
An Algebraic Fault Attack on the LED Block
Cipher

P. Jovanovic, M. Kreuzer and I. Polian

Fakultät für Informatik und Mathematik
Universität Passau

D-94030 Passau, Germany

Abstract. In this paper we propose an attack on block ciphers where we
combine techniques derived from algebraic and fault based cryptanalysis.
The recently introduced block cipher LED serves us as a target for our
attack. We show how to construct an algebraic representation of the
encryption map and how to cast the side channel information gained
from a fault injection into polynomial form. The resulting polynomial
system is converted into a logical formula in conjunctive normal form
and handed over to a SAT solver for reconstruction of the secret key.
Following this approach we were able to mount a new, successful attack
on the version of LED that uses a 64-bit secret key, requiring only a single
fault injection.

Key words: Cryptanalysis, algebraic attacks, differential fault analysis, fault
based attack, LED block cipher, SAT solver

1 Introduction

Immunity to conventional cryptanalysis has been formally proven for a number
of ciphers. Newly developed ciphers are expected to be resistant against known
cryptanalytic methods. For this reason, fault-based cryptanalysis [5] is receiving
increasing attention [9, 10, 13, 16, 19]. In fault-based cryptanalysis, the attacker
targets the hardware implementation of a cryptographic algorithm rather than
the algorithm itself. The attacker performs a fault injection into the electronic
circuit and manipulates the logical values being processed by the circuit. A
variety of fault-injection techniques has been discussed [2]. For instance, the
attacker may reduce the power-supply voltage of the circuit, causing the logic
gates within the circuit to switch slower; as a consequence, wrong values will be
calculated. A different technique is irradiating a desired location in the circuit
(a logic gate performing some calculation or a register holding an intermediate
value) using a laser. The laser pulse will induce parasitic currents and ultimately
flip the logical value of the targeted location from logic-0 to logic-1 or vice versa.

Typically, the attacker will run the cryptographic algorithms multiple times,
with and without fault injection, and will perform differential cryptanalysis on
the outcomes (see [3]). Obviously, fault-based attacks are easier if the attacker



can accurately control which logic structure is manipulated and what new value
it assumes. In reality, the effectiveness of a fault-based attack may suffer if the
attacker has only limited control over the location and/or the exact time (cal-
culation step) of the fault injection. For example, the laser may have a precision
that is sufficient to target a register but not sufficient to target individual mem-
ory cells within the register. In this case, the register’s value will be modified,
but to an unknown value. Therefore, a fault-based attack is always defined with
respect to an assumption on the attacker’s technical capabilities.

We recently introduced a fault-based attack [12] on the new LED block ci-
pher [7]. The LED encryption scheme is conceptually similar to AES [17] but
belongs to the family of lightweight block ciphers [4, 8], which are developed
for usage in low-cost, power-constrained systems, and are typically employed
in mobile, embedded and ubiquitous contexts. Those ciphers carefully balance
cryptographic strength against resource requirements, most importantly power
consumption. We were able to break LED using one fault injection under weak
assumptions on the resolution of the equipment. Our attack yielded a reduced
set of key candidates which was feasible for brute force enumeration.

Recently, a new idea originated in [18], namely to enhance algebraic attacks
by information obtained through side-channel cryptanalysis. This idea was fur-
ther developed in [6] and used in [15] to attack the stream cipher Trivium. In
this paper, we exploit this idea by combining the previously mentioned fault-
based attack on the LED block cipher with a more traditional algebraic attack.
The paper is organized as follows.

In the next section we describe the 64-bit and 128-bit versions of the LED ci-
pher and provide a complete algebraic description of the encryption map. After
that we recall in Section 3 the fault attack from [12] and discuss the transfor-
mation of the fault equations to fault polynomials. The description of the actual
attack and experimental results showing its practical feasibility are the subject
of Section 4. Finally, Section 5 containing our conclusions and open questions
finishes the paper.

Unless specifically stated otherwise, we will use the terminology and notation
introduced in [14].

2 Algebraic Representation of the LED Block Cipher

In this section we recall the design of the LED cipher, as specified in [7]. In
addition, we provide an algebraic representation of the encryption map using
multivariate polynomials over F2. To accomplish this, we show for each step in
the encryption algorithm of LED how one can represent it via polynomials.

Let us start with a brief overview of the main features of LED. Its structural
layout shows several parallels to the block ciphers AES [17] and PRESENT [4].
The cipher LED has 64-bit blocks and one or two 64-bit keys. We denote these
two versions by LED-64 and LED-128, respectively. Other key lengths, e.g. the
popular choice of 80 bits, are padded to 128 bits by appending zeros. Depending



on the key size, the encryption algorithm performs 32 rounds for LED-64 and 48
rounds for LED-128.

Every 64-bit state s of the cipher is divided into 16 nibbles (4-bit tuples)
s = s1 ‖ s2 ‖ · · · ‖ s16 and these are arranged in a matrix of size 4 × 4 of the
form

s =


s1 s2 s3 s4
s5 s6 s7 s8
s9 s10 s11 s12
s13 s14 s15 s16


Each 4-bit sized entry si = a4i−3 ‖ a4i−2 ‖ a4i−1 ‖ a4i is identified with an
element of the finite field F16

∼= F2[x]/〈x4 + x + 1〉 as follows. Notice that the
residue classes of {1, x, x2, x3} form an F2-vector space basis of this field. Then si
corresponds to the field element a4i−3x

3 +a4i−2x
2 +a4i−1x+a4i where aj ∈ F2.

For instance, the 4-bit entry 1011 is identified with x3 + x+ 1. For convenience,
we also write 4-bit strings in their hexadecimal form, e.g. 1011 = B.

To construct the polynomial representation of LED, we use indeterminates
p1, . . . , p64 representing the bits of a plaintext unit, indeterminates k1, . . . , k64
(or k1, . . . , k128 for LED-128) representing the key bits, indeterminates c1, . . . , c64
representing the bits of a ciphertext unit, and indeterminates x

(r)
i , y

(r)
i , z

(r)
i rep-

resenting various states of the cipher during encryption round r (as defined
below). In particular, if we combine the input bits to field elements mi =
p4i−3x

3 + p4i−2x
2 + p4i−1x+ p4i, the input state of the encryption map is rep-

resented by the matrix

M =


m1 m2 m3 m4

m5 m6 m7 m8

m9 m10 m11 m12

m13 m14 m15 m16


of size 4×4 over the field F16. Similarly, we can represent the key by a matrix K
(or two matrices K, K̃) of size 4× 4 over F16.

The general layout of the encryption algorithm is illustrated by the following
Figure 1. It exhibits a special feature of this cipher – there is no key schedule.
Key additions are effected by the function AddRoundKey (AK). It performs an

♠

❦

✹ r♦✉♥❞s

❦

✹ r♦✉♥❞s

❦

✹ r♦✉♥❞s

❦ ❦

✹ r♦✉♥❞s

❦

❝

♠

❦

✹ r♦✉♥❞s

⑦❦

✹ r♦✉♥❞s

❦

✹ r♦✉♥❞s

⑦❦ ⑦❦

✹ r♦✉♥❞s

❦

❝

Fig. 1. LED key usage: 64-bit key (top) and 128-bit key (bottom).

addition of the state matrix and the matrix representing the key using bitwise



XOR. It is applied for input- and output-whitening as well as after every fourth
round.

Next, Figure 2 provides an overview of the structure of one round of the LED

encryption algorithm. All matrices are defined over the field F16.

❆❞❞❈♦♥st❛♥ts ❙✉❜❈❡❧❧s ❙❤✐❢t❘♦✇s ▼✐①❈♦❧✉♠♥s❙❡r✐❛❧

✹ ❝❡❧❧s

✹ ❝❡❧❧s

❡❧❡♠❡♥t ♦❢ ❋✶✻

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

Fig. 2. An overview of a single round of LED

In the following, we construct the polynomial representation of each step.

It will be contained in F2[pi, ki, x
(r)
i , y

(r)
i z

(r)
i , ci | i = 1, . . . , 64; r = 1, . . . , 32], a

polynomial ring having no less than 6336 indeterminates.

AddConstants (AC). For every round, a round constant consisting of a tuple
of six bits (b5, b4, b3, b2, b1, b0) is defined as follows. Before the first round, we
start with the zero tuple. In consecutive rounds, we start with the previous
round constant. Then we shift the six bits one position to the left. The new
value of b0 is computed as b5 + b4 + 1. This results in the round constants whose
hexadecimal values are given in Table 1.

Rounds Constants

1-24 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E,1D,3A,35,2B,16,2C,18,30

25-48 21,02,05,0B,17,2E,1C,38,31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

Table 1. The LED round constants.

Next, the round constant is divided into x = b5 ‖ b4 ‖ b3 and y = b2 ‖ b1 ‖ b0
where we interpret x and y as elements of F16. Then we form the matrix

0 x 0 0

1 y 0 0

2 x 0 0

3 y 0 0


and add it to the state matrix. (In the current setting, matrix addition is nothing
but bitwise XOR.)



To represent this operation by polynomials, we distinguish two cases: round
number r = 1 and round numbers r > 1. In the first case we model the in-
put whitening and the first application of AC in one step. Since the first round
constants vector is (b5, b4, b3, b2, b1, b0) = (0, 0, 0, 0, 0, 1), we get

x
(1)
i = pi + ki + 1 for i ∈ {20, 24, 35, 51, 52, 56},

x
(1)
i = pi + ki otherwise.

Here the indeterminates x
(1)
i describe the state after the first application

of AC. Similarly, let x
(r)
i describe the state after the r-th application of AC, for

r = 2, . . . , 32, and let z
(r)
i denote the state of the cipher after the application

of MSC in round r.

For the case r > 1, let (b
(r)
5 , b

(r)
4 , b

(r)
3 , b

(r)
2 , b

(r)
1 , b

(r)
0 ) be the r-th round con-

stants vector, as definied in Table 1. Then we get

x
(r)
i = z

(r−1)
i + 1 for i ∈ {20, 35, 51, 52}

x
(r)
i = z

(r−1)
i + b

(r)
5 for i ∈ {6, 38}

x
(r)
i = z

(r−1)
i + b

(r)
4 for i ∈ {7, 39}

x
(r)
i = z

(r−1)
i + b

(r)
3 for i ∈ {8, 40}

x
(r)
i = z

(r−1)
i + b

(r)
2 for i ∈ {22, 54}

x
(r)
i = z

(r−1)
i + b

(r)
1 for i ∈ {23, 55}

x
(r)
i = z

(r−1)
i + b

(r)
0 for i ∈ {24, 56}

x
(r)
i = z

(r−1)
i otherwise

in rounds whose round number r is not divisible by four, and the same equations
plus a keybit addition every fourth round.

SubCells (SC). During this step, every entry x of the state matrix is replaced
by the element S(x) from the SBox given in Table 2. Let x1 ‖ x2 ‖ x3 ‖ x4 be the

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 2. The LED SBox.

4-bit sized input and y1 ‖ y2 ‖ y3 ‖ y4 the 4-bit sized output of S. Then an easy
interpolation computation shows that the SBox is represented by polynomials



as follows.

y1 = x1x2x4 + x1x3x4 + x2x3x4 + x2x3 + x1 + x3 + x4 + 1

y2 = x1x2x4 + x1x3x4 + x1x3 + x1x4 + x3x4 + x1 + x2 + 1

y3 = x1x2x4 + x1x3x4 + x2x3x4 + x1x2 + x1x3 + x1 + x3

y4 = x2x3 + x1 + x2 + x4

In our polynomial representation of the LED encryption algorithm, this step will
be combined with the next.

ShiftRows (SR). For i = 1, 2, 3, 4, the i-th row of the state matrix is shifted
cyclically to the left by i − 1 positions. Equivalently, this permutation of the
64-bit state can be described by

σ = (17 29 25 21)(18 30 26 22)(19 31 27 23)(20 32 28 24)

(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)

(49 53 57 61)(50 54 58 62)(51 55 59 63)(52 56 60 64)

Note that the first row of the state matrix stays fixed under the ShiftRows per-
mutation. Thus the indices 1, . . . , 16 do not appear in the above representation
of σ.

Now we model the combined effect of SubCells and ShiftRows. Let i1 =
4i − 3, i2 = 4i − 2, i3 = 4i − 1 and i4 = 4i for i = 1, . . . , 16. Then, in round r,
we get the following four equations.

y
(r)
σ(i1)

= x
(r)
i1
x
(r)
i2
x
(r)
i4

+ x
(r)
i1
x
(r)
i3
x
(r)
i4

+ x
(r)
i2
x
(r)
i3
x
(r)
i4

+

x
(r)
i2
x
(r)
i3

+ x
(r)
i1

+ x
(r)
i3

+ x
(r)
i4

+ 1

y
(r)
σ(i2)

= x
(r)
i1
x
(r)
i2
x
(r)
i4

+ x
(r)
i1
x
(r)
i3
x
(r)
i4

+ x
(r)
i1
x
(r)
i3

+

x
(r)
i1
x
(r)
i4

+ x
(r)
i3
x
(r)
i4

+ x
(r)
i1

+ x
(r)
i2

+ 1

y
(r)
σ(i3)

= x
(r)
i1
x
(r)
i2
x
(r)
i4

+ x
(r)
i1
x
(r)
i3
x
(r)
i4

+ x
(r)
i2
x
(r)
i3
x
(r)
i4

+

x
(r)
i1
x
(r)
i2

+ x
(r)
i1
x
(r)
i3

+ x
(r)
i1

+ x
(r)
i3

y
(r)
σ(i4)

= x
(r)
i2
x
(r)
i3

+ x
(r)
i1

+ x
(r)
i2

+ x
(r)
i4

MixColumnsSerial (MCS). Every column v of the state matrix is replaced
by the product M · v, where M is the matrix

M =


4 1 2 2

8 6 5 6

B E A 9

2 2 F B





Let y
(r)
1 ‖ · · · ‖ y(r)64 be the state of the cipher after ShiftRows has been

executed in round r, and let z
(r)
1 ‖ · · · ‖ z(r)64 be its state after MCS. The entries of

the state matrix are the field elements y
(r)
4i−3x

3 + y
(r)
4i−2x

2 + y
(r)
4i−1x+ y

(r)
4i of F16.

Plugging these into the above matrix multiplication yields, for instance, the
following first entry of the resulting state matrix.

z
(r)
1 x3 + z

(r)
2 x2 + z

(r)
3 x+ z

(r)
4 = x2 · (y(r)1 x3 + y

(r)
2 x2 + y

(r)
3 x+ y

(r)
4 )

+ 1 · (y(r)17 x
3 + y

(r)
18 x

2 + y
(r)
19 x+ y

(r)
20 )

+ x · (y(r)33 x
3 + y

(r)
34 x

2 + y
(r)
35 x+ y

(r)
36 )

+ x · (y(r)49 x
3 + y

(r)
50 x

2 + y
(r)
51 x+ y

(r)
52 ).

After expanding, simplifying, and comparing the coefficients of 1, x, x2, x3,
we finally get 64 equations

z
(r)
j1

= y
(r)
j3

+ y
(r)
j5

+ y
(r)
j10

+ y
(r)
j14

z
(r)
j2

= y
(r)
j1

+ y
(r)
j4

+ y
(r)
j6

+ y
(r)
j11

+ y
(r)
j15

z
(r)
j3

= y
(r)
j1

+ y
(r)
j2

+ y
(r)
j7

+ y
(r)
j9

+ y
(r)
j12

+ y
(r)
j13

+ y
(r)
j16

z
(r)
j4

= y
(r)
j2

+ y
(r)
j8

+ y
(r)
j9

+ y
(r)
j13

z
(r)
j5

= y
(r)
j1

+ y
(r)
j4

+ y
(r)
j6

+ y
(r)
j7

+ y
(r)
j9

+ y
(r)
j11

+ y
(r)
j14

+ y
(r)
j15

z
(r)
j6

= y
(r)
j1

+ y
(r)
j2

+ y
(r)
j5

+ y
(r)
j7

+ y
(r)
j8

+ y
(r)
j9

+ y
(r)
j10

+ y
(r)
j12

+ y
(r)
j13

+ y
(r)
j15

+ y
(r)
j16

z
(r)
j7

= y
(r)
j2

+ y
(r)
j3

+ y
(r)
j6

+ y
(r)
j8

+ y
(r)
j9

+ y
(r)
j10

+ y
(r)
j11

+ y
(r)
j14

+ y
(r)
j16

z
(r)
j8

= y
(r)
j3

+ y
(r)
j5

+ y
(r)
j6

+ y
(r)
j10

+ y
(r)
j12

+ y
(r)
j13

+ y
(r)
j14

z
(r)
j9

= y
(r)
j2

+ y
(r)
j4

+ y
(r)
j5

+ y
(r)
j6

+ y
(r)
j7

+ y
(r)
j8

+ y
(r)
j9

+ y
(r)
j10

+ y
(r)
j12

+ y
(r)
j16

z
(r)
j10

= y
(r)
j1

+ y
(r)
j3

+ y
(r)
j6

+ y
(r)
j7

+ y
(r)
j8

+ y
(r)
j9

+ y
(r)
j10

+ y
(r)
j11

+ y
(r)
j13

z
(r)
j11

= y
(r)
j1

+ y
(r)
j2

+ y
(r)
j4

+ y
(r)
j7

+ y
(r)
j8

+ y
(r)
j9

+ y
(r)
j10

+ y
(r)
j11

+ y
(r)
j12

+ y
(r)
j14

z
(r)
j12

= y
(r)
j1

+ y
(r)
j3

+ y
(r)
j4

+ y
(r)
j5

+ y
(r)
j6

+ y
(r)
j7

+ y
(r)
j9

+ y
(r)
j11

+ y
(r)
j15

+ Y
(r)
j16

z
(r)
j13

= y
(r)
j2

+ y
(r)
j6

+ y
(r)
j10

+ y
(r)
j11

+ y
(r)
j12

+ y
(r)
j14

+ y
(r)
j16

z
(r)
j14

= y
(r)
j3

+ y
(r)
j7

+ y
(r)
j11

+ y
(r)
j12

+ y
(r)
j13

+ y
(r)
j15

z
(r)
j15

= y
(r)
j1

+ y
(r)
j4

+ y
(r)
j5

+ y
(r)
j8

+ y
(r)
j12

+ y
(r)
j13

+ y
(r)
j14

+ y
(r)
j16

z
(r)
j16

= y
(r)
j1

+ y
(r)
j5

+ y
(r)
j9

+ y
(r)
j10

+ y
(r)
j11

+ y
(r)
j12

+ y
(r)
j13

+ y
(r)
j15

+ y
(r)
j16

where i ∈ {1, 2, 3, 4} and jk = 4i− 4 + k, j4+k = 4i+ 12 + k, j8+k = 4i+ 28 + k,
and j12+k = 4i+ 44 + k for k = 1, 2, 3, 4.

Final Key Addition. For i = 1, . . . , 64, the equations ci = z
(32)
i + ki describe

the final key addition and finish the algebraic representation of the LED-64 block
cipher. It is clear that LED-128 has a similar description, using additional inde-
terminates for the second key and the extra rounds.



3 Algebraic Representation of the Fault Equations

The algebraic representation of LED-64 constructed above is not suitable to
launch a successful algebraic attack. It involves too many non-linear equations
in too many indeterminates. To reconstruct the secret key from given (correct
or faulty) plaintext – ciphertext pairs requires additional information. This in-
formation will be furnished by a fault attack. In [12] we discussed a method
for injecting fault and using it to break LED-64 by exhaustive search. In the
following, we construct a polynomial version of the fault equations which were
generated there.

Let us recall the description of the attack. We assume the following fault
model. The attacker is supposed to be able to encrypt the same plain text unit
twice using the same secret key k. The first encryption takes place correctly, and
during the second encryption a fault is introduced. The fault is a random change
in the value of the first (4-bit sized) entry of the state matrix at the beginning
of round 30. As a consequence, we obtain a correct ciphertext c and a faulty
ciphertext c′.

The propagation of the fault is observed. It leads to an incorrect first column
of the state matrix after the SBox has been applied in round 31 whose 4-bit
entries we denote by a, b, c, d. In [12] we derived the following 16 fault equations
for a, b, c, d.

a = D · (S−1(C · (c̄1 + k̄1) + C · (c̄5 + k̄5) + D · (c̄9 + k̄9) + 4 · (c̄13 + k̄13)) +

S−1(C · (c̄′1 + k̄1) + C · (c̄′5 + k̄5) + D · (c̄′9 + k̄9) + 4 · (c̄′13 + k̄13))) (Ea,0)

a = F · (S−1(3 · (c̄4 + k̄4) + 8 · (c̄8 + k̄8) + 4 · (c̄12 + k̄12) + 5 · (c̄16 + k̄16)) +

S−1(3 · (c̄′4 + k̄4) + 8 · (c̄′8 + k̄8) + 4 · (c̄′12 + k̄12) + 5 · (c̄′16 + k̄16))) (Ea,1)

a = 5 · (S−1(7 · (c̄3 + k̄3) + 6 · (c̄7 + k̄7) + 2 · (c̄11 + k̄11) + E · (c̄15 + k̄15)) +

S−1(7 · (c̄′3 + k̄3) + 6 · (c̄′7 + k̄7) + 2 · (c̄′11 + k̄11) + E · (c̄′15 + k̄15))) (Ea,2)

a = 9 · (S−1(D · (c̄2 + k̄2) + 9 · (c̄6 + k̄6) + 9 · (c̄10 + k̄10) + D · (c̄14 + k̄14)) +

S−1(D · (c̄′2 + k̄2) + 9 · (c̄′6 + k̄6) + 9 · (c̄′10 + k̄10) + D · (c̄′14 + k̄14))) (Ea,3)

b = 1 · (S−1(C · (c̄4 + k̄4) + C · (c̄8 + k̄8) + D · (c̄12 + k̄12) + 4 · (c̄16 + k̄16)) +

S−1(C · (c̄′4 + k̄4) + C · (c̄′8 + k̄8) + D · (c̄′12 + k̄12) + 4 · (c̄′16 + k̄16))) (Eb,0)

b = 7 · (S−1(3 · (c̄3 + k̄3) + 8 · (c̄7 + k̄7) + 4 · (c̄11 + k̄11) + 5 · (c̄15 + k̄15)) +

S−1(3 · (c̄′3 + k̄3) + 8 · (c̄′7 + k̄7) + 4 · (c̄′11 + k̄11) + 5 · (c̄′15 + k̄15))) (Eb,1)

b = 3 · (S−1(7 · (c̄2 + k̄2) + 6 · (c̄6 + k̄6) + 2 · (c̄10 + k̄10) + E · (c̄14 + k̄14)) +

S−1(7 · (c̄′2 + k̄2) + 6 · (c̄′6 + k̄6) + 2 · (c̄′10 + k̄10) + E · (c̄′14 + k̄14))) (Eb,2)

b = 9 · (S−1(D · (c̄1 + k̄1) + 9 · (c̄5 + k̄5) + 9 · (c̄9 + k̄9) + D · (c̄13 + k̄13)) +

S−1(D · (c̄′1 + k̄1) + 9 · (c̄′5 + k̄5) + 9 · (c̄′9 + k̄9) + D · (c̄′13 + k̄13))) (Eb,3)



c = 9 · (S−1(C · (c̄3 + k̄3) + C · (c̄7 + k̄7) + D · (c̄11 + k̄11) + 4 · (c̄15 + k̄15)) +

S−1(C · (c̄′3 + k̄3) + C · (c̄′7 + k̄7) + D · (c̄′11 + k̄11) + 4 · (c̄′15 + k̄15))) (Ec,0)

c = B · (S−1(3 · (c̄2 + k̄2) + 8 · (c̄6 + k̄6) + 4 · (c̄10 + k̄10) + 5 · (c̄14 + k̄14)) +

S−1(3 · (c̄′2 + k̄2) + 8 · (c̄′6 + k̄6) + 4 · (c̄′10 + k̄10) + 5 · (c̄′14 + k̄14))) (Ec,1)

c = C · (S−1(7 · (c̄1 + k̄1) + 6 · (c̄5 + k̄5) + 2 · (c̄9 + k̄9) + E · (c̄13 + k̄13)) +

S−1(7 · (c̄′1 + k̄1) + 6 · (c̄′5 + k̄5) + 2 · (c̄′9 + k̄9) + E · (c̄′13 + k̄13))) (Ec,2)

c = 8 · (S−1(D · (c̄4 + k̄4) + 9 · (c̄8 + k̄8) + 9 · (c̄12 + k̄12) + D · (c̄16 + k̄16)) +

S−1(D · (c̄′4 + k̄4) + 9 · (c̄′8 + k̄8) + 9 · (c̄′12 + k̄12) + D · (c̄′16 + k̄16))) (Ec,3)

d = 9 · (S−1(C · (c̄2 + k̄2) + C · (c̄6 + k̄6) + D · (c̄10 + k̄10) + 4 · (c̄14 + k̄14)) +

S−1(C · (c̄′2 + k̄2) + C · (c̄′6 + k̄6) + D · (c̄′10 + k̄10) + 4 · (c̄′14 + k̄14))) (Ed,0)

d = 7 · (S−1(3 · (c̄1 + k̄1) + 8 · (c̄5 + k̄5) + 4 · (c̄9 + k̄9) + 5 · (c̄13 + k̄13)) +

S−1(3 · (c̄′1 + k̄1) + 8 · (c̄′5 + k̄5) + 4 · (c̄′9 + k̄9) + 5 · (c̄′13 + k̄13))) (Ed,1)

d = 2 · (S−1(7 · (c̄4 + k̄4) + 6 · (c̄8 + k̄8) + 2 · (c̄12 + k̄12) + E · (c̄16 + k̄16)) +

S−1(7 · (c̄′4 + k̄4) + 6 · (c̄′8 + k̄8) + 2 · (c̄′12 + k̄12) + E · (c̄′16 + k̄16))) (Ed,2)

d = 5 · (S−1(D · (c̄3 + k̄3) + 9 · (c̄7 + k̄7) + 9 · (c̄11 + k̄11) + D · (c̄15 + k̄15)) +

S−1(D · (c̄′3 + k̄3) + 9 · (c̄′7 + k̄7) + 9 · (c̄′11 + k̄11) + D · (c̄′15 + k̄15))) (Ed,3)

In these equations, the indeterminates k̄1, . . . , k̄16 represent the 4-bit parts
of the secret key, the indeterminates c̄1, . . . , c̄16 represent the parts of the cor-
rect ciphertext, and c̄′1, . . . , c̄

′
16 the parts of the faulty ciphertext. Since these

equations involve the map S−1 : F16 −→ F16, we need to find a polynomial
representation of this map. Using the values of this map given in Table 3 and

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S−1(x) 5 E F 8 C 1 2 D B 4 6 3 0 7 9 A

Table 3. The inverse LED SBox.

univariate interpolation, we construct the following polynomial representation
of S−1.

S−1(y) = (x2 + 1) + (x2 + 1)y + (x3 + x)y2 + (x3 + x2 + 1)y3 + xy4+

(x3 + 1)y5 + (x3 + 1)y7 + (x+ 1)y9 + (x2 + 1)y10 + (x3 + 1)y11+

(x3 + x)y12 + (x+ 1)y13 + (x3 + x2 + 1)y14



Next, we plug the right-hand sides of the fault equations into this polynomial.
We get 16 polynomial fault equations which are defined over the polynomial
ring F16[a, b, c, d, k̄1, . . . , k̄16, c̄1, . . . , c̄16, c̄

′
1, . . . , c̄

′
16]. For every group of equations

Et,0, Et,1, Et,2, Et,3 having the same left-hand side t ∈ {a, b, c, d}, we can form
three differences Et,0 − Et,i = 0 with i = 1, 2, 3. Now, comparing coefficients
for {1, x, x2, x3} yields 48 equations in the bits k1, . . . , k64 of the secret key, the
bits c1, . . . , c64 of the correct ciphertext, and the bits c′1, . . . , c

′
64 of the faulty

ciphertext. Notice that we can use the field equations k2i + ki = 0, c2i + ci = 0,
and (c′i)

2 + c′i = 0 for simplification here.
Altogether, we find 48 polynomials in F2[k1, . . . , k64, c1, . . . , c64, c

′
1, . . . , c

′
64].

They all have degree 3 and consist of approximately 3400-8800 terms. These
polynomials will be called the fault polynomials.

4 An Algebraic Fault Attack on LED-64

4.1 Description of the Attack

In the preceding two sections we derived polynomials describing the encryption
map of LED-64 and additional information gained from a fault attack. All in
all, we found 6208 polynomials in 6336 indeterminates describing the encryption
map, 6336 field equations, and 48 fault polynomials in 192 indeterminates.

As mentioned previously, we assume that we are able to mount a known-
plaintext-attack and a repeat encryption involving the same key and the fault
injection described previously. For every concrete instance of this attack, we can
therefore substitute the plaintext bits, correct ciphertext bits, and faulty cipher-
text bits into our polynomials. After this substitution, we have 6208 polynomials
in 6208 indeterminates for the encryption map, 6208 field equations, and 48 fault
polynomials in the 64 indeterminates of the secret key.

The resulting fault polynomials consist typically of 40-150 terms. Some of
them (usually no more than 5) drop their degree and become linear. Of course,
these linear polynomials are particularly valuable, since they decrease the com-
plexity of the problem by one dimension. In the experiments reported below it
turned out to be beneficial to interreduce the fault polynomials after substitution
in order to generate more linear ones.

The polynomial systems can be solved using various techniques. For our
experiments, we applied the algorithms for conversion to a SAT-solving problem
explained in [11].

4.2 Experimental Results

All experiments were performed on a workstation having eight 3.5 GHz Xeon
cores and 50 GB of RAM. We used the SAT-solvers Minisat 2.2 (MS) and
CryptoMiniSat 2.9.4 (CMS). All timings are averages over ten LED-64 in-
stances with random plaintext, key and fault values. Table 4 contains the tim-
ings for the straightforward application of the SAT-solving technique to the given
polynomial systems.



SAT solver MS (1 thread) CMS (1 thread) CMS (4 threads)

time (in sec) 90852 71656 22639

time (in h) 25.23 19.90 6.28

Table 4. Average SAT Solver Timings.

For the second set of experiments, we first interreduced the fault polynomials
using the computer algebra system ApCoCoA (see [1]) and then appended the
linear polynomials to the system. In this way we were sometimes able to find
more linear dependencies between the key indeterminates, thereby reducing the
dimension even further. Moreover, the SAT-solvers appear to benefit from this
simplification, because it is typically the number of terms in a polynomial that
complicates its logical representation. This seemingly minor modification results
in a meaningful speed-up, as we can see in Table 5.

SAT solver MS (1 thread) CMS (1 thread) CMS (4 threads)

time (in sec) 36665 52835 11829

time (in h) 10.18 14.67 3.28

Table 5. Average SAT Solver Timings with Additional Linear Equations.

In summary, it is clear that the proposed attack is able to break the LED-64

encryption scheme. While it is slower than the direct fault attack presented
in [12], it does not rely on the specific properties underlying the key filtering
steps there, and it offers numerous possibilities for optimization.

5 Conclusions and Future Work

After providing a complete algebraic description of the LED block cipher and
showing how to convert the previously introduced fault equations into fault
polynomials, it turned out that the combined polynomial system was solvable
by state-of-the-art SAT solvers. Therefore the idea of combining an algebraic
attack on a block cipher with fault-injection cryptanalysis is able to break the
LED-64 encryption algorithm in practice. This demonstrates that analysing the
results of fault injection by algebraic methods is a promising approach. It may
make it possible to attack ciphers for which the polynomial system resulting from
a purely algebraic attack could not be solved in a reasonable time previously.

For the future, we plan to extend this attack technique in several ways. By
optimizing the solving step further along the lines of Section 4, we expect to
gain two major benefits. First, an improvement of the SAT solver running time,
e.g. through modeling the key set filtering process (see [12]) by polynomials and
adding those to the overall system. Second, the ability to adapt the presented



methods to more challenging encryption schemes such as LED-128 or PRESENT.
Furthermore, we plan to generalize the attack to other kinds of block ciphers,
e.g. to Feistel network block ciphers such as DES, and to public key encryption
schemes.

Acknowledgements. The authors are grateful to Mate Soos for numerous
discussions and valuable information about the program CryptoMiniSat, about
SAT-solving in general, and for being always ready to help with solver-related
problems.

References

1. ApCoCoA: Applied Computations in Commutative Algebra, available for download
at http://www.apcocoa.org.

2. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, The Sorcerer’s Ap-
prentice Guide to Fault Attacks, Proceedings of the IEEE, vol. 94, IEEE Computer
Society, 2006, pp. 370–382.

3. E. Biham ans O. Dunkelman, Techniques for cryptanalysis of block ciphers, Springer,
Heidelberg 2011.

4. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Rob-
shaw, Y. Seurin and C. Vikkelsoe, PRESENT: An Ultra-Lightweight Block Cipher,
In: P. Paillier and I. Verbauwhede (eds.) CHES 2007, LNCS, vol. 4727, Springer,
Heidelberg 2007, pp. 450–466.

5. D. Boneh, R.A. DeMillo and R.J. Lipton, On the Importance of Elimination Errors
in Cryptographic Computations, J. Cryptology 14 (2001), 101–119.

6. C. Carlet, J-C. Faugere, C. Goyet, G. Renault, Analysis of the algebraic side channel
attack, Journal of Cryptographic Engineering, vol. 2 nr. 1, Springer Heidelberg 2012,
pp. 45–62.

7. J. Guo, T. Peyrin, A. Poschmann and M. Robshaw, The LED Block Cipher, In: B.
Preneel and T. Takagi (eds.) CHES 2011, LNCS, vol. 6917, Springer, Heidelberg
2011, pp. 326–341.

8. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee, K.
Jeong, H. Kim, J. Kim, S. Chee, HIGHT: A New Block Cipher Suitable for Low-
Resource Device, In: L. Goubin and M. Matsui (eds.) CHES 2006, LNCS, vol. 4249,
Springer, Heidelberg 2006, pp. 46–59.

9. M. Hojśık and B. Rudolf, Differential Fault Analysis of Trivium, In: K. Nyberg (ed.)
FSE 2008, LNCS, vol. 5086, Springer, Heidelberg 2008, pp. 158–172.

10. M. Hojśık and B. Rudolf, Floating Fault Analysis of Trivium, In: D.R. Chowd-
hury, V. Rijmen and A. Das (eds.) INDOCRYPT 2008, LNCS, vol. 5365, Springer,
Heidelberg 2008, pp. 239–250.

11. P. Jovanovic and M. Kreuzer, Algebraic Attacks using SAT-Solvers, Groups –
Complexity – Cryptology 2 (2010), pp. 247–259.

12. P. Jovanovic, M. Kreuzer, I. Polian, A Fault Attack on the LED Block Cipher,
In: W. Schindler and S. Huss (eds.) COSADE 2012, LNCS, vol. 7275, Springer
Heidelberg 2012, pp. 120–134.

13. C.H. Kim and J-J. Quisquater, Fault Attacks for CRT Based RSA: New Attacks,
New Results, and New Countermeasures, In: D. Sauveron, C. Markantonakis, A. Bi-
las and J-J. Quisquater (eds.) WISTP 2007, LNCS, vol. 4462, Springer, Heidelberg
2007, pp. 215–228.



14. M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Springer
Verlag, Heidelberg 2000.

15. M.S.E. Mohamed, S. Bulygin and J. Buchmann, Using SAT Solving to Improve
Differential Fault Analysis of Trivium, In: T-H. Kim, H. Adeli, R.J. Robles and
M.O. Balitanas (eds.) ISA 2011, CCIS, vol. 200, Springer, Heidelberg 2011, pp.
62–71.

16. D. Mukhopadhyay, An Improved Fault Based Attack of the Advanced Encryption
Standard, In: B. Preneel (ed.) AFRICACRYPT 2009, LNCS, vol. 5580, Springer,
Heidelberg 2009, pp. 421–434.

17. National Institute of Standards and Technology (NIST). Advanced Encryption
Standard (AES). FIPS Publication 197, available for download at
http://www.itl.nist.gov/fipsbups/, 2001.

18. M. Renauld, F-X. Standaert and N. Veyrat-Charvillon, Algebraic Side-Channel
Attacks on the AES: Why Time also Matters in DPA, In: C. Clavier and K. Gaj
(eds.) CHES 2009, LNCS, vol. 5747, Springer Heidelberg 2009, pp. 97–111.

19. M. Tunstall, D. Mukhopadhyay and S. Ali, Differential Fault Analysis of the Ad-
vanced Encryption Standard Using a Single Fault, In: C.A. Ardagna and J. Zhou
(eds.) WISTP 2011, LNCS, vol. 6633, Springer Heidelberg 2011, pp. 224–233.


