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Abstract. Security assessments are an integral part of organisations’
strategies for protecting their digital assets and critical IT infrastructure.
In this paper we propose a game-theoretic modelling of a particular form
of security assessment – one which addresses the question “are we com-
promised?”. We do so by extending the recently proposed game “FlipIt”,
which itself can be used to model the interaction between defenders and
attackers under the Advanced Persistent Threat (APT) scenario. Our
extension gives players the option to “test” the state of the game before
making a move. This allows one to study the scenario in which organi-
sations have the option to perform periodic security assessments of such
nature, and the benefits they may bring.

1 Introduction

The protection of digital assets and critical IT infrastructure is an ever-growing
concern for individuals, companies and nations. Information security is now a
priority area for investment, given the growing threats from hackers, competitors,
organised criminal gangs and enemy nation-states, and the potential for loss of
privacy and revenue, negative reputational impact and effects in public welfare.
In addition to direct investment in suitable and robust IT infrastructure, the
performance of frequent security assessments is also considered an important
component of the defense strategy against cyber-attacks. A security assessment
is the process of determining how effectively an entity being assessed meets
specific security objectives [11]. A common method of assessment is a penetration
testing, where security professionals target the network and other IT resources, to
try to identify and verify any vulnerabilities found. Popular penetration testing
methodologies and frameworks work by essentially mimicking the popular forms
of attack used by hackers.

The nature of cyber attacks has however been steadily changing in recent
years. While previously the typical threats were script kiddies, more interested
in defacing websites for fun and pride, attacks motivated by financial gains are
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increasingly becoming more prevalent. Particularly in the corporate and govern-
ment spheres, the threat of espionage and theft of intellectual property and state
secrets are growing causes of concern. With these goals in mind, the methods
used by attackers have also evolved. A form of attack that has received much
attention recently are the so-called Advanced Persistent Threats (APT), which
can often be seen as a signal of international cyber warfare [2]. The premises in
this form of attack are that IT networks and systems are vulnerable, and there-
fore can be compromised by adversaries with enough resources and motivation;
furthermore, attacks are stealthy in nature [15, 5], and adversaries can remain in
control of the network and systems for long periods without detection. Recent
examples of cyber attacks that fit this profile are the security breach at RSA
Data Security [6], and the Stuxnet [9] worm infection of Iranian systems.

These developments should in turn motivate a reflection on whether current
methods of security assessment remain sound under the changing nature of at-
tacks. A security assessment is typically seen to be trying to answer the question
“are we vulnerable?” (and if so, how can we fix it?). Under APT’s premise, the
answer for this question is certainly “yes”. Thus a security assessment needs also
to address the question “are we compromised?”, and organisations need to con-
sider cost-effective ways in which they can can regain control of their IT assets if
the answer is positive. This current gap should certainly be the cause of concern
for professionals involved in the security of highly-targeted organisations.1

In this paper we propose a simple game-theoretic modelling of this form of
security assessment, and study its application in 2-player security games. Game
modelling has been shown to be useful in studying strategic decisions toward a
wide range of security problems, from technical [10] to managerial [8, 13]. Our
model extends the recently proposed game “FlipIt” [14], which itself can be
used to model the interaction between defenders and attackers under the APT
scenario. Our extension gives players the option to “test” the state of the game
(i.e. answer the question “are we compromised”). This allows one to study the
scenario in which organisations have the option of performing periodic security
assessments of such nature, and the benefits they may bring. In particular, how
these assessments can fit into an organisation’s security investment strategy.
Proposals of models for security investment and security testing have appeared
before in the literature (e.g. [7, 4, 3]); here we leverage on the elegance of FlipIt
to investigate strategies for the application of this form of security assessment.

This paper is organised as follows. In Section 2 we describe the game “FlipIt”.
In Section 3 we propose our extension to the game, by introducing the option
of a security assessment which discloses the state of the game. We study further
extensions in Sections 4 and 5. We finish with our conclusions in Section 6.

1 In fact these points were emphatically argued in a recent testimony before the U.S.-
China Economic and Security Review Commission Hearing on “Developments in
China’s Cyber and Nuclear Capabilities”, where one of the participants stressed the
need of periodic security assessments of the latter nature [1].



2 FlipIt: the game

The original FlipIt games [14] capture the battle between a defender and an
advanced persistent threat (APT) attacker for the control of a resource. The
game is modelled over infinite time, in which a player makes a move to gain
control of the resource; it remains in this state until the opponent makes its own
move to take over. This control-alternating process repeats infinitely as time
passes, and the utility of each player is determined by the total/average amount
of time it controls the resource, as well as the cost required to take over the
resource from its opponent.

Formally, the defender and the attacker are denoted by player 0 and 1, respec-
tively. The game timeline starts from some moment t = 0 and is continuously
indefinite, so that the amount of control time for each player can be conveniently
computed in R. Let Ci(t) be 1 if player i controls the resource at time t, and 0
otherwise. For example, if the defender moves at time t, then C0(t) = 1; simi-
larly, we have C0(t′) = 0 if the attacker moves at time t′. This allows the total
control time of player i until time t to be computed as

Gi(t) =

∫ t

0

Ci(t)dt.

Denote player i’s number of moves until time t by ni(t), and the constant cost
for each move by ki; then the net benefit of player i is given by

Bi(t) = Gi(t)− ni(t)ki.

Alternatively, since the game continues indefinitely, a player’s utility can be
represented by its average benefit per unit time:

βi(t) =
Bi(t)

t
=
Gi(t)

t
− ni(t)

t
ki = γi(t)− αi(t)ki.

We call γi(t) and αi(t) the average gain rate and the average move rate of player
i up to time t, respectively. One may further assume that the functions γi(t)
and αi(t) converge to the values γi and αi, respectively, as t→∞. We can then
conveniently represent player i’s utility without the time dimension as simply

βi = lim
t→∞

βi(t) = γi − αiki.

What remains to be modelled are γi and αi, which strongly depend on how
the players strategically act in the game. While the authors in [14] discuss several
types of strategies for each player, in this paper we focus only on the so-called
periodic strategies with random phase, which is the main tool for our work. In
periodic games, we assume that before start, each player chooses a rate αi > 0
so that as the game progresses, player i moves at rate αi, i.e., after every δi =
1/αi units of time. Furthermore, player i does not start moving immediately at
t = 0, but selects uniformly at random a starting point in the interval [0, δi];



this is called phase. While player i cannot control its phase, its game action is
determined by the chosen move rate αi. For convenience, we denote the action
space for periodic moving strategies for both players as

P = {Pα|α > 0}.

Since players move periodically, their expected average control time γi, or
average gain, can be computed in the following two cases:

• α0 ≥ α1: let r = α1/α0 = δ0/δ1; we note that for every attacker’s period
interval [t∗, t∗ + δ1], the defender moves at time t uniformly random within
[t∗, t∗+ δ0], yielding a gain t∗+ δ1− t, which can be expectedly computed as

G∗0 =

∫ t∗+δ0

t∗

t∗ + δ1 − t
δ0

dt = δ1 −
δ0
2

= δ1(1− r

2
).

This implies that the defender’s average gain is γ0 = G∗0/δ1 = 1 − r/2; it
also means that the attacker’s average gain is γ1 = 1− γ0 = r/2. Therefore,
we have the players’ utilities as

β0(α0, α1) = 1− r

2
− α0k0 = 1− α1

2α0
− α0k0,

β1(α0, α1) =
r

2
− α1k0 =

α1

2α0
− α1k1.

• α0 ≤ α1: similar analysis gives the following

β0(α0, α1) =
r

2
− α0k0 = 1− α0

2α1
− α0k0,

β1(α0, α1) = 1− r

2
− α1k0 =

α0

2α1
− α1k1.

We note that when a player has lost the control due to the opponent’s move,
it does not immediately move to regain it but rather needs to wait for its peri-
odic move. This is because moves are presumably “stealthy”, and neither player
knows at any time who is controlling the resource. In addition to the periodic
move scenario, [14] also studies strategies involving randomised moves, as well
as adaptive strategies based on the opponent’s past moves. Although we do not
consider these here, we note that the modelling presented in this paper may be
similarly applied to other scenarios discussed in [14].

The main reason for choosing FlipIt to base our work on is its simple, though
elegant, modelling of real-world IT security defender-attacker interaction. In-
deed, strategies for organisational security are often determined in the very early
phase of the business, and they are normally deterministic (quarterly assess-
ments, periodic guard patrolling, etc.) rather than being oblivious and tempo-
rary [12]. In addition, as information systems become more sophisticated in size
and structure, and the motivation and nature of attacks change, it is becoming
more difficult at any moment to be certain whether resources are secure, hence
allowing “stealthy” moves to be realistic. In the next sections, we propose an
extension to the above model as an attempt for the defender to more efficiently
counter such moves.



3 Test it before Flipping it

The original FlipIt game models types of strategies for a player to regain control
of a resource (i.e. to move) based on some pre-defined or on-the-fly tactics,
which however possess some limitations. In particular, a player may waste many
moves if they happen while it is still controlling the resource. This becomes
more serious if its periodic movement is significantly faster than the opponent’s.
Even if a move really serves its purpose, i.e., to regain control, it may still be
an “almost” waste. This happens, for example, when the opponent’s move is
immediately (but coincidently) after such a move, rendering it ineffective.

Rather than blindly moving, an interesting question is whether knowing the
state of control would be more beneficial to a player. In terms of information
security assessment, this can be represented by the question “are we compro-
mised?”. The intuition behind this addition is rather simple. Knowing the state
of control would prevent a waste move while the resource is still at hand. Also,
even though it may not prevent an “almost” waste, it may suggest a timely
response to a lost of control. This, of course, depends on how regularly the
knowledge of the control state is updated.

To model such situations, we introduce a new class of strategies to FlipIt,
namely the state checking strategies. As opposed to the ability to move/flip,
a player is now able to check the game state, and then move/flip if necessary.
In particular, we consider a strategy class S = {Sα|α > 0} such that, given a
strategy Sα ∈ S, with δ = 1/α, player i may:

• perform a periodic state checking with period δ and cost ui, with the first
check occurring at a uniformly random time phase, i.e., within [0, δ];
• if a state check indicates a loss of control, immediately perform a move/flip

(at cost ki) to regain its control.

In addition to the original game FlipIt(P, P ), several games might be introduced
given S, for example FlipIt(S, P ), FlipIt(S ∪P, P ), and FlipIt(S ∪P, S ∪P ). To
study such games, it is important to notice that in all cases, the expected control
time for each player can be formulated in the same way as that in {P, P}, using
only δ0 (or α0) and δ1 (or α1). Indeed, at a time t, if a player is occupying
the resource, a blind move action and a check-then-move action would yield the
same effect, i.e., allowing it to regain control. Likewise, while it is in control
of the resource, neither of the moves would bring any change. As this happens
independently of the opponent’s strategy, the same expected control time can
be used for any game with strategies restricted to S and P .

Since a player’s utility depends only on its expected control time and the
cost of moving and/or checking, it is also independent of the opponent’s type of
strategy. Indeed, player 0 with strategy Pα0

would for example have a benefit as
mentioned in Section 2

β0(α0, α1) =

{
1− α1

2α0
− k0α0 if α0 ≥ α1

α0

2α1
− k0α0 if α0 < α1

.



With a strategy Sα0
, the average state checking cost for player 0 is α0u0. For

moving cost, since Sα0
is employed, no move is wasted, thus player 0’s number

of moves is at most player 1’s number of moves, i.e., min(α0, α1). This allows
the construction of its utility to become

β0(α0, α1) =

{
1− α1

2α0
− u0α0 − k0α1 if α0 ≥ α1

α0

2α1
− u0α0 − k0α0 if α0 < α1

. (1)

Given this new type of strategies S, a natural approach is to compare between S
and P , that is, in which situations one is preferred over the other. The following
theorem provides such comparison based on the relation between the costs of
moving and state checking (all proofs can be found in the Appendix).

Theorem 1. In the game FlipIt(P ∪ S, P ∪ S), if ui ≤ ki/4, player i does not
prefer periodic moving. Otherwise, when ui ≥ ki player i does not prefer state
checking.

Proof. This theorem can be proved as a special case of Theorem 5, when p = 1.

Corollary 1. Consider the game FlipIt(P ∪ S, P ∪ S) with ki/4 < ui < ki.

Player i prefers a state checking strategy if and only if α1−i ≤ 2(
√
ki−
√
ui)

2

k2i
.

The above results point out that when the cost of checking is sufficiently
low, i.e., at most a quarter of the moving cost, it is always worth performing
a check-then-move strategy. Indeed, as a low checking cost suggests a frequent
checking schedule, a player is more closely up-to-date with its state of control of
the resource. This helps the player to improve its expected control time, while
keeping the moving cost at a reasonable level by eliminating wasted moves.
Conversely, it is also intuitively clear that when the cost of checking exceeds that
of moving, it is unreasonable to perform checking-then-moving. Furthermore,
Corollary 1 indicates that, when the two cost are comparable, the best response
for the opponent playing too fast is to either simply move at every step or not
play at all, because at every step it is likely that without state checking the
player is aware of its loss of control of the resource.

In the realm of information security, many situations may suggest that state
checking strategies indeed outperform their moving counterparts. Consider an
information system as the resource; the defender’s act of moving/flipping is often
expensive, as it might involve resets and restores of the system. This becomes
more serious for large organisations, or those that require uninterrupted, real-
time system availability and reliability, such as e-commerce, large computing
facilities. On the other hand, checking for successful take-over of the system
might be significantly cheaper and thus can be performed frequently, using in-
trusion detection systems (IDSs), auditing schemes, logging, etc. In such cases, it
is recommended that funds are allocated for more frequent auditing of the system
security to maximise the organisational benefit from the information system.

In another aspect, we recall from [14] that the game FlipIt(P , P ) has a Nash
equilibrium. As this game behaves similarly to infinitely repeated games, the



equilibrium indicates the stage to which the game would eventually converge
if both players kept adjusting their actions upon realisation of the opponent’s
action. In the game FlipIt(S, S) however, such stable stage does not exist, as
we show in Theorem 2. The intuition behind is reasonably simple. We notice
that the total moving cost, i.e., ki min(αi, α1−i) for each player does not just
depend on that player’s rate, but also on its opponent. Thus, if a player keeps
increasing its rate until it is faster than the opponent’s, then its total moving
cost will stop rising. This in turn results on a better chance for that player to
come across a rate (possibly faster than the opponent) yielding higher benefit.
This fact emphasises that when such situation occurs, the players’ strategies
are unstable, and it is best for a player to always monitor its opponent’s state
checking frequency and adjust its accordingly. In real life, this lack of stability
suggests that the defender must keep consulting the statistics on how often
attacks occur and adapt its strategy accordingly.

Theorem 2. The Game FlipIt(S, S) has no pure strategy Nash equilibrium.

4 Hardening Control over Time

Besides reactive measures such as state checking and moving, a proactive concern
is on how to prevent losses of control from happening. In many cases this is more
desirable because it is possible that consequences from attacks might have been
overlooked, and thus it is better that attacks are prevented given the current
realisation of potential losses. In the context of FlipIt, it may mean, for example,
preventing a player from participating in the game, or to stop it after the game
has run for some time. Following the analysis of the original FlipIt game, as
well as those involving state checking strategies, it is not difficult to see that in
order for a player to stop its opponent from participating in the game, it needs
to play quick enough. Based on the best response functions for periodic moving
and periodic state checking players, the rate limit above which player i should
play so as to prevent its opponent from engaging on the game is

αthresholdi = max

(
1

2k1−i
,
k1−i + u1−i −

√
u1−i(2k1−i + u1−i)

k21−i

)
.

While this is desirable, it is sometimes infeasible to play fast enough if the
state checking cost is high. A different preventive approach for a player is to
somehow make it increasingly more difficult for its opponent to take over the
resource over time. When the level of difficulty reaches some threshold, its oppo-
nent will automatically cease playing, and thus resulting in a long-term benefit
for the player. In FlipIt type of games, this can be modelled by having a player
spending an additional periodic hardening cost hi every time it regains control,
so that the opponent would have to spend more and more whenever trying to
take over the resource. This cost could feature, for example, some penetration
testing process that results in vulnerabilities being patched, similar to that mod-
elled in [3]. It modifies the net utility of player i who performs state checking



with hardening as follows, with mi(t) being the number of state checks occurred
prior to t:

Bi(t) = Gi(t)− (ki + hi)ni(t)− uimi(t).

In this section we aim to study how the defender selects its strategy based on
the observed attacker’s period. For the game analysis, we note that the utility
of a player is represented by its average benefit since the game is infinite. The
game in this section is however finite, and thus it is more reasonable to represent
player i’s utility as its net benefit over the whole game, i.e., Bi(tend) where tend
is the moment in which the game ends. Assume that given a hardening cost
h0, the game ends after s state-changing attacks (i.e. flipping the state from
the defender to the attacker). Since it is not difficult to see that such an attack
occurs for every max(δ0, δ1) period, we may assume for simplicity that

tend = s ·max(δ0, δ1).

To analyse this game, we first model the utility function for each player. This
can be done with two cases similar to the previous games.

• α0 ≥ α1: similar to other periodic FlipIt games, the expected control time
for the defender (i.e. player 0), is (1− r/2)δ1 per δ1, for r = α1/α0. We thus
have the defender’s utility as:

B0(sδ1) = (1− r

2
)t− (k0 + h0)n0(t)− u0m0(t)

= (1− δ0
2δ1

)sδ1 − (k0 + h0)s− u0s
δ1
δ0

= s

[(
1− δ0

2δ1

)
δ1 − k0 − h0 − u0

δ1
δ0

]
.

However, since different choices of h0 yield different end times tend = sδ1,
it would be unreasonable to consider utility as the net benefit only until
tend. Indeed, consider h0 and h′0 that yield ending time tend and t′end with
net benefit B0 and B′0, respectively, such that tend < t′end and B0 < B′0.
Even though B0 < B′0, this does not mean that the defender would prefer
h′0 over h0 since within the interval [0, t′end], the defender’s net benefit would
be B0 + (t′end − tend), which might still be greater than B′0.
To resolve this issue, consider two choices of hardening costs h0 and h′0
yielding different attack times s and s′, with s′ > s. The defender’s net
benefit within [0, s′δ1] in these cases are respectively

B∗0 = B0 + (s′δ1 − sδ1) = s

[(
1− δ0

2δ1

)
δ1 − k0 − h0 − u0

δ1
δ0

]
+ δ1(s′ − s)

and B′0 = s′
[(

1− δ0
2δ1

)
δ1 − k0 − h′0 − u0

δ1
δ0

]
.

By subtracting the latter to the former we get:

B′0 −B∗0 = s

[
δ0
2δ1

δ1 + k0 + h0 + u0
δ1
δ0

]
− s′

[
δ0
2δ1

δ1 + k0 + h′0 + u0
δ1
δ0

]
.



This implies that h′0 is preferred over h0 if and only if

s

[
δ0
2δ1

δ1 + k0 + h0 + u0
δ1
δ0

]
≥ s′

[
δ0
2δ1

δ1 + k0 + h′0 + u0
δ1
δ0

]
.

As a result, we may effectively represent the defender’s utility function in
the following form:

U0(δ0, h0) = −s
[
δ0
2δ1

δ1 + k0 + h0 + u0
δ1
δ0

]
, (2)

where the defender’s action is a pair (δ0, h0) ∈ H0 implying the chosen state
checking frequency (period) and hardening cost.

• α0 ≤ α1: let r = δ1/δ0 = α0/α1. With similar reasoning as in the previ-
ous case, together with n0(t) = n1(t) = s (due to alternating control) and
n0(t) = m0(t) (since α0 ≤ α1) we have that the defender’s net benefit is

B0(sδ0) =
r

2
t− (k0 + h0)n0(t)− u0m0(t)

= s

(
δ1
2δ0

δ0 − k0 − h0 − u0
)
.

This leads to the defender’s actual utility function as:

U0(δ0, h0) = −s
[(

1− δ1
2δ0

)
δ0 + k0 + h0 + u0

]
. (3)

To complete the defender’s utility function, it is important to compute s, the
number of attacks, from the hardening cost h0 and the original attack cost k1.
This can be generally modelled with a function f , such that at the s-th attack,
the attack cost becomes fs−1h0

(k1), where fh0
(k1) = f(k1, h0) gives the new cost

of an attack due to h0. The attacks stop at the (s + 1)-th attempt if the cost
involved is greater than the attacker’s expected control, i.e.,

u1 + fs(k1, h0) ≥ max

(
δ0
2
, δ0 −

δ1
2

)
.

In reality, the structure of f strongly depends on how control of the resource can
be hardened. For example, if the resource contains a large number of identical
and independent subsystems, so that the control becomes more secure as more
subsystems are hardened, then one may model f as

f(k1, h0) = k1 + λh0, (4)

with λ ≥ 0 signifies how effective the hardening process is. Another method is
to follow an idea similar to that from Gordon and Loeb [7], in which the new
cost of attack increases as more is spent on hardening the control. However, such
increase should not be linear as in (4), but at a decreasing rate. Also, [4] and
[3] suggest a weakest-link model in which attack cost increases linearly step by



step. Based on these results, we devise another reasonable construction for f as
follows:

f(k1, h0) = k1 +
µh0
h0 + λ

, (5)

where µ ≥ 0 is the least upperbound on the increase of attack cost, and λ > 0
represents the effectiveness of the hardening process, so that it is more effective
when λ is small. It is not difficult to see that since f ′(h0) > 0 and f ′′(h0) < 0,
the attack cost increases with the hardening cost, but at a decreasing rate,
thus agreeing with Gordon and Loeb’s model. Also, with the same hardening
cost, the attack cost is raised by the same amount after each attack. Define
H = {(α, h)|α > 0, h ≥ 0} to be a set of periodic state checking with hardening
strategies as described above, we study in the following theorems recommenda-
tions for the defender in response to periodic attacks.

Theorem 3. Consider the game FlipIt(H, S ∪ P ) with f(k1, h0) = k1 + λh0.
The defender’s best response is h0 = B/λ, where B is the attacker’s expected
utility for the first attack. The game ends after one successful attack.

Theorem 4. Consider the game FlipIt(H, S ∪ P ) with f(k1, h0) = k1 + µh0

h0+λ
.

Let B > 0 be the attacker’s expected utility for the first attack, and let na = B/µ.
Let L > 0 be the defender’s expected loss2per attack excluding h0. Then

• for any hardening cost h0, at least dnae attacks occur before the game ends.
• the optimal hardening cost is

h0 =
λna
s− na

where s =

⌈
na +

1

2

(√
L+ 4n2aλ√

L
− 1

)⌉
(6)

is the corresponding number of attacks.

The above theorems stress a need for appropriate decision over the investment
for hardening the resource control. In terms of information security, hardening
may mean, for example, system patching, penetration testing, adding security
layers, etc. However, an improvement in security does not necessarily imply a
better return on security investment, as one can infer from Theorem 4. This
happens when security does not just improve with the hardening cost, but de-
pends on other factors, such as information. For example, a system may become
more secure not via deployment of new measures, but rather because it gets
fixed after suffering more and more attacks. While this idea is captured in (5),
Theorem 4 suggests that the defender should spend enough to, for example, suf-
ficiently patch the vulnerability, so that the attack cost would be raised by an
amount close to µ. Any additional expense becomes less effective as the increase
is bounded by µ. In contrast, situations modelled by (4) represent security that
can be strengthened with little information. A common example is when an at-
tack occurs against a device in a homogeneous network. In this case, it is always
better to patch all devices, whether they have been compromised or not.

2 This loss includes the attacker’s occupation of the resource and the cost spent on
protecting the resource.



5 Dealing with Complex Systems

In this section, we study a different extension to the model in Section 3 to capture
situations in which the control of a resource might be difficult to measure, and
that state checking might be inaccurate. This disproves an inherent but hidden
assumption made in previous models, that with a cost ui, player i can always
determine who is in control of the resource. Again, it addresses another important
issue with organisational information security by exacerbating the question “are
we compromised?” by “how certain are we that we are compromised?”. An
answer to such question reflects not just how often security should be assessed,
but also how the assessment should be done.

We extend the previous state-checking model with a probability p that the
state check succeeds in determining a loss of control, applied to the defender
only. The reason for such bias is obvious: while the defender must examine every
component of its system as a mean of state checking, the attacker only needs
to consider what it has previously compromised, which normally happens with
certainty. To simplify our modelling, we explicitly make two assumptions as
follows.

A1. There exists no false positive in state checking, i.e., no false alarm on attack
exists.

A2. Once a false negative occurs, it will persist until the attacker’s next inter-
action with the resource, i.e., either via a state check, or a move/flip.

Based on these assumptions, we may reformulate the defender’s utility func-
tions from what is given in (1), with the help of Lemma 1. It is important to
notice that while the average state checking cost remains the same, the average
flipping/moving cost lessened by a factor of p, since only a p-fraction of losses
in control are followed by a flip/move. These yield the following utility function

β0(α0, α1) =

p
(

1− α1

2α0

)
− u0α0 − pk0α1 if α0 ≥ α1

p
(
α0

2α1

)
− u0α0 − pk0α0 if α0 < α1

(7)

Lemma 1. Consider the FlipIt games in which the defender plays a periodic
state checking strategy. Then the defender’s average control rate is pγ, where
p is the success probability to detect an attack, and γ is the defender’s average
control rate when every state check occurs with certainty, i.e., when p = 1.

Similar to the its predecessor, with this model we are also interested in the
conditions under which state checking is preferred to mere flipping, and vice
versa. This concern is reflected in Theorem 5, which generalises the result given in
Theorem 1, and thus emphasises a preference for strategies involving inexpensive
state checking, i.e., equal to at most a p/4-fraction of the flipping cost. The subtle
threshold for the attack rate α1 in (8) explains the fact that if the attacker
infrequently interacts with the resource, then by assumption A2 it is difficult to
detect an attack, and thus periodic flipping is more desirable.



Theorem 5. Consider the game FlipIt(P ∪ S, P ∪ S) in which there is a prob-
ability p that the defender can detect a take-over attack with the state-checking
action. The defender does not prefer periodic moving if

u0 ≤
k0p

4
and α1 ≥

1

2k0
min

(
1,

[
2(1− p)

p

]2)
. (8)

Corollary 2. Consider the game FlipIt(P∪S, P∪S) in which there is a probabil-
ity p that the defender can detect an attack. Let α1 (resp. α1

∗) be the minimum
value for the attacker’s move rate α1 to drop a periodic-moving (resp. state-
checking) defender from the game. Then, α1

∗ ≥ α1 if and only if u0 ≤ k0p/4.

The need for u0 ≤ k0/4 is further strengthened by Corollary 2 which addresses
the situation when the attacker plays too fast, e.g., α1 > 1/(2k0), and periodic
moving cannot afford for positive payoff, leading to the system being indefensible
[14]. This issue becomes more realistic when the attacker is given chances to
perform state checking, since in the information security realm, the attacker’s
state checking can be inexpensive, e.g., reconnecting to backdoors, re-logging in
with stolen passwords, etc. In this case, periodic state checking is more robust
as they survive higher attack rates.

Another intrinsic part of Theorem 5 is its implication over what is the right
cost for state checking. Indeed, flipping in security often involves procedures
with high certainty (system reset, backup restores, failovers, etc.), hence their
costs are normally determined rather than decided. In contrast, an organisa-
tion may choose to invest arbitrarily in administering its security, for example
through guard patrolling, antivirus software, firewalls, etc., subject to how much
it desires the situation to be in control. While the goal is to satisfy the con-
dition u0 ≤ pk0/4, it is hindered by an inherent constraint that p typically
decreases/increases with u0, that is, less efforts for state checking yields less
certainty on its effectiveness.

We study this issue by modelling the connection between u0 and p, along
with an environment parameter v > 0 specifying how effectively the amount u0
might be spent. For example, this parameter may deteriorate as the resource
becomes increasingly more sophisticated. On the other hand, it may increase
with the skills of the team performing state checking. We can model p as the
function of u0, parameterised by v in the following way

pv(u0) = 1− 1

vu0 + 1
. (9)

It is not difficult to see that, by modelling the probability of successful state
checking as in (9), the value 1/v represents the cost required for detection of
attacks to succeed with a fair coin-flipping chance, i.e., 50%. Note that this does
not mean state checking with cost u0 ≤ 1/v can be replaced by “coin-flipping
detection” of attacks, as it may violate assumption A1 to create many false
positives, and hence waste moves would become a credible threat to the net
utility. We now analyse the threshold under which the cost for state checking
suggests it to overpower merely periodic flipping strategies.



Corollary 3. Consider the game FlipIt(P ∪S, P ∪S) in which there is a prob-
ability p that the defender can detect an attack, with p satisfying (9). Then, if

u0 ≤ k0/4 − 1/v and α1 ≥ 1
2k0

min
[
1, 4

(u0v)2

]
, it is better for the defender to

perform periodic state checking.

From the threshold for state checking cost given in Corollary 3, we may also
evaluate whether state checking is at all justifiable given specific characteristics
of the environments. Indeed, if the productivity of information security is too
low, i.e., v ≤ 4/k0, the use of state checking in most cases would not improve
the overall utility, as too much cost is required to produce little benefit. This
refers to situations when there is a mismatch between the scope of the resource
being administered, and of the team performing administration, which means
either the resource is too complex, or the administration is immature. In turn,
such situations may apply to fast-growing organisations with slower catching-up
with technology as well as security evaluation. Another example is with small to
medium-sized firms whose businesses strongly rely on information systems, as
many of them would spend little research in foreseeing the nontrivial impact of
low security administration to the net income.

In overall, Corollary 3 recommends firms not just about hiring an adminis-
tration team with highest quality-price ratio, but also to spend their concerns on
easing the administration of their resource. In reality, the latter can be accom-
plished in a variety of ways, such as removing redudant components, restructur-
ing the system toward simplification, avoiding complicated dependencies using
separation of duties, etc. Otherwise, even the most desirable administration team
might still be insufficient for a positive return on investment.

6 Conclusion

In this paper we investigate the concern on the choices of long-term strategic
security plans for protecting organisational assets. These choices are represented
by questions such as “are we vulnerable?” and “are we compromised?” This
concern has become increasingly more important for large businesses as well
as governmental units in the era where attackers are advanced, and have the
resources to be persistent.

To do so, we extend the FlipIt game between an attacker and a defender
periodically taking over a resource from each other, with the tradeoff between
the cost of taking over, and the duration of the control. In our model, in addition
from taking over, we allow players to check who is controlling the resource. We
compare between blind take-over strategies and those that involve “check first,
then take over”, and show a threshold for the checking cost, under which the
latter tactic is preferred.

In further extensions, we study strategic plans on how organisations would
rationally invest in security improvement to discourage attackers. Our analysis
on specific models proposed suggests that there are cases in which a system
must suffer from many attacks to become sufficiently secure to deter attackers.



In reality, this is because security breaches serve as valuable information for
improving system security. In another aspect, we relax our hidden assumption
so that state checking might be incorrect, and study not just the frequency
of security assessment, but also how quality-price-ratio may even discourage
assessment of security. Since our models mostly deal with the defender’s utility,
the lessons learned may apply to not just advanced persistent threats (APTs),
but also a pool of non-persistent threats that occurs with known frequency, e.g.,
from a community of underground hackers.

References

1. R. Bejtlich. Testimony before the USCC Hearing on “Developments in China’s Cy-
ber and Nuclear Capabilities”, March 26, 2012. http://www.uscc.gov/hearings/
2012hearings/written_testimonies/hr12_03_26.php.

2. C. G. Billo. Cyber warfare: An analysis of the means and motivations of selected
nation states. Technical report, Institute for Security Technology Studies at Darth-
mouth College, 2004.
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Appendix

Proof of Theorem 2

We inherit the best response functions for periodic state checking as shown in
the proof of Theorem 5 when p = 1 as

BR∗i (α1−i) =


0, if α1−i > α1−i

∗

0 or
√

α1−i

2ui
, if α1−i = α1−i

∗√
α1−i

2ui
, if α1−i < α1−i

∗

where α1−i
∗ =

ki+ui−
√
ui(2ki+ui)

k2i
. Since we only consider αi > 0 for equilibria,

we can thus infer from the best response functions above that

αi =

√
αi−1
2ui

with α1−i ≤ α1−i
∗ (10)

However, since α1 ≤ α1
∗ < 1

2u0
, the fact that α0 =

√
α1

2u0
implies that α0 > α1.

A similar reasoning also points out that α1 > α0, which causes a contradiction.
Thus no Nash equilibrium exists.

Proof of Theorem 3

We notice that with the cost update function f(k1, h0) = k1 + λh0, then at the
(s+ 1)-th attempt the attack cost becomes

fs(k1, h0) = k1 + sλh0

Since the attacker’s expected payoff at this step is non-positive, we thus have
the formulation of s as

u1 + fs(k1, h0) ≥ max

(
δ0
2
, δ0 −

δ1
2

)
= δ

⇔ u1 + k1 + sλh0 ≥ δ

⇔ s =

⌈
δ − u1 − k1

λh0

⌉
Also, note that the defender’s utility function, whether as in (2) or (3) can be
expressed as −s(h0 + L) where L is the expected loss per attack excluding h0.
This loss is compared to otherwise when there is no attacker, i.e., it includes the
expected loss in control time, as well as the cost of protecting the resource. With

fixed δ0, and so is δ, let D = δ−u1−k1
λ be a fixed value. We thus have the utility

function in h0 as

u0(h0) = −(h0 + L)

⌈
D

h0

⌉



We now show that u0(h0) is maximised when h0 = D/z for some positive
integer z. Indeed, consider h′0 ≥ h0 such that dD/h0e = dD/h′0e, the following
shows that h0 is preferred over h′0:

u0(h′0) = −(h′0 + L)

⌈
D

h′0

⌉
= −(h′0 + L)

⌈
D

h0

⌉
≤ −(h0 + L)

⌈
D

h0

⌉
= u0(h0)

We can now rewrite the defender’s utility as

u0(h0) = −(h0 + L)
D

h0
= −D − L

h0

which is maximised when h0 is maximised, i.e., h0 = D. In other words, the
attacker attacks only once, and then stops playing as he realises that the attack
cost exceeds his expected benefit. We thus have the desired value for h0:

h0 = D =
δ − u1 − k1

λ
=
B

λ

where B = δ − u1 − k1 is the attacker’s expected utility for the first attack.

Proof of Theorem 4

Similar to the proof of Theorem 3, we start by formulating the number of attacks
s with respect to some choices of δ0, δ1 and h0:

u1 + fs(k1, h0) ≥ max

(
δ0
2
, δ0 −

δ1
2

)
= δ

⇔ u1 + k1 + s
µh0
h0 + λ

≥ δ

⇔ s =

⌈
(λ+ h0)(δ − u1 − k1)

µh0

⌉
With B = δ − u1 − k1 as in the proof of Theorem 3, the minimum number of
attacks before the game ends is

lim
h0→∞

s(h0) = lim
h0→∞

⌈
(λ+ h0)(δ − u1 − k1)

µh0

⌉
=

⌈
δ − u1 − k1

µ

⌉
=

⌈
B

µ

⌉
= dnae

Also, as in the proof of Theorem 3, we can rephrase the defender’s utility in
the form

u0(h0) = −(h0 + L)

⌈
(µ+ h0)na

h0

⌉
(11)

which maximises when h0 = (µ + h0)na/z for some positive integer z ≥ dnae.
In this case, z is the number of attacks. To optimise u0, we convert u0(h0) to
u0(z), given that

h0 =
µna
z − na



This reformulates u0 from (11) into

u0(z) = −(h0(z) + L)z = −z
(

µna
z − na

+ L

)
Since u0(z) with z ∈ R+ has at most one global maximum, a solution z∗ ∈ R+

of the equation u0(z) = u0(z + 1) would (if exists) allow optimisation of u0(z)
at z = dz∗e ∈ Z+ . We thus proceed to compute z in the following

u0(z∗) = u0(z∗ + 1)⇔ −z∗
(

µna
z∗ − na

+ L

)
= −(z∗ + 1)

(
µna

z∗ + 1− na
+ L

)
⇔ n2aµ

(z∗ − na)(z∗ + 1− na)
− L = 0

⇔ z∗ = na +
1

2

(√
L+ 4n2aλ√

L
− 1

)

⇒ z = dz∗e =

⌈
na +

1

2

(√
L+ 4n2aλ√

L
− 1

)⌉

which completes the proof of Theorem 4.

Proof of Lemma 1

We first consider the case when p = 1, that is, a state check always succeeds.
Since the control of resource is alternated between two players, we can then rep-
resent a player’s control by a set of time intervals, so that at any moment within
one of those intervals, the player is controlling the resource. Hence the gaps be-
tween those intervals indicate the time when the resource is at his opponent’s
hand. More precisely, we may denote the defender’s control time as

{(tj,0, tj,1)|tj−1,1 ≤ tj,0 ≤ tj,1 ≤ tj+1,0}

We also note that at tj,0 for all j ∈ Z, the defender tries to detect an attack
that has already happened, and at tj,1 the attacker, for the first time after tj,0,
interacts with the resource. We now consider the case when p < 1. Thus, with
probability p the defender detects an attack since tj,0 and control the whole
(tj,0, tj,1), and with 1 − p chance he cannot detect the attack all the way until
tj,1 (due to assumption A2). Thus the defender’s average control time is a p-
fraction of (tj,0, tj,1). Therefore, in overall the defender control a p-fraction of
that when state checking always succeeds.

Proof of Theorem 5

To compare between two classes of strategies, we first compute the best response
function for each class. In fact, we reuse the best response for periodic flipping



strategies from the original model in [14] as follows:

BR0(α1) =


0, if α1 > α1[
0,
√

α1

2k0

]
, if α1 = α1√

α1

2k0
, if α1 < α1

where α1 = 1
2k0

. For periodic state checking, we consider two cases:

• α0 ≥ α1: from the utility function in (7) we compute the best response of
α0 to α1 as

∂β0(α0, α1)

∂α0
=
pα1

2α2
0

− u0 = 0⇔ α0 = BR∗0(α1) =

√
pα1

2u0
≥ α1

This is thus valid only when α1 ≤ p
2u0

.
• α0 ≤ α1: since the derivative of β0 with respect to α0 is now

∂β0(α0, α1)

∂α0
=

p

2α1
− (u0 + k0p)

we can further divide this case to three sub-cases:

• p

2α1
− (u0 + k0p) > 0⇔ α1 <

p

2(u0 + k0p)
: BR∗0(α1) = α1

• p

2α1
− (u0 + k0p) = 0⇔ α1 =

p

2(u0 + k0p)
: BR∗0(α1) ∈

[
0,

p

2(u0 + k0p)

]
• p

2α1
− (u0 + k0p) < 0⇔ α1 >

p

2(u0 + k0p)
: BR∗0(α1) = 0

We now proceed to combine these observations, this time by considering different
values of α1:

• α1 ≥ p
2u0

: for α0 ≥ α1, since
√

pα1

2u0
≥ α1, β0 decreases, thus it maximises at

α0 = α1. For α0 ≤ α1, since α1 ≥ p
2u0
≥ p

2(u0+k0p
, β0 maximises at α0 = 0.

Thus in overall, BR0(α1) = 0.
• p

2(u0+k0p)
< α1 <

p
2u0

: we consider two cases

– α0 ≤ α1: since α1 >
p

2(u0+k0p)
, we have BR∗0(α1) = 0 and β0 = 0.

– α0 ≥ α1: since BR∗0(α1) =
√

pα1

2u0
we have

β0(α1) = p

1− α1

2
√

pα1

2u0

− u0√pα1

2u0
− pk0α1 = 0

⇔ α1
∗ =

p

u0 + k0p+
√
u0(u0 + 2k0p)

∈
[

p

2(u0 + k0p)
,
p

2u0

]
and that β0 < 0 (resp. β0 > 0) when α1 > α1

∗ (resp. α1 < α1
∗).



Compare these two subcases we may conclude that

BR∗0(α1) =


0, if α1

∗ < α1 <
p

2u0

0 or
√

pα1

2u0
, if α1 = α1

∗√
pα1

2u0
, if p

2(u0+k0p)
< α1 < α1

∗

• α1 ≤ p
2(u0+k0p)

: again, two sub-cases exist:

– α0 ≥ α1: β0 maximises at α0 =
√

pα1

2u0
> α1

– α0 ≤ α1: β0 maximises at α0 = α1

Since β0 is continuous over α0, it thus maximises at
√

pα1

2u0
= BR∗0(α1)

We may now conclude the above points to form the defender’s utility function
for state checking:

BR∗0(α1) =


0, if α1 > α1

∗

0 or
√

pα1

2k0
, if α1 = α1

∗√
pα1

2k0
, if α1 < α1

∗

where α1
∗ = p

u0+k0p+
√
u0(u0+2k0p)

. To compare between BR0(α1) and BR∗0(α1)

we first notice that since u0 ≤ k0p/4, we also have α1
∗ ≥ α1:

α1
∗ − α1 =

p

u0 + k0p+
√
u0(u0 + 2k0p)

− 1

2k0

=

√
4u20 + 4u0k0p+ (k0p)2 −

√
4u20 + 8u0k0p

2k20p

≥
√

4u20 + 4u0k0p+ 4u0(k0p)−
√

4u20 + 8u0k0p

2k20p
= 0

We are now ready to compare BR0 and BR∗0 for different choices of α1:

• α1 ≥ α1
∗: since BR0(α1) = 0 and BR∗0(α1) = 0 or

√
pα1

2u0
, both yielding 0

utility, and thus periodic state checking is as good as periodic flipping.
• α1 ≤ α1 < α1

∗: since BR0(α1) = 0, thus periodic flipping achieves at most
0 utility, hence periodic state checking is preferred.

• α1 < α1: we compare the optimal utility between two types of strategies:

– BR0(α1) =
√

α1

2k0
, the defender’s utility is:

β0 = 1− α1

2α0
− k0α0 = 1−

√
2k0α1

– BR∗0(α1) =
√

pα1

2u0
, the defender’s utility is:

β∗0 = p

(
1− α1

2α0

)
− u0α0 − pk0α1 = p− k0pα1 −

√
2u0pα1



We then study the condition under which β∗0 ≥ β0:

β∗0 − β0 = p− 1 +
√

2α1(
√
k0 −

√
u0p)− k0pα1

≥ p− 1 +
√

2α1(
√
k0 −

√
k0
p

2
)− k0pα1 (12)

The right-hand side of (12) is non-negative if and only if α1 satisfies

1

2k0
min

(
1,

[
2(1− p)

p

]2)
≤ α1 ≤

1

2k0
max

(
1,

[
2(1− p)

p

]2)

Since we only consider α1 < α1 = 1/(2k0), we thus conclude that β∗0 ≥ β0,
that is, periodic state checking is preferred, whenever α1 satisfies (8).


