On the Implausibility of Constant-Round Public-Coin
Zero-Knowledge Proofs

Yi Dengf, Juan Garay, San Ling, Huaxiong Wan§and Moti Yung

SKLOIS, Institute of Information Engineering, Chinese deay of Sciences, China
 Yahoo Research, USA
 School of Physical and Mathematical Sciences, NanyangrBéabical University, Singapore
% Snapchat and Columbia University, USA

July 18, 2016

Abstract. We consider the problem of whether there exist non-triviastant-round public-coin
zero-knowledge (ZK) proofs. To date, in spite of high ingtii@ the problem, there is no definite
answer to the question. We focus on the type of ZK proofs tdatitaa universal simulator
(which handles all malicious verifiers), and show a conoecbetween the existence of such
proof systems and a seemingly unrelated “program funditgn@istinguishing” problem: for
a natural class of constant-round public-coin ZK proofsi¢hhwe call “canonical,” since all
known ZK protocols fall into this category), a session prefisput by the universal simulator
can actually be used to distinguish a non-trivial propeftghe next-step functionality of the
verifier's code.

Our result can be viewed as new evidence against the exestéisonstant-round public-coin ZK
proofs, since the existence of such a proof system will baibgut either one of the following:
(1) a positive result for the above functionality-distiighing problem, a typical goal in reverse-
engineering attempts, commonly believed to be notoriohalyl, or (2) a major paradigm shift
in simulation strategies, beyond the only known (straigtg-simulation) technique applica-
ble to their argument counterpart, as we also argue. Notdhbaearlier negative evidence on
constant-round public-coin ZK proofs is Barack, Lindeldavadhan [FOCS ’'03]'s result, which
was based on the incomparable assumption of the existermartafn entropy-preserving hash
functions, now known not to be achievable from standardrapions via black-box reduction.
The core of our technical contribution is showing that thexésts a single verifier step for
constant-round public-coin ZK proofs whose functionalitgither than its code) is crucial for
a successful simulation. This is proved by combining a chiefalysis of the behavior of a set
of verifiers in the above protocols and during simulatiorthvein improved structure-preserving
version of the well-known Babai-Moran Speedup (de-randation) Theorem, a key tool of
independent interest.

* An abridged version of this paper appear®mc. 10th Conference on Security and Cryptography for eta/(SCN '16)

1 Introduction

Goldwasser, Micali and Rackoff [24] introduced the fastimgnotion of azero-knowledgéZK) interactive
proof, in which a party (called the prover) wishes to coneiranother party (called the verifier) of some
statement, in such a way that the following two properties satisfied: (1) zero knowledge— the prover
does not leak any knowledge beyond the truth of the stateb®@ng proven, and (2) soundness—no cheating
prover can convince the verifier of a false statement excépt small probability. A vast amount of work
ensued this pioneering result. Shortly after the introdactf a ZK proof, Brassard, Chaum and Crépeau [3]
defined a ZK proof system with relaxed soundness requireroealied a ZKargument for which soundness

is only required to hold against polynomial-time cheatimgvers.

The original ZK proof system for the quadratic residuositglgpem presented in [24] is of a special form,
in which the verifier simply sends independently random @it each of his steps. Such a proof system
is called apublic-coin proof system, and has been found to be broadly applicablevarsatile. Another
notable feature of this type of proof systems is its rounciefficy, as it consists of only 3 rounds, i.e., just 3
messages are exchanged in a session. This round efficiavegyér, brings about a side effect of soundness
error, which is too large to be used in cryptographic sestindpere typically a negligibly small such error
is required. Indeed, there seems to be a tradeoff betweem refficiency and soundness error for public-
coin proof systems: we can achieve negligible soundness lgyrsequential repetition, but then the resulting
system is no longer constant-round. This is in contrast pritkate-coin ZK proof systems, for which constant
rounds and negligible soundness error can be achievedtaimsously.

In fact, whether constant-round public-coin ZK protocads éven argument systems) with negligible
soundness error exist for some non-trivial language wasg$tanding open problem. In [22], Goldreich
and Krawczyk showed that, for non-trivial languages, th® Zaowledge property of such a proof system
cannot be proven via black-box simulation. Black-box smtioh was in fact the only known technique to
demonstrate “zero-knowledgeness” for a long while, anccleghe Goldreich-Krawczyk result was viewed
as strong negative evidence against the existence of ctistand public-coin ZK proof systems.

A breakthrough result in 2001 changed the state of thingkedd, in [2] Barak presented a non-black-box
ZK argument in which the simulator makes use of the code ofrthkcious verifier in computing the prover
messages (albeit without understanding it). Barak’s coosbn follows the so-called “FLS paradigm” [19],
which consists of two stages. In the first stage the provadssarcommitment to a hash value of an arbitrary
string, to which the verifier responds with a random strifngn the second stage, the prover proves using
a witness indistinguishable (WI) universal argument thtitee the statement in question is true ors a
commitment to a hash value of some cafleand, given input, IT outputsr in some super-polynomial time.
Note that this is a constant-round public-coin argumerd,that its simulator does not “rewind” the malicious
verifier (and it is hence calledstraight-linesimulator) and, furthermore, runs in strict polynomial¢irnhese
features have been proved impossible to achieve when uksiok-box simulation [22,7].

Barak’s argument system still left open the question whratbe-trivial constant-round public-coin (non-
black-box) ZKproof systems exist. At first sight, being able to extend his teqmito a proof system seems
challenging, mainly due to the fact that since a Turing nraetdr algorithm may have an arbitrarily long
representation, a computationally unbounded prover nftar, geceiving the second verifier messagéde
able to find a progranil (whose description may be different from the verifier’s withich the prover is
interacting) such that, = Com(h(II)), and on input, IT outputsr in the right amount of time.

In [9], Barak, Lindell and Vadhan showed further negativederce for the above problem, by proving
that if a certain class of entropy-preserving hash funstiexist, then such a proof system cannot exist. Their
formulation of entropy-preserving hash functions is matagcally simple, inspiring further research to base
such hash functions on standard assumptions. Unfortynaielour knowledge, we do not have a candidate
for such functions thus far, and furthermore, as shown bgrBityet al. [4], such functionsannotbe based
on any standard assumption via black-box reduction.

Our results and techniqgues.In this paper, we provide evidence of a different nature regjahe existence
of constant-round public-coin ZK proof systems. We focugslmtype of ZK proofs that admit a universal

simulator, i.e., ZK proof systems for which there is a simgjlaulator that can handle all malicious verifiers.
(To our knowledge, all constructions of ZK proofs in therigrire are of this type.)

We uncover an unexpected connection between the existdrnmgclo proof systems and a seemingly
unrelated “program functionality distinguishing” probiefor a natural class of constant-round public-coin
ZK proofs (which we call “canonical,” as all known ZK protdsdall in this category), a universal simulator
for such ZK proof system can actually be used to figure out soometrivial property of a verifier’'s program
functionality. (Since we will always be talking about disjuishing verifiers’ programs, sometimes we will
just refer to the problem as the “verifier distinguishing’oblem.) More specifically, we show that, given
a constant-round public-coin ZK proof systefft,), there exist a step indek and a set of polynomial
number of verifiers that share the verifier next-messagetibmg up to the(k — 1)-th step but have distinct
k-th next-message functions—sayfor ¢ a polynomial, and denoted Ky, V/2, ..., V}!)—such that for any
polynomial-time constructible codg that is promised to have the same functionality as onE’,an‘ in the
above set, the universal simulator, takivigj as input, can generate a session prefix beforé:ttreverifier
step that enables us to single ouf&in the set which is functionallgifferentfrom V;*.

In more detail, we construct an distinguishing algorithiwhich, taking only(V;!, V2, ..., Vi) and the
session prefix output by the simulator as input, is able teppint an eIemendj in the set which behaves
differently from V¥, with probability negligibly close to 1. This means that theversal simulator must have
encoded some non-trivial property Bf’s functionality in the session prefix prior to the verifiek’sh step,
since otherwise if the session prefix is independentpf the success probability &f will never exceed
1- % (note thatU does note také’ " as an input). In the case of private-coin ZK protocols, empdhe
functionality of the next verifier step in a session prefixyjsitally done by having the simulator execifg
first and then redo the prefix prior to theth verifier step such that it can now handle the challenge fvgy .

It should be noted that, for constant-round protocols, suckwinding strategy seems to work only for the
cases where the functionality &f" is bound to some of the verifier's previous steps, and thigtisghe case
for public-coin protocols.

This is in a sharp contrast with Barak’s public-coin argutmgystem, in which the simulator does not
need to “predict” the verifier's next-message functiogalhen computing a session prefix. Think of the first
two steps in the simulation of Barak’s argument, where th#ige sends a random hash functioh) @nd
the prover replies with a commitment to a hash value ofdbee (instead of its functionality) of the next
message function of the verifier's second st€pr((~(V5))). Note that when the simulator computes this
session prefix it does not need to figure out the functionality;, and in fact the functionality o is not
bound to the history prefifh, Com(h(V5"))). Indeed, when the commitment sche@en(k(-)) is a perfectly
hiding scheme (which is allowed in Barak’s argument), thesage: = Com(h(V5")) can be interpreted as a
commitment taany code of any functionality, and thus it contains zero infotioraaboutV;’s functionality.

Thus, our result can be viewed as further evidence agaiesidistence of constant-round public-coin ZK
proof systems. On one hand, devising a rewinding technitpuéigure out the next-step functionality of the
verifier) that could be used in the simulation of such a pubdim proof appears to be fairly inconceivable, as
in these proofs the message (challenge) from each step wéthier is long and hard for a cheating prover
to pass, and, intuitively, in this setting the rewinding &@br of a simulator (given the code of a malicious
verifier) is akin to learning an arbitrarily complicated astifuscated verifier's next-step function (which is, as
a code, independent of any previous step functions) by amping a few input-output pairs of this function.

On the other hand, if such a proof does admit a straight-imelator, then our “functionality distinguish-
ing” result described above shows that one would be able wogfigut some non-trivial functionality/property
of V¥ without executing i{since “straight-line” typically means that in producirtietsession prefix before
the k-th verifier step, the simulator does not ruji), a problem commonly considered notoriously hard. We

1 We note that the rewinding technique used for simulatingkti@vn public-coin protocols simply exploits the “guessthg next
verifier's coins” strategy, and requires that the probgbdf a correct guess is very high. To meet such a requirerttenterifier's
message has to be short, and as a consequence, the cormggaotbcol either has large (non-negligible) soundness esuch
as the original Blum’s 3-round proof fro Graph Hamiltonjdig], or is of super-constant number of rounds, such addgen-fold
sequential repetition of Blum’s proof system.

note that exactly how hard the problem is in our concretengete leave as an interesting research ques-
tion. (Indeed, although we do not give a definite answer tajtrestion, we view our work as providing new
negative evidence from a different angle and suggestiregtiims for further studies towards that goal.)

One key tool in our reduction is an improved structure-pngag version of the well-known Babai-Moran
Speedup (derandomization) Theorem [1,10,11], which is@dépendent interest. Essentially, our result says
that for a constant-round public-coin interactive proo$tsyn in which the verifier senda messages and
each of the prover messages is of lengtff the cheating probability for an unbounded provet,ithen there
exist (p/O(log %))m verifier random tapes such that the cheating probabilityttferunbounded prover over
these tapes is bounded away from 1—and this holds even wkegprdlwer knows this small set of random
tapes in advance. In contrast, in our setting the originddaB&oran theorem would yield a much larger
size (namely,(O(p))™) of such set of verifier random tapes. In addition, we show this result is tight
with respect to round complexity, in the sense that thergoabdic-coin proof systems with a super-constant
number of rounds for which the prover's cheating probabikt 1, over any polynomial number of verifier
random tapes.

The way our derandomization lemma helps in the reductioméoverifier-distinguishing problem is as
follows. Intuitively, for a proof system, it seems that taeshould be a verifier stepfor which computing a
session prefix prior to this step in the simulation requilesdimulator to classify the codes of the “residual”
verifiers according to their functionality, since by uncitisthal soundness a fixed session prefix can (even for
an all powerful prover) make only a few (as opposed to all ieffity computable functions) of the residual
verifiers accept. Derandomization allows us to focus ondgtiew verifiers on which the cheating probability
of an all powerful prover is still bounded away from and then prove the existence of the above critical
verifier step.

Related work. As mentioned above, Barak, Lindell and Vadhan [9] conjestuthe existence of certain
entropy-preserving hash functions and proved that theectunje’s veracity would rule out the possibility
of existence of constant-round public-coin ZK proof systeiRecent work by Bitanskgt al. [4], however,
showed that this conjecture cannot have a black-box remuftbom any standard assumption.

A somewhat related problem to our functionality-distirgjung problem is program obfuscation, the the-
oretical study of which was initiated by Barakal.[6]. At a high level, an obfuscator is an efficient compiler
that takes a program as input and outputs an “unreadablgtamrowith the same functionality as the input
program. Hada [26], in particular, showed that the existarfa certain type of ZK protocol is tightly related
to the existence of an obfuscator for some specific fundlilgn&nfortunately, for a large class of function-
alities, it has been shown that obfuscators do not exist,itaisdnot clear whether the recent and exciting
formulation and constructions of indistinguishabilityfegcators (cf. [21] and numerous follow-ups) imply a
negative answer to our problém

Organization of the paper. Preliminaries, notation and definitions that are used tjinout the paper are
presented in Section 2. Definitions o&nonical ZK proofs and of theverifier-distinguishingproblem are
formulated in Section 3. The improved derandomization lemsmpresented in Section 4, and the reduction
of constant-round public-coin ZK proofs to the verifiertthguishing problem, which makes use of it, in
Section 5. For the sake of readability, some of the proofsgmied in the main body are only sketches; the
full proofs can be found in the appendix, as well as a coursenple for superconstant-round proof systems.

2 Preliminaries

In this section we recall some definitions and introduce tiratahat will be used throughout the paper.

2 Very recently, Canettt al.[12] constructed a family of “correlation intractable” hefsinctions based on sub-exponentially secure
indistinguishability obfuscation and input-hiding obfasors, but as the authors point out, their result does metttly imply the
non-existence of 3-round public-coin ZK proofs.

We say that functiomeg(n) is negligibleif for every polynomialg(n) there exists aaV such that for all
n > N, neg(n) < 1/q(n). Throughout this paper, polynomials always refer to polgiads in the security
parametern of a proof system.

When referring to a Turing machin¥, we will slightly abuse notation and ugé to represent both its
code and its functionality. Specifically, if we wrifef € G for some setj, we will mean that there is a Turing
machine inG whose code is identical to the codeldf; on the other hand, if we say thaf* is “functionally
equivalent” toM (as defined below), both/* and M will clearly refer to their functionality.

We think of an interactive Turing machine as a machine thatprdes a collection of next-message
functions. (We refer the reader to [20] for a rigorous deifinis)

Definition 1. For two deterministic (interactive) Turing machin@¢' and M2, we sayM! and M? have

the same functionalityor are functionally equivalenif they compute the same collection of next-message
functions. That is, for any inputist, the next message produced b# is identical to the one produced by
M?2—i.e.,M!(nist) = M?(hist).

£
We will use M' £ 112 as a shorthand for the above, alfl # M? as its negation.

An interactive proof systerfiP, V') for a languagd. is a pair of interactive Turing machines in which the
prover P wishes to convince the verifiéf of some statement € L. In an interaction betweef® andV’, the
viewof V, denoted by iew{?, consists of the common inputl’s random tape, and all the prover messages
it received. Theound complexityf an interactive proof systet®, V') is the number of messages exchanged
in an execution of P, V). Without loss of generality, in this paper we assume thatv#hédier ' sends the
first message; thus, if the verifier sendanessages in total, the round complexity of this proof systtm.

Definition 2 (Interactive Proofs). A pair of interactive Turing machings’, V') is called aninteractive proof
system for languagé if V' is a probabilistic polynomial-time (PPT) machine and thidiwing conditions
hold:

— COMPLETENESS For everyz € L, Pr[(P,V)(z) = 1] = 1.

— SOUNDNESS For everyz ¢ L, and every (unbounded) provér', Pr[(P*,V)(z) = 1] < neg(|z|).

Public-coin proof systems and verifier decompositionAn interactive proof system is callggublic-coinif
at every verifier step, the verifier sends only truly randonssages.

We will use boldface lowercase letters to refer to the veiifimndom tapes (e.or), and italic for each
verifier message (e.gr). Thus, for a2m-round public-coin interactive proof syste(¥, V'), we haver =
[r1,72,...,7m], Wherer; is thei-th verifier message. We use superscripts to distinguidbrdiit verifier's
random tapes; e.g.¢, 1/, etc.

Given a random tape = [ri,79,...,7,], We can “decompose” the verifidr (r) into a collection of
next-message functiong, = [V1, V4, ..., V},,], with eachV; being defined as:

r; OF L < Vi(hist,rl,rg, ...,T‘Z'),

wherehist refers to the current history up to tlie— 1)-st prover step ; that is, givetist, V; (hist, 1,79, ..., 7;)
outputsr; if hist is accepting, or aborts if not. Note that the next messagetibmV; needs the randomness
[r1,72,...,7;—1] Of previous verifier steps in order to check whether the cuitnéstory is accepting or not.

We will sometimes abbreviate and use superscripts to dish verifiers running on different random
tapes; that is, given two random tapés= [ri,ri,....rl] andr? = [r], 7, ..., 7], we will useV* and V7
as a shorthand fo¥' (r*) and V' (r7), respectively. Similarly, we will us&;’ to denote thé:-th next-message
function of the verified/ (r*).

Now, given a verifier/” = [V}, ..., V,;], we will use V%, to denote the partial verifier strategy starting
with the j-th next message function and up to fhéh next message function. We will typically be concerned

4

with the following partial strategies:

prefix strategyV;j , £ [V{', V3, ..., Vil;
suffix strategy:V, . = [Vi, Vi1, - Vin)-

ZK proofs with universal simulator. We first present the standard definition of ZK proofs.

Definition 3 (Zero-Knowledge Proofs).An interactive proof systeriP, V) for a languageL is said to be
zero-knowledgef for any probabilistic polynomial-timé *, there exists a probabilistic polynomial-time al-
gorithm S such that the distributiod View?. } .1, is computationally indistinguishable from the distritmsi

{S(‘T? V*)}xEL-

The standard simulation process for a malicious verifiéris typically as follows. The PPT simulator
S, taking the common input and V*'s code as inputs, is to output a session transchpireatsV* as a
subroutine, interacting (with possible “rewinds”) withiriternally, and outputting a view oV * as the result
of the interaction. Without loss of generality, one can kiofthe output of the simulator as the final (internal)
interaction betweety(z, V*) and V*. In this paper, we wish to be able to obtain prover messages f
one by one, rather than obtaining the entire session tighstronce. For this purpose, we make the above
(final) internal interaction “external,” by casting the silation process for a malicious verifiéf* as a real
interaction betweey(z, V*) (playing the role of the prover) and an exterivdl, and whenevef wants to
rewind V*, it does it on its own copy of*. We denote this interaction ks (z, V*) < V*), and the view
of V* resulting from this interaction b}[/\/ievv‘s,(f’v*)}xe .- (For brevity, we will sometimes drop from the
above notation.)

The following fact is easy to verify.

Fact 1. For anyz and anyV/, V* such that’ Ly, (S(z,V*) & V*) generates the same session transcript
as(S(z,V*) < V).

We conclude this section with the following definition£K proof with universal simulatomhich differs
from the standard ZK definition in the order of quantifier3{¥V*” instead of vV *35).3

Definition 4 (Zero-Knowledge Proofs with Universal Simulabr). An interactive proof syster, V') for
a languagel is said to bezero-knowledge with universal simulatibthere exists a probabilistic polynomial-
time algorithmsS such that for any probabilistic polynomial-tinié*, the distribution{\/iew{j*}IE 1, IS com-

putationally indistinguishable from the distributiqn/iew‘s,iv*)}xeL.

Remark 1.By definition, a simulator for a ZK proof system needs to haratbitrary verifiers. Throughout
the paper we just deal with the arbitrary code ohamestverifier, which strengthens the result.

3 Canonical ZK Proofs and theVerifier-Distinguishing Problem

In this paper we will focus on ZK proof systems with a certamogerty, which we call “canonical,” since
all known constructions (see below) fall in this category fi¥st give some intuition behind it. (To simplify
notation, from here on we will drop the common inpufrom (S(z, V*) < V*), and write the simulation
as(S(V*) « V*).) We observe that for many ZK protocols, if the simulatiofioisnulated as an interaction
betweenS(V*) andV*, as in the previous section, then for a successful simulatidake place it is sufficient
to feedS with only thepartial code ofV*, rather than with its entire code.

Examples are those ZK proofs following the popular “FLS pagen” [19], and Blum’s ZK proof systems
for Graph Hamiltonicity [8]. We elaborate on those systemslétail in Section 3.2, but as an illustrative
warm-up, recall that in the FLS paradigm, a ZK proof consistisvo stages: in the first stage, the prover and

® To our knowledge, all known ZK proofs admit a universal siatat, satisfying this stronger requirement.

the verifier set up a trapdoor (which is useful for the simatgt and then, in the second stage, the prover
proves that either the statement being proven is true ota&nows the trapdoor in a WI protocol. Hence,
it is easy to see that if the codé* of a malicious verifier is given by two separate specificatidjf and

I, representing the first and second stageB gfrespectively, then the simulator can perform a successful
simulation given onlyl*, since it can extract the trapdoor from it, which, no mattératw/" is, enables
it to simulate the second stage in a straight-line fashidratTs, using the notation from last section, for
any second-stage honest veriflgr (which may have a different functionality frofj;’s), both interactions
(S(V*) < [Vi*,Wi]) and (S(V}*) < [V|*,Vi]) are accepting. This, in a nutshell, is what the canonical
property says—if the former interaction is accepting foy &j, so is the second interaction. We now state
this more formally.

3.1 Canonical ZK proofs

We mentioned partial code &f* above. The following definition about session prefixes obpeystems will
become handy.

Definition 5 (Good/badsession prefix)Let (P, V') be a2m-round public-coin proof system for a language
L, and letV; ;4 denote the set of verifiers that share the same verifier preéitegy V|, 4, for somel < ¢ <
m. We call a session prefixy, p1, ..., p¢) good with respect o/, 4 if there is a residual (unbounded) prover
strategy with auxiliary inpud/; , which, based on this session prefix, can make a verifier ratydohosen
from), , accept with probabilityl. Otherwise, we call the session prefixdwith respect td/}; ;.

A more detailed formulation and properties of good/bad pesfi as well as an illustration (Figure 3), are
presented in Appendix A.

We are now ready to define what we cadinonicalZK proofs; these proofs are defined conditionally,
predicated on the existence of a good prefix. Roughly spgakive property states that if a simulator
S(IV{i s—1)> Vi), taking the partial codg/7 , _,, V"] as input, can generate a session prefix up tgthel)-
th prover step that is good for verifiers withkath step function different fronv,*, thenS can do the same
without being given verifier codd,". Next, we present the definition of a canonical ZK proof systgith
an arbitrary (constant) number of rounds; in Section 3.2 mayae concrete examples (e.g., 3-round proof
systems).

Definition 6 (Canonical ZK Proofs). Let (P, V') be a2m-round universally simulatable ZK proof system
for a languageL (Definition 4),S be the associated simulator ande some polynomial. We calP, V')
canonicalif for any common input: (not necessarily in’), every set/; ,_; of verifiers that share prefix
strategyV[; x—15, 2 < k < m (as in Definition 5), but wittt distinct k-th step strategie®,!, V.2, ..., V), the
following holds.

For any verifier code/; ,_,; satisfyingVyj ,_,, L Vi1, k1, if, for somel < i <, there existd/; L Vi
such that the session prefix;, p1, ..., pr_1) + (S([V[’{’kfu, Vi) & [V[ik:—lp Vi¥]) is good with respect to
Vi1,k—1), then S, taking onIyV[jkfl] as input, can also produce a session prefix (ies, p}, ..., pp_1) <
(S(V{ik—1]) © V[i x_17)) Which is good with respect t5; ;).

A canonical ZK proof is depicted in Figure 1.

Remark 2.We stress that, for a zero knowledge proof, the canonicghestp above makes a demand on
the simulator only when the condition of the if clause hoM& also note that the ability of the simulator
S([Vﬁ‘ k1] V;?]) to produce a good session prefix may depend on the commonarn(get the examples in

the next sectionf.

4 Further, looking ahead, the only place where this propeitiybe used is in the proof of Lemma 3, where we fix a false statem
z first and then discuss the properties of the simulator.

T1
SV v
V=17 V&) p1
—
(Vih—1p» Vi) Th—2
is functionally —
equivalent to Pr—2
Vi, Vva, -, Th—1
Vie—1, Vi)

Fig. 1. A canonical ZK proof.

3.2 Canonical ZK proofs: Examples

To our knowledge, all constructions of ZK proofs enjoy thisgerty—cf. the FLS proof system [19] example
at the beginning of the section, as well as those protocalsdb not follow the FLS paradigm, such as, for
example, Blum’s 3-round ZK proof for Graph Hamiltonicity] [@&nd its sequential repetition version), which
we now analyze in more detail.

Blum’s Graph Hamiltonicity ZK proof.Consider Blum'’s 3-round ZK proof system for Graph Hamiltstyi
(with soundness erroy). In this case, we denote bly,' andV;? the verifiers that produce challenges 1 and 0,
respectively. Suppose that when the verifier sends challenge 1, the pnegls to reveal the isomorphism
between the common input graph and the graph committed ifirgt@rover message; . Note that when the
simulator S takes anyV;* that is functionally equivalent t&!, then it will simply choose an isomorphism
and commit to a new graph isomorphic to the common input grage messagg; (i.e., it acts as an honest
prover in the first prover step). For this proof system, thH& ¢lause of Definition 6 holds depending on
whether the common input graph is Hamiltonian or not:

— If the common input graph is Hamiltonian, then the “if” clausolds: Given a verifier codg* that is
functionally equivalent td/;! as input (i.e.; = 1 in Definition 6), S(V;*) will generate a first prover
message;, for which an unbounded prover can answer both challenges 0 &romV;! andV;2, resp.),
since the graph committed by(V;*) in p; is also Hamiltonian. In this case, the simularwithout
being given the cod&/*, can also act as an honest prover in the first prover step aretajep; that will
enable an unbounded prover to answer both challenges 1%anted, prefixp, is goodwith respect to
the verifier se{V,!, V;2}.

— If the common input graph is not Hamiltonian then the “if” ut® does not hold: Faere {1,2}, given a
verifier codeV}* that is functionally equivalent t& as input,S(V;*) will generate the first prover message
p1 for which an unbounded prover can only answer a challenge ¥, since the graph committed jn
is either a graph isomorphic to the common input graph or ailttaman graph (which is not isomorphic
to the common input graph)—i.en; is bad with respect to the verifier s¢t/;!, V;2}.

In sum, Blum’s 3-round ZK proof system for Graph Hamiltohjdis canonical according to Definition 6:
whenever the definition’s “if” clause is satisfied, i.e., giulatorS(V;*) can generates, that is good with
respect to both verifier challenges, thgrwithout being given the codg* as input, can also generate a good
prefixp;.

5 To match our definition, we can think of these protocols asdgef even number rounds by letting the verifier send a dummy
message in the first step of the protocol, and denot&bthe challenge step of the verifier.
® Recall that an honest prover can compitavithout knowledge of the corresponding witness

FLS-type ZK proofs.The classical FLS-type ZK proofs [19] are also canonicalcdiehow these proofs
work. In the first stage, the verifier sends a perfectly hidinoghmitmentc; to a random string, followed by

a perfectly binding commitment, to a random string from the prover, after which the verifieemmp the
commitment sent at its first step. In the second stage, theepproves that the common inpute L or

that the random string committed én matches the random string committeccyrvia a Blum 3-round proof
system as above (but with negligible soundness error). \&@ the two verifier steps in the first stage as a
single step, and denote it by;, and denote by, the verifier step in stage 2. We now analyze what happens
at each step.

It is easy to verify that the second verifier stép-€ 2) satisfies the definition, based on the following
observation. Fix a cod&}* of the first verifier step (recall that, by definition, we calesionly on the set of
verifiers sharing the same first verifier step that is funetiigrequivalent tol’;*.) Observe that the simulator,
given only a codé/* of a first stage verifier that is functionally equivalent toreol; as input, can generate a
good first stage prefix (by rewinding the first stage veri¥ig) that will enable an unbounded prover answer
any challenge from the second verifier step (since an untemlipcbver can always recover the corresponding
trapdoor from the transcript of the first stage and carry letsecond stage in a straight-line fashion). l.e., the
unbounded prover will, based on the first stage transcrifgutdoy S(V7*), make a random verifier that share
the same prefiX; accept.

For the first verifier stefy;, the “if” condition is satisfied depending on whethee L or not:

— Whenz € L, the “if” clause holds, since an unbounded prover can, baseany first stage transcript
output by the simulatof(1;*), make a random verifier (that may have a prefix functionalffecknt from
Vi*) accept with probability 1 by finding the witness fore L and acting as an honest prover in the second
stage. In this case, the simulat®y without being given the codg*, can also act as an honest prover in
the first prover step and generate a random first stage tipnéehich does not form a trapdoor), and
based on this transcript, an unbounded prover can alwaysfimiiness forz € L to make a random
verifier accept with probability 1.

— Whenz ¢ L, the “if” clause does not hold: For every two different firgrrifier steps/, V2, and every
two different second verifier stegs,!, Vi (that will output different challenges in Blum’s protocol)
whereV} (¢t € {1,2}) commits tor; and then opens the commitment, drigl (b € {1,2}) simply sends
challenger;, the simulatorS, given a codé/;* that is functionally equivalent to} (i € {1,2}) as input,
will generate a first stage transcript for which an unbourgledercannotmake a random verifier from
the set of four verifier§V//, V.?} accept with probability 1, since for verifier prefig’ different fromV7,
the first stage transcript output [}(17*) will not form a valid trapdoor for the prover, and thus, if the
random verifier is chosen from the verifier @qj, VQb}, based on this first stage transcript, an unbounded
prover cannot make the random verifier accept with prolglglieater thar%.

In sum, FLS-type ZK proofs are also canonical according téri®mn 6: Whenever Definition 6’s “if”
clause holds for a verifier stép the simulator can generate a good prefix prior tokittle verifier step without
being given the code of this verifier step.

Barak’'s argument systentkinally, one may wonder where Barak’s argument system (noivk to be a proof
system) fits in all this. We view the first three messages insyrstem (the hash function selected by the
verifier, the commitment computed by the prover, and thefiees random challenge—recall the description
in Section 1) as the first stage, and the remaining WIUA (Véisnidistinguishable Universal Argument)
as the second stage. Thus, following the same reasoningoas,dor k& > 2, the canonical property is
satisfied at thé-th verifier step. However, for the second verifier step (attvithe verifier outputs a random
challenge), when: ¢ L, we do not know if Definition 6’s “if” clause holds.

Canonical ZK proofs are used in the next section to formulage“verifier-distinguishing problem,” to
which the existence of constant-round public-coin ZK psasfreduced.

” Note that the second verifier message is bound to the firdteramiessage:, and that, when considering the canonical property
at the second verifier step, the “if” condition of the defimiti6 requires that, after for a single verifier’s first stegréhare many
possible distinct verifier's second steps (itez 2).

3.3 Theverifier-distinguishingproblem

In a nutshell, given a set of distinct verifierth next-message functions, the problem resides in cartsigy

a distinguishing algorithnd/ which, given a session prefix (prior to theth verifier step) output by simulator
S, such that for any polynomial-time constructible progréjhthat is promised to be functionally equivalent
to one of the next-message functions, is able to discernronethe set that is functionallgifferentfrom V.
Formally:

Definition 7 (The Verifier-Distinguishing Problem). Let (P, V') be a2m-round canonical ZK proof system
for a languagel (Definition 6),.S be its simulatorp the length of each prover's message, aredpolynomial

in the security parameten. Given are a seV; ;) of deterministic honest verifiers that share the same
prefix verifierVj; ,,_;, but havet distinct k-th next-message functiomd, V2, ..., V), denoted by sety, and

an auxiliary inputaux®. Theverifier-distinguishing probleris to find a non-uniform algorithrfy, running in
time2°(®), such that for every polynomial-time algorith the following holds:

— First, C picks a machiné’ € V), at random and outputs a polynomial-time Turing macHiffesuch that

« £ 7
— Next,U, taking (V1 x—1], Vx) and a session prefig, p1, ..., pr—1) output byS(aux, V), outputsV;’ e

o f
V. such thatl’/ # V;* with probability negligibly close ta. l.e.,

r V]: <~ C(Vk,Z), (’rbplv "'>pkfl) — S(aux, V]:)a

p .
J U(V[l,kflb Vi, 71, D1, "'7pk:71)

£
:VE# V]| > 1 —neg(n),

where the probability is taken over the random choiead the randomness used Gy and S.

Remark 3.We note that in the definition, algorithi#i is not givenV*'s code as input. This means that if
U is able to carry out its task, then the simulator must encodeesnon-trivial functionality oft;* in such

a session prefix. As mentioned before, this is in sharp ceintvéh known straight-line simulators such as
Barak’s, which are oblivious to the verifier's functiongilin computing a session prefix. We elaborated on
some of the difficulties in solving this problem in Sectionoiercoming which (if at all possible) would
require a technical breakthrough in simulation techniques

4 An Improved Derandomization Lemma for Interactive Proofs

In this section we prove a structure-preserving versionhefwell-known Babai-Moran “Speedup Theo-
rem” [1,10] with improved parameters for our applicatiorhigh we will then use in the proof of our main
result (Theorem 2). Essentially, the result says that fgramstant-round public-coin interactive proof sys-
tem with small soundness error, there exists a polynomtadfsendom verifier tapes such that the cheating
probability for the unbounded prover over these verifieetais bounded away from 1—and this holds even
when the prover knows this small set of random tapes in adgvanc

We first recall the Babai-Moran theorem. L&M k] denote the set of languages whose membership can
be proved via &-round public-coin proof system.

Theorem 1 ([10]).For any polynomiat(n), AM[t+ 1] = AM][t]. In particular, for any constank, AM[k] =
AM][2].

For our application, we wish to de-randomize the verifierleskéeping the original proof system structure
intact (that is, without “collapsing” the round complexityrhe AM[k] = AM][2] proof—and its randomness-
efficient variant in [113—actually yield such a result: for aryn-round public-coin proof system with small

8 This auxiliary input is given tc5; in our main theorem (Theorem 2) it will be the code of soméfierprefix strategy.
®In [11], Bellare and Rompel present a randomness-efficipptaach to transformA M([k] into AM[2]: to halve the number of
rounds of an Arthur-Merlin proof system, they introduce acatied “oblivious sampler” and use a small amount of randess

soundness erray, there existO(p))™ verifier random tapes over which the cheating probabilityofun-
bounded prover is still bounded away from 1, whgiie the length of the prover’s messages.

Next, we present an improvement to this result, in which tnalper of such verifier random tapes reduces
to (p/O(log 1))™. In addition, we show that this de-randomization lemma &eesally tight with respect to
the round complexity, as there are super-constant-routdicecoin proof systems for which the prover's
cheating probability id, over any polynomial number of verifier random tapes.

Before stating the lemma, we introduce some additionaltioota

= V@112, rt) denotes the honest verifier that is restricted to choogfermly at randonone ofr!,r2... r!
as its random tape, whetés a polynomial; we us&/,1 ,2 .+ (r’) to denote the verifier that takes,
1 <1 <t, asits random tape.

- P*(r',r2... r') denotes the unboundetieatingprover with auxiliary inputr!,r2..., r?), indicating that
it will interact with Vi1 2).

We now state the result formally. For simplicity, we assufnat @ll the prover messages are of equal
length.

Lemma 1. Letm be a constant andP, V') be a2m-round public-coin interactive proof system for language

L with negligible soundness errer Letp denote the length of the prover's messages. Then for every.,

there existy = (p/O(log %))m different random tapes;!, r2, ...r4, such that for every unbounded prover
Pr{(P(' 22, x%), Vit po, o) (2) = 1] < 1— % .

Here we present the intuition and basic inequalities thetdythe proof for the case of a 3-round proof
system? (similar ideas also appeared in [1,10]), and defer the fwbpof the lemma to Appendix B.1.

Let us consider a 3-round public-coin proof systém V) with negligible soundness error for some
languageL !, in which the prover sends the first messagend the last message, and the verifier sends
the second messageits public coins). Without loss of generality, we assumg = |p2| = p, and|r| = n.
We now prove that there exists a numpesf verifier random tapés (r',r?, ..., r?) over which the cheating
probability is at most — 1/p.

For the sake of contradiction, assume that for some falsenséntz ¢ L there is an unbounded prover
P° such that for any-tuple (r!, r?, ..., "), P°(r!,r?, ..., r") can cheaV/|,1 ,2 _» with probability 1. Now
note that the number of such successful cheating prove{?gjs and that there are at maat different first

prover messagas . Thus, there is a number of at Ieé%f)/?’ Pe(rt,r? ... rP)’s that produce the same first
prover message, denotepit, for which if the verifier is using a random tape in any of fhtuples

{(xh, 22 .. rP) : pf «— Po(xhx?, . 0P)],

we have an unbounded prover that can produce a second pressag®; to make the verifier accept.
On the other hand, the number pftuple choicesr!,r?, ..., r?) out of al/2e fraction of all possible

verifier random tapes is at moép_) Since

(_))

p 2p 2

to specify roughlyO(p) verifier messages in the original proof system. Their prhoiyever, yields almost the same result as the
Speedup Theorem in our setting where we want to maintaintthetsre of the original proof system, and only care aboat th
number of original verifier random tapes that are needed temare the resulting protocol after derandomization Iaspiroof
system.

19 The basic reasoning here applies to a proof system of evemer(d) of rounds as well, by having the verifier send a dummy
message first.

11 For example, ther-folded parallel version of Blum’s 3-round proof for Graplariltonicity [8], or the 3-round proof for Graph
Isomorphism [23].

12 For simplicity’s sake, we do not optimize this parameteeher

10

we have that the sdt(r!,r?, ...,rP) : p} < P°(r!,r?,...,rP)} covers at least &/2¢ fraction of all possible
verifier random tapes.

In sum, we are able conclude that there is an unbounded prgheh send9] as its first message, that
can make the verifier accept the false statement with prbityai least1/2e. This contradicts the negligible
soundness error 4P, V).

The proof of the lemma for the general (arbitrary constanhds) case can be found in Appendix B.1,
and the tightness result, i.e., the counterexample forrsapstant-round proof systems, in Appendix C.

5 Constant-Round Public-Coin Zero-Knowledge Proofs ImplyDistinguishing Verifiers’
Programs

We are now ready to present our main result, which exhibitsdaigtion from constant-round public-coin
canonical ZK proofs to the functionality-distinguishingoplem (Definition 7), a problem seemingly quite
different in nature. We first fix some parameters and revigiation:

(P,V'): A 2m-round public-coin canonical ZK proof sytem for some consta. We letn be the security

parameter ang be the length of each prover's message.

= Vi k-1 A set of deterministic honest verifiers that share the samaegst) prefix verifiel/[; 1), but
havet distinct k-th step functiond/,!, V2, ..., V5; Vi k-1)l < ¢, wheret andg are polynomials (defined
in Lemma 1§32,

- Vi These{V}!, V2, ..., V}!}, as above.

- V[/1,k71]: The auxiliary input toS, which is the code of a prefix verifier such tﬂﬁg,kq] L Vit k—1)-
(Whenk = 1, it is set to the empty string.)

We now show that i P, V) admits a universal simulatdf, then there is an algorithiti, taking)V} ;. 1),
Vi and a session prefix as inputs, which can solve the funciigrdistinguishing problem (cf. Definition 7)
with respect to verifier séf).. Formally:

Theorem 2. Let (P, V') be a2m-round, public-coin canonical ZK proof system with nedllgi soundness
error for a non-trivial languageL ¢ BPP, and S be its universal simulator. Then, there exist an infinite
set], a sequence of false statementst L of lengthn for eachn € I, a constantk, 2 < k£ < m, sets
Vik-1] and V., a verifier codeV[’Lk_l] as above, and an algorithi@l, running in time2°(®), such that, for

any polynomial-time algorithnd’ that on input(Vy, i), 1 < ¢ < t outputsV,* satisfyingV;* L Vi € Vg, the
following holds:

- Vi = C(Vk,1); (11,015 oy P—1) 4= (S([V[/kal]v Vi) = V[ll,kfll)

£
. :VE#V? e V| >1—neg(n),
J = UV k=1 Vi 1,15 s P—1) k k

where the probability is taken over the random chaiead the randomness used ©yU and S.

We now give a high-level sketch of proof of the theorem, whitdinly consists of three steps. (Refer to
Figure 2.)

1. The first step is Lemma 1 from the previous section. L&tV 2, ..., V¢ denote the deterministic verifiers
given by the lemma. The various trees in Figure 2(a) cormespo thesey verifiers.

2. Next, we show that there exists a sequence of infinitelyrfelee statements such that for every verifier
Vi, 1 < i < q, and any polynomial-time constructible codfé which is functionally equivalent té?,
the sessior{S(V*) < V*) (which, by Fact 1 is identical t0S(V*) < V%)) is accepting except with
negligible probability. This is shown in Figure 2(a).

13 At the k-th verifier step, the number of distinct next-message fanstshould in fact be;. For simplicity, we assume= ¢, for
alll <k <m.

11

3. For any false statementin the above sequence, we prove that among thessifiers, we can find a
(subjtree); ;,_y) that has the same prefix strateg¥, Va, ..., Vi—1] up to the(k — 1)-th verifier step
but “splits” at thek-th verifier step, and a COd@[i,k_u that is functionally equivalent t&7}; ,_;; =
V1, Va, ..., Vi_1], such that, for any polynomial-time constructible cddethat is promised to be func-
tionally equivalent to one of thosé’’s (nodes) at levet, the following two conditions hold:

— The session prefixry, p1, ..., px—1) produced b)(S([V[’Lk_H,V;]) & V[/Lk—l}) (or equivalently, by
(S([V[/Lk_l],Vk*]) & Vji,,—1))) is bad with respect toV}; ;,_; (cf. Definition 5). This implies that
there is a subtree (refer to Figure 2(b))Uip 1.1}, With respect to whicliry, p1, ..., pr—1) is bad.

— However, the session prefix;, p1, ..., px—1) IS goodwith respect to the subtree that shares the same
prefix strategy{V}; x—1j, V] (refer to Figure 2(b)).

This enables us to construct an algorithm that is able toéustdnd” the cod®)", by pin-pointing another

. £
verifier code, sayy;/, such that! # V*.

The proof in detail. Given Lemma 1, we now present the remaining details of thefmTrheorem 2. Again,
let (P, V') be a2m-round public-coin canonical ZK proof for some non-trivi@utside 5PP) languageL,
andS be its associated simulator. We first prove the followingrigmwhere Lemma 1 is used.

Lemma 2. Let (P, V) be as above. Then there exist an infinite Set sequence of false statementg L of
lengthn for eachn € I, andq honest verifierd’ !, V2, ..., V4 (recall that we usé’* as a shorthand fol/ (r?),

1 <i < @), such that given the description of any polynomial-timastauctibleV* L Vi for a randomi as
input, the interaction(S(V*) < V*)* will produce an accepting transcript with probability negbly close
to 1, while the unbounded prover can cheat only with probabditynostl — 1/4.

Proof. We first prove that there is an infinite sebf security parameters and a sequence of false statements
x ¢ L of lengthn for eachn € I so that for every PPT algorithi® which takes picks a randoii from the

set of verifiers and outpufis* such thatl* L v, the simulation(S(V*) < V*) will generate an accepting
transcript with probability negligibly close to 1 (over th@endomness used lfy and the random choice of
verifier). Suppose otherwise, for sufficiently largethere is no false statememntof lengthn and a code

V* output by some PPT algorith®' on which (S(V*) < V*) will generate an accepting transcript with
probability less than — 1/poly(n) for some polynomiapoly, then the following simple algorithm could be

used to decide membership Inefficiently'®: Pick a verifier at random and rufi to constructl/* L vas
above, and then have on inputx andV* interact withV*; if V* accepts, output# € L,” otherwise output
ux ¢ L.”

Now fix a false statement ¢ L in the above sequence, and &eto be the set of verifier random tapes

such that for any € @ and any polynomial-time constructiblé* L V(r), (S(V*) & V*) will generate

an accepting transcript with probability negligibly clasel. We now show that the size &fis larger than a
(1 — neg(n)) fraction of all possible random tapes. Assume the verifrarglom tape: andS’s random tape
R are uniformly distributed ovef0, 1} and {0, 1}*, respectively, wheréands are some polynomials, and
denote byFE the event that the simulatiqi(V*) < V*) generates an accepting transcript. We have

14 Recall that this interaction is identical ¢§(V*) < V*) (Fact 1).
15 Although the error probability here may be high, it can beuredi by standard parallel repetition.

12

S(V*)

TITTTI

—0

— O va-tve

Vi Denote byV[; ;1) the

— 1)

S(Vik—1pp Vi) 1 g prefix strategy
Vi, V2, -, Vi_d]

([V[Ik_I],Vlj] Tk—2
is functionally S
equivalent to pk*Q;

V-1, ViD

ST

Let hist be the prefi
(r1,p1,°** ,Pr—1)

hist is good w.r.f | hist is bad w.r.{
this subtree this subtree

‘ hist is bad w.r.t this treé

(b)

Fig. 2. Pictorial depiction of the proof of Theorem 2. Figures (ad &) correspond to Lemma 2 and Lemma 3, respectively. InrBigu
(b), the prefix(r1, p1, ..., pr—1) is bad w.r.t. the entire tree, which implies that there islatrme for which this session prefix is bad;

however, the prefix is good w.r.t. the subtree that sharesatve prefix strategy[, 1, V;] for which v;* L Vi

13

Pr [V*« C(r): E] (1)
r«{0,1}!
R«{0,1}7

= Pr Z[V*<—C’(r):E|r€Q]Pr[r€Q]
R-folr

b Pr Ve C)s Bl QP ¢ Q)
R<—{0’,11}’“

< PrreQ)+(1—- W)Pr[r ¢ Q

1
- % +(1- poly(n))(1 B %)
1 Q|

= oy T e

Given that the probability in expressidh) is greater thari — neg(n), so is the quantitﬁ%.

Thus, givere ¢ L, for any unbounded prover, the cheating probability, tateeegr the choices of verifier
random tapes i, is still negligible. Applying now Lemma 1, we can figdandom tapes; € Q,1 < i < g,
such that the probability, taken over thesandom tapes, that the unbounded prover makes the verifieptic
is at mostl — 1/q. This completes the proof of the lemma. O

The next lemma, where Lemma 2 is used, is the key step in ety our main theorem.

Lemma 3. Let (P, V') be as above. Fix the infinite sétand the sequence of false statements L guaran-

teed by lemma 2. Then there exists a trigletV; 1), V}; ,_y)), where:

- 2<k<m

— V-1 is a subset of verifiers that share the same prefix stratégy_; but havet distinct k-th step
strategiesvkl, V,f, ..., Vi, denoted by, (we Ietv[’lﬁk} denote the subset of verifiers ¥y ;) that share
the same prefix strategy’; 1, V;]); and

- ‘/['1,1@71] is a prefix verifier code functionally equivalentitq ;.1

suchthat, forany < ¢ <t and any polynomial-time constructible codg satisfyingV;* L Vi, SV 1) VD
= [V[’1 k1) V;¥]) will generate a session prefix;,p1, ..., px—1) satisfying the following two conditions:

1. (r1,p1,--,Pr—1) is badwith respect to}; ;,_yj;

2. (r1,p1,..-, pr_1) is goodwith respect tov[i1 W

Fix a security parameter and a false statement ¢ L of lengthn in the sequence guaranteed by
Lemma 2. We prove the lemma by examining the next-messagédus of they honest verifierd’*, V2, ...V¢
guaranteed by Lemma 2, step by step. At a high level, thetateiof the proof is as follows:

1. First, show that there exists a trip(&t V), V[’l]) satisfying condition 1.

2. Show that any(m — 1, V}; 1), V[) satisfies condition 2.

/l,m—l]

3. Showthat, forang < k£ <m—1,ifagiven(k, Vj y_1), V[/1 k:—l]) satisfes condition 1, but not condition
2, then we have a triplg + 1,V 4, V[/1 k]) that satisfies condition 1.

This reasoning guarantees that we can find a trilg¥; 1y, V[’1 k_l]), forsome2 < k < m, which satisfies

both conditions. The detailed proof of the above three stepresented in Appendix B.2.

We are now ready to construct the distinguishing algorittipryielding the proof of the theorem. Fix a
false statement in the sequence guaranteed by Lemma 2,/and; 1}, Vi, andV[’1 j—1) @S in Lemma 3.

14

Let the output of an arbitrary PPT algorithfhon input(Vy, ¢) for random: be V;* such that/’;* L Vi € V.
Algorithm U works as follows'®

The distinguishingalgorithm U.
Input toU: V1 —11s Vi, (71,1, -+, Pk—1) (S([V[/kal], Vi) & ‘/[/1,1@71]) and an initially empty seft'.

1. For eachyj, 1 < j < t, exhaust all possible prover messages afterttie verifier step, checking if the
session prefixry, p1, ..., pr—1) is good with respect /.. If not, add; to setT".
2. Output an arbitrary in T'.

As mentioned before, in its second stépcan check whether the given session prefix is good in time
20() which overwhelmingly dominates its the running time.
Condition 1 of Lemma 3 guarantees that there existach that the session prefix, py, ..., px—1) pro-

duced inU’s step 1 ihadwith respect tdifl k1]’ which implies thafl" is not empty. Condition 2 of Lemma 3

. £
guarantees that {fr, p1, ..., px—1) is bad with respect W[ij_u’ thenV;* # V. In other words, algorithn/

was able to pin-point a progranh’,g) functionally differentfrom V}*. This concludes the proof of Theorem 2.

6 Conclusions

A natural question which arises from our reduction is: Howdha the functionality-predicting problem (Defi-
nition 7)? As mentioned before, since our predicting athoniU does not take the target colg as input, the
simulator must encode some non-trivial functionalitylgf in the session prefik1, p1, ..., pr—1). However,

if the simulator runs in a straight-line manner such as Bari@}, it does not executd,” in computing the
history prefix prior to the verifiers-th step, and this means it is able to discern some nonitpviperty of
V;*'s functionality and encode it in the session prefix, p1, ..., pr—1) without executing/,*, which seems to

be highly unlikely. We leave the exact characterizationhig problem’s hardness as an interesting research
question.

Since, as also argued in the introduction, rewinding seen tout of the picture, this leads us to think
of our main theorem as strong evidence against the existeinsech proof systems, and safely conclude
that constructing non-trivial constant-round publicrec@K proofs (if they exist) requires a paradigm-shifting
simulation technique.

Acknowledgements

The authors would like to thank Susumu Kiyoshima, SanjanyGard the anonymous reviewers 8EN '16
for their valuable comments.

References

[1] L. Babai: Trading Group Theory for Randomness. STOC 1@p5421-429, 1985.

[2] B. Barak: How to go beyond the black-box simulation barrFOCS 2001, pp.106-115.

[8] G.Brassard, D. Chaum, and C. Crépeau: Minimum disec®puoofs of knowledge. J. Comput. Syst. Sci., 37(2):158;1888.

[4] N. Bitansky, D. Dachman-Soled, S. Garg, A. Jain, Y. Kaki Lpez-Alt, D. Wichs: Why "Fiat-Shamir for Proofs” Lacks a
Proof. TCC 2013: 182-201.

[5] B.Barak, O. Goldreich, S. Goldwasser, Y. Lindell: Réably sound ZK and its Applications. FOCS 2001, pp. 116-22B)1.

[6] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. 8als. P. Vadhan, K. Yang: On the (Im)possibility of Obfusogt
Programs. CRYPTO 2001, pp.1-18, 2001.

[7]1 B.Barak, Y. Lindell: Strict polynomial-time in simuletn and extraction. STOC 2002, pp.484-493. 2002.

[8] M. Blum: How to prove a theorem so no one else can claimriocBedings of thelnternational Congress of Mathematigian
pp.444-451, 1986.

16 Keep in mind that we omit inputs and randomness t§ andU for simplicity.

15

[9] B.Barak, Y. Lindell, S. P. Vadhan: Lower Bounds for NotaBk-Box Zero Knowledge. FOCS 2003, pp.384-393,2003.

[10] L. Babai, S. Moran: Arthur-Merlin Games: A Randomize®f System, and a Hierarchy of Complexity Classes. J. Compu
Syst. Sci. 36(2): 254-276, 1988.

[11] M. Bellare, J. Rompel: Randomness-Efficient Oblivi@ampling. FOCS 1994, pp.276-287.

[12] R. Canetii, Y. Chen and L. Reyzin: On the Correlatiorrdatability of Obfuscated Pseudorandom Functions. TCQE@)6,
pp.389-415.

[13] R. Canetti, O. Goldreich, S. Goldwasser, S. Micali. &ehle Zero Knowledge. STOC 2000, pp.235-244, 2000.

[14] R. Canetti, J. Kilian, E. Petrank and A. Rosen. ConautrZero-Knowledge require@(logn) rounds. STOC 2001, pp.570-579,
2001.

[15] |. Damgaard. Efficient Concurrent Zero-Knowledge ie thuxiliary String Model. EUROCYPT 2000, pp.174-187, 2000.

[16] Y. Deng, V. Goyal, A. Sahai: Resolving the Simultane®esettability Conjecture and a New Non-Black-Box Simolati
Strategy. FOCS 2009, pp.251-260.

[17] G. DiCrescenzo, lvan Visconti. Concurrent ZK in the ketixey Model. ICALP 2005, pp.816-827, 2005.

[18] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-KnovgedSTOC 1998, pp.409-418, 1998.

[19] U. Feige, D. Lapidot and A. Shamir: Multiple Non-Inteteve Zero Knowledge Proofs Under General Assumptions MIA
on Computing 29 (1999) 1C28.

[20] O. Goldreich: The Foundations of Cryptography - Volulpdasic Techniques. Cambridge University Press 2001.

[21] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Ragk@mit Sahai and Brent Waters: Candidate Indistinguidhgtdb-
fuscation and Functional Encryption for all Circuits. FOZE.3, pp.40-49.

[22] O. Goldreich and H. Krawczyk: On the Composition of Zétnowledge Proof Systems. SIAM J. Comput. 25(1), pp.162;19
1996.

[23] O. Goldreich, S. Micali and A. Wigderson. Proofs thaglgi nothing but their validity or All languages in NP have @er
knowledge proof systems. J. ACM, 38(3), pp.691-729, 1991.

[24] S. Goldwasser, S. Micali, and C. Rackoff. The knowledgenplexity of interactive proof systems. SIAM. J. Compgtin
18(1):186-208, February 1989.

[25] O. Goldreich, S. Vadhan and A. Wigderson. On Inter&cRvoofs with a Laconic Prover. ICALP 2001, pp. 334-345.

[26] S.Hada: Zero-Knowledge and Code Obfuscation. ASIAERY2000, pp.443-457, 2000.

[27] R. Pass, A. Rosen: New and improved constructions ofmalteable cryptographic protocols. STOC 2005: 533-542.

[28] M. Prabhakaran, A. Rosen, A. Sahai: Concurrent Zerowdedge with Logarithmic Round-Complexity. FOCS 2002, 63
375, 2002.

A Good/Bad/Session Prefixes (cont’'d)

In this section we provide a more detailed formulation of tia¢ion, as well as an illustration of good/bad
prefixes. Recall Definition 5. Equivalently, we call a sesgicefix (r1, p1, ..., p¢) “good” with respect td/};

if the following holds, which can be decided in time exporanin the length of the prover's messages. Let
poly be the size ob/}; 4. Then there ar@oly number of session continuations of the fofm,.1, ..., pm),
each assigned to a verifier Wy 4, such that the following conditions hold:

1. Every verifier iV}, 4 will accept the transcriptry, p1 ..., pe, 7e41, -, Pm) @ssigned to it.

2. If two verifiers in)); 4 share the same prefix strategy up to théh step,/ < ¢/ < m, then the two
transcripts assigned to them share the same session prefix..., 7y, py).

A good session prefix is pictorially depicted in Figure 1(a)the figure, if(r1, p1,...p¢) is good with
respect to the tree, then for every edge belgwwe can assign a prover message to it such that: (1) each
path is accepting, and (2) for every two paths that shareaime prefix strategy up to thé-th verifier step,
¢ <t < m(e.g., the red paths), the session prefixes of these two ppths the/’-th prover step are the
same.

In addition, one can easily verify the following “robuste&$act about a good session prefix: if a session
prefix (r1, p1, ..., p¢) is good with respect t; 4, then for anyl < i </, the session prefik-y, p1, ..., p;) is
also good with respect td; ;. See Figure 1(b). The figure illustrates the fact thatif 1, ..., pe—1,7¢,p¢) is
good, so is the (sub)prefixi, p1, ..., p,—1) With respect to the same tree. This is because all proveragess
on edges below (including p,) simply satisfy the two conditions that make a session pggibd.

16

These two
prover msgs, p;_1
are the sam

@) (b)

Fig. 3. A goodsession prefix (a) and its robustness (b). Each node (chepegsents a verifier next-message function, or equivglent
(in our case of public-coin proof systems), a random stitirag is used in this step. Each path represents a (complé&tegdtion with
an honest verifier.

B Proofs

B.1 Proof of Lemma 1l

We first introduce some definitions and additional notattaat will be used in the proof.

We assume that the length of each prover message is greatesirils constant, in particular,> 10. Note
that this assumption is without loss of generality becatifieei length of the prover message in a constant-
round interactive proof for a languadeis constant, ther. is trivial (see [25]), which in turn implies our
lemma immediately.

Throughout this subsection, we consider ostyucturedqg-tuples of verifier's random tapes, which are
selected in the following way:

o)) . _ 2 m2) .
1. For each verifier step 1 < i < m, if |{0,1}| > Qﬁgp%, sett; = 210;’% € p/O(log 1); otherwise, set

t; = 2, wherel; is the length of the-th verifier message;
2. Choose; distinctstringsry;, ra;, ..., ¢,; from {0, 1}%;

3. Choose ar-th verifier message;,; € (r1,i,72i,-..,7t,i), 1 < j; < t; for each step, and set random
taperﬂ = [Tj117 Tja2s «oe ijm]-
4. A g-tuple of random tapes is now the set of all possible randgesaet in step 3r!,r?,...,r?). Note
that the sizey of this set is[;- , ¢;, which is determined by Step 2.
We identify (r!,r?,...r?) with (x™) ¢ r™(@) for any permutationr on {1,2, ..., ¢}. Two ¢-tuples,
(r!,r?,..r?) and(r’’, r’?,..r'%), are said to belistinctif there exists at least onésuch that’ € (r!,r?, ...r%)
butr ¢ (r'',r'?,...r'%), or vice-versa. Thus the number of all possible distinchsstouctured;-tuples is

=1

Some more basic notation before the proof:
— prefix;(r/): the firsti messages from the verifier using random tepethat is, forr? = [1{,79, ..., 77,
prefix; (r/) = [r], 75, ...,77].

- 7 and its sizq7|: 7 is asetof structuredg-tuples of verifier's random tapes, The size%f denoted
by |?|, is simply defined to be the numberdistinct ¢-tuples inT".

17

- pr < (P(r',r? ..x%), V) s denotes thei-th prover message produced by the proir!, r?, ...r?)
(the prover strategy takingtuple (r!, r?,...r%) as auxiliary input), conditioned diist being the current
history so far.

The proof of the lemma is by contradiction. Assume that tlegists an unbounded prover, calft, and

x ¢ L, such that for any-tuple (r!,r?,...x9), r; # r; fori # j:

Pr{(PP (1%, ox), Vi) 0) = 1] > 1= = @
First note thal/|,1 2 _,+)(r) acts exactly the same &r"). Therefore
Pr[(P°(r',x?, ..x%), Vipi sz o) (2) = 1] 3)
= S PP a), Vi ()) = 1] @
= S PP), V) () = 1]5 . (5)

Further, observe that the probabili¢[(P°(r!, r?,...r7), V(r!))(x) = 1] is either 0 or 1 because in this
interaction the tapes are fixed and both prover and verifeedaterministic. Thus, if inequalit§2) holds, we
have

Pr[(Po(r',x%, ..x9), Vg2 po))(x) =1] =1, (6)
and, by(5),

Pr[(P°(r!,r?,..r9), V(r))(z) = 1] = 1. (7)

Now, given proverP° such that7) holds for anyg-tuple (r!,r2, ...r?), we describe a provep* that will
cheatV with probability greater thaa.

The Cheating Prover P*.

Input: z, as in inequality(2).

1. SetI® to be the set of al possible distinct structurgtliples over{0, 1}}1t2++n andG, the set of
all possible first verifier's messages (i.e., the{getl }1).

2. Fork=1tom,do
2.1. Upon receiving thé-th verifier messagey, sethist to be the current historyr, p3, ..., 7%).

Check ifry, € Gy. If r, ¢ Gy, abort and outputt”. Otherwise, for every-tuple(r!,r?,...r?) € ﬁ
such that: a) it contains sonmté such thatprefix,_,(r’) = [r1,72, ..., 7], and, b) the currertist is
consistent with the interaction betwe&(r!, r?, ...r%) andV, sett’ = [}, t;, compute thek-th
prover message by runnig® (r!,r2,...r?), and obtain the set df-th prover messages

1.2
{pk A <Po(r) T 7'-'rq)¢v>|hist :
(rt,r? ..r?) € TV and (™, r2, ..x') € (v}, r?,..r) s.t.
m
prefix, (r') = [r1, 79, ...,rp] forall 1 < j <t = H L.
k+1
7 Observe that, by the structure @ftuple, if there exists @° € (r!,r?,...r?%) such thatprefix, (r') = [r1, 72, ..., 7], then there

existt’ = [];"., t: many such random tapes.

18

Setp;. to be thep,, that maximizes the size of the set
{@™,r2, ') pp e (PP(r),r?,x?), V) s, and

(r't,r2 . r') e (vl r?, ..r?), and
m
prefix, (r') = [r1,rq, ..., 1] forall 1 < j <t' = t;
k

k+1
j

2.2. If k < m, denote byT” the above set that achieves its maximum size, and set (ggetb& next
verifier messages)

Gk+1 — {Tk:Jrl S {0, l}lk+l : |{(I‘i1,1‘i2, . I‘ii') S ﬁ :
I)

prefix; 1 (r%) = [r1,79, .., 7, rpq1) forall 1 < j < ¢ = Ht H > Tl }.
k+1

In a nutshell, the above algorithm just tries many differemeating prover$>®(r!, r?, ...r7) to make the
current history accepted by as many verifiers as possible.

Analysis of algorithm P*. Let us now analyze the success probability of the provengdesjy outlined above.
We first show that the size @}, is large enough for everky.

Claim. For everyl < k < m, conditioned onP* not outputting L, |G| >

m
Proof. Whenk = 1, |G| = [{0,1}1] > m
Whenk > 2, the condition ofP* not outputting “L” implies that, forj < &, r; is in G;, and that

i1 .02 Lo k—1 . i\ . n__ s .
{(r",r2, . x") € T @ prefix, (r'9) = [r1,72,...,ri] forall 1 < j <t" = th}| >

I ()

9L.1(k—1)p

which in turn leads to (recall that the length of prover mgssdsp), for k > 2,

= T) LN CA I | N G

" = oL1(k—1)p+p 9L.1kp—0.1p 8

Now assume that, fat > 2, conditioned onP* not outputting “L” (i.e., for j < k, rj is in G;), |G| <
Sett’ =[]}, t;- Recall that all’-tuples(r™ 2, ..., x'"") € ﬁ share the same prefix;, 7o, ..., 7], and
that, by the structure of-tuple of random tapes, within #-tuple (v, r®2, ..., r%) € T*, there are only;

distinct £-th verifier messages, say;, 7, ...,r,i’“). We partition these’-tuples inT" in two classes by the
property of(ri,r?, ..., r*):

1. Everyrj € (r},r7,...,r*) is in Gy, (which impliest; < |G}|). The number of’-tuples inﬁ satisfying
this condition is at most
(%) 1L ()
te) Sy \ti/)

19

2. There is at least on€, € (r},77,...,7¥) that isnotin Gy. Then by the definition o3, and by the
fact that, within a’-tuple (r“t, r2, ..., r%) € T*, for everyi, the number of random tapes in thistuple

with each prefixry, ra, ...,7x—1, %] is the same (equal tpl", t:), then the number of -tuples inﬁ
satisfying this condition is at most

<zlk> T ()

t 91.1kp
Thus, we have

m . m 2li
— |Gk 2li 2\ TTites (3,)
|T | = tr H t; + t 91.1kp

i=k+1

l X m 2li
< (F) O (%)« () e)
ik t; tr 21.1kp

i=k+1
L
2lk " m QZi 2lk H;T;kJrl (2t1)
< (21.1kp/tktk) H t; + tr 21.1kp
1=

) l;
< (Qt_:)tk ﬁ ol + 2lk H —k+1 ()
91.1kp Sl ti tk 921.1kp

e, 2

ol.lkp—1 °

which contradicts (8) whep > 10, which we can always assume without loss of generality (atise our
lemma holds trivially; see [25]). O

Now observe that, for every prover step< m, if G > m,

the next verifier message correctly, i.e., the probabitigtt;, € Gy, is |Gy |/2* =
guesses all the next verifier messages correctly with pilityadtt least

m m
|Gkl 1
U - H 21.1k’p/tk€7

then the probablllty thaP* guesses

*
m ThereforeP

which is greater thaafor t;, < 21 . (Recall that eithet;, = 271” P orty, = 2% when2!k <3 m? p1)

Notice also that, in case that aII guesses of the next vem‘fErsages are correct, there eX|sts at least one
g-tuple(r!,r?, ...r?) such that the complete transcript, p;...rm, p,) is generated in the interaction between
Po(rl,r? ..r9) andV (r'), r’ = [ry,7r9...7,] € (r!,r? ...r?), which is guaranteed by our assumption to be
accepting.

In sum, our cheating prover* will cheat with probability greater thafy which breaks the soundness of
the proof system{ P, V'), thus yielding the lemma.

B.2 Proof of Lemma 3

Fix a security parameterand a false statement¢ L of lengthn in the sequence guaranteed by lemma 2. We
prove the lemma by examining the next-message functioriseaf honest verifierd’!, V2, ...V guaranteed
by Lemma 2, step by step. Recall that the structure of thef pgas follows:

1. First, show that there exists a tripl@t Vj, V[’l]) satisfying condition 1.

20

2. Show that any(m — 1, V}y 1), V[’1 m71]) satisfies condition 2.
3. Show that, forang < k£ < m — 1, ifa given(k, V[l,k—1}7 V[’1 k71]) satisfes condition 1, but not condition

2, then we have a triplet + 1,V 4, V[’Lk]) that satisfies condition 1.

This reasoning guarantees that we can find a triplg¥); ;._y), V[/l,k:—l])’ forsome2 < k < m, which satisfies
both conditions. We now turn to proving the above three steps

The proof of step 1 is as follows. By Lemma 2, no unboundedegaroan cheat a random verifier from set
{V1 V2 .. V4} with probability 1. This immediately means (recall that vesame that verifier sends the first
message in a session) that there exXitsuch that no unbounded prover can cheat a random verifiemdnavi
the same prefix strategy; chosen from{ V!, V2, ...V9} with probability 1.

Thus, we can havé2, Vyj, V[/u)' whereVy; is the set of verifiers i{V!,V?,..V?} having the same
prefix strategy/; and the codé’] is V3. By the structure of thesgverifiers, we have that|,; has a seV; of ¢
distinct second-step strategi€s, V2, ..., V4. Itis easy to see that the first condition of the lemma nowsold

as otherwise, if there exists armand codel/; L V3, such that the session prefix;, p1) « (S([V{,V5])
[V1,V5]) is good with respect td/;;, then the following unbounded prover with auxiliary indug/, V']
andV;) will cheat a random verifiel” in ;) with probability 1: Upon receiving the first verifier message
(produced bylh), it runs S([V{, V5]), obtainsp;, and then runs the residual prover strategy guaranteed to
exist by the definition of a good session prefix (Definitiondomplete the interaction with.

Step 2 is guaranteed by Lemma 2. Given éamy— 1, V}; ,,_1), V[’mel]), whereV; ,,,_1) shares the same

prefix strategyV|; ,,—) but hast distinct m-th step strategie¥ !, V2 Vi andV[’l,m_H L Vii,m-1], the

reason for this triplet satisfying condition 2 is that, farya and any polynomial-time constructible code
V. satisfying V. L Vi, the session prefikry, pi, ..., pm) (S([V[’1 mfl],V;‘L]) & [V[’1 mfl}’vﬂt]) must

be good sincér, p1, ..., pm) iS, by the property of the simulator guaranteed by Lemma Zcaepting and
complete transcript.

We now prove step 3 using the canonical property of ZK probisfifiition 6). Assume there is a triplet
(k,v[lyk_u,xq'l,k_”), 2 < k < m — 1 (where again/; ,_y shares the same prefix stratelfy ,_,; but
hast distinct k-th step strategie¥!, V2, ..., V!, and V/kal} L Vi1,k—1))» Which satisfies condition 1, but
not condition 2. Note that conditioned on not satistying diton 2, we have an such that for any code
% L Vi, the session prefig, p1, ..., pi) < (S([V[’kau, Vi) [V[/qu]’ V;¥]) is bad with respect to the
set of verifiers inV}; ;) having the same prefix strategy; .1, V,j] (again,Vy i) hast distinct (k + 1)-th
step strategie¥) |, V2,1, ... Vi)

By settingV}; ,, to be [V} ,_;andV;’], V1, as above, we now have a triplet + 1, V(1), V];) for

which the condition 1 holds, for the following reason: Assuotherwise, i.e., that there exigf, ;, and a

codeV;’,, L Vi, such that(ry, pf, ..., p,) < (Vs VireaD) & Vi 4 Vitial) is good with respect to
Vi1,k)- Then, by the canonical property (Definition 6);, p1, ..., px) < (S(V[’1 k}) & V[/1 k}) is also good with
respect td/}; 4}, which contradicts the assumption that V; ,_1j, V[’1 kfl}) does not satisfy condition 2.

C Interactive Proof Systems with Super-Constant Rounds

In this section we give a simple super-constant-round ptdwin interactive proof system for which Lemma 1
does not hold.

Preamble: Forl < k < s, do:
P — V: Sendn random string%,... p* of lengthn each.
V — P: Send a random string, of lengthn.

Main proof: If there is somep} = 7, V accepts; otherwise execute a 3-round Blum
protocol [8] with negligible soundness error.

21

Observe that for any, if ¢ different verifier random tapeg!, r?,...r?%) are fixed in advance and known
to an all-powerful prover, then for the cheating probapild be strictly less than 1, at any verifier stegc s,
given (r!,r?,..r?) and current historyist), there must be at least + 1 possible different verifier next
messages (i.e., the entropf(r;|(r!, r?, ...r9), hist) is greater tharmog n), which leads ta; > (n + 1)°. That
is, if s is super-constant, for any polynomial number of verifiegadom tapes that are fixed in advance we
have a prover with cheating probability 1.

22

