

A j-lanes tree hashing mode and j-lanes SHA-256

Shay Gueron1,2

1 Department of Mathematics, University of Haifa, Israel
2 Intel Corporation, Israel Development Center, Haifa, Israel

August 21, 2012

Abstract. j-lanes hashing is a tree mode that splits an input message to j slices,
computes j independent digests of each slice, and outputs the hash value of their
concatenation. We demonstrate the performance advantage of j-lanes hashing
on SIMD architectures, by coding a 4-lanes-SHA-256 implementation and
measuring its performance on the latest 3rd Generation Intel® Core™. For
message ranging 2KB to 132KB in length, the 4-lanes SHA-256 is between 1.5
to 1.97 times faster than the fastest publicly available implementation (that we
are aware of), and between ~2 to ~2.5 times faster than OpenSSL 1.0.1c. For
long messages, there is no significant performance difference between different
choices of j. We show that the 4-lanes SHA-256 is faster than the two SHA3
finalists (BLAKE and Keccak) that have a published tree mode implementation.
We explain why j-lanes hashing will be even faster on the future AVX2
architecture with 256 bits registers. This suggests that standardizing a tree mode
for hash functions (SHA-256 in particular) would deliver significant
performance benefits for a multitude of algorithms and usages.

Keywords: Tree mode hashing, SHA-256, SHA3 competition, SIMD
architecture, Advanced Vector Extensions architectures, AVX, AVX2.

1 Introduction

The performance of hash functions plays an important role in various situations (e.g.,
for SSL/TLS connections that use HMAC for authenticated encryption). In particular,
the performance of SHA-256 on high end processors is a performance baseline for the
SHA3 competition [1].

Recently, [2] published a “Simultaneous Hashing” (S-HASH) method, for using
SIMD architectures to speed up the computations of SHA-256 (and other hashes) over
multiple messages. In this paper, we apply this technique to accelerate SHA-256 for a
single message, using a tree mode that we call j-lanes hashing. We show that the
resulting “j -lanes SHA-256” is significantly faster than the standard (“linear”
hereafter) SHA-256. This demonstrates the performance benefits of standardizing tree
modes for hash functions (in particular, SHA-256 and SHA-512). It is interesting to
compare our results to the two SHA3 finalists that already have a j-lanes tree mode
implementation (see [3]): BLAKE (j=2 and j=4) and Keccak (j=2). We offer this
comparison in Section 4.

2 Shay Gueron

2 j-lanes hashing and the special case of 4-lanes SHA-256

Tree hashing is a well known concept for speeding up hash functions computations,
and is an efficient way for updating the hash value when only a portion of the
message is changed. Some relevant references are [4], [5], [6], [7], [8]. We focus here
on a specific tree construction, which is defined in the following section.

2.1 j-lanes hashing

Definition 1 (message j-Slicing): given a message m, its associated j-Sliced message
is the permutation (not necessarily concatenation) of disjoint slices of m, namely m=
permutation (m1 ǁ m2 ǁ m3 ǁ… ǁ mj) under some agreed convention on how each slice is
defined (for simplicity assume that m has at least j bits, to avoid empty string slices).

Definition 2 (j-lanes-hash): Let h = h (MESSAGE) be a hash function. Its associated
j-lanes-hash, is a hash scheme that operates as follows:

1. j-Slicing the message to m= permutation (m1 ǁ m2 ǁ m3 ǁ… ǁ mj).
2. Computing t1 = h (m1), t2 = h (m2), …, tj = h (mj).
3. Computing t* = h (t1 ǁ t2 ǁ … ǁ tj).
4. Returning the digest t* .

(hereafter we call Step 3 the “Wrapping” step).

j-lanes-hash is a special form of a tree mode (not a binary tree), where the number
of nodes is j+1 and the height of the tree is 2. As a special case of a tree mode, the
security properties of this construction follow from the more general theory on tree
hashing (e.g., [5] and [6] discuss the security properties of a tree hash in the context of
indifferentiability from an ideal hash function).

Note that the definition covers several setups. One example is “interleaving”
segments of a given message (which we use here, for directly taking advantage of
SIMD architectures). Another case is when the data is consumed from j locations
(e.g., j pointers) of a message. This can occur in an application that hashes a file
system (or a directory) where j is the number of files (and each file is a node in the
tree). We assume hereafter that the processed messages are sufficiently long to gain
performance advantage of the j-lanes tree mode (and ignore trivially short message).

2.2 Applying j-lanes hashing to derive a 4-lanes SHA-256

We use SHA-256 as the underlying hash algorithm, and generate a “j -lanes SHA-
256”. Our motivation is the potential performance advantage that stems from the
parallelization offered by SIMD architectures (or multithreaded implementations).

By splitting the message into j independent slices, the hash computations are
reduced to the problem of hashing multiple independent messages, supplemented by
the fixed-cost Wrapping step. Techniques for using SIMD architectures for hashing
multiple independent messages (of different lengths), and the resulting performance
speed-ups, are described in detail in [2]. We use these techniques here.

A j-lanes tree hashing mode and j-lanes SHA-256 3

SHA-256 operates on 32-bit words. Therefore, on processors that support the

AVX (or SSE) architecture that has 128-bit registers and the necessary integer
instructions, a natural choice for j-lanes (SHA-256) hashing is j=4 , with the obvious
convention for slicing the message: consecutive 128-bit chunks of the message are
treated as 4 consecutive 32-bit words, each one of a different slice. These 4 words fit
in as 4 “elements” of a single AVX register (xmm), and the SHA-256 computations
can therefore be parallelized using the SIMD architecture (see [2] for details).

If the byte-length of the message is divisible by 256, the slices have equal lengths.
Otherwise, (at least) one of slice has a different length, and this situation requires
different handling in the last Update (with negligible performance cost).

j-lanes hashing involves some overhead, and therefore, the performance gains are
expected to be (fully) manifested only for sufficiently long messages.

To illustrate, we note that the performance of SHA-256 is closely proportional to
the number of invocations of its compression function (“Update” hereafter). Consider
a message whose byte-length l is divisible by 256, and write l = 256x for some integer
x. Hashing (with SHA-256) such a message requires 4x+1 Updates, where the last
one due to the padding block. On the other hand, 4-lanes SHA-256 for this message
requires 4 (x+1) + 3 Updates, accounting for 1 padding block for each slice, and 3
Updates for the Wrapping step which requires hashing of a 128 bytes message.
Comparing the linear (i.e., serial) SHA-256 to the 4-lanes SHA-256, we see that the
latter involves 6 additional Updates. However, from the total of 4x+7 Updates, 4x can
be parallelized, in particular by using the AVX architecture. This is the reason why
the overall performance is expected to improve.

3 Performance studies

This section discusses some performance studies for of j-lanes SHA-256. We first
describe the measurement methodology.

• Each measured function was isolated, run 25,000 times (warm-up), followed by
100,000 iterations that were timed (using the RDTSC instruction) and averaged.

• To minimize the effect of background tasks running on the system, each
experiment was repeated five times, and the minimum result was recorded.

• All the runs were carried out on a system where the Intel® Hyper-Threading
Technology, the Intel® Turbo Boost Technology, and the Enhanced Intel
Speedstep® Technology, were disabled.

• The runs were executed on the 3rd Generation Intel® Core™ i7-3770 processor
(previously known as “Architecture Code name Ivy Bridge”).

• In all cases, the reported performance numbers account for the full computations
(i.e., including the padding and, when relevant. the final hashing of the j digests).

In our studies, we used two SHA-256 and three j-lanes-SHA-256 (j=4, 8, 16)
implementations as follows:

• OpenSSL (1.0.1c) linear: standard hashing using OpenSSL function.
• 4-SMS linear: standard hashing using the n-SMS (n=4) method (see [9], [10]; we

used here an improved version of this implementation).

4 Shay Gueron

• j-lanes using OpenSSL: using OpenSSL’s (1.0.1c) SHA-256 function to implement
j-lanes-SHA-256.

• j-lanes using the n-SMS: using the n-SMS SHA-256 implementation ([9], [10]) to
implement j-lanes SHA-256.

• AVX j-lanes hashing (j-lanes hashing for short): an optimized implementation of j-
lanes SHA 256, using the S-HASH implementation of [2], and the AVX
architecture.

The results are illustrated in Figures 1-3.
Figure 1 compares the different implementations for an 8KB message and j=4 .

Without parallelizing the hashing of the slices (as in j-lanes using OpenSSL and j-
lanes using the n-SMS), the 4-lanes SHA-256 is slower than the linear
implementation. This is due to the overheads of the j-lanes method. For example,
OpenSSL (1.0.1c) uses 129 Updates and performs at 12.87 Cycles/Bye, while the 4-
lanes SHA-256 implementation that simply calls the OpenSSL functions, uses 135
Updates, and performs at 13.57 Cycles/Bye. On the other hand, the optimized (using
AVX) 4-lanes SHA-256 implementation is 2.45 times faster than OpenSSL.

Fig. 1. Performance of different implementations of 4-lanes SHA-256, compared to linear
SHA-256, for a 8192- bytes message. Measurements taken on the 3rd Generation Intel®

Core™ Processor.

Figure 2 illustrates the effect of the choice of j (= 4, 8, 16). Obviously, increasing j
involves additional overhead to the j-lanes hashing. For example, 16-lanes SHA-256
for an 8KB message involves 153 Updates, and is therefore slower than the 4-lanes
SHA-256 that uses only 135 Updates (see top panel). However, both 8-lanes and 16-
lanes SHA-256 are still significantly faster than the best performing linear

12.87

10.18

13.57

10.81

5.46

0

2

4

6

8

10

12

14

OpenSSL

(linear)

n-SMS

(linear)

4-lanes

using

OpenSSL

4-lanes

using n-

SMS

4-lanes

hashing

C
y

cl
e

s
p

e
r

b
y

te

8,192 bytes message

A j-lanes tree hashing mode and j-lanes SHA-256 5

implementation. For long messages (see bottom panel), the relative impact of the
overheads decreases, and we obtain roughly the same performance for j = 4, 8, 16.

Fig. 2. Performance of j-lanes-SHA-256 for j=4, 8, 16, compared to linear SHA-256. The
message length is 8,192 bytes (top panel) and 131,072 bytes (bottom panel). Measurements

taken on the 3rd Generation Intel® Core™ Processor.

Figure 3 shows the performance advantage of the 4-lanes SHA-256 for messages
of lengths varying from 2KB to 128KB: 4-lanes SHA-256 is between 1.55 to 2 times

12.87

10.18

5.465.78
6.44

0

2

4

6

8

10

12

14

OpenSSL (linear) n-SMS (linear) j-lanes hashing

C
y

cl
e

s
p

e
r

b
y

te

8,192 bytes message

j=4

j=8

j-16

12.78

10.09

5.05
5.07

5.11

0

2

4

6

8

10

12

14

OpenSSL (linear) n-SMS (linear) 4-lanes hashing

C
y

cl
e

s
p

e
r

b
y

te

131,072 bytes message

j=4

j=8

j-16

6 Shay Gueron

faster than the best serial implementation (and 1.97 - 2.53 times faster than OpenSSL
1.0.1c).

Fig. 3. Performance of 4-lanes SHA-256, compared to linear SHA-256, for different message
lengths. Measurements taken on the 3rd Generation Intel® Core™ Processor.

4 Conclusion

We demonstrated the performance gains of j-lanes hashing, using SHA-256 as the
underlying hash algorithm. On the 3rd Generation Intel® Core™ Processor (with AVX
architecture) selecting j=4 , gives speedup factors between 1.55x to 2x, compared to
the best available implementation (up to 2.53x when comparing to OpenSSL 1.0.1c).
We focused on j=4 , as the natural choice for the current AVX (and SSE)
architectures. Interestingly, although j=4 yields the best results (the Wrapping
overhead is the smallest among the tested cases), we note that the performance with
all the studies choices j=4, 8, 16 is roughly the same for long messages.

We also comment that with the near future AVX2 architecture [11], a natural
choice would be j=8 for SHA-1, SHA-256 and j=4 for SHA-512, and the j-lanes
implementations will be significantly faster. Therefore, if a j-lanes hashing mode is
adopted, and the ecosystem would prefer to support only a single value of j (to reduce
the interoperability complexities), it seems that selecting j=8 would be a good choice.

In general, the j-lanes-hash can be useful in other scenarios, and with different
values of j. One example mentioned about is hashing a file system, where j is the
number of files (and each file is a node in the tree). Such computations can be
accelerated not only by using SIMD architectures, but also by using the processing
power of multi-cores systems.

We conclude that the j-lanes-hash could alleviate computational bottlenecks, and
recommend that this mode (or a general tree mode) is standardized. To this end, we
comment that standardization of a j-lanes (or any tree) mode should also properly
define different initialization vectors (depending also on the value of j) in order to

1
3
.2
7

1
3
.0
2

1
2
.8
9

1
2
.8
3

1
2
.8
1

1
2
.7
9

1
2
.7
8

1
0
.4
5

1
0
.2
6

1
0
.1
7

1
0
.1
3

1
0
.1
1

1
0
.1

1
0
.0
9

6
.7
5

5
.8
8

5
.4
6

5
.2
4

5
.1
3

5
.0
7

5
.0
5

0

2

4

6

8

10

12

14

C
y

cl
e

s
p

e
r

b
y

te

Message length (in bytes)

OpenSSL (linear)

n-SMS (linear)

4-lanes hashing

A j-lanes tree hashing mode and j-lanes SHA-256 7

distinguish the resulting digests from outputs of the linear SHA-256 (analogously to
the how a digest truncation (e.g., SHA224) is defined).

4.1 A comment on the SHA3 finalists

We expect that the SHA3 finalists [1] could also gain from using the j-lanes-hash,
at least to some extent, and the performance gains will further increase when the
AVX2 architecture becomes available. However, at this point, it is hard to tell if these
algorithms would outperform the j-lanes-SHA-256 and/or j-lanes-SHA-512, and by
what margin.

Since the two finalists BLAKE and Keccak already have a tree mode
implementation (j=2 and j=4 for BLAKE, and j=2 for Keccak; see [3]), we show the
performance comparisons of SHA-256, BLAKE, and Keccak in linear and in j-lanes
mode in Figure 4.

Fig. 4. Performance of SHA-256, BLAKE256, BLAKE512, and Keccak, in “linear” mode and
in tree mode (for a 8,192 bytes message). Measurements taken on the 3rd Generation Intel®

Core™ Processor.

As expected, the j-lanes (tree mode) implementation improves the performance of
all three algorithms. The results show that the j-lanes SHA-256 implementation is the
fastest one of these three.

Recalling that SHA-256 (and SHA-512) is the performance baseline for SHA3, we
conclude (from the currently available information) that considering the j-lanes mode
still does not offer a performance advantage for SHA3 over SHA-256. This is
consistent with the findings of [6]: migration to a new SHA3 standard could not be
motivated by performance advantages on the high end platforms.

1
2
.8
7

1
0
.1
8 5
.4
6

7
.5
5

5
.9
2
7

5
.8
2

5
.7
4

1
1
.0
3 7
.0
4

0

2

4

6

8

10

12

14

C
y

cl
e

s
p

e
r

b
y

te

8,192 bytes message

8 Shay Gueron

5 Acknowledgements

I thank Jean-Philippe Aumasson, Bart Preneel and Jesse Walker for helpful
discussions.

6 References

[1] NIST, cryptographic hash Algorithm Competition.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

[2] Gueron, S., Krasnov, V.: Simultaneous hashing of multiple messages (2012),
http://eprint.iacr.org/2012/371.pdf

[3] SUPERCOP, http://bench.cr.yp.to/supercop.html
[4] Bertoni, G., Daemen, J, Peeters, M, Van Assche, G.: Keccak sponge function family

main document. Submission to NIST; updated (2009) http://cuda-
keccak.googlecode.com/svn/trunk/docs/Keccak-main-2.1.pdf

[5] Bertoni, G., Daemen, J, Peeters, M, Van Assche, G.: Sufficient conditions for sound
tree and sequential hashing modes (2009) http://eprint.iacr.org/2009/210

[6] Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of Permutation-Based
Compression Functions and Tree-Based Modes of Operation, with Applications to
MD6. Proceedings of FSE 2009, Lecture Notes in Computer Science, 5665 104-121
(2009).

[7] Merkle, R. C.: A certified digital signature. Advances in Cryptology, Proceedings of
CRYPTO '89, Lecture Notes in Computer Science, 435: 218-238 (1990).

[8] P. Sarkar, P. Schellenberg, P. J.: A parallelizable design principle for cryptographic
hash functions. Cryptology ePrint Archive (2002), http://eprint.iacr.org/2002/031

[9] Gueron, S., Krasnov, V.: Parallelizing message schedules to accelerate the
computations of hash functions (2012), http://eprint.iacr.org/2012/067.pdf

[10] Gueron, S., Krasnov, V.: [PATCH] Efficient implementations of SHA256 and
SHA512, using the Simultaneous Message Scheduling method,
http://rt.openssl.org/Ticket/Display.html?id=2784&user=guest&pass=guest

[11] Intel (M. Buxton): Haswell New Instruction Descriptions Now Available!
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-
descriptions-now-available/

Filename: j-lanes_hash_2012_08_20_v01.docx

