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Abstract

The stream cipher WG-7 is a lightweight variant of the well-known Welch-Gong (WG)

stream cipher family, targeting for resource-constrained devices like RFID tags, smart

cards, and wireless sensor nodes. Recently, a distinguishing attack was discovered against

the stream cipher WG-7 by Orumiehchiha, Pieprzyk and Steinfeld. In this paper, we

extend their work to a general distinguishing attack and suggest criteria to protect the

WG stream cipher family from this attack. Our analysis shows that by properly choosing

the minimal polynomial of the linear feedback shift register for a WG stream cipher, the

general distinguishing attack can be easily thwarted.

1 Introduction

The Welch-Gong (WG) stream cipher family [6] is a set of synchronous stream ciphers sub-

mitted to the ECRYPT Stream Cipher (eSTREAM) Project in 2005. Among more than 20

submissions, the WG stream cipher family is the only candidate that has mathematically

proven randomness properties such as ideal two-level autocorrelation, long period, ideal tuple

distribution, and exact linear complexity. Those properties are paramount for protecting com-

munication systems from various malicious attacks by attackers and increase the robustness

of the signal transmission through noisy wireless communication networks. The WG stream

ciphers are hardware-oriented stream ciphers that use a word-oriented linear feedback shift

register (LFSR) and a filter function based on the WG transformation [2]. Depending on

application scenarios, the WG stream cipher family can be parameterized to provide security

solutions for a wide range of embedded applications such as smart cards, wireless sensor nodes,
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mobile phones, etc. For example, the stream cipher WG-7 [5] is a lightweight variant of the

WG stream cipher family tailored for securing low-cost RFID tags.

Recently, Orumiehchiha et al. [7] proposed a distinguishing attack on the stream cipher

WG-7. The authors built two distinguishers and showed that the key stream generated by

WG-7 can be distinguished from a random sequence after obtaining 213.5 keystream bits and

with a nonnegligible probability. While the proposed distinguishing attack does not affect the

security of the WG stream cipher in practice, we would like to provide a deep insight about

this kind of distinguishing attack when applied to the WG stream cipher and propose effective

countermeasures in this contribution. To this end, we first extend Orumiehchiha et al.’s

distinguishing attack to a much more general setting by building a k-order distinguisher. We

then characterize some criteria for protecting the WG stream cipher family from the general

distinguishing attack. Our analysis shows that by properly selecting the minimal polynomial

of the LFSR for a WG stream cipher, the general distinguishing attack can be easily defeated.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction

about the WG stream cipher and the distinguishing attack proposed in [7]. The generalization

of the Orumiehchiha et al.’s distinguishing attack will be addressed in Section 3. The criteria

for protecting the WG stream ciphers from this attack is discussed in Section 4.

2 Preliminaries

In this section, we will introduce necessary definitions and results which will be used later.

For the definitions and results of linear register feedback sequences, please refer to [1]. The

following notations will be used throughout the paper.

• We denote a finite field GF (2n) as F2n , and F∗2n , the multiplicative group of F2n .

• Fn2 = {(x0, · · · , xn−1) |xi ∈ F2}.

• a = {ai}, a sequence over F2, is called a binary sequence. If a is a periodic sequence

with period v, then we also denote a = (a0, · · · , av−1) an element of Fv2.

2.1 WG Permutation and WG Transformation

Let t(x) = x+ xq1 + xq2 + xq3 + xq4 be a function defined on F2m , where

q1 = 2k + 1

q2 = 22k + 2k + 1

q3 = 22k − 2k + 1

q4 = 22k + 2k − 1

(1)
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for k such that 3k ≡ 1 mod m. Then the function WGP : F2m → F2m defined by

WGP(x) = t(x+ 1) + 1, x ∈ F2m

is called the WG permutation, and the Boolean function WG : F2m → F2 defined by

WG(x) = Tr (t(x+ 1) + 1)

is called the WG transformation of Tr(t(x)), or the WG transformation for short. Note that

the WG permutations and transformations exist only if m (mod 3) 6= 0. Moreover, let θ be a

primitive element of F2m , define two sequences a = {ai} and b = {bi} as

ai = Tr(t(θi)) and bi = WG(θi) = Tr
(
t(θi + 1) + 1

)
.

Then b is called a WG transformation sequence of a, or a WG sequence for short. The WG

sequences have many good properties, for instance ideal two-level autocorrelation, ideal 2-

tuple distribution, balancedness, etc. Interested readers may refer to [2] for more details on

WG transformations and WG sequences.

2.2 Description of WG Cipher

A WG cipher can be regarded as a nonlinear filter generator over an extension field [6]. A

WG cipher, as shown in Figure 1, consists of a linear feedback shift register (LFSR), followed

by a WG transform. The LFSR generates an m-sequence over F2m with period 2n − 1 where

n = ml and the connecting polynomial is a primitive polynomial p(x) over F2m with degree

l with p(x) = xl +
∑l−1

i=0 cix
i, ci ∈ F2, c0 ∈ F2m . The feedback signal Init is used only in the

initialization phase of operation. When the cipher is running, the only feedback is within the

LFSR and the output of the cipher is one bit per clock cycle. We denote a WG generator

with an LFSR of l stages over F2m as an WG(m, l) generator.

The mathematical expressions of updating the LFSR and the output sequence of the

WG(m, l) generator are given by

Update of LFSR:

ak+l =

{ ∑l−1
i=0 ciai+k + WGP(ak+l−1) 0 ≤ k < 2l (in initialization phase)∑l−1
i=0 ciai+k k ≥ 2l (in running phase)

Output: sk = WG(ak+2l+l−1), k = 0, 1, · · · (2)

where WG(·) is defined in Section 2.1.
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Figure 1: A general structure of WG(m, l) generator

Particularly, for the WG-7 cipher WG(7, 23) in [5], the characteristic polynomial p(x) =

x23+x11+β ∈ F27 [x], and the finite field F27 is generated by the primitive polynomial x7+x+1

over F2.

2.3 A Distinguishing Attack on WG(7, 23)

Recently, Orumiehchiha, Pieprzyk, and Steinfeld [7] discovered a distinguishing attack on

WG(7, 23). The main idea is to use the linear relationship among the terms of the m-sequence

{ai} generated by the LFSR to build the approximated linear relationship of the WG sequence

si = WG(ai), i ≥ 0 (here the initialization process is ignored). Recall that, forWG(7, 23) in [5],

the characteristic polynomial of the LFSR p(x) = x23 +x11 +β ∈ F27 [x]. Two approximations

of the linear equations used in [7] are listed below.
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Linear relation of{ai} Imbalanced of

(1) a23+i + a11+i + βai = 0, s23+i + s11+i + si

= WG(a11+i + βai) + WG(a11+i) + WG(ai)

14 variables

(2) a23·27+i + a11·27+i + βai = 0

(by β27 = β)

(1) + (2) a23·27+i + a11·27+i + a23+i + a11+i = 0

a23·27−11+i + a11·27+i−11 + a12+i + ai = 0 s23·27−11+i + s11·27+i−11 + s12+i + si

= WG(a11·27−11+i + a12+i + ai)

+WG(a11·27−11+i) + WG(a12+i) + WG(ai)

21 variables

We define

F1(a11+i, ai) = WG(a11+i + βai) + WG(a11+i) + WG(ai), and

F2(a1397+i, a12+i, ai) = WG(a1397+i + a12+i + ai) + WG(a1397+i) + WG(a12+i) + WG(ai),

where 1397 = 11× 127 and i ≥ 0 is an integer. In [7], their respective probabilities of F1 = 0

and F2 = 0 are given by

P{F1(a11+i, ai) = 0} = 1
2 + 2−7.415,

P{F2(a1397+i, a12+i, ai) = 0} = 1
2 + 2−6.78.

Note. In [7], there is a typo in the bias of P{F1(a11+i, ai) = 0}, which should be 2−7.415

as shown above.

Remark 1 It is mentioned in Section 2.1 that the sequence generated by WG(x) is balanced

and has ideal 2-level autocorrelation, which implies that both {si} and {si+si+τ} are balanced

for any nonzero τ . But the sum of more than two WG sequences could be either balanced or

imbalanced.

2.4 Two Important Lemmas

In this subsection we list two important lemmas which will be used in the next two sections.

The first result can be found in [9]. For the convenience of the reader, we provide a proof in

the Appendix.
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Lemma 1 Let a be a sequence generated by a truly random generator with n bits, then the

imbalance of a is approximately to
√
n/2π.

The next result may be found in [8].

Lemma 2 Given two binary random sequences, where the first is uniform and the other is

biased, i.e. one binary value occurs with the probability 1/2 + ε while the other with the

probability 1/2 − ε. Then we need to observe O
(

1
ε2

)
bits in order to distinguish the two

distributions with a non-negligible probability of success.

3 High Order Distinguisher from Linear Relations of the Re-
cursive Relation of LFSRs

In [7], the linear approximations of WG-7 were obtained from the characteristic polynomial

p(x) = x23 +x11 +β, β ∈ F27 of the LFSR. However, this attack can be generalized to the case

that the characteristic polynomial has more than three terms. In this section, we will introduce

a general distinguisher which exists for any filtering generator with or without memory.

3.1 Linear Relation of m-sequences

Let p(x) = xl +
∑l−1

i=0 cix
i ∈ F2m [x] be a primitive polynomial of degree l. The following two

properties for finite fields and m-sequences can be easily derived from the theory of finite fields

[4] and m-sequences [1].

Property 1 Let α be a root of p(x) in its splitting field F2ml. Then for any integer 0 ≤ k ≤
l − 1 and 0 ≤ i0 < · · · < ik−1 < 2ml − 1 and tj ∈ F2m, if g(α) 6= 0 where

g(x) =
k−1∑
j=0

tjx
ij

then there exists an integer τ with 0 ≤ τ < 2ml − 1 such that ατ = g(α).

Proof. The result follows from the fact that g(α) is an element of F2ml and α is a generator

of the multiplicative group of F2ml . �

Property 2 Let {ai} be an m-sequence generated by p(x). Then there exists some τ : 0 ≤
τ ≤ 2ml − 2 such that

ai = Tr(αταi), i = 0, 1, · · · .
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From Properties 1 and 2, the following results are followed immediately.

Property 3 With the notation in Property 1, we have

aj+τ = t0aj+i0 + · · ·+ tk−1aj+ik−1
, j = 0, 1, · · · . (3)

Or equivalently,

aj+τ = L(aj+i0 , · · · , aj+ik−1
), j = 0, 1, · · · (4)

where

L(x) =
k−1∑
j=0

tjxj , x = (x0, · · · , xk−1).

The relation given by (3) is referred to as a k-order linear relation of a remote term of the

LFSR, which is determined by the minimal polynomial p(x) of a = {ai}. The following result

is from ideal k-tuple distribution of m-sequences (see [1]).

Property 4 Let a = {ai}, ai ∈ F2m be an m-sequence generated by p(x) of degree l and 0 ≤
i0 < · · · < ik−1 <

2ml−1
2m−1 such that {aj+iv}, v = 0, · · · , k − 1, regarded as a vector of FN2 where

N = 2ml − 1, are linear independent over F2. Then for any (b0, · · · , bk−1) ∈ Fk2m , 1 ≤ k ≤ l,

the following results hold:

|{j | 0 ≤ j < 2ml − 1, (aj+i0 , · · · , aj+ik−1
) = (b0, · · · , bk−1)}| = (2m)l−k,

|{j | 0 ≤ j < 2ml − 1, (aj+i0 , · · · , aj+ik−1
) = (0, · · · , 0)}| = (2m)l−k − 1.

Note that the independent condition in Property 4 is equivalent to saying that
∑k−1

v=0 α
iv 6=

0.

3.2 k-Order Correlation of Boolean Functions

Let f(x) be a function from F2m to F2 with f(0) = 0 and si = f(ai+v), i = 0, 1, · · · , where

0 ≤ v < l. When f is the WG transform, we have v = l − 1 as specified in Section 2.2.

Now, for any t = (t0, · · · , tk−1) ∈ (F∗2m)k and u = (u0, · · · , uk−1) ∈ (F∗2m)k, define a function

F(t,u) : Fk2m → F2 by

F(t,u)(x0, · · · , xk−1) = f(t0x0 + · · ·+ tk−1xk−1) + f(u0x0) + · · ·+ f(uk−1xk−1). (5)
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A k-order correlation of f at (t,u) = (t0, · · · , tk−1, u0, · · · , uk−1) is defined as

∆f (t0, · · · , tk−1, u0, · · · , uk−1) =
∑

(x0,··· ,xk−1)∈Fk
2m

(−1)F(t,u)(x0,··· ,xk−1). (6)

We define the following two subsets of Fk2m

A(t,u) = |{(x0, · · · , xk−1) ∈ Fk2m |F(t,u)(x0, · · · , xk−1) = 0}|,
D(t,u) = |{(x0, · · · , xk−1) ∈ Fk2m |F(t,u)(x0, · · · , xk−1) = 1}|.

Clearly we have A(t,u) +D(t,u) = 2mk and then

∆f (t,u) = A(t,u)−D(t,u) = 2A(t,u)− 2mk. (7)

The probability that F(t,u) is equal to zero is

P{F(t,u)(x0, · · · , xk−1) = 0} =
A(t,u)

2mk
. (8)

Using (7), we have

P{F(t,u)(x0, · · · , xk−1) = 0} =
1

2
+

∆f (t,u)

2mk+1
. (9)

Remark 2 We consider the Boolean function F(t,u) as a random Boolean function with mk

variables, and we may regard it as a binary sequence of length 2mk. By Lemma 1, the

expectation of the random variable F(t,u)(x0, · · · , xk−1) = 0 is given by

E
(
P{F(t,u)(x0, · · · , xk−1) = 0}

)
=

1

2
±
√

2π

2
√

2mk
.

3.3 k-Order Distinguisher

From Property 3, we can build the following distinguisher for a pseudo-random sequence {si}.

k-order Distinguisher: Assume that

aj+τ =

k−1∑
v=0

tvaj+iv where 0 ≤ i0 < i1 < · · · < ik−1 < 2mk − 1, k < l, tj ∈ F∗2m . (10)
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We define

F (aj+i0 , aj+i1 , · · · , aj+ik−1
) = f(aj+τ ) +

k−1∑
v=0

f(aj+iv). (11)

The following distinguisher

P{F (aj+i0 , aj+i1 , · · · , aj+ik−1
) = 0} =

1

2
± ε, 0 < ε < 1/2 (12)

is called a k-order distinguisher.

From the definition of F(t,u) in (5), we have

F (aj+i0 , aj+i1 , · · · , aj+ik−1
) = F(t,u)(aj+i0 , aj+i1 , · · · , aj+ik−1

)

where t = (t0, · · · , tk−1) ∈ (F∗2m)k and u = (1, · · · , 1) ∈ Fk2. The bias ε can be determined

through the computation of the k-order correlation of f at (t,u), i.e. ∆f (t,u) under some

conditions. (Note. The following result is a general case of cross correlation of two geometry

sequences in [3].)

Proposition 1 If (i0, · · · , ik−1) satisfies the condition in Property 4, then

ε ≈
∆f (t,u)

2mk+1

where t = (t0, · · · , tk−1) and u = (1, · · · , 1).

Proof. Let

∆ =
2ml−2∑
j=0

(−1)
f(t0aj+i0

+···+tk−1aj+ik−1
)+

k−1∑
v=0

f(aj+iv )
. (13)

Using a similar approach as for ∆f (t), we get

ε =
∆

2(2ml − 1)
. (14)

Denote z = (t,u) = (t0, · · · , tk−1, 1, · · · , 1) for simplicity. Since (i0, · · · , ik−1) satisfies the

condition in Property 4, by Property 4, then we may use the substitution aj+it ↔ xt as shown

below.

∆ = 2m(l−k)
∑

(x0,··· ,xk−1)∈Fk
2m

(−1)Fz(x0,··· ,xk−1) − 1

= 2m(l−k)∆f (z)− 1

9



where the constant −1 comes from (x0, · · · , xk−1) = (0, · · · , 0) occurs 2m(l−k) − 1 times and

f(0) = 0. Substituting the above identity into (14), we have

ε =
2m(l−k)∆f (z)−1

2(2ml−1)

=
∆f (z)

2mk+1−1/2m(l−k)−1 − 1
2ml+1−2

≈ ∆f (z)

2mk+1 .

Thus, the assertion is established. �
From Proposition 1, the bias of F is computed through

F(t,u)(x0, · · · , xk−1) = f(
k−1∑
i=0

tixi) +
∑
i=0

f(xi), xi ∈ F2m (15)

provided the condition of Property 4.

According to Lemma 2, we have the following property.

Proposition 2 Let f(x) = WG(x). Then the k-order distinguisher of WG(m, l) needs

O(ε−2) bits to distinguish the key stream of WG(m, l) cipher from a truly random sequence

generator. Furthermore, WG(m, l) generator needs to generate at least τ bits at one session

of the encryption.

Proof. Let yj = F (aj+i0 , aj+i1 , · · · , aj+ik−1
). For P{yj = 0} = 1

2 ± ε, it needs to observe

O(ε−2) bits of {yj} to distinguish {sj} from a truly random sequence. However, in order to

compute yj it needs to know the remote bit sj+τ and (sj+i0 , · · · , sj+ik−1
) for computing the

bias of the distinguisher. In order to get sj+τ , the generator has to generate s0, · · · , sj+τ−1

for one j. �

Note that O(ε−2) bits can be collected from different sessions, and they may not be con-

secutive. How to estimate ∆f (1, · · · , 1) is a hard problem. However, for small m and k, it

can be determined through computation.

Remark 3 Theoretically, the k-order distinguisher can use k-order correlation of f at (t,u)

for any u ∈ (F∗2m)k instead of u = (1, · · · , 1) as defined in (11). However, this type of

distinguisher cannot be constructed as explained below. From (3) in Property 3, since tj ∈
F2m , together with the trace representation of m-sequences in Property 2, we may rewrite as

follows
uvaj+iv = aj+τv , 0 ≤ v < k (16)
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where τv = 2ml−1
2m−1 ev+iv where 0 ≤ ev < 2m−1, v = 0, · · · , k−1. In this case, the bias of F can-

not be computed by the method of Proposition 1. On the other hand, the k-order distinguisher

F(t,u) requests to obtain the remote terms of the key stream bits sj+τ , sj+τ0 , · · · , sj+τk−1
, which

demands that the generator should generate at least 2ml−1
2m−1 bits in one session. For example,

in WG(7, 23), it requests that WG(7, 23) generates at least 2161−1
27−1

≈ 2154 bits in one session,

which is infeasible in practice.

Example 1 The distinguishers F1 and F2 on WG(7, 23).

1. The distinguisher F1 on WG(7, 23), defined in Section 2.3 is the 2-order distinguisher.

In other words, the bias of F1 is computed through

F(β,1,1,1)(x0, x1) = WG(x1 + βx0) +WG(x0) +WG(x1), xi ∈ F27

where (t0, t1) = (β, 1) and u = (1, 1) in [7], which has the bias 2−7.415.

We can easily verify that the bias of

F(β,1,β,1) = WG(x1 + βx1) +WG(x1) +WG(βx0), xi ∈ F27

is 2−6.299 which is larger than F(β,1,1,1). However, this function does not satisfy the

condition of Property 4, thus Proposition 1 cannot be applied. In other words, the bias

of
F (aj , aj+11) = WG(aj+τ ) +WG(βaj) +WG(aj+11), ∀j ≥ 0

where aj+τ = βaj + aj+11 cannot be computed through the bias of F(β,1,β,1)(x0, x1).

On the other hand, in order to have the distinguisher, it also requests that WG(7, 23)

generates more 2154 bits in one session, as discussed in Remark 3, which is infeasible.

2. For the distinguisher F2 on WG(7, 23), because {aj}j≥0, {aj+12}j≥0, and {aj+1397}j≥0

are linear independent, through mapping

aj ←→ x0

aj+12 ←→ x1

aj+1397 ←→ x2

then k = 3 and the bias of the 3-order distinguisher can be computed in terms of the

bias

F(t,u)(x0, x1, x2) = WG(x0 + x1 + x2) +WG(x0) +WG(x1) +WG(x2), xi ∈ F27

where t = u = (1, 1, 1), which has 3m = 21 variables.
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4 Resiliency Characteristic Polynomials Against k-Order Dis-
tinguisher Attacks

Theoretically we can always build a k-order distinguisher as stated in Section 3. However,

in practice, this type of the distinguishers can be easily defeated by selecting p(x) such that

either τ is over the current computational technology or ∆f (t0, · · · , tk−1, 1, · · · , 1) is large, or

equivalently, the bias is small.

4.1 Resiliency Condition

According to Proposition 1, for WG(m, l), in order to satisfy the linear independent condition,

there are two cases.

Case 1. If 0 ≤ i0 < · · · < ik−1 < l, then the linear independent condition is true.

Case 2. If there exist some iv ≥ l, then we need to check whether
∑k−1

v=0 α
iv = 0.

We may select p(x) to satisfy the following conditions where α is a root of p(x) in F2ml .

Resiliency Condition for p(x): Choosing p(x) such that there is no k-order linear relation

of a remote term for τ ≤ ∆1 and k ≤ ∆2, where ∆1 is determined by the computational

power of the current technology, say 240 for a moderate computer, and ∆2, by the bias ε or

equivalently, ∆f (t, 1, · · · , 1) in (11). In other words, we have the following two conditions.

Case 1. For k = 2, · · · ,∆2, any ti ∈ F∗2m , and any {i0, · · · , ik−1} ⊂ {0, 1, · · · , l − 1}, if

ατ = t0α
i0 + · · ·+ tk−1α

ik−1 6= 0,

then

τ > ∆1 = 240.

Case 2. For k = 2, · · · ,∆2, any ti ∈ F∗2m , any {i0, · · · , ik−1} ⊂ {0, 1, · · · ,∆1} with some

l ≤ iv < 2ml−1
2m−1 , if

ατ = t0α
i0 + · · ·+ tk−1α

ik−1 6= 0 and αi0 + · · ·+ αik−1 6= 0,

then

τ > ∆1 = 240.
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A primitive polynomial p(x) satisfies the above two conditions is called a resilient feedback

polynomial of WG(m, l) with respect to the threshold values (∆1,∆2).

Remark 4 Except for the above resiliency condition, k can be bounded by the following

three cases. (1) Against exhaustive key search attack (EKS): Let K be the number of key

bits. Then k can be bounded by km < K. Otherwise, in order to compute ∆WG(1, · · · , 1),

it needs to compute the exponential sum of 2km terms. If it is computable, then it could do

exhaustive search for the key with 2K cases. (2) Against time-memory-data trade-off attack

(TMD): km < K/2. Otherwise, the attacker will launch TMD attack instead of k-order

distinguish attack. (3) Against linear span attack (LSA): 2km > LS where LS is the linear

span of WG(m, l) sequences.

Remark 5 The conditions on (τ, k) implies that the characteristic polynomial used in WG(m, l)

should have at least (k + 1) terms. Otherwise, it has the k-order distinguisher whose bias is

computed by the bias of

F(t,u)(x0, · · · , xk−1) = WG

(
k−1∑
i=1

xi + γx0

)
+ WG(x0) + · · ·+ WG(xk−1),

where {0 = i0, · · · , ik−1} = {0 < i < l | ci = 1}, p(x) = xl +
l−1∑
i=1

cix
i + γ, ci ∈ F2, γ ∈ F2m ,

xv ←→ aj+iv and t = (t0, · · · , tk−1) = (γ, 1, · · · , 1) and u = (1, · · · , 1).

4.2 WG-7 with Resiliency Condition

For WG(7, 23), we may choose p(x) = x23 +
∑22

i=1 cix
i + γ, ci ∈ F2, γ ∈ F27 , a primitive

polynomial over F27 of degree 23, has 8 nonzero coefficients such that ∆1 = 240 and ∆2 = 8

(there are many such primitive polynomials found by testing). Then the best distinguisher

that an attacker can build is a function with 56 variables, and key stream bits should be 240

apart. However, in any practical applications that WG(7, 23) targeted for, it is infeasible to
generate

s240+j , s240+j−1, · · · , s22+j , · · · , sj

for one j. Note that those bits cannot be collected from different communication sessions with

different keys and IVs, because the attacker cannot distinguish the indexes of the key streams

from different sessions. Thus, this type of distinguisher cannot be built. Even the generator

can output more than 240 bits, which make it possible to build this distinguisher. However, in

13



this case, k > ∆2 = 8. Thus, the time complexity for computing ε for distinguisher F in m∆2

variables is more than 263, since mk > m∆2, the time complexity for making the distinguisher

work is more than 263, which is infeasible in terms of the current computing technology. Note

that it can be checked for Case 1 in Proposition 2 up to k = 6. However, the complexity to

check whether there is no k-order distinguisher to satisfy the resiliency condition in Case 2 is

high.

5 Conclusion

In this article, we introduce a general k-order distinguisher to a filtering generator over exten-

sion fields, such as the WG stream cipher family. We provide an analytic method to compute

bias of the distinguishers in terms of the filtering function. We provide the countermeasures

to this type of distinguishers by properly choosing the minimal polynomial of the LFSR for a

WG stream cipher. Thus, this type of distinguishing attacks can be easily defeated.
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Appendix

Proof of Lemma 1. Let ξ = |S0 − S1| be the imbalance of a, where S0 = ]{i ∈ [1..n]|ai = 0}
and S1 = n − S0. Then ξ is a random variable with values in the range 0 ≤ ξ ≤ n. In the

following we only discuss the case n is an even integer. The arguments of the case n is odd

is similar and we omit it here. Now assume ξ = k and we get k = |S0 − S1| = |2S0 − n| and

then S0 = n±k
2 . Clearly the equation is only meaningful when k is even. By the symmetry we

only consider the case S0 = n+k
2 . Now we have

Pr(ξ = k) = 2 ·
(

n
n+k

2

)
· 1

2n
=

1

2n−1
·
(

n
n+k

2

)
.

Therefore, the expectation of ξ is

E(ξ) =

n∑
k=0,k even

Pr(ξk)k =
1

2n−1

∑
k

(
n
n+k

2

)
k.
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By the fact that lim
n→∞

1
2n−1

∑
k

(
n

n+k
2

)
k =

√
n/2π (which can be shown by

∑
k

(
n

n+k
2

)
k =

n
2

(
n
n/2

)
and the sterling formula n! ≈

√
2πn

(
n
e

)n
), we finish the proof. �
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