value d is a function of the target identity
and the identity associated with the private key; ti is used to randomize a public parameter; and mi

randomizes the private key. The first term is dependent on both gx and vrii from the k-BDH assumption.

The IBE system works as follows:

Setup : The public parameters are (g, u = gx, v1 = gs1 , . . . , vk = gsk , vr̂11 , . . . , v
r̂k
k , w1, . . . , wk). The values

s1, . . . , sk, r̂1, . . . , r̂k, x (chosen uniformly and independently at random) are kept as the master-key.

KeyGen(ID) : Select random n1, . . . , nk ∈ Z∗p. For each 1 ≤ i ≤ k output (KA,i,KB,i)=((gxr̂i(wiu
ID)ni ,

vnii ).

Encrypt(m, ID) : Select random y1, . . . , yk ∈ Z∗p. Output C0 = m
∏

1≤i≤k
e(gx, vr̂ii )yi and for each 1 ≤ i ≤ k

output (CA,i, CB,i)=(vyii , (wiu
ID)yi) for a total of 2k + 1 values.

Decrypt(c) : Output

C0 ·
∏

1≤i≤k
e(KB,i, CB,i)∏

1≤i≤k
e(KA,i, CA,i)

=

m
∏

1≤i≤k
e(gx, vr̂ii )yi ·

∏
1≤i≤k

e(vnii , (wiu
ID)yi)∏

1≤i≤k
e(gxr̂i(wiu

ID)ni , vyii )
= m
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3.1 Proof of Security

Theorem 5. Suppose the k-BDH assumption holds in G and GT (precisely, no t-time algorithm has
advantage at least ε in solving the k-BDH problem in G and GT ). Then the previously defined IBE system
is (t−Θ(τkq), q, ε)-Selective-ID IND-CPA secure where τ is the maximum time for an exponentiation
in G.

Proof. Suppose A has advantage ε in attacking the IBE system. We build B to solve a decisional

k-BDH instance (g, gx, gy, v1, . . . , vk, v
r1
1 , . . . , v

rk
k , T

?
= e(g, g)xy(r1+···+rk)). Algorithm B works by inter-

acting with A in a selective identity game as follows:
Init: The selective identity games begins with A outputting an identity to attacked ID∗.

Setup: Algorithm B first selects random ai, ti for 1 ≤ i ≤ k. It then sets the public parameters to:
(g, u = gx, v1, . . . , vk, v

r̂1
1 = (vr11 )1/a1 , . . . , vr̂kk = (vrkk )1/ak , w1 = vt11 (gx)−ID

∗
, . . . , wk = vtkk (gx)−ID

∗
).

These parameters are are all independent of ID∗ in the view of A. The ai terms will serve as the way
to randomize the challenge.

Phase 1: A issues queries for the private key of an identity, ID. It must be the case that ID 6= ID∗. B’s
response is generated as follows for each value of 1 ≤ i ≤ k:

Select random mi. Let d = ID− ID∗. Output (KA,i,KB,i)=((vr̂ii )−ti/dvtimii (gx)dmi , (vr̂ii )(−1/d)vmii ). For
ni = −r̂i/d+mi, which implies mi = r̂i/d+ ni, this is the expected value:

((vr̂ii )−ti/dvtimii (gx)dmi , (vr̂ii )(−1/d)vmii )

= ((vr̂ii )−ti/dv
ti(r̂i/d+ni)
i (gx)d(r̂i/d+ni), (vr̂ii )(−1/d)v

(r̂i/d)+ni)
i )

= (vtinii (gx)r̂i+dni , vnii )

= (gxr̂i(vtii g
xd)ni , vnii )

= (gxr̂i(vtii g
x(ID−ID∗))ni , vnii )

= (gxr̂i(wig
xID)ni , vnii )

The second term is uniformly distributed among all elements in Z∗p due to the selection of mi. Pri-
vate keys can be generated for all identities except ID∗.

Challenge(m0,m1) : B picks random bit b ∈ {0, 1}. The response is: (C0, (CA,1, CB,1), . . . ,(CA,k, CB,k)).
B sets C0 = mbT and for each i from 1 to k it sets:

CA,i = (gy)ai , CB,i = (gy)ai·ti .

We observe that (gy)ai = vyii and that (gy)aiti = vtiyii = (w1u
ID∗)yi from which correctness follows.

The simulator’s ability to construct the second term in this manner follows directly from the fact that
the encrypted identity is ID∗ and no gx term appears in w1u

ID∗ .
For each value of i, this implicitly sets yai = siyi or yi = yai/si. If the input is a valid k-BDH tuple

then the response is drawn from a uniform distribution and mbT is the expected value:

mb

∏
1≤i≤k

e(g, g)xyri = mb

∏
1≤i≤k

e(gx, gsiri/ai)yai/si = mb

∏
1≤i≤k

e(gx, v
ri/ai
i )yi = mb

∏
1≤i≤k

e(gx, vr̂ii )yi

If T is not a valid k-BDH tuple then the distribution is uniform and independent of b.
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Phase 2: A issues more private key queries. It is exactly the same as Phase 1.

Guess: A outputs a guess of b′ ∈ {0, 1}. If b = b′ then B outputs 1 meaning T is a valid k-BDH tuple.
Otherwise, it is not a valid k-BDH tuple and the output is 0.

When the input is a valid k-BDH instance, A must satisfy |Pr[b = b′] − 1
2 | ≥ ε. When the input is

not a valid k-BDH instance, the input is uniform and independent and Pr[b = b′] = 1
2 . Therefore, we

have

|Pr[B(valid k-BDH) = 1]− Pr[B(not valid k-BDH) = 1]| ≥ |(1

2
+ ε)− 1

2
| ≥ ε

as required.

3.2 Efficiency

Assume that the value e(gx, vrii ) is precomputed for all values 1 ≤ i ≤ k. Each encryption takes k
exponentiations and k group operations in GT , 2k + 1 exponentiations and k group operation in G.
Decryption requires 2k bilinear map computations, one inversion and 2k + 2 group operations in GT .

3.3 Extensions

This construction fits in Boneh-Boyen framework. We give the natural extension to a hierarchical IBE
in Appendix D and to a fully secure IND-CPA scheme in the style of [Wat05] in Appendix E.

4 Relationship between k-BDH Problems

In this section we prove that the k-BDH family of problems becomes progressively weaker. Informally,
this means that an oracle for k-BDH does not help in solving a (k + 1)-BDH instance.

The proof uses the generic group model [BS84, Nec94, Sho97]. This idealized version of a group
retains the important properties of the group while facilitating reasoning about its minimal possible
assumptions. If a statement cannot be proven in the generic group model then it is impossible to find
a group for which the statement holds. The generic group model has been used to reason about com-
plexity assumptions both with bilinear maps [BB04b, Boy08] and without bilinear maps [Sho97].

The closely related proof for the separation of k-Linear family of assumptions [Sha07] could not be
used directly. This stems from the fact that a standard multilinear map [BS03] cannot be used to solve
k-BDH. We create a modified k-multilinear map that takes as input k elements in G and 1 element in
GT (which is the result of a bilinear map on two elements in G) and produces an output in a third group
GM (the target group of the k-multilinear map). The modified k-multilinear map acts as an oracle for
k-BDH. The main technical difficulty is showing that all inputs to the k-multilinear map fail to produce
a multiple of the target element in the (k + 1)-BDH instance.

Theorem 6. If the k-BDH assumption holds, then so does the (k + 1)-BDH assumption.

Proof. Informally, this means that if (k + 1)-BDH is easy, then k-BDH is also easy. Suppose we have
an oracle A for (k + 1)-BDH. A can be used to solve an k-BDH instance (g, gx, gy, v1, . . ., vk, v

r1
1 , . . .,

vrkk , T ). Select random vk+1 ∈ G and rk+1 ∈ Z∗p and run A on input (g, gx, gy, v1, . . ., vk, vk+1, v
r1
1 ,

. . ., vrkk , v
rk+1

k+1 , T · e(gx, gy)rk+1). By returning the same value as A, the simulation is perfect.
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As in the k-Linear generic group separation proof [Sha07], we prove a stronger result by means of a
multilinear map [BS03, GGH12] in Theorem 7. A k multilinear map is an efficiently computable map

ek : Gk → GM such that ek(g
a1
1 , . . . , g

ak
k ) = ek(g1, . . . , gk)

∏k
i=1 ai for all g1, . . . , gk ∈ G and a1, . . . , ak ∈

Zp; and ek(g, . . . , g) 6= 1. Here, we consider a modified k-multilinear map: êk : GT×Gk → GM where GT
is the group resulting from a bilinear map e : G×G→ GT . We define êk : (e(gx, gy)

aT , ga11 , . . . , g
ak
k ) =

êk(e(gx, gy), g1, . . . , gk)
aT

∏k
i=1 ai .

Lemma 1. Given a modified k-multilinear map there is an efficient algorithm to solve k-BDH.

Proof. On input a k-BDH instance (g, gx, gy, v1, . . . , vk, v
r1
1 , . . . , v

rk
k , T ) output “yes” if

êk(T, v1, . . . , vk)
?
=

k∏
i=1

êk(e(g
x, gy), v1, . . . , vi−1, v

ri
i , vi+1, vk)

and no otherwise. This is correct because

k∏
i=1

êk(e(g
x, gy), v1, . . . , vi−1, v

ri
i , vi+1, vk) =

k∏
i=1

êk(e(g, g), v1, . . . , vk)
xyri

= êk(e(g, g), v1, . . . , vk)
xy

∑k
i=1 ri

and when T = e(g, g)xy
∑k
i=1 ri equality holds as required.

In the generic group model, elements of G, GT and GM are encoded as opaque strings such that
only equality can be tested by the adversary. To perform operations in the group the adversary queries
oracles. The oracles map the opaque string representations to elements of G, GT and GM using ξG,ξT
and ξM respectively. In our case, we provide the adversary with oracles to perform Group Action in
each group, Inversion in each group, Bilinear Map for G × G → GT and Modified k-Multilinear Map
for GT ×Gk.

Theorem 7. Let A be an algorithm that solves (k + 1)-BDH in the generic group model making a
total of q queries to the oracles computing the group action in G, GT and GM , the oracles computing
inversion in G, GT and GM , the bilinear map oracle and an oracle for modified k-multilinear map.
Then A’s probability of success is bounded by

ε ≤ (k + 5)(q + 2k + 5)2

p
.

Proof. Consider an algorithm B that interacts with A as follows.

Let g be a randomly selected generator of G. Select random x, y, v1, . . . , vk+1, r1, . . . , rk+1, c ∈
Zp as well as random bit d ∈ {0, 1}. Set Td = e(gx, gy)

∑k+1
i=1 ri and T1−d = e(g, g)c. A is given

(ξG(g), ξG(gx), ξG(gy), ξG(gv1), . . . , ξG(gvk+1), ξG(gv1r1), . . . , ξG(gvk+1rk+1), ξT (T0), ξT (T1)) with the goal
of guessing d.

B keeps track of the elements known to A as three lists: LG = {(FG,i, ξG,i)}, LT = {(FT,i, ξT,i)} and
LM = {(FM,i, ξM,i)}. The first element of each list is the internal representation kept by B- represented
as a polynomial in the ring Zp[1, x, y, v1, . . . , vk+1, r1, . . . , rk+1, c]. The set of all elements in these rings
are denoted FG, FT and FM . The second element is the opaque representation known to A. B handles
oracle queries from A by calculating the correct value and checking to see if a the corresponding external
representation already exists. If so, the corresponding known representation is returned; otherwise B
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generates a distinct random string to serve as the external representation and adds it to the respective
list. We assume that the domains of ξG, ξT and ξM are sufficiently large so that the probability that
algorithm A makes queries for an element other than one obtained through B is negligible.

Oracle queries from A are handled by B as follows:

Group Action: Given elements in G with internal representations FG,i and FG,j compute F ′ =
FG,i + FG,j . If there does not already exist an external representation of the value F ′ then generate
ξG(F ′) and add (F ′, ξG(F ′)) to LG . Return ξG(F ′). Group Action for GT and GM are handled
analogously. Denote the number of Group Action queries made in G as qGg , the number of Group
Action queries made in GT as qTg and the number of Group Action queries made in GM as qMg .

Inversion: Given an element in G with internal representation FG,i set F ′ = −FG,i. If there does not
already exist an external representation of the value F ′ generate ξG(F ′) and add (F ′, ξG(F ′)) to LG .
Return ξG(F ′). Inversion for GT and GM are handled analogously. Denote the number of Group Action
queries made in G as qGi , the number of Group Action queries made in GT as qTi and the number of
Group Action queries made in GM as qMi .

Bilinear Map (e): Given elements in G with internal representations FG,i and FG,j calculate F ′ =
FG,i · FG,j . If there does not already exist an external representation of the value F ′ generate ξT (F ′)
and add (F ′, ξT (F ′)) to LT . Return ξT (F ′). Let qB denote the number of bilinear map queries made.

Modified k-Multilinear Map (êk): Given elements in G with internal representations FG,v1, . . .,

FG,vk, and an element in GT with internal representation FT,j . Compute F ′ = FT,j
∏k
i=1 FG,vi. If there

does not already exist an external representation of the value F ′ generate ξM (F ′) and add (F ′, ξM (F ′))
to LM . Return ξM (F ′).

Elements in FG have at most degree 2; elements of FT have at most degree 4; elements in FM have
degree at most 2k+4. The input elements that are in G have corresponding elements in FG with degree
at most 2 and the elements in GT have corresponding elements in FT with degree at most 3. The group
action and inversion operations cannot increase the degree of the polynomials in FG,FT or FM . The
Bilinear Map operation uses elements in G to produce elements of at most degree 2 + 2 = 4 in FT . The
Modified Multilinear Map produces elements of at most degree 4 + k(2) in FM .

Finally, A halts and outputs a guess of d′ for d. B now selects random g∗ ∈ G and x∗, y∗, v∗1, . . .,

v∗k+1, r
∗
1, . . ., r∗k+1, c

∗ ∈ Zp. Tb is set to e(g∗, g∗)x
∗y∗

∑k+1
i=1 r

∗
i and T1−b = e(g∗, g∗)c

∗
. All elements besides

Tb are independent of each other. Therefore the simulation engineered by B is consistent with these
values unless one of the following events occur:

• Two values in FG have the same representation in G

• Two values in FT have the same representation in GT

• Two values in FM have the same representation in GM

• Using a bilinear map on values in FG, it is possible to find a multiple of e(gx, gy)
∑k+1
i=1 ri in FT .

• Using a modified k-multilinear map on values in FG, it is possible to find a multiple of e(gx, gy)
∑k+1
i=1 ri

in FM .
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The input elements are all chosen independently. Since A makes qGg + qGi group actions or inversion
queries for group G the corresponding elements in FG are at most degree 2 and the probability of a

collision is
(qGg+qGi+2(k+1)+3

2

)
2
p . For the elements in GT there qTg + qTi + qB group actions or inversion

or bilinear map queries are made resulting in elements in GT . Since elements in GT have corresponding
polynomials in FT with degree at most 4 the probability of a collision is

(qTg+qTi+qB+2
2

)
4
p . For each of

the group actions in GM , inversion in GM and k-Modified Multilinear Map queries the probability of a
collision is

(qMg+qMi+qK
2

)
2k+4
p .

Next, we show the probability of finding a multiple of e(gx, gy)
∑k+1
i=1 ri from the terms in FG is zero. If

a multiple exists, it must be formed using at least one bilinear map operation. Since x, y, ri all appear
in Tb then the product of at least two of these values must appear in the same element in FG for each
value of i, 1 ≤ i ≤ k + 1. This is impossible by the following claim:
Claim: It is impossible for any two of x, y, ri to appear in the same monomial in FG:.

Proof. We show that each way to choose two of the three values to appear in the same term is impossible:

• x and y appear in the same term. This requires creating a multiple of the polynomial xy. We are
initially given the polynomials x and y each of degree 1 (and polynomials that are independent
of x and y). This means from polynomial of degree 1 we must create a polynomial of degree 2
also in FG. Only the group action and inversion oracles result in new elements in FG. However,
the output of these oracles cannot increase the degree of a monomial. Thus we cannot create
monomials of degree greater than 1 from x and y. In particular, xy cannot be created by the
adversary.

• x and ri appear in the same term. This requires creating a multiple of xri namely axri. Since the
term ri never appears without vi it follows that vi | a and we can rewrite axri as a′xrivi. This is
a polynomial of degree 3. It is impossible to create a polynomial of degree greater than 2 in FG.
So x and ri cannot appear in the same term.

• y and ri appear in the same term. This follows from a symmetric argument that x and ri cannot
appear in the same term.

Finally, we claim that it is impossible to find a multiple of e(gx, gy)
∑k+1
i=1 ri in FM . In order to use the

modified k-multilinear map to find a multiple of a target value, Td
?
= e(gx, gy)

∑k+1
i=1 ri , at least one êk

operation involving a multiple of Td is required. The only option is to use Td as the input element in
GT . The modified k-multilinear map produces a multiple of xy

∑k+1
i=1 ri, namely Axy

∑k+1
i=1 ri. A must

then use combination of oracle calls using only values in FG to form Axy
∑k+1

i=1 ri so that it can test
equality. We call the combination of oracle calls F .3

All inputs in FG containing ri also contain vi. As a result, any monomial divisible by ri is also divisible by
vi. Every type of oracle call preserves this property. In particular, consider the polynomial Axy

∑k+1
i=1 ri

constructed by the adversary in F . It is required that each monomial in the expansion of Axyri must
be divisible by vi. It follows that for each of the k+ 1 values of vi it is the case that vi|A.4 Specifically,
A is divisible by

∏k+1
i=1 vi.

For a given value i, the value Axyri is divisible by k + 4 values: x, y, v1, . . ., vk+1, and ri. Producing
such a term requires taking the product of at least k+ 3 terms available to the adversary (x and y only

3A could first perform êk(CTd + D,n1, . . . , nk) for constant C and a polynomial D that does not contain Td. It would
then perform some combination of oracle calls,F , to produce a value equal to êk(CTd + D,n1, . . . , nk). However, an
equivalent test is to first perform êk(CTd, n1, . . . , nk) and then test equality with F/êk(D,n1, . . . , nk).

4For a more detailed argument see [Sha07]
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appear on their own and it is impossible to produce a multiple of vivj in FG using the group action and
inversion oracles). However, the bilinear map can only take the product of 2 values and the modified
k-multilinear map can only take the product from a bilinear map and k additional values for a total of
k + 2. Consequently, we deduce that the adversary cannot synthesize a multiple of xy

∑k+1
i=1 ri in FM

to cause a collision.
The probability of finding a collision is bounded by

ε ≤
(
qGg + qGi + 2(k + 1) + 3

2

)
2

p
+

(
qTg + qTi + qB + 2

2

)
4

p
+

(
qTm + qTi + qk

2

)
(2k + 4)

p

<
(q + 2k + 5)2 + 2(q + 2)2 + (k + 2)q2

p
<

(k + 5)(q + 2k + 5)2

p

The combination of these two theorems implies: DBDH=1-BDH � 2-BDH � . . . � k-BDH � (k + 1)-
BDH � . . ..

4.1 Relationship Between k and the Group Size

From Theorem 7, we know that increasing k increases security. The generic attack on k-BDH appears
to require O(k) discrete logarithm calculations, and that solving t discrete logarithm problems on a
given curve appears to require O(t) times solving one problem; assuming that, the generic attack scales
linearly with k.
Another means of increasing security is to increase the group size. An interesting question is, “what is
the equivalent increase in group size if we increase k to k + 1.” We assume finding the discrete log is a
function, f , of the order of the group. Then in the generic attack on k-BDH where G has prime order p
increasing k to k + 1 is approximately equivalent to increasing the group size from p to f−1( (k+1)f(p)

k ).

5 Conclusions and Future Work

We have proposed k-BDH, a family of assumptions generalizing the DBDH assumption. We have given
evidence, using the generic group model, that assumptions in the k-BDH family become strictly weaker
with increasing values of the parameter k. Unlike the k-Linear family of assumptions, k-BDH makes a
natural tool for constructing pairing-based cryptosystems, including IBEs. We have demonstrated this
by constructing a family of IBEs in which the kth member is secure based on k-BDH. Our IBE family
fits in the Boneh-Boyen framework; we give a hierarchical IBE and a full secure variant (similar to the
Waters IBE [Wat05]). Our k-BDH family allows IBEs to be instantiated with an assumption safety
buffer for the first time.

We hope that, like k-Linear, our k-BDH assumption family will see widespread use. We believe that
it will be especially well suited for constructing attribute-based encryption and other forms of functional
encryption. In addition, we believe that dual system encryption techniques could be applied to k-BDH,
yielding more efficient cryptosystems with tighter security reductions.

An important open problem arises from the fact that the k-BDH assumptions are all no weaker
than computational BDH (just as the k-Linear assumptions are all no weaker than CDH). Because the
components of our IBE grow with k, there may be a crossover point beyond which an IBE based on
hard-core bits of the computational BDH problem is more efficient than one based on k-BDH.
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A Complexity Assumptions

The following complexity assumptions are defined for a cyclic group G of order p where p is a large
prime. g is a generator of G. Additionally, GT is a cyclic group of order p.
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We say there is an admissible bilinear map e : G × G → GT between the two groups if the following
conditions hold:

• Bilinear : e(ga, gb) = e(g, g)ab holds for all a, b ∈ Zp.

• Non-degenerate: If g generate G, then e(g, g) 6= 1.

• Computable: e is efficiently computable on all input.

A.1 Bilinear Diffie-Hellman Assumption

The computational Bilinear Diffie-Hellman (BDH) problem in < G,GT , e > asks given (g, ga, gb, gc) for
some a, b, c ∈ Z∗p compute e(g, g)abc. An adversary, A, has advantage ε in solving BDH if

Pr[A(g, ga, gb, gc) = e(g, g)abc] ≥ ε.

Where the probability is taken over the random choice of a, b, c ∈ Z∗p, g ∈ G and the random bits
consumed by A.
The Bilinear Diffie-Hellman Assumption is that no polynomial time algorithm can achieve non-negligible
advantage in computing the BDH problem.

The decisional version of the problem (DBDH) in < G,GT , e > asks given (g, ga, gb, gc, T ) for some
a, b, c, z ∈ Z∗p does T = e(g, g)abc or is it the case that T = e(g, g)z. An adversary, B outputs 1 if

T = e(g, g)abc and 0 otherwise. B has advantage ε in solving DBDH if

|Pr[B(g, ga, gb, gc, e(g, g)abc) = 1]− Pr[B(g, ga, gb, gc, e(g, g)z) = 1]| ≥ 2ε.

Where the probability is taken over the random choice of a, b, c, z ∈ Z∗p, g ∈ G and the random bits
consumed by B.
The Decisional Bilinear Diffie-Hellman Assumption is that no polynomial time algorithm can achieve
non-negligible advantage in deciding the BDH problem.

A.2 Linear Assumption

The computational Linear problem in G asks given (g0, g1, g2, g
r1
1 , g

r2
2 ) for some r1, r2 ∈ Z∗p compute

gr1+r20 . An adversary, A, has advantage ε in solving the Linear problem if

Pr[A(g0, g1, g2, g
r1
1 , g

r2
2 ) = gr1+r20 ] ≥ ε.

Where the probability is taken over the random choice of r1, r2 ∈ Z∗p, g0, g1, g2 ∈ G and the random bits
consumed by A.
The Linear Assumption is that no polynomial time algorithm can achieve non-negligible advantage in
computing the Linear problem.

The decisional version of the Linear problem in G asks given (g0, g1, g2, g
r1
1 , g

r2
2 , T ) for some r1, r2, z ∈

Z∗p if T = gr1+r20 or is it the case that T = gz0 for some z ∈ Z∗p. An adversary, B, outputs 1 if T = gr1+r20

and 0 otherwise. B has advantage ε in solving the decisional Linear problem if

|Pr[B(g0, g1, g2, g
r1
1 , g

r2
2 , g

r1+r2
0 ) = 1]− Pr[B(g0, g1, g2, g

r1
1 , g

r2
2 , g

z
0) = 1]| ≥ 2ε

Where the probability is taken over the random choice of r1, r2, z ∈ Z∗p, g0, g1, g2 ∈ G and the random
bits consumed by B.

16



The Decisional Linear Assumption is that no polynomial time algorithm can achieve non-negligible
advantage in deciding the Linear problem.

The decisional k-Linear problem in G is a generalization of the Linear problem that asks given
(g0, g1, . . . , gk, g

r1
1 , . . . , g

rk
k , T ) for r1, . . . , rk ∈ Z∗p and g0, g1, . . . , gk ∈ G if T = gr1+···+rk0 or is it the case

that T = gz0 for some z ∈ Z∗p. An adversary, C, outputs 1 if T = gr1+···+rk0 and 0 otherwise.
The Decisional k-Linear Assumption is that no polynomial time algorithm can achieve non-negligible
advantage in deciding the k-Linear problem.

Shacham [Sha07] proved that the family of Decisional k-Linear Assumptions becomes weaker as k
increases at least in the generic group model. However, in the computational version of the problem the
complexity is the same for all members of the family. In particular Computational Diffie-Hellman=Lk
(for k ≥ 1).

B Proofs of k-BDH’s Relationship to Standard Assumptions

B.1 k-BDH’s Relationship to k-Linear

We will use the notation Lk to denote the k-Linear problem. If we wish to specify the k-Linear assump-
tion in a specific group G we write LGk .

Theorem 1. If the LGk assumption holds, then so does the k-BDH assumption.

Proof. Suppose we have an adversary A that can decide k-BDH. We can construct A′ that solves the

k-Linear problem in G. On input (g0, g1, . . . , gk, g
r1
1 , . . . , grkk , T

?
= gr1+···+rk0 ), A′ selects random y ∈ Z∗p

and runs A on input (g, g0, g
y, g1, . . . , gk, g

r1
1 , . . . , grkk , e(g, T )y). By returning the same value as A,

the simulation is perfect.

Theorem 2. If the k-BDH assumption holds, then so does the LGTk assumption.

Proof. Suppose we have an adversary A that can decide Decisional k-Linear in GT . We can construct A′

that solves the k-BDH problem. On input (g, gx, gy, v1, . . . , vk, v
r1
1 , . . . , vrkk , T

?
= e(g, g)xy(r1+···+rk)),

A′ runs A on input (e(gx, gy), e(g, v1), . . . , e(g, vk), e(g, v
r1
1 ), . . . , e(g, vrkk ), T ). By returning the same

value as A, the simulation is perfect.

B.2 k-BDH’s Relationship to BDH

Theorem 3. If the DBDH assumption holds, then so does the k-BDH assumption.

Proof. Suppose we have an adversary A that can decide k-BDH. We can construct A′ that solves the

DBDH problem. On input (g, ga, gb, gc, T
?
= e(g, g)abc), A′ selects random r1, . . . , rk, x2, . . . , xk ∈ Z∗p

and runs A on input (g, ga, gb, gr1 , . . ., grk , gcr1 , gx2r2 , . . ., gxkrk , T · e(ga, gb)x2+···+xk). By returning
the same value as A, the simulation is perfect.

Theorem 4. If the Computational k-BDH assumption holds, then so does the Computational BDH
assumption.

Proof. Suppose we have an adversary A that can decide Computational BDH. We can construct A′ that
solves the computational k-BDH problem. A′ is given input (g, gx, gy, v1, . . . , vk, v

r1
1 , . . . , vrkk ) with

the goal of computing e(g, g)xy
∑k
i=1 ri . For each i satisfying 1 ≤ i ≤ k A is run on input (vi, v

ri
i , g

x, gy)
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to obtain output ai. Since each vi = gsi for some si, if A is correctly computing BDH instances then

the output is ai = e(gsi , gsi)
ri(

x
si
)( y
si
)

= e(g, g)xyri . The product of all values of ai is e(g, g)xy(r1+···+rk),
as expected.

Corollary 1. The Computational k-BDH assumption is equivalent to the BDH assumption.

Proof. We prove in Theorem 3 if the DBDH assumption holds, then so does k-BDH. The reduction also
holds for the computational versions of the problems: there is no target in the input to either A or A′
and the results are elements in GT instead of a bit. A′ generates the same random values and gives the
same inputs (other than the target) to A. A’s result is divided by e(ga, gb)x2+···+xk to obtain e(g, g)abc

. Combining the result of Theorem 4 we have Computational k-BDH = BDH.

Corollary 2. The DBDH assumption is equivalent to the 1-BDH assumption.

Proof. If there is only one value of vi and vrii (namely v1 and vr11 ) then 1-BDH is equivalent to DBDH.
We showed in Theorem 3 that if the DBDH assumption holds, then so does k-BDH for all values of k.
It remains to show that if the 1-BDH assumption holds then so does DBDH. We modify the arguments
in Theorem 4 so that the k-BDH instance has an additional input T and the query to the adversary is
(v1, v

r1
1 , g

x, gy, T ).

B.3 Separation Results for k-BDH and k-Linear

We prove the k-BDH assumption is equivalent to neither LGk nor LGTk .

B.3.1 The k-BDH Assumption is not Equivalent to LGTk

We showed in Theorem 2 that k-BDH ≤ LGTk . To prove that these assumptions are distinct we show,

in a generic group, k-BDH 6= LGTk .

Theorem 8. In a generic group, LGTk is hard even if k-BDH is easy.

Proof. Let A be an algorithm that solves LGTk in the generic group model making a total of q queries
to the oracles computing the group action in G and GT , the oracles computing inversion in G and GT ,
the bilinear map oracle and an oracle for k-BDH. Then A’s probability of success is bounded by

ε ≤ 2(q + 2k + 3)2

p
.

In the generic group model, elements of G and GT are encoded as opaque strings such that only
equality can be tested by the adversary. To perform operations in the group the adversary queries
oracles. The oracles map the opaque string representations to elements of G and GT using ξG and ξT
respectively. In our case, we provide the adversary with oracles to perform Group Action in G, Group
Action in GT , Inversion in G, Inversion in GT , Bilinear Map G×G→ GT and k-BDH.

Consider an algorithm B that interacts with A as follows.

Let g be a randomly selected generator of G. Select random z, v1, . . . , vk, r1, . . . , rk, c ∈ Zp as well

as random bit d ∈ 0, 1. Set Td = e(g, g)z
∑k
i=1 ri and T1−d = e(g, g)c. A is given (ξG(g), ξT (e(g, g)z),

ξT (e(g, g)v1), . . ., ξT (e(g, g)vk), ξT (e(g, g)v1r1), . . ., ξT (e(g, g)vkrk), ξT (T0), ξT (T1)) with the goal of guess-
ing d.
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B keeps track of the elements known to A as two lists: LG = {(FG,i, ξG,i)} and LT = {(FT,i, ξT,i)}.
The first element of each list is the internal representation kept by B- represented as a polynomial in
the ring Zp[1, z, v1, . . . , vk+1, r1, . . . , rk, c]. The set of all elements in these rings are denoted FG and
FT . The second element is the opaque representation known to A. B handles oracle queries from A by
calculating the correct value and checking to see if a the corresponding external representation already
exists. If so, the corresponding known representation is returned; otherwise B generates a distinct ran-
dom string to serve as the external representation and adds it to the respective list. We assume that
the domains of ξG and ξT are sufficiently large so that the probability that algorithm A makes queries
for an element other than one obtained through B is negligible.

Oracle queries from A are handled by B as follows:

Group Action: Given elements in G with internal representations FG,i and FG,j compute F ′ =
FG,i + FG,j . Generate ξG(F ′) and add (F ′, ξG(F ′)) to LG if there does not already exist an external
representation of the value. Return ξG(F ′). Group Action for GT is handled analogously. Denote the
number of Group Action queries made in G as qGg and the number of Group Action queries made in
GT as qTg .

Inversion: Given an element in G with internal representation FG,i set F ′ = −FG,i. Generate ξG(F ′)
and add (F ′, ξG(F ′)) to LG if there does not already exist an external representation of the value.
Return ξG(F ′). Inversion for GT is handled analogously. Denote the number of Group Action queries
made in G as qGi and the number of Group Action queries made in GT as qTi .

Bilinear Map: Given elements in G with internal representations FG,i and FG,j calculate F ′ =
FG,i · FG,j . Generate ξT (F ′) and add (F ′, ξT (F ′)) to LT if there does not already exist an external
representation of the value. Return ξT (F ′). Let qB denote the number of bilinear map queries made.

k-BDH Query: Given elements in G with internal representations FG,x, FG,y ,FT,v1, . . ., FT,vk, FG,r1,

. . ., FG,rk and an element in GT with internal representation FT,j . Set X =

k∏
i=1

FG,vi. If X = 0 return

0. Check if the value of FT,j is correct by evaluating XFT,j
?
= FG,x · FG,y

∑
1≤i≤k

FG,ri ·X
FG,vi

. This is com-

putable because FG,vi|X for all values of i. If the equality holds then return 1; otherwise return 0. Let
qK be the number of k-BDH queries made.

Elements in FG have at most degree 0; elements of FT have at most degree 2. There is one input element
in G, g, which is represented internally as the polynomial 1 which has degree 0. The input elements in
GT have corresponding polynomials with degree at most 2. The group action and inversion operations
do not increase the degree of the polynomials in either FG or FT . The Bilinear Map operation takes as
input elements in G to produce polynomials of at most degree 0 + 0 = 0 in FT .

The k-BDH Query produces internally elements of at most degree 2. The values in FG are of degree
0, so any number of additions and multiplications also results in a degree 0 polynomial. Therefore the
degree of left hand side of the equation comes solely from the FT,j element. Notice that this means the
k-BDH query can only return 1 when the degrees of the left hand side and right hand side are the same.
This implies the adversary is unable to gain any information about the target (or any term in FT ) from
the k-BDH Query, since the target has degree greater than zero and the right hand side has degree 0.
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Finally, A halts and outputs a guess of d′ for d. B now selects random g∗ ∈ G and z∗, v∗1, . . ., v∗k,

r∗1, . . ., r∗k, c
∗ ∈ Zp. Tb is set to e(g∗, g∗)z

∗∑k
i=1 r

∗
i and T1−b = e(g∗, g∗)c

∗
. All elements besides Tb are

independent of each other. Therefore the simulation engineered by B is consistent with these values
unless one of the following five things happen:

• Two values in G are not chosen independently

• Two values in GT are not chosen independently

• The k-BDH Query returns 0 because the polynomial representation of the inputs do not satisfy
the test conditions. However, for the actual integer inputs the test condition holds.

• It is possible to find a multiple of e(g, g)z
∑k
i=1 ri from the other terms in the polynomial.

• It is possible to learn information about e(g, g)z
∑k
i=1 ri from the k-BDH query.

There is only one value in G revealed to A, so the probability of finding 2 dependent variables is 0.
There qTg +qTi +qB group actions or inversion or bilinear map queries are made resulting in polynomials
in FT . Since the polynomials corresponding to elements in GT have at most degree 2 the probability of
a collision is

(qTg+qTi+qB+2k+3
2

)
2
p . For each of the k queries the probability of selecting two polynomials

with the same value is 2
p for a total probability of

(
qk
2

)
2
p .

It remains to show the probability of finding a multiple of e(g, g)z
∑k
i=1 ri from the other terms in the

polynomial. This has an internal representation of a polynomial with degree 2. It cannot be crafted
Tb, otherwise it would be dependent on Tb. All other polynomials have at most degree 2 from the GT
representation. All operations involving the polynomial 1 (g’s representation in FG) result in a polyno-
mial of the same degree in both FG and FT . Therefore it is impossible to create a polynomial of degree
2 from the other terms.

The probability of finding a collision is bounded by

ε ≤
(
qTg + qTi + qB + 2k + 3

2

)
2

p
+

(
qk
2

)
2

p
<

2(q + 2k + 3)2 + 2q2

2p
<

2(q + 2k + 3)2

p

Combining this result and Theorem 2, we have, in a generic group, k-BDH � LGTk .

B.3.2 The k-BDH assumption is not Equivalent to LGk

We showed in Theorem 1 that LGk ≤ k-BDH. To prove that these assumptions are distinct we show: LGk
6= k-BDH.

Theorem 9. In a generic group, LGk is not equivalent to k-BDH.

Proof. Let A be an algorithm that solves k-BDH in the generic group model making a total of q queries
to the oracles computing the group action in G and GT , the oracles computing inversion in G and GT ,
the bilinear map oracle and an oracle for LGk . Then A’s probability of success is bounded by

ε ≤ (k + 3)(q + 2k + 3)2

p
.

Consider an algorithm B that interacts with A as follows.
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Let g be a randomly selected generator of G. Select random x, y, v1, . . . , vk, r1, . . . , rk, c ∈ Zp as well

as random bit d ∈ 0, 1. Set Td = e(gx, gy)
∑k
i=1 ri and T1−d = e(g, g)c. A is given (ξG(g), ξG(gx), ξG(gy), ξG(gv1), . . . , ξG(gvk), ξG(gv1r1), . . . , ξG(gvkrk), ξT (T0), ξT (T1))

with the goal of guessing d.

B keeps track of the elements known to A as two lists: LG = {(FG,i, ξG,i)} and LT = {(FT,i, ξT,i)}.
The first element of each list is the internal representation kept by B- represented as a polynomial in
the ring Zp[1, x, y, v1, . . . , vk, r1, . . . , rk, c]. The set of all elements in these rings are denoted FG and
FT . The second element is the opaque representation known to A. B handles oracle queries from A by
calculating the correct value and checking to see if a the corresponding external representation already
exists. If so, the corresponding known representation is returned; otherwise B generates a distinct ran-
dom string to serve as the external representation and adds it to the respective list. We assume that
the domains of ξG and ξT are sufficiently large so that the probability that algorithm A makes queries
for an element other than one obtained through B is negligible.

Oracle queries from A are handled by B as follows:

Group Action: Given elements in G with internal representations FG,i and FG,j compute F ′ =
FG,i + FG,j . If there does not already exist an external representation of the value F ′ then generate
ξG(F ′) and add (F ′, ξG(F ′)) to LG . Return ξG(F ′). Group Action for GT is handled analogously.
Denote the number of Group Action queries made in G as qGg and the number of Group Action queries
made in GT as qTg .

Inversion: Given an element in G with internal representation FG,i set F ′ = −FG,i. If there does not
already exist an external representation of the value F ′ generate ξG(F ′) and add (F ′, ξG(F ′)) to LG .
Return ξG(F ′). Inversion for GT is handled analogously. Denote the number of Group Action queries
made in G as qGi and the number of Group Action queries made in GT as qTi .

Bilinear Map: Given elements in G with internal representations FG,i and FG,j calculate F ′ =
FG,i · FG,j . If there does not already exist an external representation of the value F ′ generate ξT (F ′)
and add (F ′, ξT (F ′)) to LT . Return ξT (F ′). Let qB denote the number of bilinear map queries made.

LGk Query: Given elements in G with internal representations FG,x, FG,v1, . . ., FG,vk, FG,r1, . . ., FG,rk

and FG,Q. Set X =

k∏
i=1

FG,vi. If X = 0 return 0. Check if the value of FG,Q is correct by evaluating

XFG,Q
?
= FG,x ·

∑
1≤i≤k

FG,ri ·X
FG,vi

. This is computable because FG,vi|X for all values of i. If the equality

holds then return 1; otherwise return 0. Let qK be the number of LGk queries made.

Elements in FG have at most degree 2; elements of FT have at most degree 4. The input elements
that are in G have corresponding elements in FG with degree at most 2 and the elements in GT have
corresponding elements in FT with degree at most 3. The group action and inversion operations do not
increase the degree of the polynomials in either FG or FT . The Bilinear Map operation uses elements
in G to produce elements of at most degree 2 + 2 = 4 in FT ; this is the only oracle query that produces
an external representation of an element with a larger degree than the input.

The LGk oracle outputs a boolean value. However, the internal representation can be a large as 2k.
Each side of the test equation will have degree at most 2k. The terms FG,x, FG,ri, FG,Q all have at
most degree 2. If all FG,vi terms have degree 2 then X has degree 2k and X

FG,vi
has degree 2k − 2.

21



Consequently, XFG,Q has at most degree 2k and FG,x ·
FG,ri·X
FG,vi

has degree at most 2 + 2k − 2 = 2k.

Finally, A halts and outputs a guess of d′ for d. B now selects random g∗ ∈ G and x∗, y∗, v∗1, . . .,

v∗k, r
∗
1, . . ., r∗k, c

∗ ∈ Zp. Tb is set to e(g∗, g∗)x
∗y∗

∑k
i=1 r

∗
i and T1−b = e(g∗, g∗)c

∗
. All elements besides Tb

are independent of each other. Therefore the simulation engineered by B is consistent with these values
unless one of the following events occur:

• Two values in G are not chosen independently

• Two values in GT are not chosen independently

• The k-BDH Query returns 0 because the polynomial representation of the inputs do not satisfy
the test conditions. However, for the actual integer inputs the test condition holds.

• It is possible to find a multiple of e(gx, gy)
∑k
i=1 ri from the other terms in the polynomial.

• It is possible to learn information about e(gx, gy)
∑k
i=1 ri from the LGk query.

The elements in G are all chosen independently. Since A makes qGg + qGi group actions or inversion
queries for group G the corresponding elements in FG are at most degree 2 and the probability of a
collision is

(qGg+qGi+2k+3
2

)
2
p . For the elements in GT there qTg + qTi + qB group actions or inversion or

bilinear map queries are made resulting in elements in GT . Since elements in GT have corresponding
polynomials in FT with degree at most 4 the probability of a collision is

(qTg+qTi+qB+2
2

)
4
p . For each

of the KG
k queries the probability of selecting two polynomials with the same value is 2k

p for a total

probability of
(
qk
2

)
2k
p .

The LGk cannot ever answer true for a question about the target since none of the inputs to LGk are
in the target group.

The probability of finding a collision is bounded by:

ε ≤
(
qGg + qGi + 2k + 3

2

)
2

p
+

(
qTg + qTi + qB + 2

2

)
4

p
+

(
qk
2

)
2k

p

<
(q + 2k + 3)2 + 2(q + 2)2 + kq2

p
<

(k + 3)(q + 2k + 3)2

p

The combination of this result and Theorem 1 is LGk � k-BDH. Collectively, we have LGk � k-BDH

� LGTk as desired.

C Definitions

In this section we provide the standard definitions and security models for IBE. The definition for
adaptive security was given by Boneh and Franklin [BF03]; the definition for selective-ID security was
first given by Canetti, Halevi, and Katz [CHK03].

C.1 Identity Based Encryption

Definition 2. Identity Based Encryption consists of the following algorithms:

• Setup produces the public system parameters and the private master-key.

• KeyGen(ID) uses the master-key to create a private key for an identity.
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• Encrypt(m, ID) uses the system parameters to encrypt a message m for an identity ID. A message
can be encrypted for a user with identity ID even if a private key does not yet exist for the identity.

• Decrypt(c, ID) uses the private key belonging to ID to decrypt the ciphertext.

C.2 Chosen Plaintext Security for Identity-Based Encryption

CPA security for IBE is defined using the following game:

Setup: The challenger runs the Setup algorithm to generate the public parameters which are given to
the adversary. It also generates the master-key which is kept secret.

Phase 1: The adversary issues at most poly(k) KeyGen queries to obtain the private key corresponding
to the identities ID1, . . . , IDpoly(k). The queries may be adaptive.

Challenge: The adversary selects an identity ID∗ and two messages M0 and M1 on which it wishes
to challenge. The challenger selects a random bit b ∈ {0, 1} and responds with Encrypt(Mb, ID

∗). The
only restriction is that IDi 6= ID∗ for 1 ≤ i ≤ poly(k).

Phase 2: This phase is the same as Phase 1 except a private key will not be generated when the
queried identity is ID∗.

Guess: The adversary submits a guess of b′ ∈ {0, 1} and wins the game if b = b′.
The advantage of an adversary A attacking a scheme E is AdvE,A = |Pr[b = b′]− 1

2 |. The probability is
taken over the random bits used by the adversary and challenger.

Definition 3. An Identity-Based Encryption scheme is chosen plaintext secure if all polynomial time
adversaries have negligible advantage against the CPA Security Game.

C.3 Selective Identity CPA Security for Identity Based Encryption

In this model of IBE, there is an additional stage(Init) which occurs before the Setup algorithm. In
this stage the adversary selects ID∗ the identity to be challenged. Consequently, the public parameters
may depend on ID∗.

C.4 Chosen Ciphertext Security for Identity-Based Encryption

The CCA-Security game allows, during Phase 1 and Phase 2, for decryption queries of ciphertext
encrypted for ID∗. There is a restriction that the ciphertext is not equal to the challenge ciphertext
in Phase 2. There are general methods [BCHK07, BMW05] of converting a CPA-Secure IBE into a
CCA-Secure scheme.

D Selective-ID Secure HIBE Under the k-BDH Assumption

In this section we show how to transform the scheme into a hierarchical identity based encryption scheme
(HIBE). A L-level HIBE is constructed in the same way as the Boneh-Boyen HIBE [BB04a]. Instead of
having identities represented as a single length string, there are L′ ≤ L strings of length. L is the depth
of the HIBE. We write ID = (ID1, . . . , IDh, . . . , IDL′). The hth component corresponds to the identity at
level h.
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Setup : The public parameters are (g, u = gx, v1 = gs1 , . . ., vk = gsk , vr11 , . . ., vskk , w1,1, . . ., wk,L). The
values s1, . . . , sk, r1, . . . , rk, x are kept as the master-key.

KeyGen(ID) : Select random n1,1, . . . , nk,L′ ∈ Z∗p. Output KA,i = gxri
L′∏
h=1

(wi,hu
IDh)ni,h for each 1 ≤ i ≤ k

and KB,i,h = v
ni,h
i for each 1 ≤ i ≤ k and 1 ≤ h ≤ L′ ≤ L.

Note that the private key for ID can be generated from the parent identity (ID1, . . . , IDL′−1). Suppose the
parent’s private key was (KA,1, . . . ,KA,k,KB,1,1, . . . ,KB,k,L′−1). For each value of 1 ≤ i ≤ k, the parent

select random ni,L′ , updates KA,i = KA,i · (wi,L′uIDL′ )ni,L′ for all 1 ≤ i ≤ k, and sets KB,i,L′ = v
ni,L′
i .

The parent then outputs all KA,i and KB,i,h values.

Encrypt(m, ID) : Select random y1, . . . , yk ∈ Z∗p. Output C0 = m
∏

1≤i≤k
e(gx, vrii )yi . For each 1 ≤ i ≤ k

output CA,i = vyii . Additionally for each 1 ≤ i ≤ k and 1 ≤ h ≤ L′ ≤ L output CB,i,h = (wi,hu
IDh)yi .

Decrypt(c) : Output

C0 ·
k∏
i=1

L′∏
h=1

e(KB,i,h, CB,i,h)

k∏
i=1

e(KA,i, CA,i)

=

m
k∏
i=1

e(gx, vrii )yi ·
k∏
i=1

L′∏
h=1

e(v
ni,h
i , (wi,hu

IDh)yi)

k∏
i=1

e(gxri
L′∏
h=1

(wi,hu
IDh)ni,h , vyii )

= m

The HIBE extension allows us to use standard transformations [BCHK07, BMW05] to construct a
Selective-ID CCA-Secure L-level HIBE from a Selective-ID CPA-Secure (L+ 1)-level HIBE.

Theorem 10. Suppose the k-BDH assumption holds in G and GT (precisely, no t-time algorithm
has advantage at least ε in solving the k-BDH problem in G and GT ). Then the previously defined
HIBE system is (t−Θ(τLkq), q, ε)-Selective-ID IND-CPA secure where τ is the maximum time for an
exponentiation in G.

Proof. Suppose A has advantage ε in attacking the HIBE system. We build B to solve a decisional

k-BDH instance (g, gx, gy, v1, . . ., vk, v
r1
1 , . . ., vrkk , T

?
= e(g, g)xy(r1+···+rk)). Algorithm B works by

interacting with A in a selective identity game as follows:
Init: The selective identity games begins with A outputting an identity to attacked ID∗=(ID∗1, . . ., ID

∗
L′)

where L′ ≤ L.

Setup: Algorithm B first selects random ai, ti,j , and ID∗h−L′ for 1 ≤ i ≤ k, 1 ≤ j ≤ L and L′ < h ≤ L.

It then sets the public parameters to: (g, u = gx, v1,. . .,vk, v
r̂1
1 = (vr11 )1/a1 , . . ., vr̂kk = (vrkk )1/ak ,

w1,1 = v
t1,1
1 (gx)−ID

∗
1 , . . ., wk,L = v

tk,L
k (gx)−ID

∗
L). These parameters are are all independent of ID∗ in the

view of A. The ai terms will serve as the way to randomize the challenge.

Phase 1: A issues queries for the private key of an identity, ID = (ID1, . . . , IDu) for u ≤ L. It must be
the case that ID is not a prefix of ID∗.

Let l be the smallest index value such that IDl 6= ID∗l . For each value 1 ≤ i ≤ k and 1 ≤ h ≤ l, select

random mi,h. Let dh = IDh − ID∗h. B outputs: (vr̂ii )−ti,l/dl
∏l
h=1[v

ti,h
i gxdh ]mi,h for each value of i. As

well as the values: v
mi,h
i for all values of i and 1 ≤ h ≤ l − 1 and (vr̂ii )−1/dlv

mi,l
i for each value of i. For

ni,l = −r̂i/dl + mi,l, which implies mi,l = r̂i/dl + ni,l this is the expected value. The remaining terms
are uniformly distributed among all elements in Z∗p due to the selection of mi,h. Private keys can be
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generated for all identities except prefixes of ID∗.

Challenge(m0,m1) : B picks random bit b ∈ {0, 1}. The response is: (mbT , (gy)a1 , . . ., (gy)ak , (gy)a1t1,1 ,
(gy)aktk,L′ ) For each value of i, this implicitly sets yai = siyi or yi = yai/si. If T is a valid k-BDH tuple
then the response is drawn from a uniform distribution and mbT is the expected value. If T is not a
valid k-BDH tuple then the distribution is uniform and independent of b.

Phase 2: A issues more private key queries. It is exactly the same as Phase1.

Guess: A outputs a guess of b′ ∈ {0, 1}. If b = b′ then B outputs 1 meaning T is a valid k-BDH tuple.
Otherwise, it is not a valid k-BDH tuple and the output is 0.

When the input is a valid k-BDH instance, A must satisfy |Pr[b = b′] − 1
2 | ≥ ε. When the input is

not a valid k-BDH instance, the input is uniform and independent and Pr[b = b′] = 1
2 . Therefore, we

have

|Pr[B(valid k-BDH) = 0]− Pr[B(not valid k-BDH) = 0]| ≥ |(1

2
+ ε)− 1

2
| ≥ ε

as required.

E Fully CPA-Secure IBE Under the k-BDH Assumption

Here we apply a transformation to the selective-ID scheme to obtain a scheme that is fully secure. It
is similar to the transformation Waters applied to the [BB04a] scheme in [Wat05]. Besides growing
with respect to k, this transformation is slightly more complex than Waters’ because the base of the
parameters may be g or vi. In this construction, identities are represented as bit strings of length l, a
separate security parameter unrelated to p. This bit string is denoted ID and the jth bit of the string
is IDj . Alternatively, using a collision resistant hash function, H({0, 1}∗) → {0, 1}l, identities can be
arbitrarily lengths. We define V ⊆ {1, . . . , l} to be the set of all j for which IDj = 1.

Setup : The public parameters are (g, gx, v1 = gs1 , . . ., vk = gsk , vr11 , . . ., vskk , w1, . . ., wk, u1,1, . . .,
uk,l). The values s1, . . . , sk, r1, . . . , rk, x are kept as the master-key.

KeyGen(ID) : Select random n1, . . . , nk ∈ Z∗p. For each 1 ≤ i ≤ k output

(KA,i,KB,i) = (gxri(wi
∏
j∈V

ui,j)
ni , vnii )

Encrypt(m, ID) : Select random y1, . . . , yk ∈ Z∗p. Output C0 = m
∏

1≤i≤k
e(gx, vrii )yi and for each 1 ≤ i ≤ k

output (CA,i, CB,i)=(vyii , (wi
∏
j∈V

ui,j)
yi).

Decrypt(c) : Output

C0 ·
∏

1≤i≤k
e(KB,i, CB,i)∏

1≤i≤k
e(KA,i, CA,i)

=

m
∏

1≤i≤k
e(gx, vrii )yi ·

∏
1≤i≤k

e(vnii , (wi
∏
j∈V

ui,j)
yi)∏

1≤i≤k
e(gxri(wi

∏
j∈V

ui,j)
ni , vyii )

= m

We chose to prove security using the artificial abort method, and our proof uses the same arguments

as [Wat05, HW10]. The only deviation is in the selection of wi and ui,j ; which are set to (gx)p−4qc+α
′
v
β′i
i
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and (gx)αjv
βi,j
i respectively for random values c, α′, β′i, αj , βi,j where q is the maximum number of queries

made by the adversary.

Theorem 11. Suppose the k-BDH assumption holds in G and GT . Then the fully CPA-Secure IBE
system is IND-CPA secure.

Proof. Suppose A has advantage ε in attacking the IBE system after making at most q queries. We
build a simulator B to solve a decisional k-BDH instance (g, gx, gy, v1, . . . , vk, v

r1
1 , . . . , v

rk
k , T ). The out-

put is a bit γ where 1 corresponds to a properly formed k-BDH tuple. If A submits q KeyGen queries
and succeeds with probability 1

2 + ε, then B breaks the k-BDH assumption with probability 1
2 + 3ε

64q(l+1)
where l is the bit length of the identity input. Simulator B works by interacting with A in a selective
identity game as follows:

Setup: Random Choices: B first selects random ai ∈ Zp for 1 ≤ i ≤ k; this will serve as a way to
randomize the challenge. It also chooses integer c uniformly at random from 0 to l, α′ an integer chosen
uniformly at random from Z4q, and an l-length vector −→α = {αj} in which the elements are chosen

randomly in Z4q. Additionally, for each value 1 ≤ i ≤ k β′i and an l-length vector
−→
β i = {βi,j} are

chosen randomly from Zp.

Functions: For ease of analysis, the following functions are defined:

• F (ID) = p− 4qc+ α′ +
∑

j∈V αj

• J(i, ID) = β′i +
∑

j∈V βi,j

• K(ID) =

{
0 if α′ +

∑
j∈V αj ≡ 0 mod 4q

1 otherwise

}
Public Parameters: It then sets the public parameters to: (g, gx, vi, v

r̂i
i = (vrii )

1
ai , wi = (gx)p−4qc+α

′
v
β′i
i ,

ui,j = (gx)αjv
βi,j
i ). These parameters have the correct distribution in the view of A; the β terms ran-

domize wi and ui,j

Phase 1: A issues queries for the private key of an identity, ID. First K(ID) is evaluated. If the result
is 0 then a random guess of γ ∈ {0, 1} is chosen and B aborts. Otherwise, B’s response is generated as
follows for each value of 1 ≤ i ≤ k:

Select random mi. Output (vr̂ii )
−J(i,ID)
F (ID) (wi

∏
j∈V ui,j)

mi , (vr̂ii )
−1
F (ID) vmii . For ni = −r̂i

F (ID) + mi → mi =
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r̂i
F (ID) + ni this is the expected value:

((vr̂ii )
−J(i,ID)
F (ID) (wi

∏
j∈V

ui,j)
mi , (vr̂ii )

−1
F (ID) vmii )

= ((vr̂ii )
−J(i,ID)
F (ID) (wi

∏
j∈V

ui,j)
r̂i

F (ID)
+ni , (vr̂ii )

−1
F (ID) v

r̂i
F (ID)

+ni

i )

= ((vr̂ii )
−(β′i+

∑
j∈V βi,j)

F (ID) (wi
∏
j∈V

ui,j)
r̂i

F (ID) (wi
∏
j∈V

ui,j)
ni , vnii )

= ((vr̂ii )
−(β′i+

∑
j∈V βi,j)

F (ID) ((gx)p−4qc+α
′
v
β′i
i (gx)

∑
j∈V αjv

∑
j∈V βi,j

i )
r̂i

F (ID) (wi
∏
j∈V

ui,j)
ni , vnii )

= (((gx)p−4qc+α
′+

∑
j∈V αj )

r̂i
F (ID) (wi

∏
j∈V

ui,j)
ni , vnii )

= ((gx)r̂i(wi
∏
j∈V

ui,j)
ni , vnii )

The second term is uniformly distributed among all elements in Zp due to the selection of mi. If
K(ID) 6= 0 this implies F (ID) 6= 0 mod p since p should be chosen such that p > 4qc.

Challenge(ID∗,m0,m1) : The simulator checks if F (ID∗) ≡ 0 mod p. If not, it aborts after picking a
random value of γ ∈ {0, 1}. Otherwise B proceeds by picking random bit b ∈ {0, 1}. Output to A, the
response:

(mbT, (v
y1
1 = (gy)a1 , (w1

∏
j∈V

u1,j)
y1 = (gy)a1J(1,ID

∗)), . . . , ((gy)ak , (gy)akJ(k,ID
∗))).

For each value of i, this implicitly sets yai = siyi or yi = yai/si.
The (wi

∏
ui,j)

yi terms are correct. The expected value is

(wi
∏
j∈V

ui,j)
yi = ((gx)p−4qc+α

′
v
β′i
i (gx)

∑
j∈V αjv

∑
j∈V βi,j

i )yi .

Since F (ID∗) ≡ 0 mod p the terms involving α′ and αj sum to 0 mod p and we are left with (v
β′i+

∑
j∈V βi,j

i )yi .

Substituting yi = yai/si the term evaluates to (gβ
′
i+

∑
j∈V βi,j )yai . Using the definition of J(i, ID∗) we

arrive at gyaiJ(i,ID
∗).

If T is a valid k-BDH tuple then the first value of the response is drawn from a uniform distribution
and mbT is the expected value:

mb

∏
1≤i≤k

e(g, g)xyri = mb

∏
1≤i≤k

e(gx, gsiri/ai)yai/si = mb

∏
1≤i≤k

e(gx, v
ri/ai
i )yi = mb

∏
1≤i≤k

e(gx, vr̂ii )yi

If T is not a valid k-BDH tuple then the distribution is uniform and independent of b.

Phase 2: A issues more private key queries. It is the same as Phase1 except it will not answer queries
for ID∗.
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Guess: A outputs a guess of b ∈ {0, 1}. If b = b′ then B outputs 1 meaning T is a valid k-BDH tuple.
Otherwise, it is not a valid k-BDH tuple and the output is 0.

As Waters notes about his construction in [Wat05], the simulator cannot use the output from the
adversary as the probability of success may be correlated with the probability the simulator aborts.
The same limitation applies to our construction. Waters introduced the novel idea of an artificial abort
in which there is a chance that the simulator will abort on every query independent of the identity.
Bellare and Ristenpart [BR09] subsequently prove security without artificial aborts. Their new proof
provides a tighter reduction for low to mid range security parameters, while the original proof is better
for large security parameters.

Here we use artificial aborts, but in the framework provided by Hohenberger and Waters for verifiable
random functions [HW10]. This technique uses a series of games. The first game is the original security
game and the last game is exactly the view of A when interacting with B. We then show through a series
of claims that if an adversary A is successful against Game j it will also be successful against Game j+1.

Game 1: This game is defined to be the CPA security game.

Game 2: This game is the same as Game 1 except that a record is kept of the queries made by A
(denoted

−→
Q = {Q1, . . . , Qq, Q

∗} where Q∗ is the challenge input). Upon completion of the game, we
choose random integer α′ and vector −→α = {α1, . . . , αl} all in Z4q. Additionally, select an integer between
0 and l. Define the following abort indicator function:

τ(
−→
Q) =

{
1 if F (Q∗) 6= 0 ∨qi=1 K(Qi) = 0
0 otherwise

}
where F (ID) and K(ID) are defined as before. A’s success is defined as follows:

• Regular Abort: If τ(
−→
Q) = 1 then flip a fair coin γ ∈ {0, 1} and say A wins if γ = 1 and loses

otherwise. Note whenever τ(
−→
Q) = 1 the queries

−→
Q would cause an abort had the simulator set

α,−→α , c accordingly. Let ζ(
−→
Q) = Pr[τ(

−→
Q) = 1|α,−→α , c].

• Artificial or Balancing Abort: We follow the same steps as [Wat05] and [HW10] to artificially

abort with the correct probability. Let ζmin = 1
8q(l+1) . Set ζ ′Q be the simulator’s estimate of ζ(

−→
Q)

by evaluating τ(
−→
Q) with fresh random values α, −→α and c a total of T = O(ε−2ln(ε−1)ζ−1minln(ζ−1min))

times. This does not require running the distinguisher again.

With probability
ζ′Q−ζmin

ζ′Q
abort by flipping a fair coin γ ∈ {0, 1}. A wins if γ = 1 and loses

otherwise.

• If we do not abort (regularly or artificially), A wins if it correctly guessed b′ in the real security
game.

Game 3: In this game we run Game 2 but instead of choosing to abort at the end if any of the abort

conditions on
−→
Q or Q∗ are satisfied, the decision to abort is made inline. Specifically, this means for

every query Qi ∈
−→
Q , B first tests the abort conditions and if they are satisfied the abortion occurs

immediately (by flipping a fair coin γ ∈ {0, 1} and saying A wins if γ = 1). If the abort conditions are
not met, B answers the query. Note that Game 3 is exactly the game that the simulator plays.

28



We prove if A wins Game 1 with probability 1
2 + ε, then it succeeds in winning Game 3 with prob-

ability 1
2 + 3ε

64q(l+1) .

Before we reason about A’s success in the games we reiterate three claims about the probability of
aborting from [HW10].

Claim 1. Let ζmin = 1
8q(l+1) . For any query vector

−→
Q , ζ(

−→
Q) ≥ ζmin.

Proof. As in [Wat05, HW10] we want to find a lower bound on the probability of the simulation not
triggering a regular abort. The proof is repeated here for completeness.

Without loss of generality, assume the adversary always makes the maximum number of queries q

as the probability of not aborting increases with fewer queries. Fix an arbitrary
−→
Q=(Q1, . . ., Qq, Q

∗)

∈ Z{0, 1}l. Then with the probability over the choice of
−→
Q, c we have that Pr[abort on

−→
Q ] is

= Pr[∧qi=1K(Qi) = 1 ∧ F (Q∗) ≡ 0 mod p] (1)

= (1− Pr[∨qi=1K(Qi) = 0]) · Pr[F (Q∗) ≡ 0 mod p| ∧qi=1 K(Qi) = 1] (2)

≥ (1−
q∑
i=1

Pr[K(Qi) = 0]) · Pr[F (Q∗) ≡ 0 mod p| ∧qi=1 K(Qi) = 1] (3)

= (1− q

m
) · Pr[F (Q∗) ≡ 0 mod p| ∧qi=1 K(Qi) = 1] (4)

=
1

l + 1
· (1− q

m
) · Pr[K(Q∗) = 0| ∧qi=1 K(Qi) = 1] (5)

=
1

l + 1
· (1− q

m
) ·

Pr[K(Q∗) = 0] · Pr[∧qi=1K(Qi) = 1|K(Q∗) = 0]

Pr[∧qi=1K(Qi) = 1]
(6)

≥ 1

m(l + 1)
· (1− q

m
) · Pr[∧qi=1K(Qi) = 1|K(Q∗) = 0] (7)

=
1

m(l + 1)
· (1− q

m
) · Pr[1− ∨qi=1K(Qi) = 0|K(Q∗) = 0] (8)

≥ 1

m(l + 1)
· (1− q

m
) · (1−

q∑
i=1

Pr[K(Qi) = 0]|K(Q∗) = 0) (9)

=
1

m(l + 1)
· (1− q

m
)2 (10)

≥ 1

m(l + 1)
· (1− 2q

m
) (11)

=
1

8q(l + 1)
(12)

In the original IBE, Waters uses 1
m to quantify Pr[K(Q) = 0] for any query Q. The value is optimized

to be 4q. Equations (4) and (7) use Pr[K(Q) = 0]= 1
m . By definition F (ID) = p−mc+ α′ +

∑
j∈V αj ,

so equation (5) gets a factor of 1
l+1 from the simulator guessing the value of c. Equation (6) is derived

by applying Bayes’ Theorem. Equation (9) follows from the pairwise independence of the probabilities
K(Q) = 0,K(Q̂) = 0 for any pair of queries Q 6= Q̂, since they will differ in at least one random IDj
value. Equation (12) is the result of applying m = 4q.

In the following claims we use Chernoff bounds to find an upper and lower bounds on the probability
of any abort (regular or artificial). These bounds will be used in evaluating the adversary’s success in
Game 2.
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Claim 2. For any set of queries
−→
Q , the probability that there is an abort (regular or artificial) is

≥ 1− ζmin − 3
8ζminε.

Proof. Let ζQ = ζ(
−→
Q) = Pr[τ(

−→
Q) = 1|α,−→α , c] be the probability that a set of queries

−→
Q do not cause a

regular abort. In Game 2, T = O(ε−2ln(ε−1)ζ−1minln(ζ−1min)) samples are taken to approximate this value
as ζ ′Q. By Chernoff Bounds

Pr[Tζ ′Q < TζQ(1− ε

8
)] < e−[64ε

−2ln((ε/8)−1)ζ−1
minln(ζ

−1
min)(ζmin)(ε/8)

2],

which reduces to
Pr[ζ ′Q < ζQ(1− ε

8
)] < ζmin

ε

8
.

Recall that for a measured ζ ′Q an artificial abort will not happen with probability ζmin

ζ′Q
. The probability

of aborting is

Pr[abort] = 1− Pr[abort] = 1− Pr[RA]Pr[AA] = 1− ζQPr[AA]

≥ 1− ζQ(ζmin
ε

8
+

ζmin

ζmin(1− ε/8)
)

≥ 1− (
ζminε

8
+

ζmin

1− ε/8
)

≥ 1− (
ζminε

8
+ ζmin(1 +

2ε

8
))

≥ 1− ζmin − ζmin
3ε

8

Claim 3. For any series of queries
−→
Q , the probability that there is no abort (regular or artificial) is

≥ ζmin − 1
4ζminε.

Proof. Let ζQ = ζ(
−→
Q) = Pr[τ(

−→
Q) = 1|α,−→α , c] be the probability that a set of queries

−→
Q do not cause a

regular abort. In Game 2, T = O(ε−2ln(ε−1)ζ−1minln(ζ−1min)) samples are taken to approximate this value
as ζ ′Q. By Chernoff Bounds

Pr[Tζ ′Q > TζQ(1 +
ε

8
)] < e−[64ε

−2ln((ε/8)−1)ζ−1
minln(ζ

−1
min)(ζmin)(ε/8)

2],

which reduces to
Pr[ζ ′Q > ζQ(1 +

ε

8
)] < ζmin

ε

8
.

Recall that for a measured ζQ an artificial abort will not happen with probability ζmin

ζ′Q
. The probability

of aborting is

Pr[abort] = Pr[RA]Pr[AA]

≥ ζQ(1− ζminε

8
)

ζmin

ζQ(1 + ε/8)

≥ ζmin(1− ε

8
)2

≥ ζmin(1− ε

4
)
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Analyzing A’s probability of success in the Games. We now complete the proof by analyzing
the probability A can distinguish between the games. We denotes A’s probability of success in Game x
as AdvA[Game x]

Lemma 2. If AdvA[Game 1] = 1
2 + ε then AdvA[Game 2] = 1

2 + 3ε
64q(l+1) .

Proof. We use the same argument as [HW10]. Start by observing that AdvA[Game 2] =

= AdvA[Game 2|abort] · Pr[abort] + AdvA[Game 2|abort] · Pr[abort] (13)

=
1

2
Pr[abort] + AdvA[Game 2|abort] · Pr[abort] (14)

=
1

2
Pr[abort] + Pr[b = b′|abort] · Pr[abort] (15)

=
1

2
Pr[abort] + Pr[b = b′] · Pr[abort|b = b′] (16)

=
1

2
Pr[abort] + (

1

2
+ ε) · Pr[abort|b = b′] (17)

≥ 1

2
(1− ζmin − s1) + (

1

2
+ ε)(ζmin − s2) (18)

≥ 1

2
+ ε · ζmin − (s1 + s2) (19)

=
1

2
+

3ε · ζmin

8
(20)

=
1

2
+

3ε

64q(l + 1)
(21)

Equation (14) follows from the fact that, in the case of abort A’s success is determined by a coin flip. It
would be very convenient if we could claim AdvA[Game 2|abort] = AdvA[Game 1], but unfortunately
this is false. The event that A wins Game 2 and the event of an abort are not independent; however,
we have inserted the balancing abort condition in the attempt to lessen the dependence between these
events. Equation (15) simply states that, when there is no abort, A wins if and only if it guess correctly.
Equation (16) follows from Bayes’ Theorem. In (17) we observe Pr[b = b′] is exactly A’s success in Game
1.
The purpose of the artificial abort is to even the probability of aborting, for all queries made by A, to be
roughly ζmin. This will also get rid of the conditional dependence on b = b′. There will be a small error
which must be taken into account. Suppose that Pr[abort] ≥ 1 − ζmin − s1 and Pr[abort] ≥ ζmin − s2,
which must hold for some error values s1 and s2, then we derive Equation (18). Algebraic manipulation
and recalling that ε ≤ 1

2 brings us to Equation (19).

From Claim 1 we set ζmin = 1
8q(l+1) . The values of s1 = 3ζminε

8 and s2 = ζminε
4 are derived from Claim 2

and Claim 3 respectively. Plugging these values into Equations (19) and (20) establishes the lemma.

Lemma 3. AdvA[Game 2] = AdvA[Game 3]

Proof. We make the explicit observation that these games are equivalent by observing that their only
difference is the time at which the regular abort occurs. The artificial abort stage is identical. All public
parameters, evaluations and proofs have the same distribution up to the point of a possible abortion.

In Game 2, the simulator receives all queries
−→
Q , then checks τ(

−→
Q) = 1 (with the public parameters)

and aborts taking a random guess, if so. In Game 3 the simulator checks with each new query Q if
K(Q) = 0, which implies that the ending τ will be 1, and aborts, taking a random guess if so. Therefore,
the output distributions will be the same.
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