
On the Implausibility of Constant-Round Public-Coin
Zero-Knowledge Proofs⋆

Yi Deng♯, Juan Garay†, San Ling‡, Huaxiong Wang‡ and Moti Yung♮

♯ SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China
† Yahoo Research, USA

‡ School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
♮ Snapchat and Columbia University, USA

July 18, 2016

Abstract. We consider the problem of whether there exist non-trivial constant-round public-coin
zero-knowledge (ZK) proofs. To date, in spite of high interest in the problem, there is no definite
answer to the question. We focus on the type of ZK proofs that admit a universal simulator
(which handles all malicious verifiers), and show a connection between the existence of such
proof systems and a seemingly unrelated “program functionality distinguishing” problem: for
a natural class of constant-round public-coin ZK proofs (which we call “canonical,” since all
known ZK protocols fall into this category), a session prefixoutput by the universal simulator
can actually be used to distinguish a non-trivial property of the next-step functionality of the
verifier’s code.
Our result can be viewed as new evidence against the existence of constant-round public-coin ZK
proofs, since the existence of such a proof system will bringabout either one of the following:
(1) a positive result for the above functionality-distinguishing problem, a typical goal in reverse-
engineering attempts, commonly believed to be notoriouslyhard, or (2) a major paradigm shift
in simulation strategies, beyond the only known (straight-line simulation) technique applica-
ble to their argument counterpart, as we also argue. Note that the earlier negative evidence on
constant-round public-coin ZK proofs is Barack, Lindell and Vadhan [FOCS ’03]’s result, which
was based on the incomparable assumption of the existence ofcertain entropy-preserving hash
functions, now known not to be achievable from standard assumptions via black-box reduction.
The core of our technical contribution is showing that thereexists a single verifier step for
constant-round public-coin ZK proofs whose functionality(rather than its code) is crucial for
a successful simulation. This is proved by combining a careful analysis of the behavior of a set
of verifiers in the above protocols and during simulation, with an improved structure-preserving
version of the well-known Babai-Moran Speedup (de-randomization) Theorem, a key tool of
independent interest.

⋆ An abridged version of this paper appears inProc. 10th Conference on Security and Cryptography for Networks (SCN ’16).

1 Introduction

Goldwasser, Micali and Rackoff [24] introduced the fascinating notion of azero-knowledge(ZK) interactive
proof, in which a party (called the prover) wishes to convince another party (called the verifier) of some
statement, in such a way that the following two properties are satisfied: (1) zero knowledge— the prover
does not leak any knowledge beyond the truth of the statementbeing proven, and (2) soundness—no cheating
prover can convince the verifier of a false statement except with small probability. A vast amount of work
ensued this pioneering result. Shortly after the introduction of a ZK proof, Brassard, Chaum and Crépeau [3]
defined a ZK proof system with relaxed soundness requirement, called a ZKargument, for which soundness
is only required to hold against polynomial-time cheating provers.

The original ZK proof system for the quadratic residuosity problem presented in [24] is of a special form,
in which the verifier simply sends independently random coins at each of his steps. Such a proof system
is called apublic-coin proof system, and has been found to be broadly applicable andversatile. Another
notable feature of this type of proof systems is its round efficiency, as it consists of only 3 rounds, i.e., just 3
messages are exchanged in a session. This round efficiency, however, brings about a side effect of soundness
error, which is too large to be used in cryptographic settings where typically a negligibly small such error
is required. Indeed, there seems to be a tradeoff between round efficiency and soundness error for public-
coin proof systems: we can achieve negligible soundness error by sequential repetition, but then the resulting
system is no longer constant-round. This is in contrast withprivate-coin ZK proof systems, for which constant
rounds and negligible soundness error can be achieved simultaneously.

In fact, whether constant-round public-coin ZK protocols (or even argument systems) with negligible
soundness error exist for some non-trivial language was a long-standing open problem. In [22], Goldreich
and Krawczyk showed that, for non-trivial languages, the zero knowledge property of such a proof system
cannot be proven via black-box simulation. Black-box simulation was in fact the only known technique to
demonstrate “zero-knowledgeness” for a long while, and hence the Goldreich-Krawczyk result was viewed
as strong negative evidence against the existence of constant-round public-coin ZK proof systems.

A breakthrough result in 2001 changed the state of things. Indeed, in [2] Barak presented a non-black-box
ZK argument in which the simulator makes use of the code of themalicious verifier in computing the prover
messages (albeit without understanding it). Barak’s construction follows the so-called “FLS paradigm” [19],
which consists of two stages. In the first stage the prover sends a commitmentc to a hash value of an arbitrary
string, to which the verifier responds with a random stringr; in the second stage, the prover proves using
a witness indistinguishable (WI) universal argument that either the statement in question is true orc is a
commitment to a hash value of some codeΠ, and, given inputc, Π outputsr in some super-polynomial time.
Note that this is a constant-round public-coin argument, and that its simulator does not “rewind” the malicious
verifier (and it is hence called astraight-linesimulator) and, furthermore, runs in strict polynomial time. These
features have been proved impossible to achieve when using black-box simulation [22,7].

Barak’s argument system still left open the question whether non-trivial constant-round public-coin (non-
black-box) ZKproof systems exist. At first sight, being able to extend his technique to a proof system seems
challenging, mainly due to the fact that since a Turing machine or algorithm may have an arbitrarily long
representation, a computationally unbounded prover may, after receiving the second verifier messager, be
able to find a programΠ (whose description may be different from the verifier’s withwhich the prover is
interacting) such that,c = Com(h(Π)), and on inputc, Π outputsr in the right amount of time.

In [9], Barak, Lindell and Vadhan showed further negative evidence for the above problem, by proving
that if a certain class of entropy-preserving hash functions exist, then such a proof system cannot exist. Their
formulation of entropy-preserving hash functions is mathematically simple, inspiring further research to base
such hash functions on standard assumptions. Unfortunately, to our knowledge, we do not have a candidate
for such functions thus far, and furthermore, as shown by Bitanskyet al. [4], such functionscannotbe based
on any standard assumption via black-box reduction.

Our results and techniques.In this paper, we provide evidence of a different nature against the existence
of constant-round public-coin ZK proof systems. We focus onthe type of ZK proofs that admit a universal

1

simulator, i.e., ZK proof systems for which there is a singlesimulator that can handle all malicious verifiers.
(To our knowledge, all constructions of ZK proofs in the literature are of this type.)

We uncover an unexpected connection between the existence of such proof systems and a seemingly
unrelated “program functionality distinguishing” problem: for a natural class of constant-round public-coin
ZK proofs (which we call “canonical,” as all known ZK protocols fall in this category), a universal simulator
for such ZK proof system can actually be used to figure out somenon-trivial property of a verifier’s program
functionality. (Since we will always be talking about distinguishing verifiers’ programs, sometimes we will
just refer to the problem as the “verifier distinguishing” problem.) More specifically, we show that, given
a constant-round public-coin ZK proof system〈P, V 〉, there exist a step indexk and a set of polynomial
number of verifiers that share the verifier next-message functions up to the(k − 1)-th step but have distinct
k-th next-message functions—say,t, for t a polynomial, and denoted by(V 1

k , V
2
k , ..., V

t
k)—such that for any

polynomial-time constructible codeV ∗
k that is promised to have the same functionality as one ofV i

k ’s in the
above set, the universal simulator, takingV ∗

k as input, can generate a session prefix before thek-th verifier
step that enables us to single out aV j

k in the set which is functionallydifferentfrom V ∗
k .

In more detail, we construct an distinguishing algorithmU which, taking only(V 1
k , V

2
k , ..., V

t
k) and the

session prefix output by the simulator as input, is able to pin-point an elementV j
k in the set which behaves

differently fromV ∗
k , with probability negligibly close to 1. This means that theuniversal simulator must have

encoded some non-trivial property ofV ∗
k ’s functionality in the session prefix prior to the verifier’sk-th step,

since otherwise if the session prefix is independent ofV ∗
k , the success probability ofU will never exceed

1 − 1
t (note thatU does note takeV ∗

k as an input). In the case of private-coin ZK protocols, encoding the
functionality of the next verifier step in a session prefix is typically done by having the simulator executeV ∗

k

first and then redo the prefix prior to thek-th verifier step such that it can now handle the challenge from V ∗
k .

It should be noted that, for constant-round protocols, sucha rewinding strategy seems to work only for the
cases where the functionality ofV ∗

k is bound to some of the verifier’s previous steps, and this is not the case
for public-coin protocols1.

This is in a sharp contrast with Barak’s public-coin argument system, in which the simulator does not
need to “predict” the verifier’s next-message functionality when computing a session prefix. Think of the first
two steps in the simulation of Barak’s argument, where the verifier sends a random hash function (h) and
the prover replies with a commitment to a hash value of thecode(instead of its functionality) of the next
message function of the verifier’s second step (Com(h(V ∗

2))). Note that when the simulator computes this
session prefix it does not need to figure out the functionalityof V ∗

2 , and in fact the functionality ofV ∗
2 is not

bound to the history prefix(h,Com(h(V ∗
2))). Indeed, when the commitment schemeCom(h(·)) is a perfectly

hiding scheme (which is allowed in Barak’s argument), the messagec = Com(h(V ∗
2)) can be interpreted as a

commitment toanycode of any functionality, and thus it contains zero information aboutV ∗
2 ’s functionality.

Thus, our result can be viewed as further evidence against the existence of constant-round public-coin ZK
proof systems. On one hand, devising a rewinding technique (to figure out the next-step functionality of the
verifier) that could be used in the simulation of such a public-coin proof appears to be fairly inconceivable, as
in these proofs the message (challenge) from each step of theverifier is long and hard for a cheating prover
to pass, and, intuitively, in this setting the rewinding behavior of a simulator (given the code of a malicious
verifier) is akin to learning an arbitrarily complicated andobfuscated verifier’s next-step function (which is, as
a code, independent of any previous step functions) by just sampling a few input-output pairs of this function.

On the other hand, if such a proof does admit a straight-line simulator, then our “functionality distinguish-
ing” result described above shows that one would be able to figure out some non-trivial functionality/property
of V ∗

k without executing it(since “straight-line” typically means that in producing the session prefix before
thek-th verifier step, the simulator does not runV ∗

k), a problem commonly considered notoriously hard. We

1 We note that the rewinding technique used for simulating theknown public-coin protocols simply exploits the “guessingthe next
verifier’s coins” strategy, and requires that the probability of a correct guess is very high. To meet such a requirement,the verifier’s
message has to be short, and as a consequence, the corresponding protocol either has large (non-negligible) soundness error, such
as the original Blum’s 3-round proof fro Graph Hamiltonicity [8], or is of super-constant number of rounds, such as thelog2 n-fold
sequential repetition of Blum’s proof system.

2

note that exactly how hard the problem is in our concrete setting we leave as an interesting research ques-
tion. (Indeed, although we do not give a definite answer to thequestion, we view our work as providing new
negative evidence from a different angle and suggesting directions for further studies towards that goal.)

One key tool in our reduction is an improved structure-preserving version of the well-known Babai-Moran
Speedup (derandomization) Theorem [1,10,11], which is of independent interest. Essentially, our result says
that for a constant-round public-coin interactive proof system in which the verifier sendsm messages and
each of the prover messages is of lengthp, if the cheating probability for an unbounded prover isǫ, then there
exist (p/O(log 1

ǫ))
m verifier random tapes such that the cheating probability forthe unbounded prover over

these tapes is bounded away from 1—and this holds even when the prover knows this small set of random
tapes in advance. In contrast, in our setting the original Babai-Moran theorem would yield a much larger
size (namely,(O(p))m) of such set of verifier random tapes. In addition, we show that this result is tight
with respect to round complexity, in the sense that there arepublic-coin proof systems with a super-constant
number of rounds for which the prover’s cheating probability is 1, over any polynomial number of verifier
random tapes.

The way our derandomization lemma helps in the reduction to the verifier-distinguishing problem is as
follows. Intuitively, for a proof system, it seems that there should be a verifier stepk for which computing a
session prefix prior to this step in the simulation requires the simulator to classify the codes of the “residual”
verifiers according to their functionality, since by unconditional soundness a fixed session prefix can (even for
an all powerful prover) make only a few (as opposed to all efficiently computable functions) of the residual
verifiers accept. Derandomization allows us to focus on those few verifiers on which the cheating probability
of an all powerful prover is still bounded away from1, and then prove the existence of the above critical
verifier step.

Related work. As mentioned above, Barak, Lindell and Vadhan [9] conjectured the existence of certain
entropy-preserving hash functions and proved that the conjecture’s veracity would rule out the possibility
of existence of constant-round public-coin ZK proof systems. Recent work by Bitanskyet al. [4], however,
showed that this conjecture cannot have a black-box reduction from any standard assumption.

A somewhat related problem to our functionality-distinguishing problem is program obfuscation, the the-
oretical study of which was initiated by Baraket al. [6]. At a high level, an obfuscator is an efficient compiler
that takes a program as input and outputs an “unreadable” program with the same functionality as the input
program. Hada [26], in particular, showed that the existence of a certain type of ZK protocol is tightly related
to the existence of an obfuscator for some specific functionality. Unfortunately, for a large class of function-
alities, it has been shown that obfuscators do not exist, andit is not clear whether the recent and exciting
formulation and constructions of indistinguishability obfuscators (cf. [21] and numerous follow-ups) imply a
negative answer to our problem2.

Organization of the paper. Preliminaries, notation and definitions that are used throughout the paper are
presented in Section 2. Definitions ofcanonicalZK proofs and of theverifier-distinguishingproblem are
formulated in Section 3. The improved derandomization lemma is presented in Section 4, and the reduction
of constant-round public-coin ZK proofs to the verifier-distinguishing problem, which makes use of it, in
Section 5. For the sake of readability, some of the proofs presented in the main body are only sketches; the
full proofs can be found in the appendix, as well as a counterexample for superconstant-round proof systems.

2 Preliminaries

In this section we recall some definitions and introduce notation that will be used throughout the paper.

2 Very recently, Canettiet al.[12] constructed a family of “correlation intractable” hash functions based on sub-exponentially secure
indistinguishability obfuscation and input-hiding obfuscators, but as the authors point out, their result does not directly imply the
non-existence of 3-round public-coin ZK proofs.

3

We say that functionneg(n) is negligible if for every polynomialq(n) there exists anN such that for all
n ≥ N , neg(n) ≤ 1/q(n). Throughout this paper, polynomials always refer to polynomials in the security
parametern of a proof system.

When referring to a Turing machineM , we will slightly abuse notation and useM to represent both its
code and its functionality. Specifically, if we writeM ∈ G for some setG, we will mean that there is a Turing
machine inG whose code is identical to the code ofM ; on the other hand, if we say thatM∗ is “functionally
equivalent” toM (as defined below), bothM∗ andM will clearly refer to their functionality.

We think of an interactive Turing machine as a machine that computes a collection of next-message
functions. (We refer the reader to [20] for a rigorous definition.)

Definition 1. For two deterministic (interactive) Turing machinesM1 andM2, we sayM1 andM2 have
the same functionality, or are functionally equivalentif they compute the same collection of next-message
functions. That is, for any inputhist, the next message produced byM1 is identical to the one produced by
M2—i.e.,M1(hist) = M2(hist).

We will useM1 f
= M2 as a shorthand for the above, andM1

f
6= M2 as its negation.

An interactive proof system〈P, V 〉 for a languageL is a pair of interactive Turing machines in which the
proverP wishes to convince the verifierV of some statementx ∈ L. In an interaction betweenP andV , the
viewof V , denoted byViewP

V , consists of the common inputx,V ’s random tape, and all the prover messages
it received. Theround complexityof an interactive proof system〈P, V 〉 is the number of messages exchanged
in an execution of〈P, V 〉. Without loss of generality, in this paper we assume that theverifier V sends the
first message; thus, if the verifier sendsm messages in total, the round complexity of this proof systemis 2m.

Definition 2 (Interactive Proofs). A pair of interactive Turing machines〈P, V 〉 is called aninteractive proof
system for languageL if V is a probabilistic polynomial-time (PPT) machine and the following conditions
hold:

COMPLETENESS: For everyx ∈ L, Pr[〈P, V 〉(x) = 1] = 1.
SOUNDNESS: For everyx /∈ L, and every (unbounded) proverP ∗, Pr[〈P ∗, V 〉(x) = 1] < neg(|x|).

Public-coin proof systems and verifier decomposition.An interactive proof system is calledpublic-coin if
at every verifier step, the verifier sends only truly random messages.

We will use boldface lowercase letters to refer to the verifier’s random tapes (e.g.,r), and italic for each
verifier message (e.g.,r). Thus, for a2m-round public-coin interactive proof system〈P, V 〉, we haver =
[r1, r2, ..., rm], whereri is the i-th verifier message. We use superscripts to distinguish different verifier’s
random tapes; e.g.,r i, r j , etc.

Given a random taper = [r1, r2, ..., rm], we can “decompose” the verifierV (r) into a collection of
next-message functions,V = [V1, V2, ..., Vm], with eachVi being defined as:

ri or⊥← Vi(hist, r1, r2, ..., ri),

wherehist refers to the current history up to the(i−1)-st prover step ; that is, givenhist, Vi(hist, r1, r2, ..., ri)
outputsri if hist is accepting, or aborts if not. Note that the next message function Vi needs the randomness
[r1, r2, ..., ri−1] of previous verifier steps in order to check whether the current history is accepting or not.

We will sometimes abbreviate and use superscripts to distinguish verifiers running on different random
tapes; that is, given two random tapesr

i = [ri1, r
i
2, ..., r

i
m] andrj = [rj1, r

j
2, ..., r

j
m], we will useV i andV j

as a shorthand forV (ri) andV (rj), respectively. Similarly, we will useV i
k to denote thek-th next-message

function of the verifierV (ri).
Now, given a verifierV i = [V i

1 , ..., V
i
m], we will useV i

[j,k] to denote the partial verifier strategy starting
with thej-th next message function and up to thek-th next message function. We will typically be concerned

4

with the following partial strategies:

prefix strategy:V i
[1,k] , [V i

1 , V
i
2 , ..., V

i
k];

suffix strategy:V i
[k,m] , [V i

k , V
i
k+1, ..., V

i
m].

ZK proofs with universal simulator. We first present the standard definition of ZK proofs.

Definition 3 (Zero-Knowledge Proofs).An interactive proof system〈P, V 〉 for a languageL is said to be
zero-knowledgeif for any probabilistic polynomial-timeV ∗, there exists a probabilistic polynomial-time al-
gorithmS such that the distribution{ViewP

V ∗}x∈L is computationally indistinguishable from the distribution
{S(x, V ∗)}x∈L.

The standard simulation process for a malicious verifierV ∗ is typically as follows. The PPT simulator
S, taking the common inputx andV ∗’s code as inputs, is to output a session transcript.S treatsV ∗ as a
subroutine, interacting (with possible “rewinds”) with itinternally, and outputting a view ofV ∗ as the result
of the interaction. Without loss of generality, one can think of the output of the simulator as the final (internal)
interaction betweenS(x, V ∗) andV ∗. In this paper, we wish to be able to obtain prover messages from S
one by one, rather than obtaining the entire session transcript at once. For this purpose, we make the above
(final) internal interaction “external,” by casting the simulation process for a malicious verifierV ∗ as a real
interaction betweenS(x, V ∗) (playing the role of the prover) and an externalV ∗, and wheneverS wants to
rewindV ∗, it does it on its own copy ofV ∗. We denote this interaction by(S(x, V ∗) ⇔ V ∗), and the view

of V ∗ resulting from this interaction by{ViewS(x,V ∗)
V ∗ }x∈L. (For brevity, we will sometimes dropx from the

above notation.)
The following fact is easy to verify.

Fact 1.For anyx and anyV , V ∗ such thatV
f
= V ∗, (S(x, V ∗)⇔ V ∗) generates the same session transcript

as(S(x, V ∗)⇔ V).

We conclude this section with the following definition ofZK proof with universal simulator, which differs
from the standard ZK definition in the order of quantifiers (“∃S∀V ∗” instead of “∀V ∗∃S”).3

Definition 4 (Zero-Knowledge Proofs with Universal Simulator). An interactive proof system〈P, V 〉 for
a languageL is said to bezero-knowledge with universal simulatorif there exists a probabilistic polynomial-
time algorithmS such that for any probabilistic polynomial-timeV ∗, the distribution{ViewP

V ∗}x∈L is com-

putationally indistinguishable from the distribution{ViewS(V ∗)
V ∗ }x∈L.

Remark 1.By definition, a simulator for a ZK proof system needs to handle arbitrary verifiers. Throughout
the paper we just deal with the arbitrary code of anhonestverifier, which strengthens the result.

3 Canonical ZK Proofs and theVerifier-Distinguishing Problem

In this paper we will focus on ZK proof systems with a certain property, which we call “canonical,” since
all known constructions (see below) fall in this category. We first give some intuition behind it. (To simplify
notation, from here on we will drop the common inputx from (S(x, V ∗) ⇔ V ∗), and write the simulation
as(S(V ∗)⇔ V ∗).) We observe that for many ZK protocols, if the simulation isformulated as an interaction
betweenS(V ∗) andV ∗, as in the previous section, then for a successful simulation to take place it is sufficient
to feedS with only thepartial code ofV ∗, rather than with its entire code.

Examples are those ZK proofs following the popular “FLS paradigm” [19], and Blum’s ZK proof systems
for Graph Hamiltonicity [8]. We elaborate on those systems in detail in Section 3.2, but as an illustrative
warm-up, recall that in the FLS paradigm, a ZK proof consistsof two stages: in the first stage, the prover and

3 To our knowledge, all known ZK proofs admit a universal simulator, satisfying this stronger requirement.

5

the verifier set up a trapdoor (which is useful for the simulation), and then, in the second stage, the prover
proves that either the statement being proven is true or thathe knows the trapdoor in a WI protocol. Hence,
it is easy to see that if the codeV ∗ of a malicious verifier is given by two separate specifications V ∗

I and
V ∗

II , representing the first and second stages ofV ∗, respectively, then the simulator can perform a successful
simulation given onlyV ∗

I , since it can extract the trapdoor from it, which, no matter what V ∗
II is, enables

it to simulate the second stage in a straight-line fashion. That is, using the notation from last section, for
any second-stage honest verifierVII (which may have a different functionality fromV ∗

II ’s), both interactions
(S(V ∗) ⇔ [V ∗

I , VII]) and (S(V ∗
I) ⇔ [V ∗

I , VII]) are accepting. This, in a nutshell, is what the canonical
property says—if the former interaction is accepting for any VII , so is the second interaction. We now state
this more formally.

3.1 Canonical ZK proofs

We mentioned partial code ofV ∗ above. The following definition about session prefixes of proof systems will
become handy.

Definition 5 (Good/badsession prefix).Let 〈P, V 〉 be a2m-round public-coin proof system for a language
L, and letV[1,ℓ] denote the set of verifiers that share the same verifier prefix strategyV[1,ℓ], for some1 ≤ ℓ ≤
m. We call a session prefix(r1, p1, ..., pℓ) good with respect toV[1,ℓ] if there is a residual (unbounded) prover
strategy with auxiliary inputV[1,ℓ] which, based on this session prefix, can make a verifier randomly chosen
fromV[1,ℓ] accept with probability1. Otherwise, we call the session prefixbadwith respect toV[1,ℓ].

A more detailed formulation and properties of good/bad prefixes, as well as an illustration (Figure 3), are
presented in Appendix A.

We are now ready to define what we callcanonicalZK proofs; these proofs are defined conditionally,
predicated on the existence of a good prefix. Roughly speaking, the property states that if a simulator
S([V ∗

[1,k−1], V
∗
k]), taking the partial code[V ∗

[1,k−1], V
∗
k] as input, can generate a session prefix up to the(k−1)-

th prover step that is good for verifiers with ak-th step function different fromV ∗
k , thenS can do the same

without being given verifier codeV ∗
k . Next, we present the definition of a canonical ZK proof system with

an arbitrary (constant) number of rounds; in Section 3.2 we analyze concrete examples (e.g., 3-round proof
systems).

Definition 6 (Canonical ZK Proofs). Let 〈P, V 〉 be a2m-round universally simulatable ZK proof system
for a languageL (Definition 4),S be the associated simulator andt be some polynomial. We call〈P, V 〉
canonicalif for any common inputx (not necessarily inL), every setV[1,k−1] of verifiers that share prefix
strategyV[1,k−1], 2 ≤ k ≤ m (as in Definition 5), but witht distinct k-th step strategiesV 1

k , V
2
k , ..., V

t
k , the

following holds.

For any verifier codeV ∗
[1,k−1] satisfyingV ∗

[1,k−1]
f
= V[1,k−1], if, for some1 ≤ i ≤ t, there existsV ∗

k
f
= V i

k

such that the session prefix(r1, p1, ..., pk−1) ← (S([V ∗
[1,k−1], V

∗
k]) ⇔ [V ∗

[1,k−1], V
∗
k]) is good with respect to

V[1,k−1], thenS, taking onlyV ∗
[1,k−1] as input, can also produce a session prefix (i.e.,(r1, p

′
1, ..., p

′
k−1) ←

(S(V ∗
[1,k−1])⇔ V ∗

[1,k−1])) which is good with respect toV[1,k−1].

A canonical ZK proof is depicted in Figure 1.

Remark 2.We stress that, for a zero knowledge proof, the canonical property above makes a demand on
the simulator only when the condition of the if clause holds.We also note that the ability of the simulator
S([V ∗

[1,k−1], V
∗
k]) to produce a good session prefix may depend on the common inputx (see the examples in

the next section).4

4 Further, looking ahead, the only place where this property will be used is in the proof of Lemma 3, where we fix a false statement
x first and then discuss the properties of the simulator.

6

...

r1
←−−−
p1
−−−→

rk−2
←−−−
pk−2
−−−→
rk−1
←−−−

pk−1
−−−→

V1

Vk−2

Vk−1

V 1
k V i

k V j
k

V t
k

· · · · · · · · ·

· · · · · · · · · · · ·

S(V ∗

[k−1], V
∗

k)

([V ∗

[k−1], V
∗

k]

is functionally

equivalent to

[V1, V2, · · · ,

Vk−1, V
i
k])

...

r1
←−−−
p′1
−−−→

rk−2
←−−−
p′k−2
−−−→
rk−1
←−−−

p′k−1
−−−→

V1

Vk−2

Vk−1

V 1
k V i

k V j
k

V t
k

· · · · · · · · ·

· · · · · · · · · · · ·

S(V ∗

[k−1])

Fig. 1. A canonical ZK proof.

3.2 Canonical ZK proofs: Examples

To our knowledge, all constructions of ZK proofs enjoy this property—cf. the FLS proof system [19] example
at the beginning of the section, as well as those protocols that do not follow the FLS paradigm, such as, for
example, Blum’s 3-round ZK proof for Graph Hamiltonicity [8] (and its sequential repetition version), which
we now analyze in more detail.

Blum’s Graph Hamiltonicity ZK proof.Consider Blum’s 3-round ZK proof system for Graph Hamiltonicity
(with soundness error12). In this case, we denote byV 1

1 andV 2
1 the verifiers that produce challenges 1 and 0,

respectively5. Suppose that when the verifier sends challenge 1, the proverneeds to reveal the isomorphism
between the common input graph and the graph committed in thefirst prover messagep1. Note that when the
simulatorS takes anyV ∗

1 that is functionally equivalent toV 1
1 , then it will simply choose an isomorphism

and commit to a new graph isomorphic to the common input graphin the messagep1 (i.e., it acts as an honest
prover in the first prover step). For this proof system, the “if” clause of Definition 6 holds depending on
whether the common input graph is Hamiltonian or not:

If the common input graph is Hamiltonian, then the “if” clause holds: Given a verifier codeV ∗
1 that is

functionally equivalent toV 1
1 as input (i.e.,i = 1 in Definition 6),S(V ∗

1) will generate a first prover
messagep1, for which an unbounded prover can answer both challenges 1 and 0 (fromV 1

1 andV 2
1 , resp.),

since the graph committed byS(V ∗
1) in p1 is also Hamiltonian. In this case, the simulatorS, without

being given the codeV ∗
1 , can also act as an honest prover in the first prover step and generatep1 that will

enable an unbounded prover to answer both challenges 1 and 06—i.e., prefixp1 is goodwith respect to
the verifier set{V 1

1 , V
2
1 }.

If the common input graph is not Hamiltonian then the “if” clause does not hold: Fort ∈ {1, 2}, given a
verifier codeV ∗

1 that is functionally equivalent toV t
1 as input,S(V ∗

1) will generate the first prover message
p1 for which an unbounded prover can only answer a challenge from V t

1 , since the graph committed inp1
is either a graph isomorphic to the common input graph or a Hamiltonian graph (which is not isomorphic
to the common input graph)—i.e.,p1 is bad with respect to the verifier set{V 1

1 , V
2
1 }.

In sum, Blum’s 3-round ZK proof system for Graph Hamiltonicity is canonical according to Definition 6:
whenever the definition’s “if” clause is satisfied, i.e., thesimulatorS(V ∗

1) can generatesp1 that is good with
respect to both verifier challenges, thenS, without being given the codeV ∗

1 as input, can also generate a good
prefixp1.

5 To match our definition, we can think of these protocols as being of even number rounds by letting the verifier send a dummy
message in the first step of the protocol, and denote byV i

2 the challenge step of the verifier.
6 Recall that an honest prover can computep1 without knowledge of the corresponding witness

7

FLS-type ZK proofs.The classical FLS-type ZK proofs [19] are also canonical. Recall how these proofs
work. In the first stage, the verifier sends a perfectly hidingcommitmentc1 to a random string, followed by
a perfectly binding commitmentc2 to a random string from the prover, after which the verifier opens the
commitment sent at its first step. In the second stage, the prover proves that the common inputx ∈ L or
that the random string committed inc1 matches the random string committed inc2 via a Blum 3-round proof
system as above (but with negligible soundness error). We view the two verifier steps in the first stage as a
single step7, and denote it byV1, and denote byV2 the verifier step in stage 2. We now analyze what happens
at each step.

It is easy to verify that the second verifier step (k = 2) satisfies the definition, based on the following
observation. Fix a codeV ∗

1 of the first verifier step (recall that, by definition, we consider only on the set of
verifiers sharing the same first verifier step that is functionally equivalent toV ∗

1 .) Observe that the simulator,
given only a codeV ∗

1 of a first stage verifier that is functionally equivalent to someV1 as input, can generate a
good first stage prefix (by rewinding the first stage verifierV ∗

1) that will enable an unbounded prover answer
any challenge from the second verifier step (since an unbounded prover can always recover the corresponding
trapdoor from the transcript of the first stage and carry out the second stage in a straight-line fashion). I.e., the
unbounded prover will, based on the first stage transcript output byS(V ∗

1), make a random verifier that share
the same prefixV1 accept.

For the first verifier stepV1, the “if” condition is satisfied depending on whetherx ∈ L or not:

Whenx ∈ L, the “if” clause holds, since an unbounded prover can, basedon any first stage transcript
output by the simulatorS(V ∗

1), make a random verifier (that may have a prefix functionally different from
V ∗
1) accept with probability 1 by finding the witness forx ∈ L and acting as an honest prover in the second

stage. In this case, the simulatorS, without being given the codeV ∗
1 , can also act as an honest prover in

the first prover step and generate a random first stage transcript (which does not form a trapdoor), and
based on this transcript, an unbounded prover can always finda witness forx ∈ L to make a random
verifier accept with probability 1.
Whenx /∈ L, the “if” clause does not hold: For every two different first verifier stepsV 1

1 , V 2
1 , and every

two different second verifier stepsV 1
2 , V 2

2 (that will output different challenges in Blum’s protocol),
whereV t

1 (t ∈ {1, 2}) commits tort and then opens the commitment, andV b
2 (b ∈ {1, 2}) simply sends

challengeeb, the simulatorS, given a codeV ∗
1 that is functionally equivalent toV i

1 (i ∈ {1, 2}) as input,
will generate a first stage transcript for which an unboundedprovercannotmake a random verifier from
the set of four verifiers{V t

1 , V
b
2 } accept with probability 1, since for verifier prefixV j

1 different fromV i
1 ,

the first stage transcript output byS(V ∗
1) will not form a valid trapdoor for the prover, and thus, if the

random verifier is chosen from the verifier set{V j
1 , V

b
2 }, based on this first stage transcript, an unbounded

prover cannot make the random verifier accept with probability greater than12 .

In sum, FLS-type ZK proofs are also canonical according to Definition 6: Whenever Definition 6’s “if”
clause holds for a verifier stepk, the simulator can generate a good prefix prior to thek-th verifier step without
being given the code of this verifier step.

Barak’s argument system.Finally, one may wonder where Barak’s argument system (not known to be a proof
system) fits in all this. We view the first three messages in thesystem (the hash function selected by the
verifier, the commitment computed by the prover, and the verifier’s random challenge—recall the description
in Section 1) as the first stage, and the remaining WIUA (Witness Indistinguishable Universal Argument)
as the second stage. Thus, following the same reasoning as above, for k > 2, the canonical property is
satisfied at thek-th verifier step. However, for the second verifier step (at which the verifier outputs a random
challenge), whenx /∈ L, we do not know if Definition 6’s “if” clause holds.

Canonical ZK proofs are used in the next section to formulatethe “verifier-distinguishing problem,” to
which the existence of constant-round public-coin ZK proofs is reduced.

7 Note that the second verifier message is bound to the first verifier messagec1, and that, when considering the canonical property
at the second verifier step, the “if” condition of the definition 6 requires that, after for a single verifier’s first step, there are many
possible distinct verifier’s second steps (i.e.,t ≥ 2).

8

3.3 Theverifier-distinguishingproblem

In a nutshell, given a set of distinct verifierk-th next-message functions, the problem resides in constructing
a distinguishing algorithmU which, given a session prefix (prior to thek-th verifier step) output by simulator
S, such that for any polynomial-time constructible programV ∗

k that is promised to be functionally equivalent
to one of the next-message functions, is able to discern one from the set that is functionallydifferentfrom V ∗

k .
Formally:

Definition 7 (The Verifier-Distinguishing Problem). Let 〈P, V 〉 be a2m-round canonical ZK proof system
for a languageL (Definition 6),S be its simulator,p the length of each prover’s message, andt a polynomial
in the security parametern. Given are a setV[1,k−1] of deterministic honest verifiers that share the same
prefix verifierV[1,k−1], but havet distinctk-th next-message functionsV 1

k , V
2
k , ..., V

t
k , denoted by setVk, and

an auxiliary inputaux8. Theverifier-distinguishing problemis to find a non-uniform algorithmU , running in
time2O(p), such that for every polynomial-time algorithmC, the following holds:

First, C picks a machineV i
k ∈ Vk at random and outputs a polynomial-time Turing machineV ∗

k such that

V ∗
k

f
= V i

k .

Next,U , taking(V[1,k−1],Vk) and a session prefix(r1, p1, ..., pk−1) output byS(aux, V ∗
k), outputsV j

k ∈

Vk such thatV j
k

f
6= V ∗

k with probability negligibly close to1. I.e.,

Pr

[

V ∗
k ← C(Vk, i); (r1, p1, ..., pk−1)← S(aux, V ∗

k);

j ← U(V[1,k−1],Vk, r1, p1, ..., pk−1)
: V ∗

k

f
6= V j

k

]

> 1− neg(n),

where the probability is taken over the random choicei and the randomness used byC,U andS.

Remark 3.We note that in the definition, algorithmU is not givenV ∗’s code as input. This means that if
U is able to carry out its task, then the simulator must encode some non-trivial functionality ofV ∗

k in such
a session prefix. As mentioned before, this is in sharp contrast with known straight-line simulators such as
Barak’s, which are oblivious to the verifier’s functionality in computing a session prefix. We elaborated on
some of the difficulties in solving this problem in Section 1,overcoming which (if at all possible) would
require a technical breakthrough in simulation techniques.

4 An Improved Derandomization Lemma for Interactive Proofs

In this section we prove a structure-preserving version of the well-known Babai-Moran “Speedup Theo-
rem” [1,10] with improved parameters for our application, which we will then use in the proof of our main
result (Theorem 2). Essentially, the result says that for any constant-round public-coin interactive proof sys-
tem with small soundness error, there exists a polynomial set of random verifier tapes such that the cheating
probability for the unbounded prover over these verifier tapes is bounded away from 1—and this holds even
when the prover knows this small set of random tapes in advance.

We first recall the Babai-Moran theorem. LetAM[k] denote the set of languages whose membership can
be proved via ak-round public-coin proof system.

Theorem 1 ([10]).For any polynomialt(n), AM[t+1] = AM[t]. In particular, for any constantk, AM[k] =
AM[2].

For our application, we wish to de-randomize the verifier while keeping the original proof system structure
intact (that is, without “collapsing” the round complexity). TheAM[k] = AM[2] proof—and its randomness-
efficient variant in [11]9—actually yield such a result: for any2m-round public-coin proof system with small

8 This auxiliary input is given toS; in our main theorem (Theorem 2) it will be the code of some verifier prefix strategy.
9 In [11], Bellare and Rompel present a randomness-efficient approach to transformAM[k] into AM[2]: to halve the number of

rounds of an Arthur-Merlin proof system, they introduce a so-called “oblivious sampler” and use a small amount of randomness

9

soundness errorǫ, there exist(O(p))m verifier random tapes over which the cheating probability ofan un-
bounded prover is still bounded away from 1, wherep is the length of the prover’s messages.

Next, we present an improvement to this result, in which the number of such verifier random tapes reduces
to (p/O(log 1

ǫ))
m. In addition, we show that this de-randomization lemma is essentially tight with respect to

the round complexity, as there are super-constant-round public-coin proof systems for which the prover’s
cheating probability is1, over any polynomial number of verifier random tapes.

Before stating the lemma, we introduce some additional notation:

V|(r1,r2...,rt) denotes the honest verifier that is restricted to chooseuniformly at randomone ofr1, r2..., rt

as its random tape, wheret is a polynomial; we useV|(r1,r2...,rt)(r
i) to denote the verifier that takesri,

1 ≤ i ≤ t, as its random tape.
P ∗(r1, r2..., rt) denotes the unboundedcheatingprover with auxiliary input(r1, r2..., rt), indicating that
it will interact with V|(r1,r2...,rt).

We now state the result formally. For simplicity, we assume that all the prover messages are of equal
length.

Lemma 1. Letm be a constant and〈P, V 〉 be a2m-round public-coin interactive proof system for language
L with negligible soundness errorǫ. Letp denote the length of the prover’s messages. Then for everyx /∈ L,
there existq = (p/O(log 1

ǫ))
m different random tapes,r1, r2, ...rq, such that for every unbounded proverP ,

Pr[〈P (r1, r2, ...rq), V|(r1,r2,...rq)〉(x) = 1] ≤ 1−
1

q
.

Here we present the intuition and basic inequalities that yield the proof for the case of a 3-round proof
system10 (similar ideas also appeared in [1,10]), and defer the full proof of the lemma to Appendix B.1.

Let us consider a 3-round public-coin proof system〈P, V 〉 with negligible soundness error for some
languageL11, in which the prover sends the first messagep1 and the last messagep2, and the verifier sends
the second messager (its public coins). Without loss of generality, we assume|p1| = |p2| = p, and|r| = n.
We now prove that there exists a numberp of verifier random tapes12 (r1, r2, ..., rp) over which the cheating
probability is at most1− 1/p.

For the sake of contradiction, assume that for some false statementx /∈ L there is an unbounded prover
P ⋄ such that for anyp-tuple(r1, r2, ..., rp), P ⋄(r1, r2, ..., rp) can cheatV|(r1,r2,...rp) with probability 1. Now

note that the number of such successful cheating provers is
(2n

p

)

, and that there are at most2p different first

prover messagesp1. Thus, there is a number of at least
(

2n

p

)

/2p P ⋄(r1, r2, ..., rp)’s that produce the same first
prover message, denote itp∗1, for which if the verifier is using a random tape in any of thep-tuples

{(r1, r2, ..., rp) : p∗1 ← P ⋄(r1, r2, ..., rp)},

we have an unbounded prover that can produce a second prover messagep∗2 to make the verifier accept.
On the other hand, the number ofp-tuple choices(r1, r2, ..., rp) out of a1/2e fraction of all possible

verifier random tapes is at most
(2n

2e
p

)

. Since

(2n

2e

p

)

< (
2n

2p
)p <

(

2n

p

)

2p
,

to specify roughlyO(p) verifier messages in the original proof system. Their proof,however, yields almost the same result as the
Speedup Theorem in our setting where we want to maintain the structure of the original proof system, and only care about the
number of original verifier random tapes that are needed to make sure the resulting protocol after derandomization is still a proof
system.

10 The basic reasoning here applies to a proof system of even number (4) of rounds as well, by having the verifier send a dummy
message first.

11 For example, then-folded parallel version of Blum’s 3-round proof for Graph Hamiltonicity [8], or the 3-round proof for Graph
Isomorphism [23].

12 For simplicity’s sake, we do not optimize this parameter here.

10

we have that the set{(r1, r2, ..., rp) : p∗1 ← P ⋄(r1, r2, ..., rp)} covers at least a1/2e fraction of all possible
verifier random tapes.

In sum, we are able conclude that there is an unbounded prover, which sendsp∗1 as its first message, that
can make the verifier accept the false statement with probability at least1/2e. This contradicts the negligible
soundness error of〈P, V 〉.

The proof of the lemma for the general (arbitrary constant rounds) case can be found in Appendix B.1,
and the tightness result, i.e., the counterexample for superconstant-round proof systems, in Appendix C.

5 Constant-Round Public-Coin Zero-Knowledge Proofs ImplyDistinguishing Verifiers’
Programs

We are now ready to present our main result, which exhibits a reduction from constant-round public-coin
canonical ZK proofs to the functionality-distinguishing problem (Definition 7), a problem seemingly quite
different in nature. We first fix some parameters and revisit notation:

〈P, V 〉: A 2m-round public-coin canonical ZK proof sytem for some constant m. We letn be the security
parameter andp be the length of each prover’s message.
V[1,k−1]: A set of deterministic honest verifiers that share the same (honest) prefix verifierV[1,k−1], but
havet distinctk-th step functionsV 1

k , V
2
k , ..., V

t
k ; |V[1,k−1]| ≤ q, wheret andq are polynomials (defined

in Lemma 1)13.
Vk: The set{V 1

k , V
2
k , ..., V

t
k }, as above.

V ′
[1,k−1]: The auxiliary input toS, which is the code of a prefix verifier such thatV ′

[1,k−1]
f
= V[1,k−1].

(Whenk = 1, it is set to the empty string.)

We now show that if〈P, V 〉 admits a universal simulatorS, then there is an algorithmU , takingV[1,k−1],
Vk and a session prefix as inputs, which can solve the functionality-distinguishing problem (cf. Definition 7)
with respect to verifier setVk. Formally:

Theorem 2. Let 〈P, V 〉 be a2m-round, public-coin canonical ZK proof system with negligible soundness
error for a non-trivial languageL /∈ BPP , andS be its universal simulator. Then, there exist an infinite
setI, a sequence of false statementsx /∈ L of lengthn for eachn ∈ I, a constantk, 2 ≤ k ≤ m, sets
V[1,k−1] andVk, a verifier codeV ′

[1,k−1] as above, and an algorithmU , running in time2O(p), such that, for

any polynomial-time algorithmC that on input(Vk, i), 1 ≤ i ≤ t outputsV ∗
k satisfyingV ∗

k
f
= V i

k ∈ Vk, the
following holds:

Pr

[

V ∗
k ← C(Vk, i); (r1, p1, ..., pk−1)← (S([V ′

[1,k−1], V
∗
k])⇔ V ′

[1,k−1])

j ← U(V[1,k−1],Vk, r1, p1, ..., pk−1)
: V ∗

k

f
6= V j

k ∈ Vk

]

> 1− neg(n),

where the probability is taken over the random choicei and the randomness used byC, U andS.

We now give a high-level sketch of proof of the theorem, whichmainly consists of three steps. (Refer to
Figure 2.)

1. The first step is Lemma 1 from the previous section. LetV 1, V 2, ..., V q denote theq deterministic verifiers
given by the lemma. The various trees in Figure 2(a) correspond to theseq verifiers.

2. Next, we show that there exists a sequence of infinitely many false statementsx such that for every verifier
V i, 1 ≤ i ≤ q, and any polynomial-time constructible codeV ∗ which is functionally equivalent toV i,
the session(S(V ∗) ⇔ V ∗) (which, by Fact 1 is identical to(S(V ∗) ⇔ V i)) is accepting except with
negligible probability. This is shown in Figure 2(a).

13 At thek-th verifier step, the number of distinct next-message functions should in fact betk. For simplicity, we assumet = tk for
all 1 ≤ k ≤ m.

11

3. For any false statementx in the above sequence, we prove that among theseq verifiers, we can find a
(sub)treeV[1,k−1] that has the same prefix strategy[V1, V2, ..., Vk−1] up to the(k − 1)-th verifier step
but “splits” at thek-th verifier step, and a codeV ′

[1,k−1] that is functionally equivalent toV[1,k−1] =

[V1, V2, ..., Vk−1], such that, for any polynomial-time constructible codeV ∗
k that is promised to be func-

tionally equivalent to one of thoseV i
k ’s (nodes) at levelk, the following two conditions hold:

The session prefix(r1, p1, ..., pk−1) produced by(S([V ′
[1,k−1], V

∗
k]) ⇔ V ′

[1,k−1]) (or equivalently, by
(S([V ′

[1,k−1], V
∗
k]) ⇔ V[1,k−1])) is bad with respect toV[1,k−1] (cf. Definition 5). This implies that

there is a subtree (refer to Figure 2(b)) inV[1,k−1], with respect to which(r1, p1, ..., pk−1) is bad.

However, the session prefix(r1, p1, ..., pk−1) is goodwith respect to the subtree that shares the same
prefix strategy[V[1,k−1], V

i
k] (refer to Figure 2(b)).

This enables us to construct an algorithm that is able to “understand” the codeV ∗
k , by pin-pointing another

verifier code, say,V j
k , such thatV j

k

f
6= V ∗

k .

The proof in detail. Given Lemma 1, we now present the remaining details of the proof of Theorem 2. Again,
let 〈P, V 〉 be a2m-round public-coin canonical ZK proof for some non-trivial(outsideBPP) languageL,
andS be its associated simulator. We first prove the following lemma, where Lemma 1 is used.

Lemma 2. Let 〈P, V 〉 be as above. Then there exist an infinite setI, a sequence of false statementsx /∈ L of
lengthn for eachn ∈ I, andq honest verifiersV 1, V 2, ..., V q (recall that we useV i as a shorthand forV (ri),

1 ≤ i ≤ q), such that given the description of any polynomial-time constructibleV ∗ f
= V i for a randomi as

input, the interaction(S(V ∗)⇔ V ∗)14 will produce an accepting transcript with probability negligibly close
to 1, while the unbounded prover can cheat only with probabilityat most1− 1/q.

Proof. We first prove that there is an infinite setI of security parameters and a sequence of false statements
x /∈ L of lengthn for eachn ∈ I so that for every PPT algorithmC which takes picks a randomV from the

set of verifiers and outputsV ∗ such thatV ∗ f
= V , the simulation(S(V ∗) ⇔ V ∗) will generate an accepting

transcript with probability negligibly close to 1 (over therandomness used byS and the random choice of
verifier). Suppose otherwise, for sufficiently largen, there is no false statementx of lengthn and a code
V ∗ output by some PPT algorithmC on which(S(V ∗) ⇔ V ∗) will generate an accepting transcript with
probability less than1− 1/poly(n) for some polynomialpoly, then the following simple algorithm could be

used to decide membership inL efficiently15: Pick a verifier at random and runC to constructV ∗ f
= V as

above, and then haveS on inputx andV ∗ interact withV ∗; if V ∗ accepts, output “x ∈ L,” otherwise output
“x /∈ L.”

Now fix a false statementx /∈ L in the above sequence, and setQ to be the set of verifier random tapes

such that for anyr ∈ Q and any polynomial-time constructibleV ∗ f
= V (r), (S(V ∗) ⇔ V ∗) will generate

an accepting transcript with probability negligibly closeto 1. We now show that the size ofQ is larger than a
(1− neg(n)) fraction of all possible random tapes. Assume the verifier’srandom taper andS’s random tape
R are uniformly distributed over{0, 1}l and{0, 1}s, respectively, wherel ands are some polynomials, and
denote byE the event that the simulation(S(V ∗)⇔ V ∗) generates an accepting transcript. We have

14 Recall that this interaction is identical to(S(V ∗)⇔ V i) (Fact 1).
15 Although the error probability here may be high, it can be reduced by standard parallel repetition.

12

...

r1
←−−−
p1
−−−→

rk−2
←−−−
pk−2
−−−→
rk−1
←−−−

pk−1
−−−→

V1

Vk−2

Vk−1

V 1
k V i

k V j
k

V t
k

· · · · · · · · ·

· · · · · · · · · · · ·

S(V ′

[k−1], V
∗

k)

([V ′

[k−1], V
∗

k]

is functionally

equivalent to

[Vk−1, V
i
k])

pk−1 is the same

Denote byV[1,k−1] the
prefix strategy

[V1, V2, · · · , Vk−1]

Let hist be the prefix
(r1, p1, · · · , pk−1)

(a)

(b)

...

· · · · · · · · · · · ·

· · · · · · · · ·

· · ·

V 1V 2 · · ·

...

· · · · · · · · · · · ·

· · · · · · · · ·

· · ·

· · · · · ·

· · · · · ·

...

· · · · · · · · · · · ·

· · · · · · · · ·

· · ·

S(V ∗)

−−→

←−−

−−→

←−−

−→

←−−

−−→

←−−

−−→

←−−

V q−1V q

hist is good w.r.t
this subtree

hist is bad w.r.t
this subtree

hist is bad w.r.t this tree

Fig. 2.Pictorial depiction of the proof of Theorem 2. Figures (a) and (b) correspond to Lemma 2 and Lemma 3, respectively. In Figure
(b), the prefix(r1, p1, ..., pk−1) is bad w.r.t. the entire tree, which implies that there is a subtree for which this session prefix is bad;

however, the prefix is good w.r.t. the subtree that shares thesame prefix strategy[V[1,k−1], V
i
k] for whichV ∗k

f
= V i

k .

13

Pr
r←{0,1}l

R←{0,1}r

[V ∗ ← C(r) : E] (1)

= Pr
r←{0,1}l

R←{0,1}r

[V ∗ ← C(r) : E|r ∈ Q] Pr[r ∈ Q]

+ Pr
r←{0,1}l

R←{0,1}r

[V ∗ ← C(r) : E|r /∈ Q] Pr[r /∈ Q]

≤ Pr[r ∈ Q] + (1−
1

poly(n)
) Pr[r /∈ Q]

=
|Q|

2l
+ (1−

1

poly(n)
)(1 −

|Q|

2l
)

= 1−
1

poly(n)
(1−

|Q|

2l
).

Given that the probability in expression(1) is greater than1− neg(n), so is the quantity|Q|
2l

.
Thus, givenx /∈ L, for any unbounded prover, the cheating probability, takenover the choices of verifier

random tapes inQ, is still negligible. Applying now Lemma 1, we can findq random tapesri ∈ Q, 1 ≤ i ≤ q,
such that the probability, taken over theseq random tapes, that the unbounded prover makes the verifier accept
is at most1− 1/q. This completes the proof of the lemma. ✷

The next lemma, where Lemma 2 is used, is the key step in establishing our main theorem.

Lemma 3. Let 〈P, V 〉 be as above. Fix the infinite setI and the sequence of false statementsx /∈ L guaran-
teed by lemma 2. Then there exists a triplet(k,V[1,k−1], V

′
[1,k−1]), where:

2 ≤ k ≤ m;
V[1,k−1] is a subset of verifiers that share the same prefix strategyV[1,k−1] but havet distinct k-th step
strategiesV 1

k , V
2
k , ..., V

t
k , denoted byVk (we letV i[1,k] denote the subset of verifiers inV[1,k−1] that share

the same prefix strategy[V[1,k−1], V
i
k]); and

V ′
[1,k−1] is a prefix verifier code functionally equivalent toV[1,k−1],

such that, for any1 ≤ i ≤ t and any polynomial-time constructible codeV ∗
k satisfyingV ∗

k
f
= V i

k , (S([V ′
[1,k−1], V

∗
k])

⇔ [V ′
[1,k−1], V

∗
k]) will generate a session prefix(r1, p1, ..., pk−1) satisfying the following two conditions:

1. (r1, p1, ..., pk−1) is badwith respect toV[1,k−1];

2. (r1, p1, ..., pk−1) is goodwith respect toV i[1,k].

Fix a security parametern and a false statementx /∈ L of length n in the sequence guaranteed by
Lemma 2. We prove the lemma by examining the next-message functions of theq honest verifiersV 1, V 2, ...V q

guaranteed by Lemma 2, step by step. At a high level, the structure of the proof is as follows:

1. First, show that there exists a triplet(2,V[1], V
′
[1]) satisfying condition 1.

2. Show that any(m− 1,V[1,m−1], V
′
[1,m−1]) satisfies condition 2.

3. Show that, for any2 ≤ k ≤ m−1, if a given(k,V[1,k−1], V
′
[1,k−1]) satisfes condition 1, but not condition

2, then we have a triplet(k + 1,V[1,k], V
′
[1,k]) that satisfies condition 1.

This reasoning guarantees that we can find a triplet(k,V[1,k−1], V
′
[1,k−1]), for some2 ≤ k ≤ m, which satisfies

both conditions. The detailed proof of the above three stepsis presented in Appendix B.2.

We are now ready to construct the distinguishing algorithmU , yielding the proof of the theorem. Fix a
false statementx in the sequence guaranteed by Lemma 2, andk, V[1,k−1], Vk, andV ′

[1,k−1] as in Lemma 3.

14

Let the output of an arbitrary PPT algorithmC on input(Vk, i) for randomi beV ∗
k such thatV ∗

k
f
= V i

k ∈ Vk.
Algorithm U works as follows.16

The distinguishingalgorithm U .

Input toU : V[1,k−1], Vk, (r1, p1, ..., pk−1)← (S([V ′
[1,k−1], V

∗
k])⇔ V ′

[1,k−1]) and an initially empty setT .

1. For eachj, 1 ≤ j ≤ t, exhaust all possible prover messages after thek-th verifier step, checking if the
session prefix(r1, p1, ..., pk−1) is good with respect toVjk. If not, addj to setT .

2. Output an arbitraryj in T .

As mentioned before, in its second step,U can check whether the given session prefix is good in time
2O(p), which overwhelmingly dominates its the running time.

Condition 1 of Lemma 3 guarantees that there existsj such that the session prefix(r1, p1, ..., pk−1) pro-
duced inU ’s step 1 isbadwith respect toVj[1,k−1], which implies thatT is not empty. Condition 2 of Lemma 3

guarantees that if(r1, p1, ..., pk−1) is bad with respect toVj[1,k−1], thenV ∗
k

f
6= V j

k . In other words, algorithmU

was able to pin-point a program (V j
k) functionallydifferentfrom V ∗

k . This concludes the proof of Theorem 2.

6 Conclusions

A natural question which arises from our reduction is: How hard is the functionality-predicting problem (Defi-
nition 7)? As mentioned before, since our predicting algorithmU does not take the target codeV ∗

k as input, the
simulator must encode some non-trivial functionality ofV ∗

k in the session prefix(r1, p1, ..., pk−1). However,
if the simulator runs in a straight-line manner such as Barak’s [2], it does not executeV ∗

k in computing the
history prefix prior to the verifier’sk-th step, and this means it is able to discern some non-trivial property of
V ∗
k ’s functionality and encode it in the session prefix(r1, p1, ..., pk−1) without executingV ∗

k , which seems to
be highly unlikely. We leave the exact characterization of this problem’s hardness as an interesting research
question.

Since, as also argued in the introduction, rewinding seems to be out of the picture, this leads us to think
of our main theorem as strong evidence against the existenceof such proof systems, and safely conclude
that constructing non-trivial constant-round public-coin ZK proofs (if they exist) requires a paradigm-shifting
simulation technique.

Acknowledgements

The authors would like to thank Susumu Kiyoshima, Sanjam Garg, and the anonymous reviewers forSCN ’16
for their valuable comments.

References

[1] L. Babai: Trading Group Theory for Randomness. STOC 1985, pp. 421-429, 1985.
[2] B. Barak: How to go beyond the black-box simulation barrier. FOCS 2001, pp.106-115.
[3] G. Brassard, D. Chaum, and C. Crépeau: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci., 37(2):156-189, 1988.
[4] N. Bitansky, D. Dachman-Soled, S. Garg, A. Jain, Y. Kalai, A. Lpez-Alt, D. Wichs: Why ”Fiat-Shamir for Proofs” Lacks a

Proof. TCC 2013: 182-201.
[5] B. Barak, O. Goldreich, S. Goldwasser, Y. Lindell: Resettably sound ZK and its Applications. FOCS 2001, pp. 116-125,2001.
[6] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, K. Yang: On the (Im)possibility of Obfuscating

Programs. CRYPTO 2001, pp.1-18, 2001.
[7] B. Barak, Y. Lindell: Strict polynomial-time in simulation and extraction. STOC 2002, pp.484-493. 2002.
[8] M. Blum: How to prove a theorem so no one else can claim it. Proceedings of theInternational Congress of Mathematicians,

pp.444-451, 1986.

16 Keep in mind that we omit inputsx and randomness toS andU for simplicity.

15

[9] B. Barak, Y. Lindell, S. P. Vadhan: Lower Bounds for Non-Black-Box Zero Knowledge. FOCS 2003, pp.384-393,2003.
[10] L. Babai, S. Moran: Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes. J. Comput.

Syst. Sci. 36(2): 254-276, 1988.
[11] M. Bellare, J. Rompel: Randomness-Efficient ObliviousSampling. FOCS 1994, pp.276-287.
[12] R. Canetii, Y. Chen and L. Reyzin: On the Correlation Intractability of Obfuscated Pseudorandom Functions. TCC(A)2016,

pp.389-415.
[13] R. Canetti, O. Goldreich, S. Goldwasser, S. Micali. Resettable Zero Knowledge. STOC 2000, pp.235-244, 2000.
[14] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Concurrent Zero-Knowledge requiresΩ(logn) rounds. STOC 2001, pp.570-579,

2001.
[15] I. Damgaard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. EUROCYPT 2000, pp.174-187, 2000.
[16] Y. Deng, V. Goyal, A. Sahai: Resolving the SimultaneousResettability Conjecture and a New Non-Black-Box Simulation

Strategy. FOCS 2009, pp.251-260.
[17] G. Di Crescenzo, Ivan Visconti. Concurrent ZK in the Public-Key Model. ICALP 2005, pp.816-827, 2005.
[18] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. STOC 1998, pp.409-418, 1998.
[19] U. Feige, D. Lapidot and A. Shamir: Multiple Non-Interactive Zero Knowledge Proofs Under General Assumptions. SIAM J.

on Computing 29 (1999) 1C28.
[20] O. Goldreich: The Foundations of Cryptography - Volume1, Basic Techniques. Cambridge University Press 2001.
[21] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai and Brent Waters: Candidate Indistinguishability Ob-

fuscation and Functional Encryption for all Circuits. FOCS2013, pp.40-49.
[22] O. Goldreich and H. Krawczyk: On the Composition of Zero-Knowledge Proof Systems. SIAM J. Comput. 25(1), pp.169-192,

1996.
[23] O. Goldreich, S. Micali and A. Wigderson. Proofs that yield nothing but their validity or All languages in NP have zero-

knowledge proof systems. J. ACM, 38(3), pp.691-729, 1991.
[24] S. Goldwasser, S. Micali, and C. Rackoff. The knowledgecomplexity of interactive proof systems. SIAM. J. Computing,

18(1):186-208, February 1989.
[25] O. Goldreich, S. Vadhan and A. Wigderson. On Interactive Proofs with a Laconic Prover. ICALP 2001, pp. 334-345.
[26] S. Hada: Zero-Knowledge and Code Obfuscation. ASIACRYPT 2000, pp.443-457, 2000.
[27] R. Pass, A. Rosen: New and improved constructions of non-malleable cryptographic protocols. STOC 2005: 533-542.
[28] M. Prabhakaran, A. Rosen, A. Sahai: Concurrent Zero Knowledge with Logarithmic Round-Complexity. FOCS 2002, pp.366-

375, 2002.

A Good/Bad/Session Prefixes (cont’d)

In this section we provide a more detailed formulation of thenotion, as well as an illustration of good/bad
prefixes. Recall Definition 5. Equivalently, we call a session prefix(r1, p1, ..., pℓ) “good” with respect toV[1,ℓ]
if the following holds, which can be decided in time exponential in the length of the prover’s messages. Let
poly be the size ofV[1,ℓ]. Then there arepoly number of session continuations of the form(rℓ+1, ..., pm),
each assigned to a verifier inV[1,ℓ], such that the following conditions hold:

1. Every verifier inV[1,ℓ] will accept the transcript(r1, p1..., pℓ, rℓ+1, ..., pm) assigned to it.

2. If two verifiers inV[1,ℓ] share the same prefix strategy up to theℓ′-th step,ℓ ≤ ℓ′ ≤ m, then the two
transcripts assigned to them share the same session prefix(r1, p1..., rℓ′ , pℓ′).

A good session prefix is pictorially depicted in Figure 1(a).In the figure, if(r1, p1, ...pℓ) is good with
respect to the tree, then for every edge belowVℓ, we can assign a prover message to it such that: (1) each
path is accepting, and (2) for every two paths that share the same prefix strategy up to theℓ′-th verifier step,
ℓ ≤ ℓ′ ≤ m (e.g., the red paths), the session prefixes of these two pathsup to theℓ′-th prover step are the
same.

In addition, one can easily verify the following “robustness” fact about a good session prefix: if a session
prefix (r1, p1, ..., pℓ) is good with respect toV[1,ℓ], then for any1 ≤ i ≤ ℓ, the session prefix(r1, p1, ..., pi) is
also good with respect toV[1,ℓ]. See Figure 1(b). The figure illustrates the fact that if(r1, p1, ..., pℓ−1, rℓ, pℓ) is
good, so is the (sub)prefix(r1, p1, ..., pℓ−1) with respect to the same tree. This is because all prover messages
on edges belowVℓ (includingpℓ) simply satisfy the two conditions that make a session prefixgood.

16

...

r1

p1

rl−1

pl−1

rl−1

pl

V1

Vl−1

Vl

V 1
l+1 V i

l+1 V j
l+1

V t
l+1

· · · · · · · · ·

· · · · · · · · · · · ·

pl is the same

These two
prover msgs
are the same

...

r1

p1

rl−1

pl−1

rl−1

pl

V1

Vl−1

Vl

V 1
l+1 V i

l+1 V j
l+1

V t
l+1

· · · · · · · · ·

· · · · · · · · · · · ·

(a) (b)

Fig. 3.A goodsession prefix (a) and its robustness (b). Each node (circle)represents a verifier next-message function, or equivalently
(in our case of public-coin proof systems), a random string that is used in this step. Each path represents a (complete) interaction with
an honest verifier.

B Proofs

B.1 Proof of Lemma 1

We first introduce some definitions and additional notation that will be used in the proof.
We assume that the length of each prover message is greater than any constant, in particular,p > 10. Note

that this assumption is without loss of generality because if the length of the prover message in a constant-
round interactive proof for a languageL is constant, thenL is trivial (see [25]), which in turn implies our
lemma immediately.

Throughout this subsection, we consider onlystructuredq-tuples of verifier’s random tapes, which are
selected in the following way:

1. For each verifier stepi, 1 ≤ i ≤ m, if |{0, 1}li | > m2p
2 log 1

ǫ

, setti =
m2p

2 log 1
ǫ

∈ p/O(log 1
ǫ); otherwise, set

ti = 2li , whereli is the length of thei-th verifier message;

2. Chooseti distinctstringsr1i, r2i, ..., rtii from {0, 1}li ;

3. Choose ani-th verifier messagerjii ∈ (r1ii, r2i, ..., rtii), 1 ≤ ji ≤ ti for each stepi, and set random
taperj = [rj11, rj22, ..., rjmm].

4. A q-tuple of random tapes is now the set of all possible random tapes set in step 3,(r1, r2, ..., rq). Note
that the sizeq of this set is

∏m
i=1 ti, which is determined by Step 2.

We identify(r1, r2, ...rq) with (rπ(1), rπ(2), ...rπ(q)) for any permutationπ on{1, 2, ..., q}. Two q-tuples,
(r1, r2, ...rq) and(r′1, r′2, ...r′q), are said to bedistinct if there exists at least oneri such thatri ∈ (r1, r2, ...rq)
but ri /∈ (r′1, r′2, ...r′q), or vice-versa. Thus the number of all possible distinct such structuredq-tuples is

m
∏

i=1

(

2li

ti

)

.

Some more basic notation before the proof:
prefixi(r

j): the firsti messages from the verifier using random taper
j , that is, forrj = [rj1, r

j
2, ..., r

j
m],

prefixi(r
j) = [rj1, r

j
2, ..., r

j
i].

−→
T and its size|

−→
T |:
−→
T is asetof structuredq-tuples of verifier’s random tapes, The size of

−→
T , denoted

by |
−→
T |, is simply defined to be the number ofdistinctq-tuples in

−→
T .

17

pk ← 〈P (r1, r2, ...rq), V 〉|hist denotes thek-th prover message produced by the proverP (r1, r2, ...rq)
(the prover strategy takingq-tuple(r1, r2, ...rq) as auxiliary input), conditioned onhist being the current
history so far.
The proof of the lemma is by contradiction. Assume that thereexists an unbounded prover, call itP ⋄, and

x /∈ L, such that for anyq-tuple(r1, r2, ...rq), ri 6= rj for i 6= j:

Pr[〈P ⋄(r1, r2, ...rq), V|(r1,r2,...rq)〉(x) = 1] > 1−
1

q
. (2)

First note thatV|(r1,r2,...,rt)(r
i) acts exactly the same asV (ri). Therefore

Pr[〈P ⋄(r1, r2, ...rq), V|(r1,r2,...rq)〉(x) = 1] (3)

=
∑

i

Pr[〈P ⋄(r1, r2, ...rq), V|(r1,r2,...rq)(r
i)〉(x) = 1]

1

q
(4)

=
∑

i

Pr[〈P ⋄(r1, r2, ...rq), V (ri)〉(x) = 1]
1

q
. (5)

Further, observe that the probabilityPr[〈P ⋄(r1, r2, ...rq), V (ri)〉(x) = 1] is either 0 or 1 because in this
interaction the tapes are fixed and both prover and verifier are deterministic. Thus, if inequality(2) holds, we
have

Pr[〈P ⋄(r1, r2, ...rq), V|(r1,r2,...rq)〉(x) = 1] = 1 , (6)

and, by(5),

Pr[〈P ⋄(r1, r2, ...rq), V (ri)〉(x) = 1] = 1 . (7)

Now, given proverP ⋄ such that(7) holds for anyq-tuple(r1, r2, ...rq), we describe a proverP ∗ that will
cheatV with probability greater thanǫ.

The Cheating ProverP ∗.

Input:x, as in inequality(2).

1. Set
−→
T 0 to be the set of all possible distinct structuredq-tuples over{0, 1}l1+l2+...+lm, andG1 the set of

all possible first verifier’s messages (i.e., the set{0, 1}l1).

2. Fork = 1 to m, do
2.1. Upon receiving thek-th verifier messagerk, sethist to be the current history(r1, p∗1, ..., rk).

Check ifrk ∈ Gk. If rk /∈ Gk, abort and output “⊥”. Otherwise, for everyq-tuple(r1, r2, ...rq) ∈
−→
T 0

such that: a) it contains someri such thatprefixk−1(r
i) = [r1, r2, ..., rk], and, b) the currenthist is

consistent with the interaction betweenP ⋄(r1, r2, ...rq) andV , sett′ =
∏m

k+1 ti, compute thek-th
prover message by runningP ⋄(r1, r2, ...rq), and obtain the set ofk-th prover messages

{pk ← 〈P
⋄(r1, r2, ...rq), V 〉|hist :

(r1, r2, ...rq) ∈
−→
T 0 and ∃(ri1 , ri2 , ...rit′) ∈ (r1, r2, ...rq) s.t.

prefixk(r
ij) = [r1, r2, ..., rk] for all 1 ≤ j ≤ t′ =

m
∏

k+1

ti}
17 .

17 Observe that, by the structure ofq-tuple, if there exists ari ∈ (r1, r2, ...rq) such thatprefixk(r
i) = [r1, r2, ..., rk], then there

existt′ =
∏m

k+1 ti many such random tapes.

18

Setp∗k to be thepk that maximizes the size of the set

{(ri1 , ri2 , ...rit′) : pk ← 〈P
⋄(r1, r2, ...rq), V 〉|hist, and

(ri1 , ri2 , ...rit′) ∈ (r1, r2, ...rq), and

prefixk(r
ij) = [r1, r2, ..., rk] for all 1 ≤ j ≤ t′ =

m
∏

k+1

ti}

2.2. If k < m, denote by
−→
T k the above set that achieves its maximum size, and set (guessing the next

verifier messages)

Gk+1 ← {rk+1 ∈ {0, 1}
lk+1 : |{(ri1 , ri2 , ...rit′) ∈

−→
T k :

prefixk+1(r
ij) = [r1, r2, ..., rk, rk+1] for all 1 ≤ j ≤ t′ =

m
∏

k+1

ti}| ≥

∏m
i=k+1

(

2li
ti

)

21.1kp
}.

In a nutshell, the above algorithm just tries many differentcheating proversP ⋄(r1, r2, ...rq) to make the
current history accepted by as many verifiers as possible.

Analysis of algorithm P ∗. Let us now analyze the success probability of the prover’s strategy outlined above.
We first show that the size ofGk is large enough for everyk.

Claim. For every1 ≤ k ≤ m, conditioned onP ∗ not outputting⊥, |Gk| ≥
2lk

21.1kp/tk e
.

Proof. Whenk = 1, |G1| = |{0, 1}
l1 | > 2lk

21.1kp/tk e
.

Whenk ≥ 2, the condition ofP ∗ not outputting “⊥” implies that, forj ≤ k, rj is inGj , and that

|{(ri1 , ri2 , ...rit′′) ∈
−−−→
T k−1 : prefixk(r

ij) = [r1, r2, ..., rk] for all 1 ≤ j ≤ t′′ =

m
∏

k

ti}| ≥

∏m
i=k

(2li
ti

)

21.1(k−1)p
.

which in turn leads to (recall that the length of prover messages isp), for k ≥ 2,

|
−→
T k| ≥

∏m
i=k

(

2li
ti

)

21.1(k−1)p+p
=

∏m
i=k

(

2li
ti

)

21.1kp−0.1p
. (8)

Now assume that, fork ≥ 2, conditioned onP ∗ not outputting “⊥” (i.e., for j ≤ k, rj is in Gj), |Gk| <
2lk

21.1kp/tk e
.

Sett′ =
∏m

k+1 ti. Recall that allt′-tuples(ri1 , ri2 , ..., rit′) ∈
−→
T k share the same prefix[r1, r2, ..., rk], and

that, by the structure ofq-tuple of random tapes, within at′-tuple (ri1 , ri2 , ..., rit′) ∈
−→
T k, there are onlytk

distinct k-th verifier messages, say(r1k, r
2
k, ..., r

tk
k). We partition theset′-tuples in

−→
T k in two classes by the

property of(r1k, r
2
k, ..., r

tk
k):

1. Everyrik ∈ (r1k, r
2
k, ..., r

tk
k) is in Gk (which impliestk ≤ |Gk|). The number oft′-tuples in

−→
T k satisfying

this condition is at most
(

|Gk|

tk

) m
∏

i=k+1

(

2li

ti

)

.

19

2. There is at least onerik ∈ (r1k, r
2
k, ..., r

tk
k) that isnot in Gk. Then by the definition ofGk, and by the

fact that, within at′-tuple(ri1 , ri2 , ..., rit′) ∈
−→
T k, for everyi, the number of random tapes in thist′-tuple

with each prefix[r1, r2, ..., rk−1, r
i
k] is the same (equal to

∏m
k+1 ti), then the number oft′-tuples in

−→
T k

satisfying this condition is at most
(

2lk

tk

)

∏m
i=k+1

(

2li
ti

)

21.1kp
.

Thus, we have

|
−→
T k| ≤

(

|Gk|

tk

) m
∏

i=k+1

(

2li

ti

)

+

(

2lk

tk

)

∏m
i=k+1

(2li
ti

)

21.1kp

<

(2lk

21.1kp/tk e
tk

) m
∏

i=k+1

(

2li

ti

)

+

(

2lk

tk

)

∏m
i=k+1

(

2li
ti

)

21.1kp

< (
2lk

21.1kp/tk tk
)tk

m
∏

i=k+1

(

2li

ti

)

+

(

2lk

tk

)

∏m
i=k+1

(2li
ti

)

21.1kp

<
(2

lk

tk
)tk

21.1kp

m
∏

i=k+1

(

2li

ti

)

+

(

2lk

tk

)

∏m
i=k+1

(2li
ti

)

21.1kp

<

∏m
i=k

(2li
ti

)

21.1kp−1
,

which contradicts (8) whenp > 10, which we can always assume without loss of generality (otherwise our
lemma holds trivially; see [25]). ✷

Now observe that, for every prover stepk ≤ m, if Gk ≥
2lk

21.1kp/tk e
, then the probability thatP ∗ guesses

the next verifier message correctly, i.e., the probability thatrk ∈ Gk, is |Gk|/2
lk = 1

21.1kp/tk e
. ThereforeP ∗

guesses all the next verifier messages correctly with probability at least

m
∏

k=1

|Gk|

2lk
=

m
∏

k=1

1

21.1kp/tke
,

which is greater thanǫ for tk ≤
m2p

2 log 1
ǫ

. (Recall that eithertk = m2p
2 log 1

ǫ

, or tk = 2lk when2lk ≤ m2p
2 log 1

ǫ

.)

Notice also that, in case that all guesses of the next verifiermessages are correct, there exists at least one
q-tuple(r1, r2, ...rq) such that the complete transcript(r1, p

∗
1...rm, p∗m) is generated in the interaction between

P ⋄(r1, r2, ...rq) andV (ri), ri = [r1, r2...rm] ∈ (r1, r2, ...rq), which is guaranteed by our assumption to be
accepting.

In sum, our cheating proverP ∗ will cheat with probability greater thanǫ, which breaks the soundness of
the proof system〈P, V 〉, thus yielding the lemma.

B.2 Proof of Lemma 3

Fix a security parametern and a false statementx /∈ L of lengthn in the sequence guaranteed by lemma 2. We
prove the lemma by examining the next-message functions of theq honest verifiersV 1, V 2, ...V q guaranteed
by Lemma 2, step by step. Recall that the structure of the proof is as follows:

1. First, show that there exists a triplet(2,V[1], V
′
[1]) satisfying condition 1.

20

2. Show that any(m− 1,V[1,m−1], V
′
[1,m−1]) satisfies condition 2.

3. Show that, for any2 ≤ k ≤ m− 1, if a given(k,V[1,k−1], V
′
[1,k−1]) satisfes condition 1, but not condition

2, then we have a triplet(k + 1,V[1,k], V
′
[1,k]) that satisfies condition 1.

This reasoning guarantees that we can find a triplet(k,V[1,k−1], V
′
[1,k−1]), for some2 ≤ k ≤ m, which satisfies

both conditions. We now turn to proving the above three steps.
The proof of step 1 is as follows. By Lemma 2, no unbounded prover can cheat a random verifier from set

{V 1, V 2, ...V q}with probability 1. This immediately means (recall that we assume that verifier sends the first
message in a session) that there existsV1 such that no unbounded prover can cheat a random verifier having
the same prefix strategyV1 chosen from{V 1, V 2, ...V q} with probability 1.

Thus, we can have(2,V[1], V
′
[1]), whereV[1] is the set of verifiers in{V 1, V 2, ...V q} having the same

prefix strategyV1 and the codeV ′
1 isV1. By the structure of theseq verifiers, we have thatV[1] has a setV2 of t

distinct second-step strategiesV 1
2 , V

2
2 , ..., V

t
2 . It is easy to see that the first condition of the lemma now holds,

as otherwise, if there exists ani and codeV ∗
k

f
= V i

2 , such that the session prefix(r1, p1) ← (S([V ′
1 , V

∗
2]) ⇔

[V ′
1 , V

∗
2]) is good with respect toV[1], then the following unbounded prover with auxiliary input[V ′

1 , V
∗
2]

andV[1] will cheat a random verifierV in V[1] with probability 1: Upon receiving the first verifier message
(produced byV1), it runsS([V ′

1 , V
∗
2]), obtainsp1, and then runs the residual prover strategy guaranteed to

exist by the definition of a good session prefix (Definition 5) to complete the interaction withV .
Step 2 is guaranteed by Lemma 2. Given any(m− 1,V[1,m−1], V

′
[1,m−1]), whereV[1,m−1] shares the same

prefix strategyV[1,m−1] but hast distinctm-th step strategiesV 1
m, V 2

m, ..., V t
m, andV ′

[1,m−1]
f
= V[1,m−1], the

reason for this triplet satisfying condition 2 is that, for any i and any polynomial-time constructible code

V ∗
m satisfyingV ∗

m
f
= V i

m, the session prefix(r1, p1, ..., pm) ← (S([V ′
[1,m−1], V

∗
m]) ⇔ [V ′

[1,m−1], V
∗
m]) must

be good since(r1, p1, ..., pm) is, by the property of the simulator guaranteed by Lemma 2, anaccepting and
complete transcript.

We now prove step 3 using the canonical property of ZK proofs (Definition 6). Assume there is a triplet
(k,V[1,k−1], V

′
[1,k−1]), 2 ≤ k ≤ m − 1 (where againV[1,k−1] shares the same prefix strategyV[1,k−1] but

hast distinct k-th step strategiesV 1
k , V

2
k , ..., V

t
k , andV ′

[1,k−1]
f
= V[1,k−1]), which satisfies condition 1, but

not condition 2. Note that conditioned on not satisfying condition 2, we have ani such that for any code

V ∗
k

f
= V i

k , the session prefix(r1, p1, ..., pk)← (S([V ′
[1,k−1], V

∗
k])⇔ [V ′

[1,k−1], V
∗
k]) is badwith respect to the

set of verifiers inV[1,k] having the same prefix strategy[V[1,k−1], V
i
k] (again,V[1,k] hast distinct (k + 1)-th

step strategiesV 1
k+1, V

2
k+1, ..., V

t
k+1).

By settingV ′
[1,k] to be [V ′

[1,k−1]andV
∗
k], V[1,k] as above, we now have a triplet(k + 1,V[1,k], V

′
[1,k]) for

which the condition 1 holds, for the following reason: Assume otherwise, i.e., that there existV i
k+1, and a

codeV ∗
k+1

f
= V i

k+1 such that(r1, p′1, ..., p
′
k) ← (S([V ′

[1,k], V
∗
k+1]) ⇔ [V ′

[1,k], V
∗
k+1]) is good with respect to

V[1,k]. Then, by the canonical property (Definition 6),(r1, p1, ..., pk)← (S(V ′
[1,k])⇔ V ′

[1,k]) is also good with
respect toV[1,k], which contradicts the assumption that(k,V[1,k−1], V

′
[1,k−1]) does not satisfy condition 2.

C Interactive Proof Systems with Super-Constant Rounds

In this section we give a simple super-constant-round public-coin interactive proof system for which Lemma 1
does not hold.

Preamble: For1 ≤ k ≤ s, do:
P → V : Sendn random stringspk1,...,pkn of lengthn each.
V → P : Send a random stringrk of lengthn.

Main proof: If there is somepki = rk, V accepts; otherwise execute a 3-round Blum
protocol [8] with negligible soundness error.

21

Observe that for anyq, if q different verifier random tapes(r1, r2, ...rq) are fixed in advance and known
to an all-powerful prover, then for the cheating probability to be strictly less than 1, at any verifier stepk ≤ s,
given (r1, r2, ...rq) and current historyhist), there must be at leastn + 1 possible different verifier next
messages (i.e., the entropyH(rk|(r

1, r2, ...rq), hist) is greater thanlog n), which leads toq ≥ (n + 1)s. That
is, if s is super-constant, for any polynomial number of verifier’s random tapes that are fixed in advance we
have a prover with cheating probability 1.

22

