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Abstract. Adaptively secure multiparty computation is an essential and fundamental notion in cryp-
tography. In this work we focus on the basic question of constructing a multiparty computation protocol
secure against a malicious, adaptive adversary in the stand-alone setting without assuming an honest
majority, in the plain model. It has been believed that this question can be resolved by composing
known protocols from the literature. We show that in fact, this belief is fundamentally mistaken. In
particular, we show:
- Round inefficiency is unavoidable when using black-box simulation: There does not exist
any o( n

logn
) round protocol that adaptively securely realizes a (natural) n-party functionality with

a black-box simulator. Note that most previously known protocols in the adaptive security setting
relied on black-box simulators.

- A constant round protocol using non-black-box simulation: We construct a constant round
adaptively secure multiparty computation protocol in a setting without honest majority that makes
crucial use of non-black box techniques.

Taken together, these results give the first resolution to the question of adaptively secure multiparty
computation protocols with a malicious dishonest majority in the plain model, open since the first
formal treatment of adaptive security for multiparty computation in 1996.
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1 Introduction

The notion of secure computation is central to cryptography. Introduced in the seminal works of [Yao86,GMW87],
secure multi-party computation (MPC) allows a group of (mutually) distrustful parties P1, . . . , Pn, with pri-
vate inputs x1, . . . , xn, to jointly compute any functionality f in such a manner that the honest parties
obtain correct outputs and no group of malicious parties learns anything beyond their inputs and prescribed
outputs. In this setting we can consider an adversary that can adaptively corrupt parties throughout the
protocol execution depending on its view during the execution. Adaptively secure multiparty computation
is an essential and fundamental notion in cryptography. We refer the reader to ([CFGN96], Section 1) for
further discussion on the importance of considering adaptive adversaries.

Canetti, Feige, Goldreich and Naor [CFGN96] constructed the first adaptively secure MPC protocol
in the standalone setting, assuming the presence of an honest majority. Beaver constructed an adaptively
secure zero-knowledge protocol [Bea96a] (see also [LZ11]) and an adaptively secure OT protocol [Bea96b]
(see also [GWZ09]). Similar results for general two-party computation were established in [Bea98,KO04].
Assuming a trusted common random string (CRS), Canetti, Lindell, Ostrovsky and Sahai [CLOS02] gave
the first adaptively secure MPC protocol without honest majority in the two-party and the multi-party
setting, in fact under an even strong notion of security called the UC security (which can be achieved only
with a trusted setup). In this paper, we focus on the following basic question:

Is it possible to construct multiparty computation protocols in the standalone setting (without any trusted
setup) secure against a malicious, adaptive adversary that may corrupt any number of parties?

Previous work on this question: Choi, Dachman-Soled, Malkin and Wee [CDMW09a,CDMW09b] give
a construction of an adaptively secure multi-party computation protocol when given access to an ideal
commitment (more formally, in the commitment hybrid model). At the same time, many adaptively secure
protocols for securely realizing the commitment functionality (e.g. [PW09]) are known. And we know that it
is possible to compose protocols by the composition theorem of Canetti [Can98], which holds in the adaptive
security setting.

Surprisingly, however, it turns out that a straightforward application of these results does not (in fact
as we argue, it cannot) achieve adaptive security in the multiparty setting!1 We stress that all the results
stated in the previous paragraph (with proper formalization) are correct, and yet still the conclusion does
not follow.

Adaptively Secure Composition: More than Meets the Eye. Somewhat surprisingly, a 2-party
adaptively secure protocol fails to guarantee security when executed in the setting of n-parties, even if only
two of the parties are ever talking to each other. (Thus, the 2-party adaptively secure commitment protocol
of [PW09] is not necessarily adaptively secure in the n-party setting.) Indeed Canetti [Can98] (Theorem 10,
Page 38) requires that in order to obtain an n-party adaptively secure protocol via the composition theorem,
all the protocols being composed must be secure in the n-party setting to begin with. Nevertheless, this
might seem surprising, and we demonstrate this issue by considering an example. We know that the vast
majority of the simulators for MPC protocols are black-box. Now, consider an adaptively secure protocol in
the 2-party case with a black-box simulator. Suppose that this 2-party protocol is executed in the setting
of n parties out of which only two of them communicate. The black-box simulator for the 2-party protocol
must rely on “rewinding” for the proof of security. However, in the adaptive n-party setting an adversary
can also corrupt parties that do not communicate during the execution of the protocol. What if this happens
during a rewinding? This case is never handled in the simulation for the 2-party case, and thus the proof of
composition security breaks down. Indeed this seemingly small issue turns out to be a fundamental barrier to
constructing adaptively secure MPC protocols. Not only does the proof break down, but as we show below,
there are explicit impossibility results possible in the black-box setting. Thus, we show that in the setting

1 Indeed, this composition seemed so “obvious” that in [CDMW09b], Corollaries 2 and 3 claimed a result for adap-
tively secure multi-party computation in the plain model, and were given without proof. After seeing our work,
the authors of [CDMW09b] have corrected their paper to only refer to the two-party case in their corollaries. We
stress that the corollaries of [CDMW09b] do apply to the two-party setting, and that nothing in this paper should
be taken to imply that any of the proofs given in [CDMW09b] are incorrect.
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without honest majority, we need to completely rethink the techniques used to construct adaptively secure
multi-party computation protocols.

1.1 Our results:

We consider an asynchronous multi-party network2 where the communication is open (i.e. all the communica-
tion between the parties is seen by the adversary) and delivery of messages is not guaranteed. (For simplicity,
we assume that delivered messages are authenticated. This can be achieved using standard methods.) The
two main results of the paper are:

Round inefficiency with a black-box simulation: There does not exist any o( n
logn ) round protocol that

adaptively securely realizes a natural n-party functionality (more specifically an extension of the com-
mitment functionality to the setting of n parties) with a black-box simulator. This result holds in the
standalone setting in the plain model. We stress that all protocols that deal with adaptive security in the
standalone model that we are aware of employ a black-box simulator. This implies that the techniques
previously used to build adaptively secure multiparty protocols must incur a substantial efficiency loss.

A round efficient protocol with non-black box simulation: On the other hand, we show that non-
black-box techniques can be used to circumvent the above described impossibility result. Assuming colli-
sion resistant hash functions, trapdoor permutations, augmented non-committing encryption [CFGN96,CLOS02]
and dense cryptosystems [DSP92] we construct a constant round adaptively secure n-party protocol where
the adversary is allowed to corrupt up to n− 1 parties in the non-erasure model. If security against cor-
ruption of all n parties is desired then our construction yields a protocol with round complexity that is
proportional to the depth of the circuit being evaluated. Alternatively, in the setting where all n parties
can be corrupted, we can get a constant-round protocol if data erasures are allowed. This result shows a
new area where non-black-box techniques can allow us to overcome round efficiency barriers that would
otherwise exist.

Discussion: The negative result leaves open the question of constructing adaptively secure protocols with
black-box simulation, but with poor round complexity. We find this direction not very interesting in light of
our positive result constructing round-efficient protocols using non black-box techniques. Nevertheless, we
provide a sketch of a round-inefficient black-box construction in Appendix A, which is nearly tight with
respect to our impossibility result.

On erasures: Our positive results include round efficient protocols both in the setting of erasures and
non-erasures. On the other hand our negative result holds even when parties are allowed to erase everything
except their input. (Note that for our positive result with erasures, honest parties are certainly not required
to erase their inputs.) From the earliest works on adaptive security [BH92] with erasures, it has been a major
design goal to reduce the amount of erasures necessary. We refer the reader to ([Can98], Section 5.2) for a
more general discussion on how trusted erasures may be a problematic assumption. Nevertheless, in light of
our negative result we may also want to consider protocols that allow honest parties to erase their inputs
during the protocol. We argue that it is particularly unreasonable to consider such protocols: Consider, for
example, a setting where many hospitals are collaborating on some research involving their patient records.
In order to do this research, they execute an MPC protocol, where each hospital’s input is its database of
patient records. We do not expect any hospital to be willing to erase all of its patient records (even from
backup facilities, as backup facilities could also be adaptively corrupted), even temporarily, just to enable an
MPC computation for research purposes. Worse, any protocol in the dishonest majority setting that requires
honest parties to erase its inputs would enable an adversary, simply by aborting the protocol, to cause all
honest parties to lose all of their inputs forever. While the example of hospital patient records underscore
how undesirable erasure of inputs can be, this issue would be quite problematic in most contexts. Thus, we
do not consider protocols where inputs can be erased3. Recall, however, that we can achieve round-efficient
adaptive security without requiring erasures at all using non-black-box techniques.

2 The fact that the network is asynchronous means that the messages are not necessarily delivered in the order which
they are sent.

3 It is not hard to see that if we were to allow erasure of inputs, then the following solution would be possible: The
parties first non-malleably secret share their inputs among all parties. Subsequently, all parties erase everything

2



1.2 Our Techniques

The central idea for our impossibility result is to argue that a black-box simulator of an o( n
logn ) round

protocol for an n-party functionality does not gain anything via “rewindings” in the adaptive setting. Now
we elaborate on this. Consider an r round (such that r is o( n

logn )) protocol for an n-party functionality
with a black-box simulator. Consider an adversary that behaves completely honestly in the protocol itself,
however, after each round of the protocol it corrupts roughly ω(log n) parties. Furthermore, the parties to
be corrupted are chosen randomly (in fact pseudo-randomly based on the protocol messages so far) among
the uncorrupted parties so far. On corruption of an honest party, the simulator is obliged to provide to
the adversary the input of the party just corrupted. In its “main thread” execution with the adversary, to
help the simulator in simulation, the simulator is also provided with these inputs. However, every time the
simulator “rewinds” the adversary, the adversary will (with overwhelming probability) choose to corrupt at
least one party that is not among the ones corrupted in the main thread. The simulator therefore will be
unable to proceed in any “rewinding.” Note that the only additional power awarded to a black-box simulator
is essentially the ability to “rewind” the adversary which is essentially useless in our context. We therefore
conclude that no such simulator can exist.

As is clear from the impossibility result just described, the problem of round inefficiency will be inherent to
any simulator that “rewinds.” In order to get around this problem, we turn to the non black-box simulation
technique of Barak [Bar01]. However, Barak’s protocols are far from being adaptively secure. To achieve
adaptive security, we adapt and make use of a technique developed in the context of concurrently secure
computation [PR03,PR08,BS05].

Technical overview for the construction of our constant round protocol: Now we give a detailed
technical overview of our construction. We will start by giving a high level idea of the final protocol and
then delving into the details of sub-protocol (along with specifics of constructions) that need to be built.
Throughout the following description, we advise the reader to keep in mind that our goal is to construct
a round efficient protocol and as is clear from the negative result stated above this cannot be done with
a simulator that “rewinds.” Therefore we will restrict ourselves to a “straight-line” or a “non-rewinding”
simulator.

- Reducing the problem of adaptively secure MPC to generation of common random strings.
The starting point of our construction is the observation that an adaptively secure MPC protocol (Theo-
rem 3, [IPS08])4 for any functionality can be realized in OT-hybrid (oblivious transfer) model. Note that
in this construction each OT call is made between two parties. Further note that for an OT call between
two parties security is required only if at least one of the two parties is honest. Additionally, note that
we can adaptively securely realize OT functionality in the CRS hybrid (common random string) model
(e.g., using [CLOS02]). Therefore in order to construct an adaptively secure protocol it suffices for us to
adaptively securely realize the CRS functionality between every pair of parties where the CRS generated
by a pair of parties is required to be honestly generated only if at least one of the two parties is honest.

- Generating a common random string between a pair of parties. Now we are left with the goal
of adaptively securely realizing CRS between every pair of parties. We start by giving intuition for a
protocol that adaptively securely realizes CRS between two parties and then sketch the extension to the
setting of multiple parties. We do this by constructing a coin flipping protocol secure in the
adaptive setting in which the simulator can simulate in a straight-line manner. In order to construct
such a coin flipping protocol our simulator will need the ability to equivocate on its commitments. In
other words, we will need that our simulator can open its commitments to any value of its choice even
after it has made those commitments. Looking ahead the simulator will also need the ability to extract
(the reasons for which we see later) from the commitments made by the adversary. More specifically,
we will need that the simulator can extract the values committed to by the adversary. Next we will
first describe a mechanism that allows a straight-line simulator to equivocate on its commitments in the

except their own share (and the shares they receive from other parties). Finally, they run the protocol on the
shares as inputs instead. However, we again stress that we find this solution highly unsatisfactory in light of the
discussion above.

4 We refer the reader to Remark 2 of [IPS08] for discussion on variants of this result.
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adaptive setting. Subsequently, we will see how equivocation can be used in setting up coin flipping (and
the need of extractability in the process).

- Equivocal commitment scheme in the adaptive setting.We consider the public-coin zero-knowledge
protocol5 of Barak [Bar01]. Even though this protocol is secure against adaptive corruptions of the ver-
ifier, it is far from being adaptively secure if we were to consider adaptive corruption of the prover. We
will modify Barak’s protocol as follows. For every bit sent by the prover in the Barak’s protocol, we
will require that our prover instead sends a random string of appropriate (length of a pseudorandom bit
commitment) length. Note that in this modified protocol no actual proof is given. Furthermore, all the
messages sent by an honest prover and an honest verifier in this modified protocol are just random bits
and thus adaptive corruption of parties participating in an execution of this modified protocol does not
help the adversary in any way. However, a key idea is that we can define an NP-relation that accepts
a transcript if only if there exist decommitments of the prover messages such the decommitted prover
messages along with the verifier messages form an accepting transcript of an execution of the Barak’s
protocol. Roughly speaking our modified protocol has two properties, with respect to this NP-relation:

• No adaptively corrupted cheating prover interacting with an honest verifier in our modified protocol
can output a witness for the transcript generated.

• Consider any execution in which the prover is honest. In this execution our simulator (simulating
the prover) can internally use the simulator of Barak’s protocol and always output a witness for the
transcript generated.

We can reduce this transcript to a graph (can be constructed using an NP-reduction) that is Hamiltonian
if and only if there exits a witness corresponding to the above NP-relation. Furthermore, given the witness
we can also deduce the Hamiltonian cycle in the obtained graph. This graph can now be used to generate
commitments such that a party with access to a cycle in the graph can open them in any way. We refer
the reader to Section 4 for more details on this.

Note that an execution of the modified Barak’s protocol guarantees equivocability of commitments sent
on behalf of only one of the two parties. Therefore we will have to set up two equivocal commitments. This
can be easily achieved by execution modified Barak’s protocol twice between the two parties switching
the roles the two parties play in the two executions of the modified Barak’s protocol.

- Coin flipping protocol secure in the adaptive setting. Next using equivocal commitments, we
construct a coin flipping protocol between two parties A and B. One standard approach for constructing
such a coin flipping protocol is to have the two-parties commit to random strings (via equivocal com-
mitments) which they subsequently open one by one. The output of the protocol corresponds to the
exclusive or of the two strings. Lets consider the case in which A opens first. The key technical problem
that arises in this case is that if B is corrupted then the straight-line simulator (simulating A) without
knowledge of the value committed to by B will not be able to force the output of the protocol to a value
of its choice.

We solve this problem by doing two coin flips both of which roughly follow the same outline as above.
The first coin flipping is done in-order to setup a public key of a public key encryption scheme (with
pseudorandom public-keys and pseudorandom ciphertexts). In this protocol we require that B opens first
and this allows the simulator to force the output of the protocol to a value of its choice (in a straight-line
manner) as long as A is honest. Subsequently the parties execute a second coin flipping protocol in
which we require that B (B opens later now), in addition to the commitment it sends, is required to
send encryption of the randomness used in generating the commitment using the public key generated in
the first coin flipping. This allows the simulator to extract the value committed by B (if B is corrupted)
even before A needs to open its committed value and thereby allowing it to simulate in a straight line
manner. However, in case B is honest then the simulator will have to explain the encryptions as if they
were honestly generated. We achieve this in a way similar to [CLOS02].

- Setting up multiple common random strings. Additionally other well known issues relating to
non-malleability arise in constructing of constant round protocols [KOS03] because of the need to exe-
cute different protocol instances in parallel. We deal with issue using the two-slot technique of [PR03].
Concretely we consider Pass’ [Pas04] family of non-black-box zero knowledge protocols with strong sim-
ulation soundness properties, i.e., any one of these protocols continues to remain sound even when all

5 In a public-coin zero-knowledge protocol all messages of the verifier correspond to random bits (“coin flips”).
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the other protocols in the family are being simulated. We prove that modifying these protocols just like
we modified the Barak’s protocol above suffices for our purposes.

Roadmap. We start by recalling the formal definition of adaptive secure MPC in Section 2. We then provide
our impossibility result for protocols with black-box simulation in Section 3. Next we recall some very basic
notions and setup notation in Section 4. Finally we provide the construction of our constant round protocol
in Section 6 using sub-protocols constructed in Section 5.

2 Adaptively Secure Multi-Party Computation

In this section we recall the formal definition of adaptively secure MPC. We adapt our definition of adaptive
MPC from [CFGN96,Can98]. Parts of the text have been taken verbatim from [CFGN96]. In order to define
adaptive MPC we first describe the real world model process; next we describe the ideal process; and finally
present the definition.

Real World. An n-party protocol π is a collection of n interactive, probabilistic algorithms, where the
ith algorithm is run by the ith party, Pi. Each Pi has input xi ∈ {0, 1}∗, random input ri ∈ {0, 1}∗, and
the security parameter k. We assume that all communication is done via a broadcast channel. That is, any
message sent by some party at some communication round is received by all other parties (including the
adversary) before the beginning of the next round.

At the onset of the computation A receives some auxiliary information z. Next, the computation proceeds
according to the given model of computation. For concreteness, we specify the following (synchronous, with
rushing) model of computation. The computation proceeds in rounds; each round proceeds in mini-rounds,
as follows. Each mini-round starts by allowing A to corrupt parties one by one in an adaptive way. (The
behavior of the system upon corruption of a party is described below.) Next A chooses an uncorrupted party,
Pi, that was not yet activated in this round and activates it. Upon activation, Pi receives the messages sent
to it in the previous round, generates its messages for this round, and the next mini-round begins. A also
learns the messages sent by Pi. Once all the uncorrupted parties were activated, A generates the messages
to be sent by the corrupted parties that were not yet activated in this round, and the next round begins.

Once a party is corrupted the party’s input and random input (note that the adversary already knowns
the entire history of the messages sent and received by the party) become known to A.

At the end of the computation (say, at some pre-determined round) all parties locally generate their
outputs. The uncorrupted parties output whatever is specified in the protocol. The corrupted parties output
any arbitrary PPT function of the view of A.

The overall output of the real-world experiment consists of all the values output by all parties at the
end of the protocol, and is denoted by REALπA(1

k,x, r, z). Let REALπA(1
k,x, z) denote the random variable

REALπA(1
k,x, r, z) where r is uniformly chosen. Let REALπA denote the ensemble {REALπA(1k,x, z)}k∈N,x∈({0,1}∗)n,z∈{0,1}∗

.

Ideal World. We first define the ideal world experiment, where n parties P1, . . . , Pn interact with a
trusted party for computing a function f : N × ({0, 1}∗)n × {0, 1}∗ → ({0, 1}∗)n. Each party Pi obtain an
input xi ∈ {0, 1}∗. Note that the parties wish to evaluate f(k,x, rf )1, . . . , f(k,x, rf )n where rf ← {0, 1}s
and s is a value determined by the security parameter and Pi learns f(k,x, rf )i. The ideal world computation
in presence of the adaptive ideal world adversary S (with random input r) and an (incorruptible)
trusted party, F proceeds as follows.

First corruption stage: First, as in the real-life model, S gets an auxiliary information z. Next, S proceeds
in iterations, where in each iteration S may decide to corrupt some party based on S’s random input
and the information gathered so far. Once a party is corrupted its input becomes known to S. Let B
denote the set of parties corrupted at the end of this stage.

Computation stage: Each honest party Pi sends its input xi to the trusted party F . For each corrupted
party, the adversary may select any value yi (based on the information gathered so far) and send it to
the trusted party. Let y1, . . . , yn be the inputs that were sent to the trusted party F . Next, F chooses
rf randomly from {0, 1}s and hands each party Pi the value f(k,y, rf )i.
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Second corruption stage: Upon learning the corrupted parties’ outputs of the computation, S proceeds
in another sequence of iterations, where in each iteration S may decide to corrupt some additional party,
based on the information gathered so far. Upon corruption, S sees the corrupted party’s input and
output.

Output stage: Each uncorrupted party Pi outputs f(k,y, rf )i, and the corrupted parties output some
arbitrary PPT function of the information gathered by the adversary during the computation in the
ideal process.

Post-execution corruption: Once the outputs are generated, just like in the second corruption phase, S
at any point in the protocol may decide to adaptively proceed in another sequence of iterations, where
in each iteration S may decide to corrupt some additional party, based on the information gathered so
far.

The overall output of the ideal process consists of all the values output by all parties at the end of
the protocol, and is denoted by IDEALFS (1

k,x, z, r), where r = (r, rf ). Let IDEALFS (1
k,x, z) denote the

distribution of IDEALFS (1
k,x, z, r) when r is uniformly distributed. Let IDEALFS denote the distribution

ensemble {IDEALFS (1k,x, z)}k∈N,x∈({0,1}∗)n,z∈{0,1}∗

Equivalence of Computations. Informally, we require that executing a protocol π in the real world
roughly emulates the ideal process for evaluating f .

Definition 1. (Adaptive Security) Let f be any adaptively well-formed6 n-ary function, π be a protocol for
n parties. We say that π adaptively securely evaluates f if for every real world adversary A there exists an

ideal world adversary S, such that REALπA
c
≈ IDEALFS .

3 Round inefficiency with a black-box simulation is unavoidable

In this section, we show the existence of a deterministic n-party functionality for which there does not exist
any o( n

logn ) round adaptively secure protocol, with a black-box simulator.
Before proceeding to the formal proof, we first give some intuition behind our impossibility result. The

central idea to our proof is to argue that a black-box simulator (say) S of an o( n
logn ) round protocol does not

gain any thing via “rewindings” in the adaptive setting. Informally speaking, this means that the simulator
fails to get any useful information from any look-ahead thread and even in this setting it must still be
able to extract the adversary’s input. However, a simulator must have some additional power over a real
adversary, and the only additional power awarded to a black-box simulator is essentially the ability to rewind
the adversary. We therefore conclude that black-box simulators cannot exist for any o( n

logn ) round protocol,
as stated in Theorem 1 below.

Theorem 1. There exist a deterministic n-party functionality for which there does not (assuming one way
functions) exist any o( n

logn ) round adaptively secure protocol (as per Definition 1)with respect to black-box
simulators.

Proof. We will organize our proof into two main parts.

1. First, we consider the commitment functionality F , where there are two special parties – the committer
C and the receiver R, and n − 2 dummy parties. Let Π be any o( n

logn )-round n-party protocol that
adaptively securely realizes F with respect to a black-box simulator. Then, for large enough n, we first
construct an adversary A for Π, that corrupts C, such that every black-box simulator S for Π gets full
participation from the adversary in the “main thread,” but fails to get any “useful” information from
the rewindings. Our adversary A, has the inputs of dummy parties hard-coded inside itself and it acts
in the following way. It starts by corrupting the committer C. It follows the honest committer strategy
on behalf of C, except that after each round of Π it corrupts roughly ω(log n) parties. Furthermore, the
parties to be corrupted are chosen randomly (in fact pseudo-randomly based on the protocol messages so
far) among the uncorrupted parties so far. On corruption of an honest party, the simulator is obliged to

6 We require[CLOS02] that the functionality reveals its random input rf in case all parties are corrupted.
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provide to the adversary the input of the party just corrupted. In its “main thread” execution with the
adversary, to help the simulator in simulation, the simulator is also provided with these inputs. However,
every time the simulator “rewinds” the adversary, the adversary will (with overwhelming probability)
choose to corrupt at least one party that is not among the ones corrupted in the main thread. The
simulator therefore will be unable to proceed in any “rewinding.” However, by security of the protocol
such a simulator must still be able to extract the input of C. Proving this is in fact the crux of our proof.

2. Next, we consider another real-life adversary A′, that corrupts all parties except C, uses the black-box
simulator S (constructed above) and actually succeeds in extracting the input of the honest committer.
This contradicts the assumption that Π securely realizes F .

Combining the two parts, we conclude that for the n-party commitment functionality F (as described above),
there does not exist any o( n

logn )-round protocol that adaptively securely realizes F with respect to black-box
simulators. We note that this is sufficient to prove Theorem 1. We give more details on both parts of the
proof next.

PART 1. Simulator failing in all rewindings
Let F be an n-party commitment functionality with two special parties – the committer C with input xC ,
the receiver R, and n − 2 dummy parties with inputs x1, x2 . . . xn−2 respectively, each of which is a k-bit
long uniform random string. In this setting we start by making the notion of a round precise. In the n-party
setting a round involves a messages being sent by every party. We will think of a round as a two step process.
In the first step all the honest parties (the ones that are supposed to according to the protocol) send their
messages and in the second step the adversary sends the messages on behalf of all the corrupted parties
(again for the ones that are supposed to according to the protocol).
Description of A. We will first construct an adversary A, that has the inputs x1, x2 . . . xn−2 hard-coded
inside itself. In other words the adversary is aware of the values x1, x2 . . . xn−2 and it will use them in its
execution. A acts in the following way. It starts by corrupting the committer C. Furthermore, it follows the
honest committer strategy on behalf of C, except that for each round of Π (which has r = o( n

logn ) rounds)

after the messages sent on behalf of all honest parties have been received, A corrupts µ(k) = n
2r parties chosen

randomly (in fact, pseudorandom in the transcript so far) among the uncorrupted dummy parties. At this
point the simulator provides the inputs (and the randomness) of the corrupted dummy parties to adversary.
Our adversary ignores the randomness, matches the provided input values against the values hard-coded
inside it. It aborts with a special abort message Match-Abort if any of the values does not match. Finally,
it responds with appropriate messages on behalf of all honest parties.

Next we argue that no black-box simulator S, that completes the “main thread,” can succeed in preventing
the adversary from aborting in the look-ahead threads (except with negligible probability) and therefore fails
to get any “useful” information from the rewindings. We first introduce some notations and conventions for
the remainder of the proof. We will borrow some of our notations and conventions from [BL04]. Without
loss of generality, we assume that R is the protocol initiator in Π. Recall that the number of rounds in Π is
r, where one round consists of messages sent by the honest parties and then the adversary.

Now, recall that a black-box simulator S for any protocol has ‘oracle access’ to the real world adversary
A. Formally, we consider A as a non-interactive algorithm that gets as input the history of the messages sent
to A, and outputs the next message that A would send in an execution of Π corresponding to the specific
execution. More formally, S can query A with any sequence of messages of the form (α1, β1, α2, β2 . . . , αi), i ≤
r or (α1, β1, α2, β2 . . . , αi, βi), i ≤ r (i.e., the query contains the history of the messages sent to the adversary),
and it will receive back the next message that A would send in any execution of Π in which it received this
sequence of messages. Note that this history consists of two kinds of messages. The αis correspond to the
messages of the protocol Π. On the other hand βis corresponds to the inputs (along with the random coins)
of the honest parties that the simulator sends in response to the adversary’s corruption requests. For the
sake of simplicity, we will assume without loss of generality, that the simulator S always follows the following
two conventions:

1. It never asks the same query twice.
2. If S queries A with γ, then it must have queried A with all the proper prefixes of γ prior to this query.
3. S outputs a view that corresponds to the messages sent between the adversary A and the simulator S

in the “main thread” of the interaction.
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We note that it is easy to modify any black-box simulator such that it follows the above conventions, without
affecting its output distribution.

Note that our adversary never aborts with Match-Abort in the real world. This is because in the real
world an honest party on corruption always responds with its true input which will match with the inputs
hard-coded inside the adversary. Therefore, by indistinguishability of the outputs generated by the adversary
and the simulator, the adversary must not abort (in the “main thread”) in its interaction with the simulator.
Therefore S needs to make at least r queries of the form (α1, β1, α2, β2 . . . , αi, βi) for each i ∈ [r] in order
to be able to just complete the “main thread.” Therefore, the simulator S makes exactly one query of the
form (α1, β1, α2, β2 . . . , αi, βi) for each i ∈ [r] and in order to avoid Match-Abort in any of these executions
(and maintain indistinguishability of the outputs generated by the adversary and the simulator) it must
corrupt the same parties as A. Note that in the “main thread” of the execution the adversary corrupts a
total of up to rµ(k) (i.e., n

2 ) parties and our simulator is allowed to corrupt only the same parties. This in
particular implies that our simulator cannot corrupt more that n

2 parties. Let E be the event that a simulator
successfully makes any additional query of the form (α1, β1, α2, β2 . . . , α

′
i, β

′
i) such that α′

i ̸= αi for some
i ∈ [r] to the adversary such that the adversary does not output Match-Abort. We will next argue that E
happens with negligible probability allowing us to conclude that S fails every time it rewinds A.

For the sake of contradiction we start by assuming there exists a simulator such that E happens with a
non-negligible probability. Now observe that within this query βi corresponds to the inputs of

n
r (i.e., ω(log n))

parties which are chosen pseudo-randomly in α1, β1, α2, β2 . . . , αi. We start by changing the experiment
slightly. Instead of choosing the parties to be corrupted pseudo-randomly we choose these parties randomly. It
follows from that security of the pseudorandom function thatE still happens with a non-negligible probability.
The probability, in this experiment, that all the freshly chosen ω(log n) parties come from the n

2 parties that

the simulator corrupts (for simulation of the “main-thread”) is less that
(

n
2·(n−2)

)ω(logn)

, which is negligible.

Additionally, recall that inputs of dummy parties were chosen randomly and the simulator can correctly guess
these values only with a negligible probability. This is a contradiction.

PART 2. Adversary A′ against which F is insecure
We already have a simulator S that does not rewind the adversary A (described above) and still successfully
extracts the input xC of the committer. Next we will construct another adversary A′ that corrupts R and
all the dummy parties, executes S internally and successfully extracts the input xC of the committer. A′

internally executes S and follows the same strategy as A, except that all messages it sends on behalf of C
(i.e., the αis) are actually obtained from an external honest committer C. S must still continue to extract
the input of the committer C. Since the simulator never rewinds A, we will never need to rewind the external
party C. This contradicts the security of the protocol Π and concludes the proof.

4 Building Blocks for our Constant Round Protocol

In this section we recall and define some very basic notions and setup notation. Let k denote a security
parameter. We say that a function is negligible in the security parameter k if it is asymptotically smaller
than the inverse of any fixed polynomial. Otherwise, the function is said to be non-negligible in k. We say
that an event happens with overwhelming probability if it happens with a probability p(k) = 1− ν(k) where
ν(k) is a negligible function of k. In this section, we recall the definitions of basic primitives studied in this
paper. We now discuss the main cryptographic primitives that we use in our construction.

Underlying standard commitment. The basic underlying commitment scheme Com is the standard non-
interactive commitment scheme based on a one-way permutation f and a hard-core predicate b of f . That is,
in order to commit to a bit σ, one computes Com(σ) = ⟨f(Uk), b(Uk)⊕σ⟩, where Uk is the uniform distribution
over {0, 1}k. Note that Com is computationally secret, and produces pseudorandom commitments: that is,
the distributions Com(0), Com(1), and Uk+1 are computationally indistinguishable. Let the length of the
commitment, for one bit message, generated by the pseudorandom commitment scheme be ℓC(k) (k + 1 in
the above case). For simplicity of exposition, in the sequel, unless necessary, we will assume that random
coins are an implicit input to the commitment function. Furthermore, we will sometimes abuse notation and
use the same notation to generate commitments to strings, which can be thought of as a concatenation of
commitments of individual bits.
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The Feige-Shamir Commitment Scheme. We briefly define the Feige-Shamir trapdoor commitment
scheme [FS89], which is based on the the zero-knowledge proof of Hamiltonicity of Blum [Blu87]. Some of
the text has been taken verbatim from there [BS05]. First, fix a graph G (with q nodes) with a Hamiltonian
cycle (We specify the graph to be used later). Then, in order to commit to 0, the committer commits to a
random permutation of G using the underlying commitment scheme Com (and decommits by revealing the
entire graph and the permutation). In order to commit to 1, the committer commits to a graph containing a
randomly labeled q-cycle only (and decommits by opening the cycle only). Note that the ability to decommit
to 0 and 1 implies that the committer knows a Hamiltonian cycle in G. On the other hand, given a Hamil-
tonian cycle in G, it is possible to generate commitments that are indistinguishable from legal ones, and yet
have the property that one can decommit to both a 0 and a 1. Note that if the graph G is not hamiltonian,
then this commitment scheme is a perfectly-binding computationally-hiding scheme.

The modifier graph based commitment scheme IDComG. We use the notation of [BS05] and some
of the text has been taken verbatim from there [BS05]. Our graph-based scheme, introduced in [CLOS02],
which we denote IDComG, differs from the [FS89] scheme above in the following way:

To commit to a 0, the sender picks a random permutation π of the nodes of G, and commits to the entries
of the adjacency matrix of the permuted graph one by one, using Com. The sender also commits (using Com)
to the permutation π. These values are sent to the receiver as c = IDComG(0). To decommit, the sender
decommits to π and decommits to every entry of the adjacency matrix. The receiver verifies that the graph
it received is π(G).

To commit to a 1, the sender chooses a randomly labeled q-cycle, and for all the entries in the adjacency
matrix corresponding to edges on the q-cycle, it uses Com to commit to 1 values. For all the other entries,
including the commitment to the permutation π, it simply produces random values from Uk+1 (for which it
does not know the decommitment!). These values are sent to the received as c = IDComG(1). To decommit,
the sender opens only the entries corresponding to the randomly chosen q-cycle in the adjacency matrix.

This commitment scheme has the property of being computationally secret, i.e. the distributions IDComG(0)
and IDComG(1) are computationally indistinguishable for any graph G. Also, given the opening of any com-
mitment to both a 0 and 1, one can extract a Hamiltonian cycle in G. Finally, as with the scheme of [FS89],
given a Hamiltonian cycle in G, one can generate commitments to 0 and then open those commitments to
both 0 and 1.

Furthermore, here if the simulator has knowledge of a Hamiltonion cycle in G, it can also produce a
random tape for the sender explaining c = IDComG(0) as a commitment to both 0 and 1. If, upon corruption
of the sender, the simulator has to demonstrate that c is a commitment to 0 then all randomness is revealed.
To demonstrate that c was generated as a commitment to 1, the simulator opens the commitments to
the edges in the q-cycle and claims that all the unopened commitments are merely uniformly chosen strings
(rather than commitments to the rest of G). This can be done since commitments produced by the underlying
commitment scheme Com are pseudorandom.

In this setting as well, we will sometimes abuse notation and use the same notation to generate com-
mitments to strings. In particular, we will use the notation c = IDComG(m; r) to denote the function that
generates a commitment to m using random coins r. Furthermore a commitment c = IDComG(0

κ; r′) to the
zero string of length κ can be explained to any value m using the function r = IDOpenG(m, r′,w), where w
is a Hamiltonian cycle in the graph G.

Dense cryptosystems. In our construction we will need an the encryption scheme that has pseudo-random
public keys. More specifically, we require that the public key is indistinguishable from a random string. Such
an encryption scheme can be constructed from dense cryptosystems [DSP92]. Furthermore, we will require
that the scheme has pseudorandom ciphertexts. More formally:

Definition 2 (Encryption with pseudorandom ciphertexts). A public-key cryptosystem (G,E,D) has
pseudorandom ciphertexts of length ℓE(k) if for all non-uniform polynomial time adversaries A we have

Pr
[
(pk, sk)← G(1k) : AEpk(·)(pk) = 1

]
≈ Pr

[
(pk, sk)← G(1k) : ARpk(·)(pk) = 1

]
, (1)

where Rpk(m) runs c ← {0, 1}ℓE(k) and every time returns a fresh c. We require that the cryptosystem has
errorless decryption.
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Barak’s Non-Black Box technique. We use the non black-box simulation technique of Pass [Pas04]
(which in turn builds on the work of Barak [Bar01]). Consider a “special” NTIME(T (k)) relation RSim as
follows.7 Let k ∈ N and let T : N → N be a “nice” function that satisfies T (k) = kω(1). Let {Hk}h∈{0,1}k

be hash function family where h ∈ Hk maps {0, 1}∗ to {0, 1}k. Let the triple ⟨h, c, r⟩ be the input to RSim.
Further, consider a witness that consists of a program Π, a string y ∈ {0, 1}(|r|−k), and string s. Then
RSim(⟨h, c, r⟩, ⟨Π, s, y⟩) = 1 if and only if:

1. c = Com(h(Π); s).
2. Π(c, y) = r within T (k) steps.

Witness Indistinguishable Universal Argument. The function T (k) corresponding to the above de-
scribe relation RSim is super-polynomial in k. This implies that the language corresponding to RSim does
not lie in NP (but rather in NTIME(T (k))). Such languages are beyond the scope of the “standard” witness
indistinguishable proof systems (designed to handle NP-languages only), and will thus require the usage of a
Witness Indistinguishable Universal Argument (WI-UARG) [BG08]. We note that the WI-UARG protocol
of Barak and Goldreich [BG08] is public coin and the running time of the verifier in the protocol is bounded
by a fixed polynomial.

5 Sub-Protocols Used in our Constant Round Protocol

In the construction of our final adaptively secure MPC protocol will use a concurrently secure trapdoor
generator protocol ⟨P, V ⟩ and a coin flipping protocol ⟨A,B⟩. In this section we will give a constructions of
these protocols. Furthermore, we will prove special properties about these protocols that are useful for us in
our final construction.

5.1 Trapdoor Generator Protocol

In this section we describe a family of trapdoor generator protocols ⟨P, V ⟩i where i ∈ {1 . . .m}. ⟨P, V ⟩i is a
two party protocol between Pi and Vi and at the end of the protocol both parties output a Graph (let’s say
G). Consider the setting in which one protocol instance of each of the protocols ⟨P, V ⟩1, ⟨P, V ⟩2 . . . ⟨P, V ⟩m
is being executed concurrently in between n parties – Q1, . . . Qn with inputs x1 . . . xn.

8 We stress that in
these protocol executions each Qi could potentially be playing the role of multiple Pj’s and
Vk’s where j, k ∈ {1 . . .m}. In this setting we consider an adversary A that adaptively corrupts parties (an
honest party reveals its input and random coins to the adversary on corruption).

However, for simplicity of exposition, we will model this instead as a setting of n+2m parties – Q1, . . . Qn

with inputs x1 . . . xn and P1, . . . Pm, V1, . . . Vm with no inputs. Furthermore, parties Pi and Vi execute an
instance of the protocol ⟨P, V ⟩i. In this setting, we will consider an adversary that adaptively corrupts any of
these parties.We stress that any adversary in the original setting where each Qi could potentially be playing
the role of multiple Pj’s and Vk’s can always be used to construct an adversary in this setting. This follows
from the fact that in the original setting when an adversary corrupts a party Qi it additionally corrupts
multiple Pj ’s and Vk’s. Analogously in this setting our adversary can continue to corrupt all the parties
playing the roles of Qi and Pj ’s and Vk’s. Throughout the rest of this sub-section we will stick to this setting.
Very informally, assuming collision resistant hash functions, we will require that our protocol satisfies the
following security properties:

1. For every such adversary A that adaptively corrupts parties, there exists a non-black box simulator
S⟨P,V ⟩ (that obtains the inputs of parties adaptively corrupted by A) such that the view of the adversary
A in its interaction with honest parties and the view of the adversary A in its interaction with S⟨P,V ⟩
are computationally indistinguishable.

7 The relation presented is slightly oversimplified and will make Barak’s protocol work only when the hash function
family is collision resistant against “slightly” super-polynomial sized circuits [Bar01]. However, this can be modified
to work assuming collision resistance against polynomial sized circuits only. It does not affect the analysis in this
paper and we refer the reader to [BG08] for details.

8 As we will see later that we only need security in the setting of parallel composition. However, in this section
we will stick with the notion of concurrent composition and argue security in this setting. From this it follows
immediately that our protocol is also secure in the less demanding setting of parallel composition.
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2. For every i ∈ [m] such that Pi is not corrupted, S⟨P,V ⟩ outputs a Hamiltonian cycle in the graph that
the execution of ⟨P, V ⟩i yields.

3. For every i ∈ [m] such that Vi is not corrupted, A cannot output a Hamiltonian cycle in the graph
that parties Pi and Vi executing ⟨P, V ⟩i output. Furthermore, we require that the A cannot output a
Hamiltonian cycle even when for every i ∈ [m] such that Pi is not corrupted it is additionally provided
with the Hamiltonian cycle in the graph that the execution of ⟨P, V ⟩i yields.

4. Finally, since we are in the adaptive setting, on corruption, an honest party (or, the simulator on behalf
of the honest party in the simulated setting) must provide its input and random coins to the adversary.
We will require that all the above properties hold even when this additional communication happens
with the adversary.

Next we build some notation that will be useful in the formal description of our protocol ⟨P, V ⟩i (in
Figure 1).

Com is a pseudo-random commitment scheme with output from {0, 1}ℓC(k).a We also use the “shadow version” of the
5-round public-coin WI-UARG protocol which we denote by sWI-UARG. Further let µ(k) = (m(k) · 4k3 + ℓ(k) + k).

Setup : Vi sends h
$← Hk to Pi.

Slot 1 :

1. Pi sends a random string in c1
$← {0, 1}k·ℓC(k) to Vi.

2. Vi sends a challenge string r1
$← {0, 1}iµ(k).

Slot 2 :

1. Pi sends a random string in c2
$← {0, 1}k·ℓC(k) to Vi.

2. Vi sends a challenge string r2
$← {0, 1}(m+1−i)µ(k).

Main Proof Stage : Pi and Vi engage in the shadow version of the WI-UARG protocolb in which Pi proves to Vi

the following statement:
- there exists Π, s, y, b such that RSim(⟨h, cb, rb⟩, ⟨Π, s, y⟩) = 1.

Output Stage : Let transcript be the transcript of the above execution. Let G be a graph (can be constructed
using an NP-reduction) that is Hamiltonian if and only if ∃w such that Ruarg(transcript, w) = 1. Both parties
output G.

a We use commitments based on one-way permutation just for simplicity of exposition. At the cost of a small
complication, the one-message scheme could have been replaced by the Naor’s [Nao91] 2-message commitment
scheme, which can be based on “ordinary” one-way functions.

b As already pointed, we advise the reader to keep in mind that both the honest prover and the honest verifier of
the shadow version of the WI-UARG protocol just send random bits and that no real proof in an honest execution
is ever given.

Fig. 1: ⟨P, V ⟩i (the ith protocol in the family of m(k) protocols).

Shadow version of WI-UARG. Recall that in the WI-UARG protocol V only sends random bits. Finally
at the end of the protocol V outputs 1 or 0. We will modify the WI-UARG protocol into what we call
the shadow version of the WI-UARG protocol. The prover in the shadow protocol, for every bit sent by
the prover in the original protocol, sends a random string in {0, 1}ℓC(k) (recall that ℓC(k) is the length of
a pseudorandom commitment). Furthermore, the behavior of the verifier V remains unmodified. We will
denote this modified protocol by sWI-UARG. Consider an instance of execution of the sWI-UARG protocol
with transcript transcript. Note that this transcript contains messages sent by the prover and the messages
sent by the verifier. Further note that every ℓC(k) bit string sent by the prover could be interpreted (if they
really are) as a commitment to a bit using the commitment scheme Com. Let w be the de-commitment
information (if it exists) corresponding to all the ℓC(k) bit strings in transcript that are sent by the
prover. Also let transcript′ = unshadow(transcript, w)9 denote the transcript obtained by replacing

9 Note that the function unshadow is inefficient and is used just to define the NP-Relation.
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every ℓC(k) bit string in transcript that is sent by P with the corresponding committed bit (as per Com).
Let Ruarg(transcript, w) = 1 if and only if V (unshadow(transcript, w)) = 1.

We stress that in the shadow version of the WI-UARG protocol both the honest prover and the honest
verifier just send random strings and that no real proof is actually given. However, we also consider a
modification of the prover strategy of shadow version of the WI-UARG protocol called the simulated shadow
prover. The simulated shadow prover additionally obtains a witness for the statement being proven and
corresponding to every bit sent by the prover in the original WI-UARG protocol instead sends a commitment
to that bit using the Com commitment scheme. Note that transcript transcript generated when the prover
follows the simulated shadow prover strategy is such that there exists w such that Ruarg(transcript, w) = 1.
Finally, note that the messages generated by a simulated shadow prover are computationally indistinguishable
from the messages generated by an honest prover of the shadow version of the WI-UARG protocol. We will
use this shadow prover strategy in our proof.

Common Parameters. All parties receive two parameters m(k) and ℓ(k) as input. m(k) corresponds to
the size of the family of ⟨P, V ⟩ protocols. In the adaptive setting, on corruption a party reveals its input
to the adversary. We need a bound of this additional information sent to the adversary. This bound ℓ(k)
corresponds to the sum of the lengths of inputs of parties Q1, . . . , Qn.

Discussion about the protocol. Observe that the entire protocol as described in Figure 1 involves only
random strings from honest Pi and honest Vi. Also note that the main proof stage involves an execution of
the shadow version of the WI-UARG protocol. As already pointed out an honest execution of this protocol
does not involve any actual proof being given. Therefore, the graph generated in an honest execution of
⟨P, V ⟩i will essentially never be Hamiltonian. We provide full details on our simulator for the family of
⟨P, V ⟩ protocols and the proofs of the security properties next.

5.2 Our simulator S⟨P,V ⟩.

Recall that we are in the setting of n+2m parties – Q1, . . . Qn with inputs x1 . . . xn and P1, . . . Pm, V1, . . . Vm

with no inputs. Furthermore, Pi and Vi execute the protocol ⟨P, V ⟩i. In this setting we consider an adversary
A that adaptively corrupts parties of its choice. Note that whenever an honest party is corrupted it is required
to reveal its input and random coins to the adversary. In our setting we have two kind of parties–

1. Q1, . . . Qn: These parties have inputs but do not send any other messages. The sum of the lengths of the
inputs of these parties is bounded by ℓ(k).

2. P1, . . . Pm, V1, . . . Vm: These parties do not have any inputs. Furthermore, all the messages sent by these
parties are just random coins, and therefore, the protocol transcript, at any point, reveals all the random
coins of all these parties used thus far. Therefore without loss of generality, we assume that the corruption
of these parties does not reveal anything to the adversary. 10

We will now describe our simulator S⟨P,V ⟩. We will describe the simulation strategy for each Pi and Vi

separately. Our simulator maintains a list, challenge seeds, of seeds of a pseudorandom generator. It also
maintains a special output tape, special outputs, on which it outputs Hamiltonian cycles in the graphs
that different executions of ⟨P, V ⟩ generate.

Simulating corruption requests. Whenever the adversary A sends a request to corrupt a party Qi for
some i ∈ [n], then our simulator S⟨P,V ⟩ obtains Qi’s input xi and sends it to the adversary. Note that
Qi does not send any messages and there is nothing else to handle.
On the other hand we next consider the case in which the adversary A sends a request to corrupt a
party Pi or a party Vi for some i ∈ [m]. As already pointed out, note that the protocol transcript reveals
the random coins of Pi and Vi used so far. Furthermore these parties do not have any inputs. Therefore
without loss of generality we can assume that on corruption these parties need not reveal anything to the
adversary. However the adversary, from now on, gets full control of the corrupted party. More specifically,
all future messages on behalf of the corrupted party are sent by A.

10 For simplicity, we assume that on corruption honest parties do not need to reveal their future random coins to the
adversary. The setting in which on corruption parties are forced into revealing all their future coins as well can be
handled in the simulated setting by having the simulator send a pseudorandom string of appropriate length which
can be succinctly represented by a k bit string.
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Simulating Vi. Internally run the honest verifier strategy, for the protocol ⟨P, V ⟩i, but instead of sending
a truly random strings as challenges (in Slot 1 and 2 of the protocol), pick a k bit long random string,
write it to the special tape challenge seeds, expand it to the appropriate length of the challenge (r1
or r2) through a pseudorandom generator g and send the expanded string as the challenge.

Simulating Pi. We considerA as a non-interactive algorithm, denoted byΠA, that gets as input h1, h2 . . . hi,
and outputs hi+1, where hi+1 corresponds to the message that the A generates given the history of
messages h1, h2 . . . hi. Now we modify this function slightly. Observe that the history of the messages
h1, h2 . . . hi sent to A, among other messages, consists of challenge strings (r1 and r2) that S⟨P,V ⟩ sends
to the adversary A on behalf of honest Vi’s. Let Π ′

A be a function that is a slight modification of ΠA.
ΠA expects in the input sequence a sequence of messages h1, h2 . . . hi. Some these messages correspond
to challenge strings (which are long). Let the set of indices of these messages be I. Our function Π ′

A
expects the same input except that instead of the challenge strings it expects a succinct description for
these messages (i.e., a k bit string that can be expanded to the challenge string using a pseudorandom
generator). Π ′

A on input h1, h2 . . . hi outputs ΠA(f1(h1), . . . , fi(hi)), where ft(ht) for t ∈ [i] outputs
g(ht) (recall that g is the pseudorandom generator used previously) if t ∈ I and ht otherwise.
Furthermore let Π(ρ, τ) be a function that outputs g(τ) if ρ = 0 and outputs Π ′

A(τ) if ρ = 1. Next we
describe the strategy of the simulator in simulating Pi. Note that in this interaction simulator (while
sending messages on behalf of Pi) is interacting with Vi which is either controlled by the adversary A or
simulated by the simulator itself.

1. Receive the hash function h from Vi.
2. Generate a commitment c1 = Com(h(Π); s1) and send it to the Vi in Stage 1 and receive back r1.
3. Similarly, generate a commitment c2 = Com(h(Π); s2) and send it to Vi in Stage 2 and receive back

r2.
4. In main proof stage, our simulator executes the simulated shadow prover strategy in the WI-UARG

protocol using the witness ⟨Π, s1, (ρ, τ), 1⟩, where (ρ, τ) depends on whether Vi was controlled by A
or not when r1, on behalf of Vi, was sent.

- If Vi was not controlled by A: Then the challenge r1 corresponds to the output of Π on input
(0, τ) where τ is a k bit long random string that S⟨P,V ⟩ (while simulating Vi) must have written
on the tape challenge seeds.

- If Vi was controlled by A: Then the challenge r1 corresponds to the output of Π on input (1, τ)
where τ consists of all the messages S⟨P,V ⟩ sends to A before the adversary A (controlling party
Vi) sends r1 except the challenge strings that the simulator might have sent on behalf of any
other honest Vj where j ∈ [m] and j ̸= i. Corresponding to each of these challenge strings τ
consists of a k bit string instead, that can be appropriately expanded to the challenge string (of
appropriate length using the pseudorandom generator g).
Excluding the challenges r1 and r2, we note that the length of the Pi messages and the Vi

messages in any ⟨P, V ⟩i can be bounded by 2k3 if we use the specific WI-UARG of Barak and
Goldreich [BG08]. Recall that we execute at most one instance of the protocol ⟨P, V ⟩i for each
i ∈ [m]. Also note that adaptive corruptions of Q1, . . . , Qn might require that an additional ℓ(k)
bits be sent to the adversary. Then, the total length of messages sent by S⟨P,V ⟩, not including
the challenges r1 and r2, is bounded by (m(k) · 2k3 + ℓ(k)). The challenges r1, r2 are long, but
since they are constructed using a pseudorandom generator (with seed written on challenge

seeds), they have a description that is bounded by k. Since the number of executions of ⟨P, V ⟩
is bounded by m(k) and since each execution contains only 2 challenges, it follows that the total
length of the description in all cases is bounded by µ(k)− k.

5. Let transcripti be the transcript generated in the above execution of ⟨P, V ⟩i. If Pi is honest till
the end of this execution then S⟨P,V ⟩ knows the opening of all commitments that are ever sent on
behalf of Pi. Let wi be the de-commitment information corresponding to all the ℓC(k) bit strings
in transcripti that are sent by the prover. Also let transcript′i = unshadow(transcripti, wi)
denote the transcript obtained by replacing every ℓC(k) bit string in transcripti that is sent by P
with the corresponding committed bit (as per Com). Furthermore, from the completeness of the WI-
UARG protocol it follows that the simulated shadow prover always succeeds in making the verifier
accept. Therefore transcript′i is such that V (transcript′i, wi) = 1. This allows us to conclude that
Ruarg(transcripti, wi) = 1. Additionally, simulator can use wi to obtain a Hamiltonian cycle in the
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graph (using the NP-reduction used to generate the graph itself) generated in this execution and
outputs it on the special outputs tape.

5.3 Security of the ⟨P, V ⟩ protocol

In this section we will argue some security properties about the simulator just constructed.

Lemma 1. Consider a setting of n+2m parties – Q1, . . . Qn with inputs x1 . . . xn and P1, . . . Pm, V1, . . . Vm

with no inputs. Furthermore, parties Pi and Vi execute an instance of the protocol ⟨P, V ⟩i. Assuming collision
resistant hash functions, for every adaptive adversary A, the non-black box simulator S⟨P,V ⟩ (described above),
obtains inputs of only those parties that A corrupts, and:

Indistinguishability: The view of A in its interaction with honest parties and view of A in its interaction
with S⟨P,V ⟩ are computationally indistinguishable.

Extractability: Except with negligible probability, S⟨P,V ⟩ additionally outputs (on the special outputs

tape) a Hamiltonian cycle in the graph that Pi and Vi output in the execution ⟨P, V ⟩i for every i ∈ [m]
for which Pi has not been corrupted.

Proof. We show the first claim on indistinguishability of the outputs by a sequence of hybrid experiments.

- H0: This hybrid corresponds to the setting of honest parties interacting with the adversary A.
- H1: Same as the previous hybrid, except that we start simulating all honest Vis as specified in the
description of the simulator. More specifically, for an honest Vi in an execution of the protocol ⟨P, V ⟩i,
we internally follow the honest Vi strategy, but instead of sending truly random strings as challenges (in
Slot 1 and 2 of the protocol), we pick a k bit long random string, write it to the special tape challenge
seeds, expand it to the appropriate length of the challenge (r1 or r2) through a pseudorandom generator
g and send the expanded string as the challenge.
The only difference between hybrids H1 and H0 is in the use pseudorandom strings instead of truly
random strings. Therefore the outputs of the two hybrids are computationally indistinguishable.

- H2: Same as the previous hybrid, except that we start simulating honest Pis as specified in the description
of the simulator. Recall than an honest Pi just sends random strings in {0, 1}ℓC(k). However, in the
simulated setting instead of sending random strings, the simulator instead sends commitments using a
pseudorandom commitment scheme.
Again the only difference between hybrid H2 and H1 is in the use of pseudorandom commitment strings
instead of random strings. Therefore the outputs of the two hybrids are computationally indistinguish-
able.

Observe that the hybrid H2 corresponds to the actual strategy of the simulator. This proves that the
outputs of A in its interaction with honest parties and view of A in its interaction with S⟨P,V ⟩ are compu-
tationally indistinguishable.

Observe that for all executions ⟨P, V ⟩i for i ∈ [m] for which Pi has not been corrupted the simulator
obtains a valid witness to execute the simulated shadow version of the WI-UARG. Therefore unless Pi

is corrupted our simulation can always make Vi accept in the execution of ⟨P, V ⟩i. This follows from the
completeness of the WI-UARG protocol. Finally, the decommitment information corresponding to the com-
mitments sent by S⟨P,V ⟩ (on behalf of Pi, if it remains honest till the end of the execution) can be used to
deduce a Hamiltonian cycle (as explained in the description of the simulator) in the graph the execution of
⟨P, V ⟩i outputs.

Lemma 2. Consider a setting of n+2m parties – Q1, . . . Qn with inputs x1 . . . xn and P1, . . . Pm, V1, . . . Vm

with no inputs. Furthermore, parties Pi and Vi execute an instance of the protocol ⟨P, V ⟩i. Consider the
following game between an adaptive adversary A and the non-black box simulator S⟨P,V ⟩ (described above)
for some i ∈ [m].

1. The adversary A interacts with the simulator S⟨P,V ⟩ corrupting parties adaptively. However it is not
allowed to corrupt Vi.

2. After the end of the interaction, for every j ∈ [m] such that j ̸= i for which Pj has not been corrupted,
S⟨P,V ⟩ provides A with a Hamiltonian cycle in the graph that Pj and Vj output in the execution ⟨P, V ⟩j.
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Let E be the event that A outputs a Hamiltonian cycle in the graph that Pi and Vi output in the execution
⟨P, V ⟩i. Adversary A is said to violate special soundness if E happens with non-negligible probability. We
claim that no PPT adversary (assuming collision resistant hash functions) can violate special soundness.

Proof. We start by observing that the adversary’s ability to corrupt parties adaptively does not help it in
violating special soundness in any way. More specifically, we argue that if there exists an adaptive adversary
A that violates special soundness then there exists a special adversary A′ that also violates special soundness.
The special adversary, however, does not corrupt parties adaptively. Furthermore, a special adversary does
not corrupt any Pj for j ∈ [m] such that j ̸= i. Additionally before the start of the interaction it corrupts
Vj for all j ∈ [m] such that j ̸= i and corrupts Qj for all j ∈ [n].

Next, we provide this transformation. Our adversary A′ starts by corrupting Pi, Vj for all j ∈ [m] such
that j ̸= i and Qj for all j ∈ [n]. A′ also obtains the inputs x1, . . . , xn after it corrupts parties Qj for all
j ∈ [n]. Let T ′ be the set of these corrupted parties. Our adversary A′ internally simulates A. Also let, T at
any point be the set of parties corrupted by A. We first describe how our adversary A′ handles corruption
requests of A. If A requests to corrupt Qj then provide xj to A. On the other hand if A corrupts any other
party (i.e., Vj for some j ∈ [m] such that j ̸= i or Pj for some j ∈ [n]) then that party is added to T . Every
message sent on behalf of T by A such that T ∈ T ′ is forwarded by A′ to the simulator S⟨P,V ⟩. On the other
hand if S⟨P,V ⟩ expects a message from a party T ∈ T ′ such that T ̸∈ T , then T corresponds to a party Vj

for j ̸= i that A has not corrupted and A′ needs to send a message on Vj ’s behalf. In this case A′ generates
the next message for Vj using the honest Vj strategy and sends it both to honest Pj and the adversary A.
On the other hand, any message sent on behalf of T by the simulator S⟨P,V ⟩ such that T ̸∈ T is forwarded
by A′ to A. Any other message sent on behalf of T by the simulator S⟨P,V ⟩ will be such that T corresponds
to some party Pj where j ̸= i that A has internally chosen to corrupt. Our adversary A′ just ignores this
message. Finally we deal with the case in which A expects a message from a party T ∈ T ′ such that T ̸∈ T .
In this case T can corresponds to Pi

11 and A′ needs to send a message on behalf of Pi. A′ chooses this
message according to the honest Pi strategy and sends it on behalf of Pi. After the end of the interaction,
for every j ∈ [m] such that j ̸= i, S⟨P,V ⟩ provides A′ with a Hamiltonian cycle in the graph that Pj and Vj

output in the execution ⟨P, V ⟩j . For every Pj such that Pj ̸∈ T , A′ forwards the Hamiltonian cycle in the
graph that Pj and Vj output in the execution ⟨P, V ⟩j to the adversary A. Finally, A′ outputs the output of
A as its output.

Now that we have sketched our transformation, we need to argue that if A succeeds in violating special
soundness then so does A′. Observe that the view of the adversary A in direct interaction with S⟨P,V ⟩ and
the view of the adversary A in interaction with A′ (that subsequently interacts with S⟨P,V ⟩) is the same
except with respect to the messages sent on behalf of Pi, before it is corrupted and with respect to the
messages sent on behalf of uncorrupted Vjs. In the direct interaction between adversary A and S⟨P,V ⟩ all
these aforementioned messages correspond to pseudorandom strings. On the other hand, A′ sends random
strings instead. Therefore, the two distributions are computationally indistinguishable.

Now, we are left to show that no special adversary A′ can violate special soundness. We will argue this
in two steps.

1. We say that an adversary P ∗ violates stand-alone soundness of ⟨P, V ⟩i if P ∗ can interact with an honest
Vi and also output (with non-negligible probability) a Hamiltonian cycle in the graph that the execution
of ⟨P, V ⟩i yields. We first start by pointing out that no PPT adversary can violate stand-alone soundness
of ⟨P, V ⟩i. We show that if any adversary P ∗ can violate stand-alone soundness of ⟨P, V ⟩i then we can
contradict the stand-alone soundness of the zero knowledge protocol of Pass.

2. Next we show that any special adversaryA′ that violates special soundness can be reduced to an adversary
that violates stand-alone soundness of ⟨P, V ⟩i, thereby reaching a contradiction.

We first start by pointing out that the protocol ⟨P, V ⟩i is stand-alone sound. Pass constructs a family
of zero-knowledge protocols {cZK1, . . . cZKm} such that each of them is stand-alone sound. Our protocol
⟨P, V ⟩i is the same as that of Pass, except one difference. The main proof stage of our protocol ⟨P, V ⟩i
consists of the shadow version of the WI-UARG protocol, while cZKi just consists of the (normal) WI-
UARG protocol. In other words, the main proof stage of our protocol ⟨P, V ⟩i involves sending commitments

11 It could also correspond to some Vj that has not been corrupted by Vj but this case has already been handled
above.

15



of the messages (during the main proof stage) that would be sent in the cZKi. Additionally, there is no
common input that parties get in ⟨P, V ⟩i while in cZKi the prover and the verifier expect to receive a
theorem statement that the prover eventually proves to the verifier. Note that we consider executions of
cZKi where the prover is proving a theorem statement that is vacuously false. In other words the theorem
statement does not have any witnesses. In further discussion we restrict ourselves to only such protocols
cZKi and off course soundness holds against any cheating prover of this protocol.

Lets consider an adversary P ∗ that violates stand-alone soundness of ⟨P, V ⟩i. More specifically, consider
an adversary P ∗ that interacts with an honest Vi and outputs a Hamiltonian cycle in the graph that this
execution of ⟨P, V ⟩i yields with probability p0. We will use this P ∗ to construct an adversarial prover P ∗∗,
that internally simulates P ∗ and violates the stand-alone soundness of the zero knowledge protocol cZKi.
More specifically, P ∗∗ succeeds in making an honest verifier V of cZKi accept a false theorem statement.
Before the main proof stage, P ∗∗ just relays the messages between the internally simulated P ∗ and V.
However, for the messages of the main proof stage, P ∗ only provides commitments of the messages that V
expects. Therefore we will have to extract the messages from the commitments that P ∗ sends.

We start by building some notation. Let ci denote the commitment of message mi that P
∗ sends in round

i of the main proof stage. In response to this message P ∗ expects to receive a value ri. Note that i varies
from 1 to t, where t is the number of rounds in the main proof stage. Note that t is constant. Furthermore,
all the responses r1, . . . rt consist of just random strings as the main proof stage only consists of a public
coin WI-UARG protocol. Now we will describe how P ∗∗ proceeds in the main proof stage. For every i ∈ [t],
P ∗∗ proceeds as follows:

1. After P ∗∗ obtains ci from P ∗, it halts the “main thread” and starts a look-ahead thread with P ∗ sending
freshly chosen random values rii, . . . r

i
t to it. (Recall that the protocol is public coin and we can proceed

in this manner.) If P ∗ completes this execution and outputs a Hamiltonian cycle in the graph generated,
then P ∗∗ can use the cycle to extractmi from ci (the cycle in the graph corresponds to the decommitment
information for the commitments sent in the execution). If P ∗ aborts at any point in the look ahead
thread then P ∗∗ also aborts.

2. P ∗∗ sends the extracted value mi to V to which V responds with ri. P
∗∗ forwards the received value ri

to P ∗ in the “main thread.”

We now need to argue that P ∗∗ violates the stand-alone soundness of the zero knowledge protocol cZKi

with a non-negligible probability. Let pi be the conditional probability (over the random choices of ri, . . . rt)
that P ∗ outputs a Hamiltonian cycle in the graph generated in the execution given the transcript of the
execution (in the “main thread”) so far. By a simple counting argument we claim that for every i the
probability pi for i ∈ {1, . . . , t} (over the choices of ri, . . . , rt) is greater that pi−1/2 with probability at least
pi−1/2 (over the choices of the prefix of the transcript before message ri). Therefore the probability pi =

p0

2i .
Finally, the probability that P ∗∗ succeeds is at least p21 · p22 . . . p2t−1 · p3t , which is non-negligible given that p0
is non-negligible.

Now we are left to argue that if a special adversary A′ violates special soundness, then we can use it to
construct an adversary A′′ that violates stand-alone soundness of ⟨P, V ⟩i. This follows in a way very similar
to Pass [Pas04] and we just sketch an outline of the proof here. We will argue this in two steps. First we
will construct an adversary A′′ that violates stand-alone soundness of ⟨P, V ⟩i in interaction with a honest
Vi that obtains its randomness for generating the challenges r1 and r2 using a pseudorandom generator. We
will denote this modified Vi strategy by mVi. Next we can argue that A′′ violates the stand-alone soundness
of ⟨P, V ⟩i in interaction with an honest Vi as well. This follows from the security of the pseudo-random
generator.

Now, we elaborate on the first part of the argument. Observe that, A′ in its interaction with S⟨P,V ⟩
(where S⟨P,V ⟩ generates the messages on behalf of Vi) outputs a Hamiltonian cycle in the graph generated in
the execution of ⟨P, V ⟩i. We now describe our adversary A′′ whose goal is to violate stand-alone soundness
of ⟨P, V ⟩i in interaction with an external honest mVi. A′′ internally executes S⟨P,V ⟩ and A′. However, S⟨P,V ⟩
instead of generating messages on behalf of Vi on its own will have to externally obtain messages from an
external party mVi (playing as Vi). Unfortunately, in this case A′′ will not be a able to run S⟨P,V ⟩ because
in order to simulate Pj for j ̸= i, S⟨P,V ⟩ needs a short description of the messages sent on behalf of honest
parties, including the ones sent by the external party mVi. In the above scenario, however, since the execution
⟨P, V ⟩i is externally forwarded to mVi, the simulator does not have a short description of the honest verifier’s
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challenges r1, r2. To solve this problem we constructor a modified simulator E (modification of S⟨P,V ⟩). We
now describe the simulator E that has to simulate messages on behalf of all Pj where j ̸= i. Observe that
except for the “long” challenges r1, r2 sent by the external party mVi the simulator has a description of all
messages sent to the adversary that is shorter than ℓ(k)− k. However, in order to succeed in the main main
proof stage of ⟨P, V ⟩j for j ̸= i, even in the presence of “long” messages (to which the simulator does not
have a short description), we use the fact that it is sufficient to have a short description of the messages sent
in just one of the slots of ⟨P, V ⟩j . We consider two cases:

– If both the “long” challengers r1, r2 sent by the external party mVi are contained in the same slot (or
if they are not contained in any of the two slots), then the simulator can always use the empty slot in
order to perform the simulation.

– Assume, on the other hand, that r1 is contained in Slot 1, and r2 is contained in Slot 2. By construction
of the protocols it follows that the length of either the first or the second challenge in PVj is at least
µ(k) longer than the corresponding challenge in ⟨P, V ⟩i (sent by the external party mVi). Thus there
exists a slot in ⟨P, V ⟩j such that even if we include the external party mVi’s challenge, from the protocol
⟨P, V ⟩i, in whole, in the description, we still have µ(k)− k to describe the other messages, which means
that the simulation can be performed.

Note that the only difference between S⟨P,V ⟩ and E is the choice of witness used in the main proof stage.
While S⟨P,V ⟩ always picks the first slot, E picks the “appropriate” slot (which can be any of the two). Thus if
A′, when interacting with S⟨P,V ⟩ succeeds in outputting a Hamiltonian cycle in the graph generated in ⟨P, V ⟩i
then A′ when interacting with E , will also succeed in outputting a Hamiltonian cycle in the graph generated
in ⟨P, V ⟩i, or else the witness indistinguishability of the WI-UARG used in ⟨P, V ⟩i would be broken. From
this we conclude that A′′ breaks the stand-alone soundness of ⟨P, V ⟩i. This concludes the proof.

5.4 Coin-flipping protocol.

Now we describe our coin flipping protocol. ⟨A,B⟩ is a protocol between two parties A and B. Both A and
B in the ⟨A,B⟩ protocol get graphs G1 and G2 as common input and output a random string of length
ℓ′(k). We assume that no PPT adversary can output a Hamiltonian cycle in G1 if B is honest. Similarly, we
assume that no PPT adversary can output a Hamiltonian cycle in G2 if A is honest. Consider the setting
in which an instance of the ⟨A,B⟩ protocol is being executed. In this setting we consider an adversary A
that adaptively corrupts parties (an honest party reveals its input and random coins to the adversary on
corruption) and (assuming dense cryptosystems [DSP92]) require that:

1. For every adaptive adversary A, there exists a simulator S⟨A,B⟩ which gets as input a Hamiltonian
cycle in G1 if A is honest (before the start of the protocol), a Hamiltonian cycle in G2 if B is honest
(before the start of the protocol) and a string crs (sampled from the uniform distribution) of length ℓ′(k).
Furthermore, S⟨A,B⟩ obtains the input of every party that A corrupts. In this setting we require that the
view of the adversary A in its interaction with the honest parties and the view of the adversray A in its
interaction with S⟨A,B⟩ are computationally indistinguishable.

2. The output of the protocol execution is crs as long as either A or B is not corrupted till the end of the
protocol.

Our protocol ⟨A,B⟩. (IDCom, IDOpen) is a graph based commitment scheme. And, (G,E,D) is an encryp-
tion scheme with pseudorandom ciphertexts and pseudo-random public keys (of length ℓ1(k)). Both parties
get graphs G1 and G2 as common input.

1. A generates a commitment c = IDComG1(α; r1), where α is a random string in {0, 1}ℓ1(k) and r1 are the
random coins. It sends c to B.

2. B sends a random string β ∈ {0, 1}ℓ1(k) to A.
3. A sends (α, r1) to B.
4. B aborts the protocol if c ̸= IDComG1(α; r1).
5. Both parties set pk := α⊕ β.
6. A generates a commitment d = IDComG1

(γ; r2), where γ is a random string in {0, 1}ℓ′(k) and sends it to
B.
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7. B generates commitments fi = IDComG2(δi; si), where δ is a random string in {0, 1}ℓ′(k) and δi is the
ith bit of δ. It also generates ei,δi = Epk(si; ti) and ei,1−δi as a random string in {0, 1}ℓ2(k) (where ℓ2(k)
is the appropriate length). Finally it sends fi, ei,0 and ei,1 for all i ∈ [ℓ′(k)] to A.

8. A sends (γ, r2) to B.
9. B aborts if d ̸= IDComG1(γ; r2). Next, B sends δi, si, ti for every i ∈ [ℓ′(k)] to A.
10. A aborts if for some i ∈ [ℓ′(k)], fi ̸= IDComG2(δi; si) or ei,δi ̸= Epk(si; ti).
11. Both parties output γ ⊕ δ as the output of the protocol.

Intuition behind the proof. If B is honest before Step 9, then S⟨A,B⟩ equivocates in the messages (sent
on behalf of B) and thereby forcing the output of the protocol to a value of its choice. Now consider the
case in which B is corrupted before Step 9. In this case we need to force the output of the protocol only if
A is not corrupted. In this case the simulator S⟨A,B⟩ will be able to force the value pk generated in Step 3
of the protocol to a value of its choice. Subsequently it can force the output of the protocol to a value of
its choice by extracting the values committed by B in Step 7 and then later equivocating in Step 8. Further
note that the simulation itself is straight line. However in proving indistinguishability of simulation from real
interaction we do rewind the adversary.12 We provide full details on our simulator for the ⟨A,B⟩ protocols
and the proof of the security properties next.

5.5 Our Simulator for the coin-flipping protocol

We will now describe our simulator S⟨A,B⟩. Note that if A is not corrupted (at the start of the protocol)
then the simulator obtains a Hamiltonian cycle w1 in G1 and hence it can equivocate on the commitments it
sends on A’s behalf. Similarly, if B is not corrupted (at the start of the protocol) then the simulator obtains
a Hamiltonian cycle w2 in G2 and hence it can equivocate on the commitments it sends on B’s behalf.

Note that at different points during the execution of the protocol the adversary can corrupt A and/or
B. Before every step our simulator checks to see if the party that is supposed to send the next message
is already corrupted. If this is indeed the case, then the simulator skips this message. Furthermore, after
every message sent by the simulator the adversary can corrupt A and/or B. We describe the actions of the
simulator, in case of such a corruption, after every step of the simulator. Further note that without loss of
generality we can assume that parties on corruption reveal only those random coins that are not revealed
by the transcript itself. We say that there is noting to reveal when the random coins of the party, being
corrupted, are revealed by the transcript itself. Finally, besides random coins, on corruption a party must
also provide its input to the adversary. Similarly, during simulation our simulator also directly forwards the
input of the corrupted party (that is given to the simulator on corruption of the party) to the adversary.
The simulation of the inputs of parties can always be done as explained above and therefore we will skip
mentioning it.

Our simulator starts by sampling a public-key secret-key pair (pk′, sk′)← G(1k).

1. (Skip ifA has been already corrupted): S⟨A,B⟩ on behalf ofA generates a commitment c = IDComG1
(0ℓ1(k); r′1).

It sends c to B.
– If A is corrupted: Set α

$← {0, 1}ℓ1(k) and r1 := IDOpenG1
(α, r′1,w1). Reveal α ◦ r1 as the random

coins of A.
– If B is corrupted: Nothing to reveal.

2. (Skip if B has been already corrupted): S⟨A,B⟩ on behalf of B sends a random string β ∈ {0, 1}ℓ1(k) to
A.
– If A is corrupted: Set α

$← {0, 1}ℓ1(k) and r1 := IDOpenG1
(α, r′1,w1). Reveal α ◦ r1 as the random

coins of A.
– If B is corrupted: Nothing to reveal.

3. (Skip ifA has been already corrupted): S⟨A,B⟩ on behalf ofA sets α := pk′⊕β and r1 := IDOpenG1
(α, r′1,w1).

A sends (α, r1) to B.
– A or B is corrupted: Nothing to reveal.

4. (Skip if B is corrupted) Abort the protocol if c ̸= IDComG1(α; r1).
– A or B is corrupted: Nothing to reveal.

12 This is not a problem as rewinding is used only in the proof in order to reach a contradiction.
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5. Set pk := α⊕ β.
– A or B is corrupted: Nothing to reveal.

6. (Skip if A is corrupted) S⟨A,B⟩ on behalf of A generates a commitment d = IDComG1(0
ℓ′(k); r′2) and sends

it to B.
– If A is corrupted: Set γ

$← {0, 1}ℓ′(k) and r2 := IDOpenG1
(γ, r′2,w1). Reveal γ ◦ r2 as the random

coins.
– If B is corrupted: Nothing to reveal.

7. (Skip if B is corrupted) S⟨A,B⟩ on behalf of B generates commitments fi = IDComG2(0, s
′
i) for i ∈

{1 . . . ℓ′(k)}. It also generates ei,0 = Epk(IDOpenG2
(0, s′i,w2);ui) and ei,1 = Epk(IDOpenG2

(1, s′i,w2);u
′
i).

Finally it sends fi, ei,0 and ei,1 for all i ∈ [ℓ′(k)] to A. We stress that this step is executed only if B is
honest. This will affect our simulation later as we see next.

8. Now we describe the strategy of simulator depending on what parties are honest at this point.

Both A and B are honest: Set γ
$← {0, 1}ℓ′(k) and r2 := IDOpenG1

(γ, r′2,w1). Also set δ := γ ⊕ crs
and si := IDOpenG2

(δi, s
′
i,w2), ti = (1− δi) ·ui + δi ·u′

i. From now on our simulator S⟨A,B⟩ generates
messages on behalf of A using the honest A strategy and the values γ and r2 derived above. Similarly,
S⟨A,B⟩ generates messages on behalf of B using the honest B strategy and the values δi, si and ti
derived above.

If A is honest but B is corrupted: For every i ∈ [ℓ′(k)], set si = Dsk′(ei,0) and s′i = Dsk′(ei,1).
Abort with a special abort E-Abort if fi = IDComG2(0; si) = IDComG2(1; s

′
i). Otherwise, set

δi = 0 if fi = IDComG2(0; si) or set δi = 1 if fi = IDComG2(1; s
′
i). Set γ := δ ⊕ crs and r2 :=

IDOpenG1
(γ, r′2,w1). From now on our simulator S⟨A,B⟩ generates messages on behalf of A using the

honest A strategy and the values γ and r2 derived above.

If A is corrupted but B is honest: If B is corrupted at this point then set δ
$← {0, 1}ℓ′(k) and si :=

IDOpenG2
(δi, s

′
i,w2), ti = (1− δi) · ui + δi · u′

i. Reveal δi ◦ si ◦ ti as the random coins of B.
Otherwise, receive (γ, r2) from A (controlled by A), abort if d ̸= IDComG1(γ, r2), and set δ := γ⊕ crs
and si := IDOpenG2

(δi, s
′
i,w2), ti = (1− δi) ·ui + δi ·u′

i. From now on our simulator S⟨A,B⟩ generates
messages on behalf of B using the honest B strategy and the values δi, si and ti derived above.

Both A and B are corrupted: Skip all future messages.

5.6 Security of the coin-flipping protocol

Lemma 3. Consider an execution of the protocol ⟨A,B⟩ between two parties A and B on common input
G1 and G2 and the (straight-line) simulator S⟨A,B⟩ described above. S⟨A,B⟩ receives Hamiltonian cycle in
G1 (resp., G) if A (resp., B) is honest and a random string crs of length ℓ′(k) as input. Assuming dense
cryptosystems and that no PPT adversary can output a Hamiltonian cycle in G1 (resp., G2) if B (resp., A)
is not corrupted before the start of the protocol. Then we claim that, for every adversary A:

Indistinguishability: The view of the adversary A in interaction with honest parties and the view of
the adversary A in interaction with S⟨A,B⟩ are computationally indistinguishable. Furthermore, S⟨A,B⟩
obtains inputs of only those parties that A corrupts.

Output: If at least either A or B is not corrupted (till the end of the protocol) then the output of the protocol
(except with negligible probability) is crs.

Proof. Note that (as explained in Section 4) the commitments (as per IDComG1 or IDComG2) generated by
the adversary A (on behalf of A or B) are going to be computationally binding as long as the party to
which the commitments are sent is not corrupted. This follows directly from the assumption that no PPT
adversary can output a Hamiltonian cycle in G1 (resp., G2) if B (resp., A) is not corrupted before the start
of the protocol. We will use this property throughout our proof. We stress that in our proof we will rewind
the adversary at different points but we stress that this is done only to reach a contradiction. Our simulator
itself does not need to rely on rewinding.

Now, we consider a sequence of hybrids and establish our claim.

- H0: This hybrid corresponds to the setting in which the adversary interacts with the simulator S⟨A,B⟩
that simulates all parties following honest party strategies. This hybrid is the same as the setting of
honest parties interacting with the adversary directly.
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- H1: (This change is only made if B is honest when Step 7 of the protocol is executed) Same as the
previous hybrid except that our simulator generates commitments fi (Step 7) differently. Our simulator
samples δ randomly in {0, 1}ℓ′(k) and sets fi = IDComG2(0, s

′
i) for every i ∈ {1 . . . ℓ′(k)}. It also generates

si = IDOpenG2
(δi, s

′
i,w2), ei,δi = Epk(si; ti) and ei,1−δi as a random string in {0, 1}ℓ2(k). Recall that this

can be done because S will know a Hamiltonian cycle w2 in the graph G2 if it ever sends a commitment
on behalf of B because that only happens if B is honest. From now on our simulator S generates messages
on behalf of B using the honest B strategy and the values δi, si and ti derived above.
The computational indistinguishability of hybrids H0 and H1 follows from the pseudorandomness prop-
erty (as explained in Section 4) of the underlying commitment scheme Com.

- H2: (This change is only made if B is honest when Step 7 of the protocol is executed) Same as the
previous hybrid except that our simulator generates ciphertexts ei,0 and ei,1 differently. More specifically,

our simulator samples δ randomly in {0, 1}ℓ′(k) and sets fi = IDComG2(0, s
′
i) for every i ∈ {1 . . . ℓ′(k)}. It

also generates ei,0 = Epk(IDOpenG2
(0, s′i,w2);ui) and ei,1 = Epk(IDOpenG2

(1, s′i,w2);ui). Recall that this
can be done because S will know a Hamiltonian cycle w2 in the graph G2 if it ever sends a commitment
on behalf of B because that only happens if B is honest. Also set si := IDOpenG2

(δi, s
′
i,w2), ti =

(1− δi) · ui + δi · u′
i. From now on our simulator S generates messages on behalf of B using the honest

B strategy and the values δi, si and ti derived above.
In Step 7 of the protocol, for each i ∈ [ℓ′(k)], we generate two ciphertexts ei,0 and ei,1. Recall that in
hybrid H1, ei,δi is a valid ciphertext while ei,1−δi is a random string. On the other hand, in hybrid H2,
both ei,δi and ei,1−δi are valid ciphertexts. We can argue indistinguishability by considering a sequence
of ℓ′(k)+1 hybrids, H1,0, . . . H1,i, . . . H1,ℓ′(k) from H1 to H2. In hybrid H1,i for every 0 < j ≤ i both ej,δj
and ej,1−δj are valid ciphertexts and on the other hand for every i < j ≤ n, ej,δj is a valid ciphertext
while ej,1−δj is a random string. Hybrid H1,0 is same as hybrid H1 and hybrid H1,ℓ′(k) is same as hybrid
H2. Now, we will sketch the proof for indistinguishability between hybridsH1,i−1 and H1,i. The argument
for the rest of the hybrids follows in a similar manner. For the sake of contradiction lets assume that
there does exist an adversary A and a distinguisher D such that D can distinguish between the two case.
Then, we will construct an adversary C that can break the pseudorandomness property of the encryption
scheme. Our adversary externally gets the public key pk′ as input and needs to force the value pk set in
the Step 5 of the protocol to be this value pk′. The strategy of B for this will depend of whether A was
honest at the time when the message corresponding to Step 1 was sent. If it was honest then C just sets
β = α ⊕ pk′ (Note that S knows the value α). On the other hand, if A is malicious then, our simulator
before sending β, starts a look ahead thread (can be repeated multiple times in case of aborts) with
A by sending β′ and thereby obtaining α. It now obtains β = α ⊕ pk′ and sends β to A on behalf of
B in Step 2. Since the commitment scheme IDComG1 is computationally binding, the adversary A can
decommit c to the same α only, thus forcing the value pk generated in the protocol to be pk′. Finally, C
obtains a challenge ciphertext externally which is either a valid encryption of IDOpenG2

(1− δi, s
′
i,w2) or

a random string and uses the challenge string as ei,1−δi . This distribution corresponds to hybrid H1,i−1

if the challenge string is a random string and to hybrid H1,i in the other case. Hence the ability of the
distinguisher to distinguish between H1,i−1 and H1,i directly translates to C’s ability in distinguishing
valid ciphertexts from random strings.

- H3: Same as the previous hybrid except that our simulator generates commitments c and d differently.
We will describe the change for c only. Our simulator changes generation of d in a similar manner.
Our simulator samples α randomly in {0, 1}ℓ1(k) and sets c = IDComG1(0

ℓ1(k); r′1). It also generates
r1 = IDOpenG1

(α, r′1,w1). Recall that this can be done because S will know a Hamiltonian cycle w1 in
the graph G1 if it ever sends a commitment on behalf of A because that only happens if A is honest.
From now on our simulator S generates messages on behalf of A using the honest A strategy and the
values α and r1 derived above.
The computational indistinguishability of hybrids H2 and H3 follows from the pseudorandomness prop-
erty of the underlying commitment scheme Com.

- H4: If A is not corrupted before Step 3 starts, then S needs to send (α, r) on behalf of A. In this case S
sets α := pk′⊕β and r1 := IDOpenG1

(α, r′1,w1) and sends (α, r1) to B. Thereby forcing the pk generated
in the protocol execution to be pk′.
The computational indistinguishability of hybrids H3 and H4 follows from the pseudorandomness prop-
erty of the public keys of the public key encryption scheme.
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- H5: If B is corrupted and A is honest when the message on behalf of B is sent in Step 7, then for
every i ∈ [ℓ′(k)], set si = Dsk′(ei,0) and s′i = Dsk′(ei,1). Abort with a special abort message E-Abort

if fi = IDComG2(0; si) = IDComG2(1; s
′
i). Otherwise, set δi = 0 if fi = IDComG2(0; si) or set δi = 1 if

fi = IDComG2(1; si).
The computational indistinguishability of hybrids H4 and H5 follows from the fact that E-Abort happens
with a negligible probability which in turn follows the fact that the commitment IDComG2 is conditionally
binding for the adversary.

- H6: If B is corrupted and A is honest when the messages in Step 7 is sent then set γ := δ ⊕ crs and
r2 := IDOpenG1

(γ, r′2,w1). Furthermore, from now on our simulator S generates messages on behalf of
A using the honest A strategy and the values γ and r2 derived above.
The computational indistinguishability of hybrids H5 and H6 follows from the fact that crs is chosen
randomly.

- H7: If B is honest when the message in Step 9 is sent then set δ := γ⊕crs and si := IDOpenG1
(δi, s

′
i,w1),

ti = (1 − δi) · ui + δi · u′
i. From now on our simulator S generates messages on behalf of B using the

honest B strategy and the values δi, si and ti derived above.
The computational indistinguishability of hybrids H6 and H7 follows from fact that the crs is chosen
randomly.

Note that the simulation strategy in hybrid H7 correspond to the strategy of our simulator itself. This
completes the proof of indistinguishability. Also observe that the output of the protocol is always (except
with negligible probability) crs if at least either A or B is not corrupted.

6 Our Constant Round Protocol

Let f be any adaptively well-formed13 functionality. In this section we will give a constant round protocol
Π that adaptively-securely realizes f . Let Q1, . . . , Qn be n parties that hold inputs x1, . . . xn respectively.
Let f be the function that they wish to evaluate on their inputs. Furthermore, let ℓ(k) = |x1|+ |x2| . . . |xn|.

We start by describing a protocol that adaptively securely realizes the Fn−crs functionality (Figure 2).
Note that whenever a party is corrupted then it reveals its input and random coins to the adversary. In our
construction we use a family of trapdoor generator protocols ⟨P, V ⟩i where i ∈ {1 . . .m} (Section 5.1) and a
coin flipping protocol ⟨A,B⟩ (Section 5.4). The protocol proceeds as follows.

1. Trapdoor Creation Phase: Qi ↔ Qj : For all i, j ∈ [n], such that i ̸= j, Qi and Qj engage in an
execution of the protocol ⟨P, V ⟩t (with common input n2 and ℓ(k) where t = i · (n − 1) + j), where Qi

plays the role of Pt and Qj places the role of the Vt. Let Gi,j be the output of the protocol. All these
executions are done in parallel.

2. Coin Flipping Phase: Pi ↔ Pj : For all i, j ∈ [n], such that i < j, Qi and Qj engage in an execution of

the protocol ⟨A,B⟩, denoted as ⟨A,B⟩i,j , where Qi plays the role of A and Qj plays the role of B with

common input Gi,j and Gj,i. Qi and Qj output the output of ⟨A,B⟩i,j as crsi,j . All these executions are
done in parallel.

Theorem 2. Assuming collision resistant hash functions and dense cryptosystems [DSP92], the constant
round protocol just described above adaptively securely evaluates Fn−crs (Figure 2).

Proof. To prove the above theorem we begin by describing our simulator S. The simulator maintains a list
A of corrupted parties.

1. For the trapdoor creation phase, S initiates the simulator S⟨P,V ⟩ for the parallel executions of the
⟨P, V ⟩ protocols. During this adversary can adaptively corrupt any number of parties. Furthermore by
Lemma 1, if Qi is not corrupted (by the end of the trapdoor creation phase) then S⟨P,V ⟩ outputs wi,j

(on the special outputs tape) where wi,j is a Hamiltonian cycle in the graph Gi,j .

13 We require[CLOS02] that the functionality reveals its random input in case all parties are corrupted.
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Common input: Let Q1, . . . , Qn be n parties that hold inputs x1, . . . xn respectively. Furthermore, let ℓ(k) =
|x1|+ |x2| . . . |xn|. Fn−crs sets up a list L that is initially set to be empty. Let S be the ideal world adversary and let
A at any point be the set of corrupted parties.

1. On receiving a messages (crs, i, j) from party Q (including S), Fn−crs:
- If ∃(crs, i, j, crsi,j) ∈ L: Sends crsi,j to Q.

- If (crs, i, j, ·) ̸∈ L and if at least one of Qi or Qj is not in A: Samples a random string crsi,j ∈ {0, 1}ℓ
′(k),

adds (crs, i, j, crsi,j) to L and sends crsi,j to Q.
- If both Qi, Qj ∈ A: Obtain crs from S and send the obtained crs to Q.

2. On receiving a message (corrupt, Qi) from A, Fn−crs adds Qi to A and sends xi to S.

Fig. 2: Fn−crs

2. In the coin flipping phase, for all i, j ∈ [n] such that i < j, S initiates the simulator S⟨A,B⟩ to simulate

⟨A,B⟩i,j instead of following the honest party strategies. We denote this instance of the simulator by
Si,j⟨A,B⟩. Furthermore, S can provide (from the special outputs tape) Si,j⟨A,B⟩ with a Hamiltonian cycle

in the graph Gi,j if Qi is honest. Similarly, S can also provide Si,j⟨A,B⟩ with a Hamiltonian cycle in the

graph Gj,i if Qj is honest. It also provides Si,j⟨A,B⟩ with crsi,j obtained from Fn−crs.

Now we will prove indistinguishability by a hybrid argument.

- H0: This hybrid corresponds to the setting of honest parties interacting with the adversary A.
- H1: Same as the previous hybrid, except that we use simulator S⟨P,V ⟩ to interact with the adversary
during the trapdoor creation phase.
The only difference in hybrids H0 and H1 is that S use S⟨P,V ⟩ instead of following the honest party
strategies for the trapdoor creation phase. The indistinguishability of the two hybrids follows from
Lemma 1. Before we proceed to the next hybrid we point out the following fact.
• By Lemma 2, if Qj is not corrupted (by the end of the trapdoor creation phase) then A can not
output a Hamiltonian cycle in the graph Gi,j for any i ∈ [n]{j}, even when it is provided with a
Hamiltonian cycle in all other graphs Gi′,j′ (i.e., i

′ ̸= i, j′ ̸= j) for every i′, j′ ∈ [n] such that i′ ̸= j′,
and Qi′ is not corrupted.

- H2: Same as the previous hybrid, except that in the coin flipping phase, for all i, j ∈ [n] such that i < j,

S instead of following the honest party strategies, executes an instance of S⟨A,B⟩ to simulate ⟨A,B⟩i,j

instead of following the honest party strategies. We denote this instance of the simulator by Si,j⟨A,B⟩.

Furthermore, S can provide (from the special outputs tape) Si,j⟨A,B⟩ with a Hamiltonian cycle in the

graph Gi,j if Qi is honest. Similarly, S can also provide Si,j⟨A,B⟩ with a Hamiltonian cycle in the graph

Gj,i if Qj is honest. It also provides Si,j⟨A,B⟩ with crsi,j obtained from Fn−crs.

We will argue indistinguishability of hybrids H1 and H2 by considering a sequence H1,0, . . . H1,t of

t = n(n− 1)/2 hybrids. In hybrid H1,p the simulator S uses an instance of S⟨A,B⟩ to simulate ⟨A,B⟩i,j
for every i, j ∈ [n] such that i < j and i(n−1)+j < p while it follows honest party strategies in simulation
other instances of ⟨A,B⟩ protocol. Observe that the hybrid H1,0 is the same as hybrid H1 and hybrid H1,t

is the same as H2. We are now now argue that hybrids H1,p−1 and H1,p (where 1 < p ≤ n(n− 1)/2) are
indistinguishable. The only difference between H1,p−1 and H1,p is that one addition instance of ⟨A,B⟩
is simulated in H1,p using S⟨A,B⟩. Observe that all our S can generate all messages the messages sent in
all other execution on its own while obtaining the messages for this extra instance for an external party.
Next we can argue that the ability of any distinguisher to distinguish between H1,p−1 can H1,p can be
used directly to contradict Lemma 3. Furthermore from Lemma 3 it also follows that the crs generated
in this execution would match the one provided by S.

This concludes the proof.

Realizing all functionalities. Now we elaborate on how we can construct an adaptive secure protocol for
any functionality.
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Theorem 3. Assuming collision resistant hash functions, trapdoor permutations, augmented non-committing
encryption and dense cryptosystems, for any n ≥ 2, there exists an n-party constant round MPC protocol
that is secure against any malicious adversary which may adaptively corrupt at most n− 1 parties

Recall that we have already constructed a protocol that adaptively securely realizes Fn−crs ideal functionality.
Therefore we are left with just constructing a protocol secure in the Fn−crs-hybrid model. This is implied
by the following proposition.

Proposition 1. Assuming trapdoor permutations and augmented non-committing encryption, for any n ≥ 2,
there exists an n-party constant round MPC protocol in the Fn−crs-hybrid model that is secure against any
malicious adversary which may adaptively corrupt at most n− 1 parties.

Remark on the above proposition. Note that if security against corruption of all n parties is desired
then a proposition (similar to the one above) that yields a protocol with round complexity that depends on
the depth of the circuit being evaluated still holds. Additionally in this setting we can get a constant-round
protocol if data erasures are allowed. We refer the reader to Remark 2 in [IPS08] for discussion on this.

Proof sketch. The proof of the above proposition is implicit in a number of previous works. For concreteness,
we will describe one way of constructing such a protocol. Observe that the Fn−crs ideal functionality can be

split into n(n−1)
2 ideal functionalities each generating a common random string for each pair of parties (each

of these ideal functionalities works correctly as long as at least one of the two parties it is serving is honest).
Next note that, using [CLOS02], given access to a common random string, we can construct an adaptively
secure OT protocol. Using this protocol and applying the UC composition theorem [Can00] (Composing
Different Setups, Page 61), multiple times, we can construct a protocol that achieves adaptively secure OT14

between every pair of parties (as long as at least one of the two parties it is serving is honest). Finally, using
these OT channels [IPS08] we can adaptively securely realize any functionality.
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A Black Box Positive Result

In this section we will outline the construction of an adaptively secure MPC protocol with a black-box
simulator. However, as observed in Section 3 such a protocol cannot be round efficient protocol as we have
restricted ourselves to black-box simulation only.

As already observed in Section 3 a black-box simulator must rely on rewinding only. And the key problem
with rewinding in the context of adaptive security is that whenever a simulator rewinds, the adversary might

24



corrupt parties different from the ones that were corrupted in the main thread. In this case the simulator
is not able to continue with the look-ahead thread and therefore obtains no additional information via
rewindings. However, this can actually be handled by sufficiently increasing the round complexity of the
protocol. Consider a protocol with round complexity that is sufficiently larger than the number of parties.
For such a protocol, we can argue that there will exist a number of rounds during which the adversary does
not corrupt any party. As we next see this solution indeed works. We stress that the main result of this
paper is a constant round protocol using non-black box simulation. So we do not give full details of this
construction but instead just sketch the construction.

We start by describing a black-box construction for the ⟨P, V ⟩ protocol (see Section 5.1) secure in the
setting of n-parties with an adaptive adversary. We will use a simple challenge-response based extractable
statistically-binding string commitment scheme that has been used in several prior works, most notably
[PRS02,Ros04]. We note that in contrast to [PRS02] we will need a multi-slot protocol where the number
of slots actually depend on the number of parties. Let Com(·) denote the commitment function of a non-
interactive perfectly binding string commitment scheme (as described in Section 4). Our protocol proceeds
as follows.

1. V samples a random string α ∈ {0, 1}3k, and 2kn independently chosen random pairs {β0
i , β

1
i }2kni=1 of α

such that ∀i ∈ [2kn], β0
i ⊕β1

i = α; and commits to all of using Com. Let A← Com(α), and B0
i ← Com(β0

i ),
B1

i ← Com(β1
i ) for every i ∈ [2kn]. V then sends all the commitments to P .

2. For j ∈ [2n]:
(a) P sends a random string sj ∈ {0, 1}k to V . Let sji be the ith bit of sj .

(b) For every i ∈ [k], V opens B0
(j−1)·k+i if s

j
i is 0 and it opens B1

(j−1)·k+i otherwise. P checks to see if
the openings are correct and aborts otherwise.

3. P sends random string γ ∈ {0, 1}3k to V .
4. V opens the commitments A, B0

i and B1
i for every i ∈ [2kn]. P checks to see if the openings are correct

and aborts otherwise.
5. Output: Let G be a graph (can be constructed using an NP-reduction) that is Hamiltonian if and only

if ∃w such that α⊕ γ = f(w), where f is a pseudorandom generator. Both parties output G.

Now we roughly argue that the protocol above is secure in the adaptive setting. Firstly, we require that
the adversary cannot output a Hamiltonian cycle generated in an execution of the above protocol as long
as V is not corrupted by the end of the protocol execution. This follows directly from the hiding property
of Com. Secondly, we need to show a simulator that can simulate the view of the adaptive adversary and
output the Hamiltonian cycle in the graph generated if P is not corrupted till the end of the protocol.
Again our simulator for this is very simple. Our simulator follows the honest party protocol on behalf of the
uncorrupted parties and forces the output to be a pre-chosen pseudorandom string allowing it to output the
cycle in the graph generated. However note that the simulator needs to know α in order to force the output
of the protocol to a value of its choice. Simulator can obtain α based on whether V was corrupted when
the first message of the protocol was sent. If V was honest then our simulator is already aware of α. On
the other hand if V was corrupted then our simulator needs to rely on rewinding to extract α. Observe that
we have 2n slots and the adversary can corrupt up to n parties. Therefore there must exist at least n slots
where no party is corrupted and our simulator can rewind in these slots with the hope of extracting α. Since
the simulator has a number of rewinding opportunities we can argue that the simulator will always (except
with negligible probability) be able to extract α before it sends β on behalf of P in the protocol.

We can construct an adaptively secure n-party protocol by executing the above protocol between every
pair of parties and following the construction described in Section 6. However, we will need to execute the
instances of the ⟨P, V ⟩ protocol described above sequentially. Therefore the round complexity of the protocol
will be O(n3).

We believe that the round complexity of the protocol can be imporved to O(n) by using non-malleable
commitments [DDN91,Goy11,LP11] instead of Com, allowing for parallel executions of the ⟨P, V ⟩ protocol.
Note that this round complexity would be almost tight with respect to our impossibility result (Section 3).
However, as pointed out earlier, since we have already constructed a constant round protocol we do not delve
into optimizing the round complexity of this protocol.
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