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Abstract. This paper presents a block cipher that is optimized with
respect to latency when implemented in hardware. Such ciphers are de-
sirable for many future pervasive applications with real-time security
needs. Our cipher, named PRINCE, allows encryption of data within
one clock cycle with a very competitive chip area compared to known
solutions. The fully unrolled fashion in which such algorithms need to be
implemented calls for innovative design choices. The number of rounds
must be moderate and rounds must have short delays in hardware. At
the same time, the traditional need that a cipher has to be iterative with
very similar round functions disappears, an observation that increases
the design space for the algorithm. An important further requirement is
that realizing decryption and encryption results in minimum additional
costs. PRINCE is designed in such a way that the overhead for decryp-
tion on top of encryption is negligible. More precisely for our cipher it
holds that decryption for one key corresponds to encryption with a re-
lated key. This property we refer to as α-reflection is of independent
interest and we prove its soundness against generic attacks.

1 Introduction

The area of lightweight cryptography, i.e., ciphers with particularly low imple-
mentation costs, has drawn considerable attention over the last years. Among the
best studied algorithms are the block ciphers CLEFIA, Hight, KATAN, KTAN-
TAN, Klein, mCrypton, LED, Piccolo and PRESENT [37, 28, 18, 25, 33, 26, 36,
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10], as well as the stream ciphers Grain, Mickey, and Trivium [27, 2, 19]. Particu-
lar interest in lightweight symmetric ciphers is coming from industry, as becom-
ing evident in the adoption of CLEFIA and PRESENT in the ISO/IEC Standard
29192-2. The dominant metric according to which the majority of lightweight
ciphers have been optimized is chip area, typically measured in gate equivalences
(GE), i.e., the cipher area normalized to the area of a 2-input NAND gate in
a given standard cell library. This is certainly a valid optimization objective in
cases where there are extremely tight power or cost constraints, in particular pas-
sive RFID tags. However, depending on the application, there are several other
implementation parameters according to which a cipher should have lightweight
characteristics. There are several important applications for which a low-latency
encryption and instant response time is highly desirable, such as instant au-
thentication or block-wise read/write access to memory devices, e.g., solid-state
hard disks. There are also embedded applications where current block ciphers in
multiple-clock architectures could be sufficiently fast, but the needed high clock
rates are not supported by the system. For instance, in many FPGA designs
clock rates above 200 MHz are often difficult to realize. It can also be antici-
pated that given the ongoing growth of pervasive computing, there will be many
more future embedded systems that require low-latency encryption, especially
applications with real-time requirements, e.g., in the automotive domain. More-
over, [21] as well as [29] show that low-latency goes hand in hand with energy
efficiency, another crucial criterion in many (other) applications.

For all these cases, we like to have symmetric ciphers that can instantaneously
encrypt a given plaintext, i.e., the entire encryption and decryption should take
place within the shortest possible delay. This seemingly simple problem poses a
considerable challenge with today’s cryptosystems — in particular if encryption
and decryption should both be available on a given platform. Software implemen-
tations of virtually all strong ciphers take hundreds or thousands of clock cycles,
making them ill suited for a designer aiming for low-latency cryptography. In the
case of stream ciphers implemented in hardware, the high number of clock cy-
cles for the initialization phase makes them not suitable for this task, especially
when secret keys need to be regularly changed. Moreover, if we want to encrypt
small blocks selected at random (e.g., encryption of sectors on solid-state disks),
stream ciphers are not suited1. This leaves block ciphers as the remaining viable
solution. However, the round-based, i.e., iterative, nature of virtually all existing
block ciphers, as shown for the case of AES, makes low-latency implementation
a non-trivial task. A round-based hardware architecture of the AES-128 requires
ten clock cycles to output a ciphertext which we do not consider instantaneous
as it is still too long for some applications. As a remedy, the ten rounds can be
loop-unrolled, i.e., the circuit that realizes the single round is repeated ten times.
Now, the cipher returns a ciphertext within a single clock cycle — but at the
cost of a very long critical path. This yields a very slow absolute response time
and clock frequencies, e.g., in the range of a few MHz. Furthermore, the unrolled
architecture has a high gate count in the range of several tens of thousand GE,

1 A possible exception are random-access stream ciphers such as Salsa [5]



implying a high power consumption and costs. Both features are undesirable, es-
pecially if one considers that many of the applications for instantaneous ciphers
are in the embedded domain. Following the same motivation and reasoning as
above [21] compares several lightweight ciphers with respect to latency and as a
conclusion calls for new designs that are optimized for low-latency.

Our Contribution. Based on the above discussion our goal is to design a
new block cipher which is optimized with respect to the following criteria if
implemented in hardware:

1. The cipher can perform instantaneous encryption, a ciphertext is computed
within a single clock cycle. There is no warm-up phase.

2. If implemented in modern chip technology, low delays resulting in moderately
high clock rates can be achieved.

3. The hardware costs are moderate (i.e., considerably lower than fully unrolled
versions of AES or PRESENT).

4. Encryption and decryption should both be possible with low costs and over-
head.

We would like to remark that existing lightweight ciphers such as PRESENT
do not fulfill Criteria 2 and 3 (low delay, small area) due to their large number
of rounds. In order to fulfill Criterion 4, one needs to design a cipher for which
decryption and encryption use (almost) identical pieces of hardware. This is an
important requirement since the unrolled nature of instantaneous ciphers leads
to circuits which are large and it is thus clearly advantageous if large parts of
the implementation can be used both for encryption and decryption.

Besides designing a new lightweight cipher that is for the first time optimized
with respect to the goals above, PRINCE has several innovative features that
we like to highlight.

First, a fully unrolled design increases the possible design choices enormously.
With a fully unrolled cipher, the traditional need that a cipher has to be iterative
with very similar round functions disappears. This in turn allows us to efficiently
implement a cipher where decryption with one key corresponds to encryption
with a related key. This property we refer to as α-reflection is of independent
interest and we prove its soundness against generic attacks. As a consequence,
the overhead of implementing decryption over encryption becomes negligible.
Note that previous approaches to minimizing the overhead of decryption over
encryption, for example in the ciphers NOEKEON and ICEBERG usually re-
quire multiplexer in each round. While for a round-based implementation this
does not make a difference, our approach is clearly preferable for a fully unrolled
implementation, as we require multiplexer only once at the beginning of the
circuit.

Another difference to known lightweight ciphers like PRESENT is that we
balance the cost of an Sbox-layer and the linear layer. As it turns out optimizing
the cost of the Sbox chosen has a major influence on the overall cost of the
cipher. As an Sbox that performs well in one technology does not necessarily



perform well in another technology, we propose the PRINCE-family of ciphers
that allows to freely choose the Sbox within a (large) set of Sboxes fulfilling
certain criteria. Our choice for the linear layer can be seen as being inbetween
a bit-permutation layer PRESENT (implemented with wires only) and AES
(implemented with considerable combinatorial logic). With the expense of only
2 additional XOR-gates per bit over a simple bit-permutation layer, we achieve
an almost-MDS property that helps to prove much better bounds against various
classes of attacks and in turn allows to significantly reduce the number of rounds
and hence latency.

As a result, PRINCE compares very favorable to existing ciphers. For the
same time constraints and technologies, PRINCE uses 6-7 times less area than
PRESENT-80 and 14-15 times less area than AES-128. In addition to this,
our design uses about 4-5 times less area than other ciphers in the literature
(see Section 5 and in particular Tables 1 and 2 for a detailed comparison and
technology details). To facilitate further study and fairer comparisons, we also
report synthesis results using the open-source standard-cell library NANGATE
[34]. We also like to mention that, although this is not the main objective of
the cipher, PRINCE compares reasonably well to other lightweight ciphers when
implemented in a round-based fashion.

We believe that our consideration can be of major value for industry and
can at the same time stimulate the scientific community to pursue research on
lightweight ciphers with different optimization goals.

Organization of the Paper. We introduce an instance of PRINCE-family of
ciphers and state our security claims in Section 2. Design decisions are discussed
in Section 3 where we also describe the entire PRINCE-family. We provide secu-
rity proofs and evaluations considering cryptanalytical attacks in Section 4. In
Section 5 we finally present implementation results and comparisons with other
lightweight ciphers for a range of hardware technologies.

2 Cipher Description

PRINCE is a 64-bit block cipher with a 128-bit key. The key is split into two
parts of 64 bits each,

k = k0||k1

and extended to 192 bits by the mapping

(k0||k1)→ (k0||k′0||k1) := (k0||(k0 ≫ 1)⊕ (k0 � 63)||k1).

PRINCE is based on the so-called FX construction [7, 30]: the first two sub-
keys k0 and k′0 are used as whitening keys, while the key k1 is the 64-bit key for
a 12-round block cipher we refer to as PRINCEcore. We provide test vectors in
Appendix A.
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Specification of PRINCEcore.

The whole encryption process of PRINCEcore is depicted below.
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Each round of PRINCEcore consist of a key addition, an Sbox-layer, a linear
layer, and the addition of a round constant.

ki-add. Here the 64-bit state is xored with the 64-bit subkey.

S-Layer. The cipher uses one 4-bit Sbox. The action of the Sbox in hexadecimal
notation is given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

The Matrices: M/M ′-layer. In the M and M ′-layer the 64-bit state is mul-
tiplied with a 64× 64 matrix M (resp. M ′) defined in Section 3.3.

RCi-add. In the RCi-add step a 64-bit round constant is xored with the state.
We define the constants used below (in hex notation)

RC0 0000000000000000
RC1 13198a2e03707344
RC2 a4093822299f31d0
RC3 082efa98ec4e6c89
RC4 452821e638d01377
RC5 be5466cf34e90c6c
RC6 7ef84f78fd955cb1
RC7 85840851f1ac43aa
RC8 c882d32f25323c54
RC9 64a51195e0e3610d
RC10 d3b5a399ca0c2399
RC11 c0ac29b7c97c50dd



Note that, for all 0 ≤ i ≤ 11,RCi⊕RC11−i is the constant α = c0ac29b7c97c50dd,
RC0 = 0 and that RC1, . . . , RC5 and α are derived from the fraction part of
π = 3.141....

From the fact that the round constants satisfy RCi ⊕ RC11−i = α and that
M ′ is an involution, we deduce that the core cipher is such that the inverse
of PRINCEcore parametrized with k is equal to PRINCEcore parametrized with
(k⊕α). We call this property of PRINCEcore the α-reflection property. It follows
that, for any expanded key (k0||k′0||k1),

D(k0||k′0||k1)(·) = E(k′0||k0||k1⊕α)(·)

where α is the 64-bit constant α = c0ac29b7c97c50dd. Thus, for decryption one
only has to do a very cheap change to the master key and afterwards reuse the
exact same circuit.

Security Claims. For an adversary that is able to acquire 2n plaintext/ciphertext
pairs in a model with a single fixed unknown key k, we claim that the effort to
find the key is not significantly less expensive than 2127−n calls to the encryption
or decryption function. In Section 4.1 we give a bound matching this claim in
the ideal cipher model that does consider the special relation between the en-
cryption and decryption operations. One way to interpret this is that any attack
violating our security claim will have to use more properties of the cipher than
the relation between the encryption and decryption operations.

We explicitly state that we do not have claims in related-key or known- and
chosen-key models as we do not consider them to be relevant for the intended
use cases. In particular, as for any cipher based on the FX construction or on
the Even-Mansour scheme [22], there exists a trivial distinguisher for PRINCE

in the related-key model: for any difference ∆, the ciphertexts corresponding to
m and (m ⊕ ∆) encrypted under keys (k0||k1) and ((k0 ⊕ ∆)||k1) respectively,
differ from ((∆≫ 1)⊕ (∆� 63)) with probability 1.

Reduced Versions. Many classes of cryptanalytic attacks become more dif-
ficult with an increased number of rounds. In order to facilitate third-party
cryptanalysis and estimate the security margin, reduced-round variants need to
be considered. We encourage to study round-reduced variants of PRINCE where
the symmetry around the middle is kept, and rounds are added in an inside-out
fashion, i.e. for every additional round <i its inverse is also added. Another nat-
ural way to reduce PRINCE is to consider the cipher without the key whitening
layer, PRINCEcore.

3 Design Decisions

In this section we explain our design decisions. First note that an SP-network
is preferable over a Feistel-cipher, since a Feistel-cipher operates only on half
the state resulting often in a higher number of rounds. In order to minimize the



number of rounds and still achieve security against linear and differential attacks,
we adopted the wide-trail strategy [13]. As not all round functions have to be
identical for a cipher aiming for a fully unrolled implementation as PRINCE, it
is very tempting to directly use the concept of code-concatenation [16] to achieve
a high number of active Sboxes over 4 rounds of the cipher. However, not only
a serial implementation benefits from similar round functions. It is also very
helpful for ensuring a minimum number of active Sboxes. Assume that, using
the code-concatenation approach, one can ensure that rounds Ri to Ri+3 have at
least 16 active Sboxes. While this is nice, the problem is that it does not ensure
that rounds Ri−1 to Ri+2 or Ri+1 to Ri+4 have 16 active Sboxes as well if the
individual rounds are very different in nature. We therefore decided to follow
a design that on one hand allows to use the freedom given by a fully enrolled
design and on the other hand still keeps the round functions similar enough to
prove some bounds on the resistance against linear and differential attacks.

In this context, one of the main features of the design is that decryption can
be implemented on top of encryption with a minimal overhead. This is achieved
by designing a cipher which is symmetric around the middle round, a very simple
key scheduling, and a special choice of round constants.

3.1 Aligning Encryption with Decryption

The use of a core cipher having the α-reflection property, with two additional
whitening keys, offers a nice alternative to the usual design strategy which con-
sists in using involutional components — Noekeon [14], Khazad [4], Anubis [3],
Iceberg [39] or SEA [38] are some examples of such ciphers with involutional com-
ponents. Actually, the general construction used in PRINCE has the following
advantages:

– It allows a much larger choice of Sboxes, which may lead to a lower imple-
mentation cost, since the Sbox is not required to be an involution. It is worth
noticing that the fact that both the Sbox and its inverse are involved in the
encryption function does not affect the cost of the fully-unrolled implemen-
tations we consider;

– In ciphers with involutional components, the overhead due to the implemen-
tation of the inverse key scheduling can be reduced by adding some symmetry
in the subkey sequence. But this may introduce weak keys or potential slide
attacks. The fact that all components are involutions may also introduce
some regularities in the cyclic structure of the cipher which can be exploited
in some attacks [6]. The resistance of PRINCE to this type of attacks will
be extensively discussed in Section 4.2.

– It is an open problem to prove the security of ciphers with ideal, involutional
components against generic attacks. We show in Section 4.1 that ciphers with
the α-reflection property (for α 6= 0) has a proof of security similar to that
of the FX construction.

– Previous approaches to minimizing the overhead of decryption over encryp-
tion usually require multiplexer in each round while our approach requires
multiplexer only once at the beginning of the circuit.



3.2 The PRINCE-Family: Choosing the Sbox

As discussed in more detail in Section 5, the cost of the Sbox, i.e., its area
and critical path, is a substantial part of the overall cost. Thus, choosing an
Sbox which minimizes those costs is crucial for obtaining competitive results.
As the cost of an Sbox depends on various parameters, such as the technology,
the synthesis tool, and the library used, one cannot expect that there is one
optimal Sbox for all environments. In fact, in order to achieve optimal results it
is preferable to choose your favorite Sbox. In order to ensure the security of the
resulting design, an Sbox S : F4

2 → F4
2 for the PRINCE-Family has to fulfill the

following criteria.

1. The maximal probability of a differential is 1/4
2. There are exactly 15 differentials with probability 1/4.
3. The maximal absolute bias of a linear approximation is 1/4.
4. There are exactly 30 linear approximations with absolute bias 1/4.
5. Each of the 15 non-zero component functions has algebraic degree 3.

As it can be deduced for example from [32] up to affine equivalence there are
only 8 Sboxes fulfilling those criteria. Thus, another way of defining an Sbox for
the PRINCE-Family is to say that it has to be affine equivalent to one of the
eight Sboxes Si given in Table 3 in Appendix B.

3.3 The Linear Layer

In the M and M ′-layer the 64-bit state is multiplied with a 64 × 64 matrix M
(resp. M ′) defined below. We have different requirements for the two different
linear layers. The M ′-layer is only used in the middle round, thus M ′ has to
be an involution to ensure the α-reflection property. This requirement does not
apply for the M -layer used in the round functions. Here we want to ensure full
diffusion after two rounds. To achieve this we combine the M ′-mapping with an
application of matrix SR which behaves like the AES shift rows and permutes
the 16 nibbles in the following way

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 −→ 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

Thus M = SR ◦M ′.
Additionally the implementation costs should be minimized, meaning that

the number of ones in the matrices M ′ and M should be minimal, while at
the same time it should be guaranteed that at least 16 Sboxes are active in 4
consecutive rounds (cf. Appendix C.1 for details). Thus, trivially each output bit
of an Sbox has to influence 3 Sboxes in the next round and therefore the minimum
number of ones per row and column is 3. Thus we can use the following four
4× 4 matrices as building blocks for the M ′-layer.

M0 =


0000

0100

0010

0001

 , M1 =


1000

0000

0010

0001

 , M2 =


1000

0100

0000

0001

 , M3 =


1000

0100

0010

0000





In the next step we generate a 4×4 block matrix M̂ where each row and column
is a permutation of the four 4× 4 matrices M0, . . . ,M3. The row permutations
are chosen such that we obtain a symmetric block matrix. The choice of the
building blocks and the symmetric structure ensures that the resulting 16 × 16
matrix is an involution. We define

M̂ (0) =


M0 M1 M2 M3

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

 M̂ (1) =


M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

M0 M1 M2 M3

 .

In order to obtain a permutation for the full 64-bit state we construct a 64× 64
block diagonal matrix M ′ with (M̂ (0), M̂ (1), M̂ (1), M̂ (0)) as diagonal blocks. The
matrix M ′ is an involution with 232 fixed points, which is average for a randomly
chosen involution [24, Page 596]. The linear layer M is not an involution anymore
due to the composition of M ′ and shift rows, which is not an involution.

3.4 The Key Expansion

The 128-bit key (k0||k1) is extended to a 192-bit key (k0||k′0||k1) by a linear
mapping of the form

(k0||k1) 7→ (k0||P (k0)||k1) .

This expansion should be such that it makes peeling of rounds (both at the
beginning and at the end) by partial key guessing difficult for the attacker. In
particular, we would like that each pair of subkeys among k1 and the quantities
(k0⊕k1) and (k′0⊕k1) takes all the 2128 possible values when (k0||k1) varies in the
set of 128-bit words. In other words, the set of all triples (k0||P (k0)||k1) should
correspond to an MDS code of length 3 and size 2128 over F64

2 . This equivalently
means that both x 7→ P (x) and x 7→ x ⊕ P (x) should be permutations of F64

2 .
Note that no bit-permutation P satisfies this condition. Indeed, both the all-zero
vector and the all-one vector satisfy P (x)⊕ x = 0.

Thus, a hardware-optimal choice for P such that both P and P ⊕ Id are
permutations is

P (x) = (x≫ 1)⊕ (x� 63) ,

i.e., P (x63, . . . , x0) = (x0, x63, . . . , x2, x1 ⊕ x63). Then, we can easily check that
P (x) = 0 (resp. P (x) = x) has a unique solution.

4 Security Analysis

This section investigates the security of the general construction of PRINCE.
In particular, we show that the α-reflection property of the core cipher does
not introduce any generic attack with complexity significantly lower than the
known generic attacks against the FX construction. However, in the particular
case of PRINCEcore, the α-reflection property comes from some symmetries in
the construction, including the use of an involution as middle round. Thus,



we investigate in Section 4.2 whether weaknesses similar to those identified for
involutional ciphers could also appear in the case of PRINCE. An evaluation
of the security of PRINCE regarding more classical attacks, including linear,
differential and algebraic but also to the recently introduced biclique attacks is
provided in Appendix C).

4.1 On Generic Attacks: Security Proof

The FX construction, introduced by Rivest for increasing the resistance of DES
to exhaustive key-search [7], consists in deriving a block cipher E with (2n+κ)-
bit key and n-bit block from a block cipher F with κ-bit key and n-bit block by
xoring the input and output of F with a pre-whitening key and a post-whitening
key:

Ek0,k1,k2(x) = Fk1(x⊕ k0)⊕ k2 .

Kilian and Rogaway [30, 31] proved that, if the core cipher F is ideal, then this
construction achieves (κ+ n− 1− log T )-bit security where T is the number of
pairs of inputs and outputs for F known by the attacker. This result obviously
does not apply in the case of PRINCE since the core cipher F in PRINCE can
be easily distinguished from a family of random permutations due to the α-
reflection property, i.e., F−1k = Fk⊕α for any k. Here, we want to quantify the
impact of this property on the generic attacks against the FX construction.
For instance, it appears that a decryption oracle also gives a related-key oracle
with the fixed-key relation (k0, k2, k1) → (k2, k0, k1 ⊕ α) and it is important to
determine whether an adversary can profit from this relation.

A similar question was investigated by Kilian and Rogaway for showing that
the complementation property of DES decreases the security level by a single
bit [30, Section 4]. In the case of the α-reflection property, we like to model the
core cipher F as an ideal cipher, that is as a set of random permutations, with
the (only!) additional relation that Fk⊕α(x) = F−1k (x). Informally, this can be
seen as picking only half of the 2κ permutations independently at random, while
the second half is defined by the encryption vs decryption relation above.

More precisely, we consider for F a keyed permutation with a (κ−1)-bit key,
operating on n-bit blocks. Let α be a nonzero element in Fκ2 . We decompose the
set of κ-bit words into two subsets as Fκ2 = H ∪ (α⊕H) where H is some linear
subspace of dimension (κ− 1) which does not contain α, e.g., if lsb(α) = 1, H is
the set of all n-bit words x with lsb(x) = 0. In the following, H is identified with
the set of (κ− 1)-bit words. It is worth noticing that such a decomposition does
not exist when α = 0, i.e., when F is an involution. Therefore, the following
construction is defined for α 6= 0 only. Now, we derive from F a block cipher
with (2n+ κ) key bits and n-bit blocks:

Ek0,k1,k2(m) =

{
Fk1(m⊕ k0)⊕ k2 if k1 ∈ H
F−1k1⊕α(m⊕ k0)⊕ k2 if k1 ∈ (α⊕H)



This construction, we refer to as F̃X-construction, corresponds to the FX con-
struction applied to F̃ where F̃ is the family of 2κ permutations defined by

F̃k(x) =

{
Fk(x) if k ∈ H
F−1k⊕α(x) if k ∈ (α⊕H)

The only difference with the construction considered in the case of the com-
plementation property is that F is extended by using the inverse permutations
Fk, k ∈ H, instead of the permutations themselves. But, we can obtain a similar
result.

More precisely, when analyzing the original FX construction, Kilian and
Rogaway [30] consider the following problem. Let A be an adversary with access
to three oracles: E, F and F−1. During the game, the adversary may make
queries to E, to F and F−1. Any query to the F/F−1 oracle consists of a pair
(k, x) in Fκ2 × Fn2 and the oracle returns an element in Fn2 . A query to the
E oracle consists of an n-bit element, and an n-bit value is returned. The aim
of this adversary is then to guess whether the E oracle computes FXk for some
random key k, or if it computes π for a random permutation of Fn2 . Then, a
game-hoping argument leads to the following upper-bound on the advantage of
any such adversary.

Theorem 1. [30] The advantage of any adversary who makes D queries to the
E oracle and T queries to the F/F−1 oracle satisfies

AdvCPAFX (A) =
∣∣∣Pr[k

$← Fκ+2n
2 , F

$← (Pn)2
κ

: AFXk,F,F
−1

= 1]

−Pr[π
$← Pn, F

$← (Pn)2
κ

: Aπ,F,F
−1

= 1]
∣∣∣ ≤ DT2−(n+κ−1) ,

where x
$← S means that x is uniformly chosen at random from a set S, Pn

denotes the set of permutations of Fn2 and F
$← (Pn)2

κ

means that F is a family
of 2κ independently chosen random permutations.

We deduce a similar result for the F̃X construction.

Corollary 1. The advantage of any adversary who makes D queries to the E or-
acle and T queries to the F/F−1 oracle satisfies

AdvCPA
F̃X

(A) =
∣∣∣Pr[k

$← Fκ+2n
2 , F

$← (Pn)2
κ−1

: AF̃Xk,F,F
−1

= 1]

−Pr[π
$← Pn, F

$← (Pn)2
κ−1

: Aπ,F,F
−1

= 1]
∣∣∣ ≤ DT2−(n+κ−2)



Proof. We decompose

Pc = Pr[k
$← Fκ+2n

2 , F
$← (Pn)2

κ−1

: AF̃Xk,F,F
−1

= 1]

= Pr[k0, k2
$← Fn2 , k1

$← H,F
$← (Pn)2

κ−1

: AF̃Xk0,k1,k2 ,F,F
−1

= 1]

×Pr[k1 ∈ H]

+ Pr[k0, k2
$← Fn2 , k1

$← α⊕H,F $← (Pn)2
κ−1

: AF̃Xk0,k1,k2 ,F,F
−1

= 1]

×Pr[k1 ∈ α⊕H]

=
1

2
Pr[k0, k2

$← Fn2 , k1
$← H,F

$← (Pn)2
κ−1

: AFXk0,k1,k2 ,F,F
−1

= 1]

+
1

2
Pr[k0, k2

$← Fn2 , k1
$← H,F

$← (Pn)2
κ−1

: AF
−1Xk0,k1,k2 ,F,F

−1

= 1] ,

since

F̃Xk0,k1,k2(x) =

{
FXk0,k1,k2(x) if k1 ∈ H
F−1Xk0,k1⊕α,k2(x) if k1 ∈ α⊕H .

Obviously,

Pr[AF
−1Xk0,k1,k2 ,F,F

−1

= 1] = Pr[AFXk0,k1,k2 ,F,F
−1

= 1]

leading to

Pc = Pr[k0, k2
$← Fn2 , k1

$← H,F
$← (P2κ−1

n ) : AFXk0,k1,k2 ,F,F
−1

= 1] .

It directly follows from Theorem 1 that

AdvCPA
F̃X

(A) = AdvCPAFX (A) ≤ DT2−(n+κ−2) .

ut

As noticed in [30], this bound is still valid in a chosen-ciphertext scenario; it can
also be extended to the case where the whitening keys are related, for instance
if k2 = k0 or k2 = P (k0) as in PRINCE. Both generalizations apply to the F̃X
construction as well.

The bound obtained for the FX construction is achieved, for instance by the
slide attack due to Biryukov and Wagner [8] and by its recent generalization
named slidex [20]. A chosen-plaintext variant of this attack allows to exploit the
α-reflection property for reducing the security level by one bit, compared to the
original FX construction. This attack, detailed in Appendix D, has an average
time complexity corresponding to 2κ+n−log2D computations of the core cipher F
for any number D of pairs of chosen plaintexts-ciphertexts.

4.2 Impact of the construction implementing the α-reflection
property

As mentioned earlier, one particular feature of PRINCE is the α-reflection prop-
erty of PRINCEcore. But, not surprisingly, the construction we used for obtain-
ing this feature also has structural properties, including an involutional middle



round, and care has to be taken when designing a cipher with such a structure.
In this section we analyse the influence of this construction on the security of
the cipher. In particular, we are interested in the so-called profile of the core
cipher, i.e., in the sequence of the lengths of all cycles in the decomposition of
PRINCEcore.

A first strategy for exploiting some information on the profile of the core
cipher is the following. If the decomposition of the core cipher is independent
from the key, then this decomposition can be used as a distinguishing property for
recovering some information on the whitening keys. The simplest illustration of
this type of attack is when the core cipher is an involution, i.e. when α = 0 which
is the only case where Corollary 1 does not apply. Indeed, the attack presented by
Dunkelman et al. [20, Section 5.2] allows to recover the sum of the two whitening
keys (k0⊕k2) in the FX construction when F is an involution. This attack uses
the fact that for two plaintext-ciphertext pairs (m, c) and (m′, c′) related by
m′ = E−1k0,k1,k2(m⊕ k0 ⊕ k2) it holds that m⊕ c = m′ ⊕ c′. Indeed,

m′ ⊕ c′ = E−1k0,k1,k2(m⊕ k0 ⊕ k2)⊕m⊕ k0 ⊕ k2
= k0 ⊕ F−1k1

(m⊕ k0)⊕m⊕ k0 ⊕ k2 = Fk1(m⊕ k0)⊕m⊕ k2
= m⊕ c

where the last-but-one equality uses that Fk1 is an involution. Thus, plaintext-
ciphertext pairs (m, c) and (m′, c′) such that c′ = m ⊕ k0 ⊕ k2 can be easily

detected. Such a collision can be found if the attacker has access to 2
n+1
2 known

plaintext-ciphertext pairs, and it provides the value of (k0 ⊕ k2). Moreover, in
the particular case of PRINCE, k2 is related to k0 by k2 = P (k0) where x 7→
x ⊕ P (x) is a permutation (see Section 3.4). Therefore, the whitening key k0
can be deduced from (k0⊕ k2) in this case. It follows that, when the core cipher
is an involution, the whole key can then be recovered with time complexity 2κ

(corresponding to an exhaustive search for k1) and data complexity 2
n+1
2 . This

confirms that Corollary 1 does not hold for α = 0.

This type of attack can be generalized to the case where the profile of the
core cipher does not depend on k1: since PRINCEcore has a reasonable block
size, its cycle structure could be precomputed and then used as a distinguishing
property for (k0 ⊕ k2). Indeed, the profile of Ek0,k1,k2 : m 7→ k2 ⊕ Fk1(m ⊕ k0)
depends on (k0⊕k2) only. It follows that, for each n-bit word δ, we could compute
one or a few cycles of x 7→ Fk1(x ⊕ k0 ⊕ k2 ⊕ δ) in a chosen-plaintext scenario
where the attacker knows a sequence of plaintext-ciphertext pairs (mi, ci) with
mi+1 = ci⊕ δ. A valid candidate for (k0⊕ k2) is a value δ which leads to a cycle
having a length which appears in the precomputed profile of Fk1 .

We checked whether the cycle structure of PRINCEcore has some peculiarities
which do not depend on its key. Based on the technique used by Biryukov for
analyzing involutional ciphers [6], we can observe the profile of the reduced
version of PRINCEcore with 4 Sbox layers where we keep the symmetry around
the middle does not depend on the key. Actually, this reduced version can be



written as

G =
(
R−15 ◦Addk1⊕α

)
◦
(
S−1 ◦M ′ ◦ S

)
◦ (Addk1 ◦R5)

where R5 corresponds to <5 without the key addition. Since S−1 ◦M ′ ◦ S is an
involution, the cycle structure of Addk1⊕α◦

(
S−1 ◦M ′ ◦ S

)
◦Addk1 depends on α

only and not on k1. Its profile then remains unchanged after a right composition
with R5 and a left composition with its inverse. However, this property does not
hold anymore when an additional round is included since the next key addition
Addk1⊕α◦G◦Addk1 modifies the cycle structure of G in a way which depends on
the values G, and not only on its profile. Therefore, it appears that the previously
mentioned attack strategy does not apply if PRINCEcore contains more than 6
Sbox layers.

In the light of the previous analysis, a more relevant attack method consists
in using the fact that the core cipher may have a peculiar cycle decomposition
for some weak keys. For instance, if there exists some weak keys k1 for which
PRINCEcore is an involution, then this class of keys can be detected from the

knowledge of 2
n+1
2 pairs of plaintext-ciphertext by counting the number of colli-

sions for m⊕ c. And the technique from [20] that we have previously described
also recovers the whitening key. It is worth noticing that this attack applies to
DESX and allows to detect the use of the four weak keys of DES [17] for which
DES is an involution. A similar weakness would appear if, in PRINCEcore, we
have used two subkeys k1 and k′1 in turn as round keys. Keeping the remaining
structure of PRINCEcore results in the following relation

F−1(k1||k′1)
= F(k′1⊕α||k1⊕α) .

However, this has serious – and interesting – consequences for the security of the
resulting cipher. For the class of keys such that k′1 = k1 ⊕ α, it holds that

F−1(k1||k′1)
= F(k1||k′1),

that is, the core cipher is an involution. This class of weak keys can then be
easily detected. It then appears that some particular related-key distinguishers
for the core cipher may be exploited for detecting the corresponding class of
keys. To be very clear, we do not consider related key-attacks here in the classical
sense of enlarging the power of an adversary. But without a careful choice, the
construction we used for implementing the α-reflection property might result in
key-recovery attacks for certain weak-key classes, as soon as the core cipher is
vulnerable to related key-attacks.

5 Implementation

Besides the main target low-latency, low-cost hardware implementation is one of
the design objectives of PRINCE. To achieve low-latency, a fully unrolled design
should be considered for implementation. During the design process of PRINCE



the cost of each function was investigated and each component was carefully
designed in order to get the lowest possible gate count without compromising
security. One of the most critical and expensive operations of the cipher is the
substitution, where we use the same Sbox 16 times (rather than having 16 differ-
ent Sboxes). Therefore, the implementation of PRINCE started with a search for
the most suitable Sbox for the target design specifications. In order to achieve
an implementation with low delay and gate count, we analyzed many Sbox in-
stances to identify one with optimal combinational logic and propagation paths.
Then, the targeted unrolled design was implemented with the resulting optimal
Sbox.

In the implementation process, Cadence NCVerilog 06.20-p001 is used for
simulation and Cadence Encounter RTL Compiler v10.1 for synthesis. Since gate
count and delay parameters are heavily technology dependent, the implementa-
tions have been synthesized for three different technology libraries: 130 nm and
90 nm low-leakage Faraday libraries from UMC, and 45 nm generic NANGATE
Open Cell Library. In all syntheses, typical operating conditions were assumed.

The unrolled version of PRINCE is a direct mapping to hardware of the
cipher defined in Section 2. Multiplexers select encryption and decryption keys
accordingly. The only costs associated with the key whitening stages are XOR
gates and multiplexers used for whitening key selection. However, in practice, due
to the unrolled nature of the implementation, these additions reduce to XOR
operations with constants, which in turn reduce to inverters or no additional
gates at all. Furthermore, these inverters are combined with the preceding or
following matrix multiplications, which are implemented with cascaded XOR
gates. In cases where an XOR is sourced by the output from an inverter, or is
sourcing input of an inverter, it is simply replaced by an XNOR gate and the
sourced/sourcing inverter is removed. Since both XOR and XNOR have the same
gate count, the overall effect of the round constant addition on area reduces to
zero.

The unrolled implementation of PRINCE results are listed in Table 1 for
different technologies with respect to different timing constraints. In this table,
a unit delay (UD) parameter is used to enable a fair comparison between dif-
ferent technologies. It is the average delay of a single inverter gate (with lowest
drive - X1) within a ring oscillator under zero wireload conditions in the target
technology (6.7 ps, 31.9 ps, and 43.6 ps for 45 nm, 90 nm, and 130 nm, re-
spectively). We also implemented PRESENT-80, PRESENT-128, LED-128 and
AES-128 and applied the same metrics to adequately evaluate the achievements
of our new cipher (note that in some cases the key size – and also our security
claim – is different: PRINCE does not claim to offer 128-bit security and security
against related key-attacks). In order to achieve both encryption and decryption
capability in PRESENT and LED, we had to implement both true and inverse
Sboxes and select their output by a multiplexer, which doubled the Sbox area
with respect to an encryption-only implementation. For AES, we just had to
implement the inverse affine transform since the finite field inversion module
could be shared between encryption and decryption. In addition to this compar-



ison, Table 2 shows the extrapolated results (which are calculated by removing
register and control logic area from the total gate count, and multiplying the
rest by the number of rounds) for other unfolded cipher instances obtained from
round-based cipher implementations provided by previous works. Note that all
ciphers in the table include encryption and decryption functionality with 128-bit
key size, however the comparison is difficult as the block size is different in some
cases (also note that the ciphers having 128-bit block size are obviously much
bigger and more power consuming than a 64-bit block cipher).

We also measured maximum frequencies achievable by unrolled versions of
PRINCE under two different conditions: The frequency where the area of synthe-
sized design starts to deviate from the unconstrained area – 158.9, 38.4 and 35.5
MHz, and the frequencey where the timing slack becomes zero – 212.8, 71.8 and
54.3 MHz. Both figures are given for 45 nm, 90 nm, and 130 nm, respectively.

Table 1. Area/power comparison of unrolled versions of PRINCE and other ciphers

Tech. Nangate 45nm Generic UMC 90nm Faraday UMC 130nm Faraday
Constr.(UD) 1000 3162 10000 1000 3162 10000 1000 3162 10000

PRINCE˜ Area(GE) 8260 8263 8263 7996 7996 7996 8679 8679 8679
Power(mW ) 38.5 17.9 8.3 26.3 10.9 3.9 29.8 11.8 4.1

PRESENT-80 Area(GE) 63942 51631 50429 113062 49723 49698 119196 51790 51790
Power(mW ) 1304.6 320.9 98.0 1436.9 144.9 45.5 1578.4 134.9 42.7

PRESENT-128 Area(GE) 68908 56668 55467 120271 54576 54525 126351 56732 56722
Power(mW ) 1327.1 330.4 99.1 1491.1 149.9 47.8 1638.7 137.4 43.6

LED-128 Area(GE) 109811 109958 109697 281240 286779 98100 236770 235106 111496
Power(mW ) 2470.7 835.7 252.3 5405.0 1076.3 133.7 5274.8 1133.9 163.6

AES-128 Area (GE) 135051 135093 118440 421997 130835 118522 347860 141060 130764
Power (mW ) 3265.8 1165.7 301.6 8903.2 587.4 186.8 8911.2 876.8 229.1

Table 2. Extrapolated area of unrolled versions of other ciphers against PRINCE

Technology Area* (GE)

CLEFIA-128 [1] 28035 (18 rounds unfolded, 130nm CMOS)

HIGHT-128 [28] 42688 (32 rounds unfolded, 250nm CMOS)

mCrypton-128 [33] 37635 (13 rounds unfolded, 130nm CMOS)

Piccolo-128 [36] 25668 (31 rounds unfolded, 130nm CMOS)

* Area requirements extrapolated from round-based implementations.
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A Testvectors

plaintext k0 k1 ciphertext

0000000000000000 0000000000000000 0000000000000000 818665aa0d02dfda

ffffffffffffffff 0000000000000000 0000000000000000 604ae6ca03c20ada

0000000000000000 ffffffffffffffff 0000000000000000 9fb51935fc3df524

0000000000000000 0000000000000000 ffffffffffffffff 78a54cbe737bb7ef

0123456789abcdef 0000000000000000 fedcba9876543210 ae25ad3ca8fa9ccf

B All Sboxes for the PRINCE-Family Up To Equivalence

In Table 3 we list all Sboxes for the PRINCE-Family, up to affine equivalence.
Note that S0 is equivalent to the inverse function in F16 and the Sbox of PRINCE

defined in Section 2 is equivalent to S7.

S0 0x0, 0x1, 0x2, 0xD, 0x4, 0x7, 0xF, 0x6, 0x8, 0xC, 0x5, 0x3, 0xA, 0xE, 0xB, 0x9

S1 0x0, 0x1, 0x2, 0xD, 0x4, 0x7, 0xF, 0x6, 0x8, 0xC, 0x9, 0xB, 0xA, 0xE, 0x5, 0x3

S2 0x0, 0x1, 0x2, 0xD, 0x4, 0x7, 0xF, 0x6, 0x8, 0xC, 0xB, 0x9, 0xA, 0xE, 0x3, 0x5

S3 0x0, 0x1, 0x2, 0xD, 0x4, 0x7, 0xF, 0x6, 0x8, 0xC, 0xB, 0x9, 0xA, 0xE, 0x5, 0x3

S4 0x0, 0x1, 0x2, 0xD, 0x4, 0x7, 0xF, 0x6, 0x8, 0xC, 0xE, 0xB, 0xA, 0x9, 0x3, 0x5

S5 0x0, 0x1, 0x2, 0xD, 0x4, 0x7, 0xF, 0x6, 0x8, 0xE, 0xB, 0xA, 0x5, 0x9, 0xC, 0x3

S6 0x0, 0x1, 0x2, 0xD, 0x4, 0x7, 0xF, 0x6, 0x8, 0xE, 0xB, 0xA, 0x9, 0x3, 0xC, 0x5

S7 0x0, 0x1, 0x2, 0xD, 0x4, 0x7, 0xF, 0x6, 0x8, 0xE, 0xC, 0x9, 0x5, 0xB, 0xA, 0x3

Table 3. All Sboxes for the PRINCE-family up to affine equivalence

C Resistance to classical attacks

C.1 Linear and Differential Attacks

PRINCE follows the wide-trail strategy introduced in [13] and most prominently
used in the advanced encryption standard (AES). As previously explained, our
design strategy consists in using the freedom given by a fully enrolled design
while keeping the round functions similar enough to prove some security results.



In comparison to AES having 25 active Sboxes in 4 consecutive rounds, we
lowered the bound to 16 active Sboxes in 4 rounds. This in turn enabled us to
achieve significantly better hardware performance. In terms of hardware cost our
linear layer uses the minimal number of xor operations among all linear layers
achieving this bound.

Theorem 2. Any differential characteristic and any linear-trail over 4 consec-
utive rounds of PRINCE has at least 16 active Sboxes.

Proof. We restrict our studies to the differential case here only. The linear case
follows by basically replacing the linear mappings M and M ′ by their adjoint
mappings. We follow an approach that is very similar to the AES SuperBox
principle introduced in [15]. Using that Shift-Rows commutes with the Sbox
layer, any 4 consecutive rounds can be written as shown in Figure 1.

S S S S

RC-add

K-add

M̂(0)-layer

S S S S

S S S S

RC-add

K-add

M̂(1)-layer

S S S S

S S S S

RC-add

K-add

M̂(1)-layer

S S S S

S S S S

RC-add

K-add

M̂(0)-layer

S S S S

shift rows

M ′-layer

shift rows

K+RC-add

S S S S

RC-add

K-add

M̂(0)-layer

S S S S

S S S S

RC-add

K-add

M̂(1)-layer

S S S S

S S S S

RC-add

K-add

M̂(1)-layer

S S S S

S S S S

RC-add

K-add

M̂(0)-layer

S S S S

Fig. 1. Reordering of four consecutive rounds of the cipher, where S denotes the Sbox
or its inverse and shift rows denotes the multiplication by the matrix SR or SR−1.

The theorem follows now by showing (either by tedious hand calculations or
by a suitable computer algebra package) that the following codes have minimum
distance 4.

– The F2 linear codes over F4
2 generated by (I|M̂ (1)), (I|(M̂ (1))−1), (I|M̂ (0)),

and (I|(M̂ (0))−1).



– The F2 linear codes over F16
2 generated by (I|SR± ◦M ′ ◦ SR±).

ut

As a immediate corollary we get the following.

Corollary 2. Assuming independent round keys, the average probability (taken
over the keys) of any differential-characteristic over PRINCE has a probability
of less then 2−96. Similarly, the average bias for a linear trail is at most 2−49.

Proof. From Theorem 2 it follows that the full 12 rounds of PRINCE have at
least 48 active Sboxes. As the differential probability and the linear bias for each
active Sbox is bounded by 2−2 the results follows from first principles.

Clearly, PRINCE does not have independent round-keys and moreover the above
statement only covers the average probability. However, we are confident that
the relative high number of active Sboxes ensures the resistance of PRINCE

against differential and linear attacks. In particular we conjecture that PRINCE

does not exhibit any strong differential or linear-hull effects.

C.2 Reduced Versions

Many classes of cryptanalytic attacks become more difficult with an increased
number of rounds. In order to facilitate third-party cryptanalysis and estimate
the security margin, reduced-round variants need to be considered. We define
round-reduced variants of PRINCE where we keep the symmetry around the
middle, and add rounds in an inside-out fashion, i.e. for every additional round
<i we also add its inverse. Another natural way to reduce PRINCE is to consider
the cipher without the key whitening layer, PRINCEcore.

C.3 Algebraic degree

We did some tests of algebraic degrees for reduced-round versions of PRINCE.
First, it can be proven that, for any key, each output bit after two rounds of
PRINCEcore has algebraic degree 9 in the input bits. Similarly, the middle round
corresponding to S−1 ◦M ′ ◦S, has degree 9. For a higher number of rounds, we
tested the algebraic degree by evaluating higher order differentials of PRINCE.
Indeed, it is well-known that if a function has algebraic degree less than d, then
the value of a higher order differential of order d over that function is zero.
Thus, if the value of such differentials is not zero, one gets a lower bound on
the algebraic degree. The block size of PRINCE is 64, so the maximum algebraic
degree for PRINCE with any fixed key is 63 (since it is a bijection). We generated
some higher order differentials for PRINCE reduced to the first five rounds (five
Sbox layers and five linear transformations and the key exors). Our conclusion
from these tests is that the degree after five rounds of encryption is at least 32.
Therefore it seems safe to conclude that the algebraic degree is the maximum
possible after 12 rounds of encryption.



C.4 Biclique and Meet-in-the-Middle

Meet-in-the-middle attacks were recently shown to be more powerful than thought
for a long time, most recently within the biclique cryptanalysis framework. This
framework was recently introduced as a way to add more rounds to a MITM
attack while potentially keeping the same time complexity.

To assess the reach of MITM attacks, we consider PRINCEcore and performed
a search for good key space separations. We found this to be possible for up to
4 rounds. Independent-bicliques can be constructed for up to 2 rounds hence an
independent-biclique attack as performed on full AES [9] can only cover 6 rounds
in a non-exhaustive way. As 4 more rounds remain to be covered in an exhaustive
way, the exhaustive part will dominate the time complexity, and hence the overall
speed-up over brute-force search for the 64-bit key in PRINCEcore will not be
significantly more than a factor of 2.

C.5 Algebraic Attacks

Algebraic attacks exploit the description of a cipher as a non-linear Boolean
equation system. Even though algebraic attacks have been far more successful
when applied to stream cipher than to block cipher, it is important to argue
that a new design can withstand such attacks. It is a well known result that
for every 4-bit Sbox there are 21 quadratic relations between the input and the
output bits. Introducing auxiliary variables for each output bit of the Sbox layer
we obtain for the full cipher a quadratic Boolean equation system containing
4032 equations in 768 variables. Alternatively we can introduce new variables
for the input and output bits of the Sbox layer, which yields as system of 4864
equations in 1536 unknowns.

As these equation systems are typically very sparse one might apply lin-
earization, that means that one replaces each quadratic term by a new variable.
However as the proposed equation systems contain 43264 and 5376 quadratic
terms respectively, linearization will yield a highly underdetermined system and
thus not pose a threat.

Another approach in algebraic cryptanalysis the application of Gröbner ba-
sis [11]. Buchberger’s algorithm as well as the F4 algorithm [23] have been imple-
mented in Magma [40]. Simulations on small-scale variants of AES showed that
one quickly encounters difficulties with time and especially memory complex-
ity [12]. Experiments could confirm that this is also the case for PRINCE. In our
simulations we consider round-reduced variants of PRINCEcore as described in
Sec. C.2. For the round-reduced version consisting of the 4 Sbox layers, Magma
is able to find the key in less than two seconds. However, already for the variant
with 6 Sbox layers, it is necessary to guess around 58 key bits2 to find the key
and for some instances Magma reaches its memory limit. Furthermore, the av-
erage complexity exceeds two minutes, thus we can conclude that a brute force

2 As we omitted the whitening keys we consider a cipher with a 64-bit key in the
algebraic attack. Initial experiments on round-reduced variants with whitening keys
suggest the complexity will increase significantly.



search over the remaining 6 key bits will be faster. The fact that Magma already
has difficulties to solve a round-reduced version containing 6 Sbox-layers makes
us confident that the full version of the cipher which contains 12 Sbox layers will
resist algebraic attacks.

D Slidex Attack on the Bound of Corollary 1

The following modification of the slidex attack presented by Dunkelman et al.
on the Even-Mansour scheme [20] shows that the property Fk⊕α = F−1k can be
exploited in practice for reducing the security level by one bit, compared to the
attack against the original FX construction.

The slidex attack against the FX construction recovers the key from D
known plaintext-ciphertext pairs and an average time complexity corresponding
to 2κ+n−log2D computations of F . The attack aims at finding two of the known
plaintexts which differ from (k0⊕∆`) where∆` belongs to a fixed set ofX distinct
values. Such a pair can be detected by using that, for any plaintext-ciphertext
pair (m, c) and any ∆,

H∆(m) = Fk1(m⊕∆)⊕ c = Fk1(m⊕∆)⊕ Fk1(m⊕ k0)⊕ k2 .

Then, this function takes the same value for two inputs which differ from (k0⊕∆).
The attack then uses D plaintext-ciphertext pairs (mi, ci), and performs an
exhaustive search for k1 ∈ Fκ2 : for each value of k1 and each ` between 1 and X,
H∆`(m) = Fk1(m⊕∆`)⊕c is computed, where {∆1, . . . ,∆X} is a set of distinct
random values of size X ≥ 2n+1/D2. Then, the number of triples (mi,mj , ∆`)
exceeds 2n. It follows that, if k1 is a wrong guess, it is expected to find a triple
(mi,mj , ∆`) such that H∆`(mi) = H∆`(mj), while two such triples are expected
when k1 is a right guess. For each such collision triple (mi,mj , ∆`), it must then

be checked whether k̂0 = mi ⊕mj ⊕∆` and k̂2 = cj ⊕Fk1(mi ⊕∆`) is the right
key.

In the case of the F̃X construction, we can reduce both the data and time
complexity of this attack by a factor

√
2 if we consider a chosen-plaintext attack.

Indeed, we can also exploit the fact that the same relation on the ciphertext,
i.e.,

F−1k1
(c⊕∆)⊕m = F−1k1

(c⊕∆)⊕ F−1k1
(c⊕ k2)⊕ k0

can be expressed as a relation involving Fk1⊕α:

Fk1⊕α(c⊕∆)⊕m = Fk1⊕α(c⊕∆)⊕ Fk1⊕α(c⊕ k2)⊕ k0 .

This function takes the same value for two ciphertexts with difference (k2 ⊕∆),
and this property can be used for testing (k1 ⊕ α). Then, we assume that the
attacker knows D pairs of chosen plaintext-ciphertext obtained by iterating the
encryption function, i.e., ci+1 = E(ci), 0 ≤ i < D. For each value of k1 in Fκ2
and X values ∆1, . . . ,∆X with X ≥ 2n/D2, she computes Fk1(ci ⊕ ∆`) and
deduces

Ai = Fk1(ci ⊕∆`)⊕ ci+1 and Bi = Fk1(ci ⊕∆`)⊕ ci−1 .



Since there are 2n−1 triples (ci, cj , ∆`), it is then expected that one of them will
satisfy either ci ⊕ cj = k0 ⊕∆` or ci ⊕ cj = k2 ⊕∆`. Then, if Ai = Aj , we test

whether k̂0 = xi⊕xj⊕∆`, k̂1 = k1 and k̂2 = cj⊕Fk1(mi⊕∆`) is the right key. If

Bi = Bj , we test k̂0 = mi⊕Fk1(cj⊕∆`), k̂1 = k1⊕α and k̂2 = ci⊕ cj⊕∆`. The
average time complexity of the attack then corresponds to 2κDX = 2κ+n−log2D

computations of F .

E Round-Based Implementation

PRINCE is also synthesized as a round-based implementation to make a fair
comparison with existing works in literature. Figure 2 shows the block diagram
for the round-based implementation. To get a low-cost round-based implemen-
tation, we tried to maximize shared use of operational blocks. This way, double
use of resources can be avoided. In our case, MixLayer gave a larger gate count
than both the Sbox and inverse Sbox layers; therefore by taking this layer in
the middle of the round function (instead of putting Sboxes in the middle) and
building the other blocks accordingly, we have achieved the smallest possible
area.
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Fig. 2. Round-based implementation of PRINCE

A comparison of the round-based implementation of PRINCE with PRESENT-
80, PRESENT-128, LED-128, AES-128 (which are implemented in our technol-
ogy with the same metrics we use for PRINCE) is shown in Table 4. We also
provide a comparison with the reported results of other ciphers in literature
such as Clefia, HIGHT, mCrypton, Klein and Piccolo, which follows in Table 5.
As in the unrolled case, all implementations are for encryption and decryption
functionality with 128-bit key size.



Table 4. Performance comparison of round-based versions of PRINCE with
PRESENT and AES

Nangate 45nm Generic UMC 90nm Faraday UMC 130nm Faraday
Area Freq. Power Tput Area Freq. Power Tput Area Freq. Power Tput
(GE) (MHz) (mW) (Gbps) (GE) (MHz) (mW) (Gbps) (GE) (MHz) (mW) (Gbps)

PRINCE 3779 666.7 5.7 3.56 3286 188.7 4.5 1.00 3491 153.8 5.8 0.82

PRESENT-80 3105 833.3 1.2 1.67 2795 222.2 2.1 0.44 2909 196.1 2.5 0.39

PRESENT-128 3707 833.3 1.6 1.67 3301 294.1 3.4 0.59 3458 196.1 2.9 0.39

LED-128 3309 312.5 0.5 0.41 3076 103.1 1.9 0.13 3407 78.13 2.4 0.10

AES-128 15880 250.0 5.8 2.91 14691 78.1 14.3 0.91 16212 61.3 18.8 0.71

Table 5. Performance comparison of round-based versions of PRINCE and other
ciphers in literature

Technology Area Tput @ 100KHz
(µm) (GE) (Kbps)

PRINCE 130 3491 533.3

CLEFIA-128 [1] 130 2678 73.0

HIGHT-128 [28] 250 3048 188.3

mCrypton-128 [33] 130 4108 492.3

Piccolo-128 [36] 130 1260 237.0


