eprint.iacr.org will be offline for approximately an hour for routine maintenance at 11pm UTC on Tuesday, April 16. We lost some data between April 12 and April 14, and some authors have been notified that they need to resubmit their papers.
You are looking at a specific version 20130708:165011 of this paper. See the latest version.

Paper 2012/526

Invertible Polynomial Representation for Private Set Operations

Jung Hee Cheon and Hyunsook Hong and Hyung Tae Lee

Abstract

In many private set operations, a set is represented by a polynomial over a ring $\Z_{\sigma}$ for a composite integer $\sigma$, where $\Z_\sigma$ is the message space of some additive homomorphic encryption. While it is useful for implementing set operations with polynomial additions and multiplications, a polynomial representation has a limitation due to the hardness of polynomial factorization over $\Z_\sigma$. That is, it is hard to recover a corresponding set from a resulting polynomial over $\Z_\sigma$ if $\sigma$ is not a prime. In this paper, we propose a new representation of a set by a polynomial over $\Z_\sigma$, in which $\sigma$ is a composite integer with {\em known factorization} but a corresponding set can be efficiently recovered from a polynomial except negligible probability in the security parameter. Note that $\Z_\sigma[x]$ is not a unique factorization domain, so a polynomial may be written as a product of linear factors in several ways. To exclude irrelevant linear factors, we introduce a special encoding function which supports early abort strategy. As a result, our representation can be efficiently inverted by computing all the linear factors of a polynomial in $\Z_{\sigma}[x]$ whose roots locate in the image of the encoding function. When we consider group decryption as in most private set operation protocols, inverting polynomial representations should be done without a single party possessing the secret of the utilized additive homomorphic encryption. This is very hard for Paillier's encryption whose message space is $\Z_N$ with unknown factorization of $N$. Instead, we detour this problem by using Naccache-Stern encryption with message space $\Z_\sigma$ where $\sigma$ is a smooth integer with public factorization. As an application of our representation, we obtain a constant round privacy-preserving set union protocol. Our construction improves the complexity than the previous without an honest majority. It can be also used for a constant round multi-set union protocol and a private set intersection protocol even when decryptors do not possess a superset of the resulting set.

Metadata
Available format(s)
PDF
Category
Cryptographic protocols
Publication info
Published elsewhere. Unknown where it was published
Contact author(s)
htsm1138 @ snu ac kr
History
2013-07-08: last of 2 revisions
2012-09-07: received
See all versions
Short URL
https://ia.cr/2012/526
License
Creative Commons Attribution
CC BY
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.