
A

Broadcast-enhanced Key Predistribution Schemes

Michelle Kendall, Keith M. Martin, Siaw-Lynn Ng,
Maura B. Paterson, Douglas R. Stinson

We present a formalisation of a category of schemes which we call Broadcast-enhanced Key Predistribution
Schemes (BEKPSs). These schemes are suitable for networks with access to a trusted base station and an

authenticated broadcast channel. We demonstrate that the access to these extra resources allows for the

creation of BEKPSs with advantages over key predistribution schemes such as flexibility and more efficient
revocation. There are many possible ways to implement BEKPSs, and we propose a framework for describing

and analysing them.

In their paper ‘From key predistribution to key redistribution’, Cichoń, Go lȩbiewski and Kuty lowski
propose a scheme for ‘redistributing’ keys to a wireless sensor network using a broadcast channel after an

initial key predistribution. We classify this as a BEKPS and analyse it in that context. We provide simpler

proofs of some results from their paper, give a precise analysis of the resilience of their scheme, and discuss
possible modifications. We then study two scenarios where BEKPSs may be particularly desirable and

propose a suitable family of BEKPSs for each case. We demonstrate that they are practical and efficient to
implement, and our analysis shows their effectiveness in achieving suitable trade-offs between the conflicting

priorities in resource-constrained networks.

1. INTRODUCTION

In [Cichoń et al. 2010], Cichoń et al. propose a ‘key-redistribution’ scheme for wireless sensor
networks which makes use of a trusted base station and broadcast channel to distribute
and update keys. This provides benefits over ‘static’ key predistribution schemes which
are typically designed for networks which do not have access to a broadcast channel or a
trusted base station after deployment. There is a variety of potential applications for such
‘redistribution’ schemes, and accordingly, many different ways to design them. We therefore
propose the category of broadcast-enhanced key predistribution schemes (BEKPSs), and
define a framework for their design and analysis.

We will introduce BEKPSs in this section and suggest motivations for studying them.
We begin by introducing the ideas and terminology of two closely related concepts, key
predistribution schemes and broadcast encryption, before defining BEKPSs themselves.

1.1. Key predistribution schemes

A key predistribution scheme (KPS) is a method for a trusted base station to preload sym-
metric keys onto devices or ‘nodes’ before they are deployed into an environment to create a
network. Key predistribution is a technique particularly suited to resource-constrained envi-
ronments where public key cryptography is infeasible and there is no method for distributing
symmetric keys once the network is operational, in particular for networks where a secure
channel cannot be established between the network and base station after deployment. A

Author’s addresses: M. Kendall, K. M. Martin, S. Ng, Royal Holloway, University of London; M. B. Paterson,
Birkbeck College, University of London; D. R. Stinson, University of Waterloo, research supported by
NSERC grant 203114-2011.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1550-4859/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



major drawback of KPSs is that once the keys have been predistributed, subsequent key
management operations are challenging to conduct [Blackburn et al. 2008]. We will present
examples of KPSs in Section 2.1.

1.2. Broadcast encryption

There are many applications where it is possible for a trusted base station to use a broad-
cast channel to communicate with nodes during the operational phase of the network. This
broadcast channel can be used not only to distribute content, but also to conduct key man-
agement operations. Such applications have been widely studied in the context of broadcast
encryption. The first broadcast encryption schemes were given in [Berkovits 1991; Fiat and
Naor 1994]. A classic example of a broadcast encryption application is pay-TV systems,
where a key predistribution scheme is used to install keys into set-top boxes during the
initialisation phase. The access to content is then managed by broadcasting the encrypted
content along with a key management ‘header’ whose purpose is to provide an additional
key ‘layer’ of content keys. The combined use of the predistributed keys and content keys
defines the set of users which are able to decrypt and hence view the content. Note that
whilst a pair of users may at times share keys, there is no motivation in the design of the
scheme for users to be able to communicate with each other; the purpose of a broadcast
encryption scheme is to control access to content.

1.3. Broadcast-enchanced key predistribution

We define a broadcast-enhanced key predistribution scheme (BEKPS ) to be a key distri-
bution scheme designed for a network where a trusted base station and an authenticated
broadcast channel will be available. The availability of such a broadcast channel has been
discussed in [Cichoń et al. 2010; Liu and Ning 2004]. We distinguish between the underlying
keys which are predistributed to the nodes, and the temporal keys which are broadcast by
the base station and which the nodes may use for communication until the next broadcast.
The base station broadcasts the temporal keys by encrypting them using underlying keys,
as we will describe in Section 2. Notice that the broadcasts are made from the base station
to the nodes; we do not require the nodes themselves to be able to make network-wide
broadcasts.

Broadcast encryption can be regarded as a type of BEKPS, but with fundamentally differ-
ent design goals: in broadcast encryption, temporal key sharing between nodes is incidental.
In this paper we consider BEKPSs for applications where communication between nodes is
important, for example in networks of data-gathering nodes, and so temporal key sharing
is one of the primary design goals. Such differences of purpose create substantial differences
between the designs of typical broadcast encryption schemes and BEKPSs; in Section 4
we see how a näıve approach to designing a BEKPS from a logical key hierarchy (LKH)
broadcast encryption scheme (Section 4.1) would not provide sufficient resilience.

There are several advantages of deploying broadcast-enhanced key predistribution as
opposed to the use of a basic KPS:

— Flexibility: In any deployed network, underlying keys may be allocated in a way which
is undesirable, either because there was a lack of control over the initial deployment, or
because the purpose or priorities of the network have changed over time. For example,
as node batteries become drained, it may be desirable to reduce the burdens on remain-
ing nodes by distributing fewer temporal keys and maintaining a connected network. A
BEKPS enables the base station flexibility to ensure that some undesirable properties of
the underlying key predistribution do not persist in the temporal key distribution. This
is clear when we consider that the number of temporal keys shared by two nodes can
be greater than, equal to, or less than the number of underlying keys which they share.



Changes may be temporary, and hence only effective between a small number of updates,
or permenantly sustained by future updates.

— Ease of revocation: In any BEKPS it is possible to revoke a node by ensuring it does
not receive any future temporal keys. This can be done simply by omitting that node’s
underlying keys from the set of underlying keys used to encrypt all future temporal key
broadcasts. This straightforward approach benefits from reducing the base station’s future
broadcast load. However, it has the potential to reduce the connectivity and resilience of
the remaining network (we define these terms in Section 2), and repeated revocations may
lead to rapid degeneration of the remaining network [Cichoń et al. 2010]. In Section 4
we discuss a practical way to design a BEKPS for efficient revocation, where repeated
revocations increase the broadcast load but do not lead to network degeneration.

— Creating hierarchy in the temporal key distribution: The distribution of the tem-
poral keys may coincidentally or deliberately feature ‘imbalances’, for example, certain
nodes may store more keys than average. Nodes which store extra keys may be desir-
able for efficient routing of information through the network, and indeed KPSs have been
proposed for heterogenous networks; see [Çamtepe and Yener 2005; Lu et al. 2006] for a
brief survey. In homogeneous networks (where all nodes have identical hardware), having
comparatively more keys brings with it the disadvantages of increased communication
burdens and quicker battery drainage. One way to reduce the damage that this causes to
the network is to change at regular intervals the nodes which are required to store extra
keys, as in the election of cluster heads in a network - see [Soro and Heinzelman 2009].
In any network where some nodes store extra keys, the compromise of such a node will
be more detrimental to the resilience of the network than the compromise of the average
node. In Section 5 we propose a family of BEKPSs which provide the benefits of efficient
routing found in hierarchical networks, whilst frequent temporal key updates reduce the
resilience risks and battery drainage.

In the next section we will see an example of a BEKPS and define the model, setting and
metrics for analysing BEKPSs in more detail. Section 3 provides some simpler versions of
proofs from [Cichoń et al. 2010] and discusses modifications of the Cichoń et al. BEKPS
based on defining a suitable intersection threshold.

We then present two families of BEKPSs designed for particular scenarios: in Section 4
we present BEKPSs designed for efficient revocation of nodes, and in Section 5 we present
BEKPSs which harness some of the advantages of hierarchical networks in a homogeneous
network of nodes. We include these two families of schemes as examples of the many applica-
tions of BEKPSs, to show that practical BEKPSs exist which are efficient to implement, and
to demonstrate that explicit formulae can be derived for the connectivity, resilience, broad-
cast load and revocation efficiency, allowing for precise analysis of BEKPSs. We conclude
in Section 6 and present ideas for future work.

2. FRAMEWORK

In this section we propose the framework for a BEKPS protocol by describing our model and
setting, defining the relevant notation and metrics for our analysis, and providing examples.

First, we briefly revisit key predistribution schemes, introducing notation and examples
which will be referred to throughout the rest of the paper.

2.1. Key predistribution schemes

A KPS is a method for allocating a set of keying materials to each node. In the case of
schemes such as [Blom 1985; Blundo et al. 1993], also known as ‘key generation schemes’
or ‘key establishment schemes’, these materials allow nodes to derive symmetric keys for
communication. In the key predistribution schemes which we consider in this paper, a key



pool K of n symmetric keys {K1,K2, . . . ,Kn} is selected from the space of all possible keys,
and each node Ni ∈ {N1, N2, . . . , Nv} is allocated a subset of keys from the key pool.

The size of the key pool and the number of keys allocated to each node are chosen to
supply a trade-off between the following conflicting metrics:

— Key storage: the number of keys which a node is required to store. It is usually desirable
to minimise key storage.

— Connectivity: a measure of the proportion of nodes which share keys. In common with
many other papers, we will denote connectivity by Pr1, the probability that a randomly
picked pair of nodes are ‘connected’, or ‘form a link’. In many schemes, this is simply
the probability that a randomly picked pair of nodes share a single common key. Some
schemes, an example of which is given in Example 2.2, require a pair of nodes to share
η > 1 keys before they are connected. We generally want to maximise connectivity.

— Resilience: a measure of the network’s ability to withstand node compromise. We calcu-
late resilience by fails, the probability that a link between two uncompromised nodes Ni,
Nj is insecure after s other nodes are compromised. This measure is used in [Chan et al.
2003; Du et al. 2005], though the notation fails developed later. For ‘good’ resilience we
wish to minimise fails.

The following example is a KPS to which we will frequently refer throughout this paper:
the random key predistribution scheme proposed in the seminal paper by Eschenauer and
Gligor [Eschenauer and Gligor 2002].

Example 2.1 (Eschenauer Gligor KPS). Every node is assigned a random σ-subset
of keys chosen from a given pool K of n symmetric keys. That is, each node is allocated
exactly σ keys, chosen independently and uniformly at random from the key pool without
replacement. Keys are then replaced in the key pool before the next node’s key set is chosen,
so that it is possible for two nodes to share keys. Two nodes Ni and Nj are connected if
they have at least one common key. If they have more than one common key, they should
randomly select one of them to encrypt their communications. The probability of two nodes
sharing at least one key is

Pr1 = 1−
(
n−σ
σ

)(
n
σ

) . (1)

The resilience is given by

fails = 1−
(

1− σ

n

)s
(2)

after s nodes have been compromised.

The original paper [Eschenauer and Gligor 2002] presents an equivalent expression for (1)
using factorials; we use the binomial coefficient notation for consistency with the majority
of the subsequent literature. Equation (2) is first given in [Chan et al. 2003]. Proofs of
these formulae and further analysis of the resilience of general random key predistribution
schemes is given in [Kendall et al. 2012].

To improve the resilience of the Eschenauer Gligor KPS, we can make use of the fact
that some nodes may share more than one common key. Suppose that Ni and Nj have
exactly ω ≥ 1 common keys, say Ki1 , . . . ,Kiω , where i1 < i2 < · · · < iω. Then they can
each compute the same pairwise secret key,

Kij = h(Ki1 ‖ . . . ‖ Kiω ‖ i ‖ j),
using an appropriate public key derivation function h, which has suitable input and output
sizes. Such key derivation functions could be constructed from a secure public hash function,
e.g. SHA-1. This leads to a modification of the Eschenauer Gligor scheme:



Example 2.2 (η-composite scheme). Chan, Perrig and Song [Chan et al. 2003] pro-
pose the η-composite scheme, a modification of the Eschenauer Gligor scheme. Each pair
of nodes may compute a pairwise key only if they share at least η common keys, where the
integer η ≥ 1 is a pre-specified intersection threshold. Given that two nodes have at least
η common keys, they use all their common keys to compute their pairwise key, by means
of an appropriate key derivation function, as described above. If the size of the key pool is
kept constant, this modification will reduce the connectivity and increase the resilience of
the network [Kendall et al. 2012].

The other main approach used for key predistribution is deterministic. There are many
different deterministic KPSs, including those based on combinatorial designs [Lee and Stin-
son 2005; Bose et al. 2013], graph constructions [Çamtepe et al. 2006], Blom schemes [Blom
1985], and Reed Solomon codes [Ruj and Roy 2009]. See [Çamtepe and Yener 2005; Martin
2009; Paterson and Stinson 2012] for overviews and comparisons of these kinds of schemes.
As well as providing different trade-offs between the metrics, deterministic schemes can
provide advantages such as more efficient shared key discovery (defined in Section 2.2).

Recall that a BEKPS is a scheme for the distribution and management of keys in a
network. It can be loosely based upon a KPS, but we will show that the additional available
resources of an online base station and broadcast channel mean that more effective trade-
offs may be achieved by using BEKPS approaches which are substantially different from
KPSs. The BEKPSs which we present and analyse in Sections 4 and 5 are based on the
random key predistribution scheme of Example 2.1, but in principle we could instead have
used any KPS. We now define our model for a BEKPS.

2.2. BEKPS model

We propose BEKPSs for networks of v nodes, N1, N2, . . . , Nv, a trusted authority that
preloads the underlying keys onto the nodes, and a (not necessarily distinct) trusted base
station that can broadcast to all nodes using a broadcast channel.

A BEKPS protocol is comprised of the following phases:

(1) Underlying key predistribution: Each node Ni is allocated a set of underlying keys
from the underlying key pool Kυ = {u1, u2, . . . , un} before deployment. Underlying keys
are solely for the purpose of encrypting and decrypting temporal keys, and should not
be used for node to node communication. Once the nodes are deployed, we assume that
the underlying keys are fixed and cannot be altered by the base station or overwritten
by the nodes. (We justify this assumption by noting that if it were possible to securely
supply nodes with new underlying keys, then the resulting system could simply be
considered as an entirely new BEKPS and analysed within our model.)

(2) Temporal key distribution: After the nodes are deployed, the base station broadcasts
temporal keys to them in order for them to communicate. Each node is allocated a set
of temporal keys from a temporal key pool Kτ = {t1, t2, . . . , tm}. The temporal keys are
broadcast to the nodes encrypted by underlying keys, so that a node learns a temporal
key if and only if the temporal key is encrypted by an underlying key known to that
node.

(3) Shared key discovery: Once the temporal keys have been broadcast, a shared key
discovery protocol such as one of those given in [Çamtepe and Yener 2005; Henry and
Stinson 2011; Xiao et al. 2007] can be used so that each node establishes the set of other
nodes with which it shares keys. As in KPSs, if the temporal keys are assigned in a way
known to all the nodes, then a node Ni can broadcast information about its identity, its
node identifier, from which any node Nj can derive the list of temporal key identifiers
{ID(ti1), ID(ti2), . . . } which correspond to Ni’s temporal key set {ti1, ti2, . . . }. It then
remains for each node to look up whether any of these temporal keys are also known to
them. If temporal keys are not assigned in a deterministic or publicly known way, then



each node has to broadcast its whole list of key identifiers in order to perform shared
key discovery.
All BEKPSs described in this paper use variations on the random KPS of Example 2.1,
so shared key discovery requires all nodes to broadcast their key identifiers, unless the
assignment of keys is made public. Since this does not vary throughout the paper, we
will generally omit a description of this phase when defining our BEKPSs.

(4) Temporal key update: A new temporal key pool may be generated and new sets of
temporal keys broadcast as often as desired, according to the constraints of the network.

We now present an example of a BEKPS: the ‘key redistribution’ scheme of Cichoń et al.
[Cichoń et al. 2010].

Example 2.3. Underlying keys are distributed randomly as in an Eschenauer Gligor
KPS [Eschenauer and Gligor 2002]: a key pool of underlying keys Kυ = {u1, u2, . . . , un}
is generated, and each node is allocated a random k-subset of Kυ. A temporal key pool
Kτ = {t1, t2, . . . , tm} of m = n/c temporal keys is generated, where c is a small constant.
Each temporal key is encrypted using c underlying keys, and the base station then broadcasts
the encrypted temporal keys to the network.

In general, the choice of which underlying keys should encrypt each temporal key can be
made randomly or deterministically. In the Cichoń et al. scheme, the underlying keys which
should be used to encrypt each temporal key are chosen in a pseudorandom way. That is, we
take a pseudorandom bijection π between {1, . . . ,m}×{1, . . . , c} and {1, . . . , n} and encrypt
ti using uπ(i,1), . . . , uπ(i,c). Presumably, a new π is chosen before each update. To simplify the
notation, we relabel the underlying keys so that u1 = uπ(1,1), u2 = uπ(1,2), . . . , un = uπ(n/c,c)
so that the first c underlying keys encrypt t1 and so on. Then the base station broadcasts:

Eu1
(t1), Eu2

(t1), . . . , Euc(t1)
Eu(c+1)

(t2), Eu(c+2)
(t2), . . . , Eu2c

(t2)
...

Eu(n−c)(tn/c), Eu(n−c+1)
(tn/c), . . . , Eun(tn/c)

We now describe in more detail the setting for which we design BEKPSs.

2.3. Setting

2.3.1. Communication range. The networks which we consider are comprised of nodes which
are static and homogeneous. In many applications, the nodes will not all be within com-
munication range of each other. To fully analyse and set the parameters for a particular
network, therefore, it is necessary to consider both the key graph (a representation of the
nodes which share keys) and the communication graph (representing the nodes within com-
munication range of each other). The intersection of these two graphs indicates the pairs of
nodes which can communicate directly and cryptographically protect their link. However,
our contributions in this paper relate to the properties of the key graph, and so this is where
we perform our analysis. Applying our results to a particular scenario with its corresponding
communication graph can be done in the same way as with any key predistribution scheme;
for an example, see [Çamtepe et al. 2006] where a random geometric graph is used to model
the nodes’ locations.

2.3.2. Adversary model. We assume the existence of a strong adversary who is able to com-
promise nodes to learn both temporal and underlying keys, and to keep records of all
previous transmissions. It should be noted that a BEKPS does not provide backwards and
forwards security against such an adversary, that is, exposure of an underlying key reveals
all future and past temporal keys. It would be possible to provide such security against



a weaker adversary who was only able to obtain temporal keys, for example in networks
where underlying keys are stored in tamper-resistant hardware.

We suppose that the adversary compromises each node with equal probability. Notice
that it is credible to imagine an adversary which compromises nodes in a carefully-targetted
order so as to expose the greatest possible number of keys through the smallest number of
compromises. Schemes where a node’s key set is determinable from the node’s identifier
(Section 2.2) may be particularly vulnerable to such an attack. However, the random node
compromise model which we use allows us to compare many different schemes by providing
a lower bound on the measure of resilience fails (Section 2.1). This commonly-used measure
provides a way of assessing the extent to which each key is re-used throughout the network,
and hence measures the expected benefit to an adversary from randomly compromising s
nodes.

Other adversary models may of course be studied for particular scenarios, including those
which consider impersonation, eavesdropping and collusion attacks. However, these tend
to require much larger key storage requirements than is typically practical for large net-
works [Choi et al. 2013]. If we assume the use of secure cryptographic primitives, any adver-
sarial attack is fundamentally concerned with an adversary’s access to keys. Our adversary
model and measure of resilience provide a well-defined way of comparing the vulnerabilities
of different schemes’ key allocations.

2.3.3. Resource constraints. As with KPSs, we consider BEKPSs for resource-constrained en-
vironments where asymmetric cryptography is infeasible. If there were no other constraints
on resources then it would be trivial to design a BEKPS with almost any properties:

— If there were no limit to the number of keys a node may store, then every pair of nodes
could share a unique underlying key, or indeed every possible subset of nodes could share a
unique underlying key. This would make it possible to achieve temporal key sharing across
any arbitrary group of nodes, though with the potential for high broadcast requirements.

— If the broadcast size were unlimited, each node could store a single, unique underlying
key. The base station could then individually target nodes when broadcasting temporal
keys, and achieve any desired combination of shared temporal keys amongst the nodes.

However, such high requirements will not always be feasible. Our focus in this paper will
be on BEKPSs for constrained environments such as wireless sensor networks, where key
storage and broadcast capability are limited, and where it is desirable for the longevity of
the network to minimise the communication and computational requirements of the nodes.

2.4. Metrics

As in KPSs, the resource constraints dictate that there is a trade-off to be made between
minimising key storage and maximising connectivity and resilience. For BEKPSs these
metrics need to be defined in a little more detail, and we identify two further metrics
to consider.

— Key storage: The number of keys σ which a node is required to store in its memory
is the sum of the number of underlying keys, k, and the number of temporal keys, κ.
As in KPSs, key storage should be minimised. We note that in BEKPSs the number of
temporal keys that a node is required to store is not necessarily constant over time.

— Connectivity: As with KPSs, we measure connectivity by Pr1, the probability that a
randomly picked pair of nodes are connected. That is, the probability that they share at
least η keys, where η is the required number of keys specified by the KPS. It is usually
desirable to maximise Pr1 in BEKPSs. Connectivity in the underlying key predistribution
is not necessarily required.

— Resilience: As with KPSs, resilience is measured by fails, the probability that a tem-
poral link between two uncompromised nodes Ni, Nj is insecure after s other nodes are



compromised. In this paper we confine our analysis to the computation of fail1 for the
ease of comparing schemes.

— Broadcast load: We quantify the number of encrypted temporal keys to be broadcast
by the base station at each update, and consider ways to minimise this broadcast load.

— Revocation efficiency: Since nodes may develop faults and we assume the presence of
an adversary, the ability to revoke keys and/or nodes adds robustness to a network. We
will describe nodes which are to be revoked, that is, nodes suspected to be compromised
by an adversary, displaying irregularites, or otherwise weakening the network, as ‘compro-
mised nodes’. We will refer to the remaining nodes which (as far as the base station can
tell) have not been compromised and are functioning as they should, as ‘uncompromised’.
We analyse a BEKPS’s capability to revoke compromised nodes by the metrics:
— size of broadcast required to revoke r nodes during a temporal key update
— number of uncompromised nodes which lose keys because of the revocation of r com-

promised nodes

We note that for many subsets of these metrics it is trivial to devise a BEKPS which
optimises them. For example, storage, connectivity and broadcast load can be optimised by
all nodes storing a single underlying key u1, with which a single temporal key t1 is encrypted
and broadcast. Nodes would be connected with probability Pr1 = 1, but resilience would
be minimised and revocation of a strict subset of nodes would be impossible. Therefore we
are interested in schemes which provide suitable trade-offs between all of these metrics.

3. THE BEKPS OF CICHOŃ ET AL.

We noted in Section 1 that Cichoń, Go lȩbiewski and Kuty lowski present a technique for
‘key redistribution’ in sensor networks [Cichoń et al. 2010], which we classify as a BEKPS.
The details of their scheme are given in Example 2.3. In this section we provide simpler
proofs of some of their results (Section 3.1), refine the estimates for the expected number
of shared underlying and temporal keys between two nodes (Section 3.2) and give a precise
analysis of the resilience (Section 3.3). In Section 3.4 we present some numerical values of
our formulae, and finally in Section 3.5 we discuss a modification to the scheme based on
defining a suitable intersection threshold.

3.1. Simplifying proofs from [Cichoń et al. 2010]

In this section, we give some simplified proofs of results from [Cichoń et al. 2010]. We begin
by establishing a combinatorial framework.

We have noted that each node contains a k-subset of keys from Kυ. The indices of these
keys form a k-subset of X = {1, . . . , n} that we term a block. For the purposes of our
analysis, each node can be identified with the block that is associated with the keys that
the node holds; henceforth we will use the terms ‘node’ and ‘block’ interchangably. Note
that every block is a k-subset of {1, . . . , n} that is chosen independently and uniformly at
random from the set of all

(
n
k

)
possible k-subsets.

In [Cichoń et al. 2010, Theorem 1], formulae are proven for the expected number of shared
underlying keys and the expected number of shared temporal keys for two nodes. The proofs
given in [Cichoń et al. 2010] use some heavy machinery involving generating functions.
However, this theorem has a quick, simple proof based on the linearity of expectation of
random variables.

First we consider [Cichoń et al. 2010, Theorem 1 (part 2)], which asserts that the expected

number of temporal keys shared by two nodes is n
c

(
1− (n−c

k )
(nk)

)2

. Suppose that G1, . . . , Gn/c

partition the n-set {1, . . . , n} into m = n/c disjoint c-sets. A and B are random blocks. The



number of temporal keys shared by A and B is

ωA,B = |{i : A ∩Gi 6= ∅ and B ∩Gi 6= ∅}|.

For 1 ≤ i ≤ n/m, define a random variable X̃i = 1 if A∩Gi 6= ∅ and B ∩Gi 6= ∅, and define

X̃i = 0, otherwise. Let X̃ =
∑n/c
i=1 X̃i. Then X̃ computes ωA,B and E[X̃] is the expected value

of ωA,B . It is obvious that

Pr[A ∩Gi 6= ∅] = Pr[B ∩Gi 6= ∅] = 1−
(
n−c
k

)(
n
k

)
and hence

E[X̃i] = Pr[A ∩Gi 6= ∅ and B ∩Gi 6= ∅] =

(
1−

(
n−c
k

)(
n
k

) )2

.

By linearity of expectation,

E[X̃] =
n

c

(
1−

(
n−c
k

)(
n
k

) )2

, (3)

which proves [Cichoń et al. 2010, Theorem 1 (part 2)].
To prove [Cichoń et al. 2010, Theorem 1 (part 1)] which states that the expected number

of underlying keys shared between two nodes is k2

n , we just set c = 1 in the formula derived
above. We have

E[number of shared underlying keys] =
n

1

(
1−

(
n−1
k

)(
n
k

) )2

= n

(
1− n− k

n

)2

=
k2

n
,

which proves the desired result.

3.2. Refining estimates

We have reproved the exact formula for the expected number of shared temporal keys. In
[Cichoń et al. 2010, Corollary 1], an estimate for Equation (3) is given when k is roughly√
n. However, we can also estimate Equation (3) when k 6=

√
n.

First, we estimate (
n−c
k

)(
n
k

) ≈ (n− c)k

nk
=
(

1− c

n

)k
,

so

E[X̃] ≈ n

c

(
1−

(
1− c

n

)k)2

.

Next, (
1− c

n

)k
≈ 1− kc

n
+
k2c2

2n2
,

so

E[X̃] ≈ n

c

(
kc

n
− k2c2

2n2

)2

=
k2c

n

(
1− kc

2n

)2

.

Finally, if we expand the square and ignore the last term, we get

E[X̃] ≈ k2c

n

(
1− kc

n

)
. (4)



If k =
√
n, then our estimate (4) is

k2c

n
− k3c2

n2
=
k2c

n
− c2√

n
.

The estimate given in [Cichoń et al. 2010] is

k2c

n
+O

(
1√
n

)
.

However, in [Cichoń et al. 2010], c is assumed to be fixed and the big-oh hides an unspecified
constant that depends on c. To demonstrate this, we provide some example values of the
estimates:

n k c exact E[X̃] estimate (4) estimate from [Cichoń et al. 2010]
10000 50 8 1.933 1.920 2.000
10000 50 16 3.718 3.680 4.000
10000 100 8 7.466 7.360 8.000
10000 100 16 13.810 13.440 16.000
10000 150 16 28.876 27.360 36.000

3.3. Refining the calculation of resilience

For the analysis in this section we consider the resilience of the Cichoń et al. BEKPS during
a single broadcast phase, that is, during a time period where each node’s set of temporal
keys is not updated. Thus we are concerned with the compromise of temporal keys; an
adversary’s knowledge of underlying keys is irrelevant to the analysis.

Cichoń et al. [Cichoń et al. 2010] study the resilience of their BEKPS but they make
several simplifying assumptions. Here we give a much more general analysis and we derive
general formulae for resilience. In [Cichoń et al. 2010, Theorem 2], it is assumed that two
nodes A and B have exactly c temporal keys in common. In view of the estimates provided
in the last section, this is roughly the expected number of common temporal keys when
k =
√
n. Under this assumption, [Cichoń et al. 2010, Theorem 2] estimates the probability

that a random node C contains these c common temporal keys to be (kc/n)c. We calculate
the resilience when k 6=

√
n.

3.3.1. Temporal key sets. As before, suppose that G1, . . . , Gn/c partition an n-set X =
{1, . . . , n} into m = n/c disjoint c-sets. Suppose A is a random block (i.e., a k-subset of X)
and define

I(A) = {i : A ∩Gi 6= ∅}.
I(A) is the set of indices of the temporal keys held by A. Then let

κA = |I(A)|;
κA is the number of temporal keys held by A.

Fix any i-subset I ⊆ {1, . . . ,m}. Define

M(i) = |{A : I(A) = I}|.
Note that M(i) counts the number of possible nodes whose set of temporal keys is equal to
I. The value M(i) does not depend on the particular i-subset I that was chosen.

It is easy to see that

|{A : I(A) ⊆ I}| =
(
ic

k

)
. (5)

We can derive a formula for M(i) from (5) by applying the principle of inclusion-exclusion.



Lemma 3.1. For i ≥ 1, we have

M(i) =

i−1∑
j=0

(−1)j
(

(i− j)c
k

)(
i

j

)
. (6)

Next, define

N(i) = |{A : κA = i}|.
N(i) is the number of possible nodes holding exactly i temporal keys. The following is an
immediate consequence of (6).

Lemma 3.2. For i ≥ 1, we have

N(i) =

(
m

i

)
M(i) =

i−1∑
j=0

(−1)j
(
m

i

)(
(i− j)c

k

)(
i

j

)
. (7)

3.3.2. Intersection of two blocks. Next, we consider intersections of two blocks. For ω ≥ 1,
define a ω-link to be an ordered pair of two nodes that contain exactly ω common temporal
keys. Let P (ω) denote the number of possible ω-links; then

P (ω) = |{(A,B) : |I(A) ∩ I(B)| = ω}|.
We have the following formula for P (ω):

Lemma 3.3. For ω ≥ 1, we have

P (ω) =

k∑
i=ω

k∑
j=ω

(
m− i
j − ω

)(
i

ω

)
N(i)M(j). (8)

For ω = 0, we have

P (0) =

k∑
i=1

k∑
j=1

(
m− i
j

)
N(i)M(j). (9)

Proof. Let i = κA and j = κB . We can choose A in N(i) ways. For each choice of A,
choose ω indices in I(A) and choose j − ω indices in {1, . . . ,m}\I(A). Let the set of the j
chosen indices be denoted by J . Then choose B such that I(B) = J ; there are M(j) ways
to do this.

Remark 3.4. We can verify the formulae (8) and (9) by checking that the following
equations hold for various values of n, c and k:

k∑
ω=0

P (ω) =

(
n

k

)2

and ∑k
ω=1 ωP (ω)(

n
k

)2 =
n

c

(
1−

(
n−c
k

)(
n
k

) )2

.

3.3.3. Compromised links and resilience. We can now find expressions for the number of nodes
which will compromise a given link, and derive the formula for fail1. Suppose that (A,B) is
a ω-link. Then define

S(ω) = |{C : I(A) ∩ I(B) ⊆ I(C)}|.
S(ω) denotes the number of possible nodes that will compromise the ω-link (A,B), and it
does not depend on the particular choices of A and B.



Lemma 3.5. For any ω > 0, we have

S(ω) =

k∑
i=ω

(
m− ω
i− ω

)
M(i). (10)

Proof. Let i = κC . Choose i− ω indices in

{1, . . . ,m}\(I(A) ∩ I(B)).

Let J denote the i-set consisting of the i− ω chosen indices along with I(A) ∩ I(B). Then
choose C such that I(C) = J ; there are M(i) ways to do this.

Finally, define

T (ω) = |{(A,B,C) : |I(A) ∩ I(B)| = ω and I(A) ∩ I(B) ⊆ I(C)}|.
T (ω) counts triples (A,B,C) where (A,B) is a ω-link compromised by C. It is clear, applying
(10), that the following formula holds.

Lemma 3.6. For any ω > 0, we have

T (ω) = P (ω)S(ω) =

k∑
i=ω

(
m− ω
i− ω

)
M(i)P (ω).

Now we are in a position to compute some resilience parameters. Recall that the resilience
metric fail1 denotes the probability that a random link (A,B) is compromised by a random
node C.

Theorem 3.7. The resilience is given by

fail1 =

∑k
ω=1 T (ω)∑k

ω=1 P (ω)
(
n
k

) . (11)

Proof. The total number of possible ω-links with ω ≥ 1 is

k∑
ω=1

P (ω),

so the total number of triples (A,B,C) where (A,B) is a link is

k∑
ω=1

P (ω)

(
n

k

)
.

The total number of triples (A,B,C) where (A,B) is a link and C compromises this link is

k∑
ω=1

T (ω).

The resilience is just the quotient of these two quantities.

Define fail1(ω) to denote the probability that a random ω-link (A,B) is compromised by
a random node C. We have the following obvious result.

Lemma 3.8. For any ω ≥ 1, we have

fail1(ω) =
S(ω)(
n
k

) . (12)



Lemma 3.8 provides another way to derive the formula (11) for fail1. Let λω denote the
probability that a random link is a ω-link. It is clear that

λω =
P (ω)∑k
i=1 P (i)

(13)

and

fail1 =

k∑
ω=1

λωfail1(ω). (14)

Then, from (12), (13) and (14), we have

fail1 =

k∑
ω=1

λωfail1(ω)

=

k∑
ω=1

P (ω)S(ω)∑k
i=1 P (i)

(
n
k

)
=

∑k
ω=1 T (ω)∑k

ω=1 P (ω)
(
n
k

) ,
agreeing with (11).

3.4. Numerical examples

We now provide some numerical examples of our formulae. First, we give an example to
illustrate the computation of resilience parameters.

Example 3.9. Suppose n = 1000, c = 4 and k = 31. Then the expected number of
temporal keys shared by a pair of nodes, given by (3), is ω = 3.511857771, which is a bit
less than ω = 4.
[Cichoń et al. 2010, Theorem 2] estimates fail1(4) by computing the quantity(

kc

n

)c
= 0.0002364213760.

A more accurate estimate for fail1(4) based on the analysis in [Cichoń et al. 2010], would
be (

m−c
k−c
)(

m
k

) = 0.0001980391200.

However, from (12), the exact value of fail1(4) = 0.0001651542962.
The overall resilience of the scheme determined from (11) is fail1 = 0.01330121549. This is

quite a bit higher than fail1(4), primarily because links consisting of fewer than four temporal
keys (which occur frequently) are compromised with higher probability. This can be seen in
the following tabulation of values λω and fail1(ω):

ω λω fail1(ω)
1 0.08756777557 0.1185218591
2 0.1843995070 0.01364696407
3 0.2407996311 0.001524883082
4 0.2188569817 0.0001651542962
5 0.1472998707 0.00001731603382
6 0.07626527018 0.000001755184555



Our next example considers the effect of varying the parameter k.

Example 3.10. Suppose n = 1000 and c = 4. We compute the values of fail1 for various
choices of k:

k fail1
5 0.01925413575
10 0.03349126556
15 0.03904935504
20 0.03548705708
25 0.02588255435
30 0.01518790238
35 0.007187785428
40 0.002776219702
45 0.0008938567010
50 0.0002464139425

It is interesting to observe that fail1 at first increases, and then decreases, as k increases.
The higher values of fail1 for small values of k reflect the fact that the network has fewer
links and the links that do exist are more easily compromised.

Our next example considers the effect of varying the parameter c.

Example 3.11. Suppose n = 1000 and k = 25. We compute the values of fail1 for
various choices of c:

c fail1
2 0.02636458442
3 0.02785890369
4 0.02588255435
5 0.02240961738
6 0.01861362594
7 0.01509874645
8 0.01211001320
9 0.009692483706
10 0.007795858957

The interesting thing to note here is that fail1 decreases as c increases beyond 3, but the
decrease is gradual and not very dramatic.

3.5. Intersection thresholds

We discussed the idea of an intersection threshold in Example 2.2. Basically, as η increases,
resilience increases and connectivity decreases. We now develop formulae for these metrics,
that depend on the intersection threshold of the scheme.

Recall from Section 2.4 that the connectivity of a scheme is measured by computing
the probability Pr1 that a random pair of nodes is connected. The following result gives a
formula for Pr1.

Theorem 3.12. For a scheme with intersection threshold η, we have that

Pr1 = 1−
∑η−1
i=0 P (i)(
n
k

)2 . (15)

Proof. There are
(
n
k

)2
possible pairs of nodes, of which

∑η−1
i=0 P (i) are not connected.

The formula (11) for resilience is generalised as follows.



Theorem 3.13. For a scheme with intersection threshold η, the resilience is given by

fail1 =

∑k
ω=η T (ω)∑k

ω=η P (ω)
(
n
k

) . (16)

Proof. The proof is a straightforward modification of the proof of Theorem 3.7.

We now revisit Example 3.9.

Example 3.14. Suppose n = 1000, c = 4 and k = 31, as in Example 3.9. We compute
the connectivity and resilience for various values of η.

η Pr1 fail1
1 0.9809852766 0.01330121549
2 0.8950825780 0.003202999469
3 0.7141893766 0.0005577036219
4 0.4779684839 0.00007970558807
5 0.2632730072 0.00001002335465

The use of an intersection threshold allows a suitable tradeoff between connectivity and
resilience. Observe that resilience increases substantially as η increases; however, connec-
tivity decreases at the same time. For η > 5, the connectivity is too low to be practical. In
this example, η = 2 or 3 provides a good way to “balance” connectivity and resilience.

4. REVOCATION

In this section we consider how to design a BEKPS where the highest priority is to be able to
revoke nodes efficiently. Revocation of compromised nodes can be achieved in any BEKPS
simply by avoiding using their underlying keys to encrypt new temporal keys. However, this
can have the undesired effect of reducing the connectivity amongst uncompromised nodes,
because they will receive fewer temporal keys if their underlying keys become disused. In
general, it is possible to recover the level of connectivity Pr1 after revocation by selecting
future temporal keys from a smaller pool, so that each temporal key will be known to a higher
proportion of the nodes. However, this lowers the resilience. We therefore design a BEKPS
which enables the revocation of compromised nodes whilst retaining the connectivity and
resilience in the remaining network, and keeping key storage and broadcast load low.

Clearly, the most precise way to be able to revoke individual nodes without causing any
damage to the rest of the network is to assign a unique underlying key to each node of the
network. If each node is given a single, unique underlying key, then this also has the benefit
of achieving minimum key storage per node. However, an update requires a broadcast of
(v− r)κ temporal keys when r nodes have been revoked, which is infeasibly large for many
applications.

If it is not the case that each node stores a unique underlying key, then revocation
cannot be precise: uncompromised nodes will also be increasingly affected as the number of
revocations increases. For example, if each node stores k underlying keys, then when a single
node is revoked, k underlying keys are taken out of use by the base station. We denote this
as R(1) = k and derive a general formula for the number of redundant underlying keys after
i revocations, when underlying keys are distributed using the random KPS of Example 2.1.

Lemma 4.1. Suppose that each node stores k underlying keys, selected randomly from
a key pool of n underlying keys. Let R(i) denote the expected number of underlying keys
removed from use when i nodes have been revoked. Then,

R(i) = n

(
1−

(
1− k

n

)i)
(17)



Proof. Let the i nodes which have been revoked be denoted by N1, . . . , Ni. For 1 ≤
j ≤ n define a random variable

Xj =

{
1 if key kj is known to at least one of N1, . . . , Ni
0 otherwise

and let X =
∑n
j=1Xj . We want to find R(i) = E[X].

The expected value of X1 is E[X1] = 1− Pr[k1 is in none of N1, . . . , Ni], so

E[X1] = 1−
(

1− k

n

)i
.

Linearity of expectation gives E[X] = nE[X1], which gives the result.

This means that an uncompromised node is unintentionally revoked with probability(
R(i)
k

)(
n
k

) as it can no longer learn any temporal keys in future broadcasts, and so after i ≥ 1

revocations the network size v(i) is

v(i) = (v − i)

(
1−

(
R(i)
k

)(
n
k

) ) , (18)

where v is the original network size.
We propose a BEKPS where precise revocation is possible, that is, v(i) = v−i, and which

provides a choice of trade-offs between key storage and broadcast load which are likely to
be suitable for a wide range of network scenarios. To achieve this, we use LKH schemes
(Section (4.1)) for the underlying key distribution and random key predistribution for the
temporal keys.

Fig. 1. Plot of the deterioration of v(i) (Equation (18)) in comparison to the straight line (v − i) for an
example network of v = 1000 nodes, where n = 1000 and k = 30.



Figure 1 shows the deterioration of the size of the network, v(i) from Equation (18), in
comparison to the straight line (v − i), after i revocations. We see that for a small number
of revocations, i ≤ 0.05v, we have v(i) ≈ v− i. However, there is then a rapid deterioration
in the size of the network for 0.05v ≤ i ≤ 0.2v, by which stage there are very few nodes
remaining in the network. This demonstrates that, if only a small proportion of revocations
are anticipated, a näıve approach using random key distribution for the underlying layer
may be sufficient. However, for larger numbers of revocations, it highlights the importance
of our proposed BEKPS for revocation, where the size of the network is always v − i after
i revocations.

4.1. LKH

Logical key hierarchy (LKH) schemes [Harney and Harder 1999; Wallner et al. 1999; Wong
et al. 1998] are used in the literature of broadcast encryption for effective and efficient
revocation [Pegueroles and Rico-Novella 2003]. Each of the v = 2d−1 nodes is allocated
d keys, one of which is unique, and the other keys are known to 21, 22, . . . , 2d−1 nodes
respectively. In Figure 2 we demonstrate this on a network of v = 16 = 25−1 nodes. Each
node stores five keys: a unique key, a key δi shared with another node, a key γi shared with
3 other nodes, a key βi shared with 7 other nodes, and the key α known to all nodes. The
key known to all nodes is called the ‘root’ key.

If a message is to be broadcast to all nodes it can be encypted using the root key. If a
set of r nodes is to be revoked, then the message should be broadcast using the smallest
set of keys known only to the v − r uncompromised nodes. The size of a broadcast is then
logarithmic in the size of the network.

α

β1 β2

γ1 γ2 γ3 γ4

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16

Fig. 2. LKH tree on 16 nodes

4.2. BEKPS for revocation

We use LKH for the underlying layer of our BEKPS because it allows fine-grained revocation
with low key storage and logarithmic broadcast load. Other revocation schemes may also
be adapted to form the underlying layer for specific BEKPS scenarios, however, to prevent
our analysis from becoming unwieldy, we restrict our focus to using LKH as a basis for
a BEKPS and varying the distribution of LKH trees in the underlying layer. For other
broadcast encryption or revocation schemes the analysis will remain broadly similar to
that given here, and any benefits they provide over LKH would likely be reflected in the
resulting BEKPS. For example, subset-cover revocation schemes such as those proposed
in [Naor et al. 2002] require r log v and 2r broadcasts, respectively, for the revocation of r
nodes, whereas LKH requires 2r log v broadcasts. The second of these schemes also reduces
the key storage from log v (as in LKH) to 1

2 log2 v, and they additionally provide traitor



tracing mechanisms. It seems likely, therefore, that similar improvements would be reflected
in a BEKPS based on these schemes.

In Section 4.2.2 we will define exactly how the temporal keys are distributed. However,
to motivate our choice of underlying key distribution, we note here that before any nodes
are revoked, temporal keys will be broadcast using the root key of the LKH tree. Since the
compromise of a node therefore exposes the temporal keys known to all other nodes, we
propose using multiple, smaller trees to lessen this resilience risk. In this way our BEKPS
is fundamentally different from an LKH broadcast encryption scheme, where a single LKH
tree is used, but the base station may broadcast content keys (analogous to temporal keys)
to any chosen subset of nodes.

We propose the following BEKPS for scenarios where revocation is a high priority.

4.2.1. Underlying key predistribution. We assume that for a given application, each node can
store σ keys in total, where σ is constant. To distribute underlying keys, we partition the
v nodes into sets of size λ = 2d−1, and we do this µ times. For ease of analysis, we will
assume that λ|v and that these partitions are chosen such that any tree from partition Πi

intersects any tree from partition Πj in at most one node.
Within each set in each partition, nodes are allocated keys according to an LKH scheme,

where the LKH tree has depth d. Thus each node belongs to µ different LKH trees of depth
d and therefore must store k = µd underlying keys, where µ and d are chosen so that k < σ.
The total number of LKH trees is L = µv

λ .

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

T1,1 T1,2 T1,3 T1,4

T2,1

T2,2

T2,3

T2,4

Fig. 3. Example of partitioning nodes into L = µv
λ

trees

Example 4.2. Figure 3 illustrates an example of allocating v = 16 nodes into v
λ = 4

trees in each of µ = 2 partitions. That is, each tree of λ = 4 nodes is represented by a shaded
loop around the nodes; partition Π1 is represented by the vertical loops, and partition Π2

is represented by the horizontal loops. Each tree has been labelled Ti,j, where i denotes the
partition to which it belongs, and j denotes the tree number within the partition. There are
L = µv

λ = 8 trees in total, and each pair of trees intersects in at most one node.



To construct a partition into µλ trees which fulfills the above conditions will only be
possible for certain values of the parameters v, k, λ and µ. This is a well-studied problem in
the literature on resolvable designs [Desmedt et al. 2009; Martin et al. 2010]. Briefly, a design
is said to be resolvable if the blocks can be partitioned into µ sets or parallel classes, each of
which forms a partition of the set of points. Thus, a resolvable (v, µλ, µ, λ)−configuration
can be used to design our underlying key predistribution. Resolvable designs have been
widely studied; see [Colbourn and Dinitz 2006] for existence results and constructions.

4.2.2. Temporal key distribution. From our assumption that total key storage is constant, it
follows that each node can store at most κ = σ − µd temporal keys. For each of the µ
partitions of the nodes, a temporal key pool Kτi of m keys is generated. We require that
these key pools are disjoint, that is Kτi

⋂
Kτj = ∅ for all 1 ≤ i < j ≤ µ, so that we

have µ independent Eschenauer Gligor schemes. Relaxing this requirement would allow for
improvements in connectivity at the cost of decreased resilience.

A random set of temporal keys is allocated to every tree in the following way. For each
partition i and each underlying LKH tree Ti,j belonging to that partition (where 1 ≤ i ≤ µ
and 1 ≤ j ≤ v

λ ), a set of bκµc temporal keys is chosen at random from the key pool Kτi and

encrypted using the underlying root key for Ti,j .
We assume that nodes require only one temporal key in common in order to establish a

link, that is, the intersection threshold is η = 1, and a pair of nodes should use a single key
to encrypt their communications. For ease of analysis, we also create the following rules:

— If two nodes are in the same tree Ti,j in any partition Πi then they will share the set
of temporal keys broadcast to Ti,j . The single temporal key which they use for com-
munication should be randomly selected from this set. Any other keys which they may
coincidentally share should be ignored (for example, they may share other keys from
other partitions.) Note that there is no ambiguity because it is not possible for two nodes
to be in more than one common tree.

— If two nodes are not in the same tree in any partition, they may form a link if they have
at least one key in common; they should select just one of these keys at random to secure
the link.

For example, we consider the possible connections between pairs of nodes in Figure 3:

— Nodes 1 and 9 both belong to the tree T1,1 in partition Π1. This means that they will
share the set of temporal keys from key pool Kτ1 which are broadcast to tree T1,1. They
must pick one of these keys at random to encrypt their communications.

— Nodes 1 and 11 are not in a common tree in any partition. However, they may have one
or more keys in common if
— the set of keys broadcast to T1,1 has non-empty intersection with the set of keys

broadcast to T1,3,
and/or

— the set of keys broadcast to T2,1 has non-empty intersection with the set of keys
broadcast to T2,3.

They should pick a single one of these keys at random with which to encrypt their
communications.

Notice that if the set of keys broadcast to T2,1 has non-empty intersection with the set of
keys broadcast to T2,3 then nodes 1 and 9 will have keys in common from key pool Kτ2 .
However, they must use a key from key pool Kτ1 to encrypt their communications because
they belong to a common tree in partition Π1.

In summary, if a pair of nodes are in the same tree then they have probability Pr1 = 1
of being connected. If not, the probability of them being connected is proportional to the
Eschenauer Gligor connectivity probability, as we explain below. If these rules were relaxed



and a pair of nodes could use any combination of their shared temporal keys to secure
their link, the connectivity and resilience of the network would increase, and so our analysis
produces lower bounds.

4.2.3. Temporal key update. New temporal keys may be broadcast to the network as often
as desired. To revoke a node Ni, the base station should broadcast new temporal keys as
normal to all nodes that are not in a common tree to Ni. For any nodes that are in a
common tree to Ni, the base station can broadcast new temporal keys encrypted using the
smallest set of LKH keys so that all uncompromised nodes receive the new temporal keys
but Ni is unable to decrypt any temporal keys from the broadcast.

4.3. Analysis

We now perform analysis of this BEKPS for the cases µ = 1 and µ = 2, and consider the
effect of varying d and hence λ, the size of each LKH tree.

4.3.1. LKH trees where µ = 1. We begin by considering µ = 1, that is each node is in exactly
1 tree, and the total number of LKH trees is L = v

λ .

Lemma 4.3. When µ = 1, the connectivity is given by

Pr1 =
λ− 1

v − 1
.1 +

v − λ
v − 1

(
1−

(
m−(σ−d)
σ−d

)(
m
σ−d
) )

.

Proof. Fix a single node Ni, belonging to a single LKH tree Tj (since µ = 1). We
consider the probability of Ni being connected to another of the v−1 nodes, which fall into
two categories:

—Ni will share temporal keys with the other λ− 1 nodes of its tree Tj with probability 1
—Ni will share at least one key with the remaining v−λ nodes with the Eschenauer Gligor

probability given in Example 2.1, and κ = σ − d.

We now calculate the resilience metric fail1. We must consider the probability of a random
link being compromised when it is a link between nodes of the same tree, and when it is a
link between nodes which are not in a common tree.

Lemma 4.4. When µ = 1, the resilience is given by

fail1 =
f1

[
λ−2
v−2 .1 + v−λ

v−2
(
σ−d
m

)]
+ f2

[
2λ−2
v−2 .1 + v−2λ

v−2
(
σ−d
m

)]
f1 + f2

,

where f1 =
(
λ
2

)
v
λ and f2 =

(
1− (m−(σ−d)

σ−d )
( m
σ−d)

)((
v
2

)
−
(
λ
2

)
v
λ

)
.

Proof.
There are f1 =

(
λ
2

)
v
λ pairs of nodes in the network where both nodes are in the same

tree. After compromising a single node, the adversary can break a link between one of these
pairs with probability

fail1,f1 =
λ− 2

v − 2
.1 +

v − λ
v − 2

(
σ − d
m

)
,

since for a given link, there are λ − 2 nodes which, if compromised, would break that link
with certainty by virtue of being in the same tree. A compromise of one of the remaining
v − λ nodes would reveal the desired key with probability σ−d

m .

The total number of pairs of nodes which are in different trees is
(
v
2

)
−
(
λ
2

)
v
λ , and each pair

is connected with the Eschenauer Gligor probability. Therefore we have that the expected



number of links between pairs of nodes from different trees is

f2 =

(
1−

(
m−(σ−d)
σ−d

)(
m
σ−d
) )((

v

2

)
−
(
λ

2

)
v

λ

)
and for these,

fail1,f2 =
2λ− 2

v − 2
.1 +

v − 2λ

v − 2

(
σ − d
m

)
.

This is because, if we fix a link between uncompromised nodes Ni and Nj from different
trees, there are 2(λ−1) nodes which are in a common tree with either Ni or Nj and therefore
know their shared key with certainty. This leaves v−2λ nodes which each have a probability
of κ

m of knowing their shared key.

Finally, we consider br, the broadcast load required to revoke r nodes. We derive the
general formula here for µ > 0.

Lemma 4.5. For all µ > 0 and r ≥ 1, the broadcast load to revoke r nodes is given by

br ≤ (σ − µd)
( v
λ

+ rd− 2r
)
.

Proof. We begin by calculating b1, the broadcast load required to revoke a single node
Ni. Notice that Ni belongs to µ trees. Calculating b1 requires the number of Eschenauer
Gligor keys per tree σ

µ − d, the broadcast to the L− µ trees of uncompromised nodes, and

the LKH revocation for the µ trees containing the compromised node, which requires d− 1
broadcasts per tree. Thus if the number of nodes per tree is greater than 1,

b1 =

(
σ

µ
− d
)

(L− µ+ µ(d− 1)) = (σ − µd)
( v
λ

+ d− 2
)
.

If the number of nodes per tree is 1 (ie. d = 1) then we assume that µ = 1 so that the
number of trees L equals the number of nodes v. Then b1 = (σ − 1)(L− 1).

The value of br for r > 1 will depend upon whether any of the r nodes are in the
same tree(s). However, we observe that the broadcast load is largest when each of the

nodes to be revoked is in a different tree, hence br ≤
(
σ
µ − d

)
(L− rµ+ rµ(d− 1)) =

(σ − µd)
(
v
λ + rd− 2r

)
.

We demonstrate these formulae in Figure 4. For comparison, we consider a fixed network
size of v = 1024 nodes, and temporal key pool size of m = 1000 keys. We consider nodes
which can store 25, 50 or 100 keys respectively, and plot the corresponding values of Pr1
and fail1 for underlying LKH layers of 1, 2, 4, . . . , 256 nodes per tree. In order to plot the
broadcast load on the same axes, we plot b1 as a fraction of the number of keys to be
broadcast when there is only one node per tree (d = 1), ie. we plot b′1 = b1

(σ−µ)( vλ−1)
.

We see that if nodes can store 100 keys then Pr1 ≈ 1. If nodes can store only 50 or 25
keys then the connectivity decreases significantly, but this has the advantage of lowering
fail1. Finally, we note that the broadcast load b′1 decreases exponentially as the number of
nodes per tree increases. That is, for fixed network size v and key storage σ, the broadcast
load can be decreased by increasing the number of nodes per tree. The plots show that
b′1 is almost identical across different values of σ, however, as we know from the formula,
the actual broadcast size b1 does of course increase with σ. For example, when there are 8
nodes per tree, the broadcast to revoke one node is b1 = 2730 when σ = 25, b1 = 5980 when
σ = 50 and b1 = 12480 when σ = 100.

We make some final remarks to justify the design of our BEKPS for revocation. The plot
does not include the case where there is exactly one underlying LKH tree (λ = v), as in



Fig. 4. Plot of the values of Pr1, fail1 and b′1 when µ = 1 and there are 1, 2, 22, . . . , 28 nodes per tree for
key storage σ = 25, 50 and 100 respectively

LKH broadcast encryption. It is clear from the formulae that whilst the broadcast load
would be minimised and the connectivity maximised, the resilience would be minimised,
making it inadvisable for use as a BEKPS. Whilst a single LKH scheme is appropriate for
many broadcast encryption applications, it is not appropriate for BEKPS because of the
different design goals, and the fact that the base station always broadcasts temporal keys
encrypted by the root key (or the smallest set of keys unknown to revoked nodes). Notice
that if this restriction on the base station were removed and a single LKH tree were used
for the underlying layer, this would be similar to our BEKPS except that nodes would have
to store more underlying keys and therefore fewer temporal keys, restricting connectivity.

4.3.2. LKH trees where µ = 2. We now consider the case where µ = 2, that is, each node is
a member of two trees, one from each partition. Each node therefore stores 2d underlying
LKH keys, leaving space for it to store σ−2d temporal keys. The base station may broadcast
a set of at most bσ2 c−d temporal keys to each tree. Indeed, in general the base station may
broadcast at most bσµc − d to the root of each tree. For ease of notation we will omit the

floor symbols.

Lemma 4.6. When µ = 2, the connectivity is given by

Pr1 =
2(λ− 1)

v − 1
.1 +

v − 1− 2(λ− 1)

v − 1

1−

(m−(σ2−d)σ
2−d

)(
m
σ
2−d
)
2
 .

The proof follows in the same way as that of Lemma 4.3. The Eschenauer Gligor proba-
bility contains a squared term because the probability of two nodes from different trees not
being connected is the probability of them not sharing any keys from partition Π1 multiplied
by the probability of them not sharing any keys from partition Π2.

Lemma 4.7. When µ = 2, the resilience is given by

fail1 =
f1

[
λ−2
v−2 .1 + v−λ

v−2

(
σ
2−d
m

)]
+ f2

[
2λ−2
v−2 .1 + v−2λ

v−2

(
σ
2−d
m

)]
f1 + f2

,



where f1 =
(
λ
2

)
L and f2 =

1−

[
(
m−(σ

2
−d)

σ
2

−d )

( m
σ
2

−d)

]2((v
2

)
−
(
λ

2

)
L

)
.

Proof. As in the proof of Lemma 4.4, we calculate fail1 by considering the two cases:

(1) If the link is between two nodes in a common tree in partition Pi, λ − 2 other nodes
from that tree can break the link with probability 1, and v−λ nodes can each break the

link with probability
σ
2−d
m using their knowledge of keys from the key pool Kτi . There

are f1 =
(
λ
2

)
L such links.

(2) If the link is between two nodes which are not in a common tree, 2λ − 2 other
nodes in their respective trees can break the link, and v − 2λ other nodes can

break the link with probability
σ
2−d
m . The expected number of such links is f2 =1−

[
(
m−(σ

2
−d)

σ
2

−d )

( m
σ
2

−d)

]2((v
2

)
−
(
λ

2

)
L

)
.

Fig. 5. Plot of the values of Pr1, fail1 and b′1 when µ = 2 and there are 1, 2, 22, . . . , 28 nodes per tree for
key storage σ = 25, 50 and 100 respectively

In Figure 5 we demonstrate some numerical values using these formulae. As in Figure 4, we
set v = 1024 and m = 1000 for each of the key pools. Again, we see that Pr1 is highest when
100 keys are stored per node, at the cost of a slightly increased value of fail1. Comparing
Figures 4 and 5 we find that, when all other variables are fixed, the higher value of µ gives
lower values of Pr1 and fail1, with little effect on b′1. For comparison, we note that when
there are 8 nodes per tree, the broadcast to revoke one node is b1 = 2080 when σ = 25,
b1 = 5460 when σ = 50 and b1 = 11960 when σ = 100, that is, a little lower than when
µ = 1. We therefore suggest that if the lower value of Pr1 can be tolerated for the network’s
purposes, then µ = 2 should be chosen to give higher resilience and lower broadcast for
revocation.

When µ > 2 the analysis becomes increasingly complex, and it remains an open problem
to determine whether there are any advantages to higher values of µ. It seems likely that as
µ increases Pr1 will decrease, because nodes within the same tree will always be connected
(unless revoked), but nodes which are not in a common tree can only be connected if
they know keys from the same Eschenauer Gligor scheme, of which there are µ different



schemes. Since each node can only store a fixed number of keys σ, as µ increases the number
of temporal keys per Eschenauer Gligor scheme will decrease, and so Pr1 will decrease
accordingly. By the same argument, it seems likely that fail1 would also decrease, giving
higher resilience against an adversary

We have thus constructed an effective BEKPS protocol which allows efficient revocation
and where, given key storage σ, there is some freedom to choose an appropriate trade-off
between the parameters br, Pr1 and fail1, not only by varying the size of the key pool (as
with any KPS), but also by varying the size λ of LKH trees in the underlying layer, and
the number of trees µ to which each node belongs.

5. HIERARCHICAL TEMPORAL KEY DISTRIBUTION

In Section 1.3 we introduced the idea of using a BEKPS to create hierarchy in the temporal
layer, by broadcasting extra keys to certain nodes. This can provide more efficient routing
of information through a network. The flexibility which a BEKPS provides to change which
nodes have the extra keys reduces both the damage caused by extra battery usage and the
risk posed to the resilience of the network. We will refer to nodes which are allocated extra
keys as primary nodes, whilst the remaining secondary nodes have fewer keys.

Regularly changing the set of nodes that are primary will mean that the burdens of being
a primary node are spread across the network over time. Random allocation of primary
nodes reduces the risk of an adversary launching a targeted attack to reveal a high number
of keys through a small number of node compromises.

5.1. BEKPS for hierarchical temporal key distribution

We now consider the question of how to create a BEKPS so that any node can be chosen
as a primary node, and so that at any time period between broadcasts there should be p
primary nodes and v − p secondary nodes. (Note that the number of primary nodes p may
be changed at any broadcast, so that there are pi primary nodes after update i. However,
since each update can be analysed without reference to the number of primary nodes which
have gone before, we simply write p in the analysis which follows, for ease of notation.)

5.1.1. Underlying key predistribution. We propose that the best choice of KPS for the under-
lying keys is again one based on a revocation scheme such as LKH. We justify this with the
following observations. Suppose that a node Ni with underlying key set Ui is to be chosen
as a primary node. The base station must broadcast a higher proportion of temporal keys
to it than to secondary nodes.

(1) If at least one of the underlying keys in Ui is known uniquely to node Ni, then the base
station can simply use this key to encrypt the extra temporal keys.

(2) If none of Ni’s underlying keys is known uniquely to Ni, that is, for each uj ∈ Ui there
exists a node Nk with uj ∈ Uk, then in broadcasting extra temporal keys, it will happen
that some other nodes learn some extra temporal keys too. This will have the effect
of creating a multiple-layered hierarchical network, where p nodes are primary nodes
but amongst the remaining v− p nodes there is variety in how many temporal keys are
received. Whilst this may be desirable for some applications, in others it would cause
some unnecessary battery drainage amongst the v − p nodes and complicate routing
protocols. We therefore restrict our study to a strictly two-layer hierarchy of primary
and secondary nodes.

We conclude that to efficiently create primary and secondary nodes and avoid unnecessarily
burdening non-primary nodes, it is desirable that each node stores a unique underlying key.
For similar reasons to those given in Section 4.1, we propose an underlying layer based on
LKH. As in Section 4, using a single LKH scheme minimises broadcast load but maximises



underlying key storage, and so we partition the nodes into several underlying LKH trees,
each of size λ = 2d−1.

5.1.2. Temporal key distribution. A straightforward way to allocate temporal keys in order
to create p primary nodes is to use a slight modification of the Eschenauer Gligor KPS [Es-
chenauer and Gligor 2002], where each primary node is allocated κ1 temporal keys and each
secondary node is allocated κ2 temporal keys from a key pool Kτ of m temporal keys. We
will demonstrate that this allows the connectivity and resilience parameters to be easily
altered with each broadcast, though of course many other KPSs would be suitable. For ease
of analysis, we choose an intersection threshold of η = 1, that is, two nodes may form a link
if they have one key in common. We will also assume that if two nodes have more than one
key in common then they randomly select one of those keys to secure the link. Relaxing
this assumption would increase the resilience of the scheme.

The choice of primary nodes could be made deterministically or randomly, as desired.
The benefits of choosing them deterministically are:

— more efficient shared key discovery
— the possibility of node identity authentication
— a node will not be required to be a primary node twice until necessary, ie. when all other

nodes have been used as primary nodes at least once.

On the other hand, choosing the primary nodes at random may increase the difficulty for
an adversary to target them for compromise. Given the increased risk to the resilience of
the network which primary nodes cause, the unpredictability of the choice of primary nodes
is an important security consideration. In our analysis we will assume that the adversary
compromises nodes at random, and therefore our analysis is applicable to deterministic and
random allocations of primary nodes.

The base station may choose how to broadcast the temporal keys to secondary nodes in
order to achieve a particular trade-off between connectivity, resilience and broadcast load.
We consider this in more detail in Section 5.2.2.

5.2. Analysis

5.2.1. Connectivity. We now derive formulae for the connectivity probabilities in terms of
the size m of the temporal key pool and the number of temporal keys assigned to primary
and secondary nodes, κ1 and κ2 respectively. We use Pr1,1 to denote the probability of two
primary nodes being connected, Pr1,2 for the probability of a primary node and secondary
node being connected, and finally Pr2,2 for the connectivity probability between a pair of
secondary nodes.

Using the Eschenauer Gligor probability of connectivity given in Example 2.1, we have
that

Pr1,1 = 1−
(
m−κ1

κ1

)(
m
κ1

)
and

Pr1,2 = 1−
(
m−κ1

κ2

)(
m
κ2

) .

Similarly, it can be seen that

Pr2,2 ≥ 1−
(
m−κ2

κ2

)(
m
κ2

) .

when we consider that 1 −
(
m−κ2

κ2

)
/
(
m
κ2

)
is the probability that two secondary nodes with

different temporal key sets are connected. Two secondary nodes which are given the same



Table I. Examples of connectivity parameters
(to four decimal places) for different key pool
sizesm and sizes of temporal key pool for primary
and secondary nodes, κ1 and κ2 respectively.
m κ1 κ2 Pr1,1 Pr1,2 Pr2,2

500 50 10 0.9962 0.6548 ≥ 0.1844
500 50 15 0.9962 0.7990 ≥ 0.3709
1000 85 15 0.9996 0.7388 ≥ 0.2041
1000 85 25 0.9996 0.8945 ≥ 0.4731
1000 60 30 0.9783 0.8481 ≥ 0.6045
5000 100 50 0.8701 0.6377 ≥ 0.3965

set of temporal keys because they were encrypted with a shared LKH key will certainly be
connected, and this is why a lower bound for Pr2,2 is given. The exact value of Pr2,2 will
depend on choices which the base station makes regarding how to use the LKH tree(s) to
distribute the temporal keys, as we describe in Section 5.2.2. In Section 5.2.3 we derive an
estimate for Pr2,2 using an assumption about the temporal key distribution.

Thus the base station can choose the parameters m, κ1 and κ2 to achieve different levels
of the connectivity probabilities. Some example values are given in Table I. Observe that
connectivity between secondary nodes may not be necessary or even desirable; for example,
to conserve resources whilst maintaining a connected network, it may be preferable to have a
very low value of Pr2,2 as long as Pr1,2 is high enough to ensure that almost every secondary
node is connected to at least one primary node, and Pr1,1 is high enough to ensure that
almost every primary node is connected to all other primary nodes. Finally, we note that
m, κ1 and κ2 are independent of the network size v, and can be changed at each broadcast
if desired.

As with any random KPS, higher connectivity in this BEKPS results in lower resilience.
In particular, the compromise of a primary node will reveal κ1 of the total m keys. This
risk will be reduced by dynamically changing the choice of primary nodes to lower the risk
of their compromise, and by choosing Pr2,2, Pr1,2 and Pr1,1 to be as small as possible whilst
retaining functional connectivity across the network. We calculate fail1 in Section 5.2.3 after
considering the different options available for the base station for the broadcast.

5.2.2. Broadcast load. The following example considers how the temporal keys could be
distributed to the secondary nodes.

Example 5.1. Suppose we have a network of v = 16 = 25−1 nodes arranged in an LKH
tree so that each node has to store d = 5 keys, as illustrated in Figure 6.

α

β1 β2

γ1 γ2 γ3 γ4

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16

Fig. 6. LKH tree on 16 nodes



Suppose that we wish to create p = 3 primary nodes, and at random we pick these to be nodes
N1, N11 and N12 (underlined in Figure 6). The base station would broadcast κ1 temporal
keys to each of these primary nodes, using their unique underlying keys. For the secondary
nodes, there is a choice to be made about the temporal key broadcast.

(1 ) The key centre could broadcast a separate temporal key set to each of the secondary
nodes using their underlying keys. This creates the maximum broadcast load, the highest
resilience, and Pr2,2 achieves its lower bound:

Pr2,2 = 1−
(
m−κ2

κ2

)(
m
κ2

) .

(2 ) The key centre could minimise the broadcast by using the smallest set of LKH keys
not known to the primary nodes, that is, by using the LKH keys associated with the
minimal covering set of the secondary nodes. In this example, temporal keys would be
broadcast to N5, N6, N7, and N8 encrypted by their shared key γ2; to nodes N3 and N4

using δ2; and to N2 using its unique underlying key. Similarly, the broadcast to nodes
N13, N14, N15 and N16 would be encrypted by their shared key γ4, and nodes N9 and
N10 would be broadcast temporal keys encrypted by underlying key δ5. The number of
temporal key sets to be broadcast is then reduced from 16 to 8. The probability that a
pair of secondary nodes have at least one common key is then

Pr2,2 =

2
(
4
2

)
+ 2
(
2
2

)
+ (1× 2× 4× 2× 4)

(
1− (m−κ2

κ2
)

(mκ2)

)
(
13
2

) ,

which is greater than if unique underlying keys were used, at the cost of reduced re-
silience.

(3 ) In order to find a trade-off between the above options, the key centre could choose not to
use the smallest set of LKH keys unknown to the primary nodes, for example by using
the six δi keys with i ∈ {1, 2, . . . , 8} \ {1, 6}, plus the unique key known to N2. Then

Pr2,2 =

6
(
2
2

)
+ (1× 12 + 2× (10 + 8 + 6 + 4 + 2))

(
1− (m−κ2

κ2
)

(mκ2)

)
(
13
2

) .

This example illustrates that there are choices to be made about the broadcast within
each LKH tree, as well as about the number of underlying LKH trees v

λ . In our analysis we
will assume that, on average, each set of temporal keys is broadcast to x secondary nodes,
where x < λ and x→ λ as p→ 0 if the base station is using the minimum broadcast load.
Then to broadcast a set of κ1 temporal keys to each primary node and κ2-sets of keys to
each secondary node requires a broadcast of size

b ≈ κ1p+ κ2
(v − p)
x

.

Using our assumption that each set of temporal keys is broadcast to x secondary nodes,
we can revisit the expression we derived for Pr2,2 and use weighted probability to derive the
estimate

Pr2,2 ≈
x− 1

v − p− 1
+
v − p− x
v − p− 1

(
1−

(
m−κ2

κ2

)(
m
κ2

) )
.

5.2.3. Resilience. We can make an estimate of fail1 using Equation 2 from Section 2 with a
weighted probability for primary and secondary nodes: the expected number of keys known



to an adversary after the compromise of one node is κ1
p
v + κ2

(v−p)
v , and so we have that

fail1,est =
κ1p+ κ2(v − p)

vm
,

since there is exactly one key securing each link. However, this method does not take into
account the proportions of the three different types of links.

We now extend the definition of fail1 to the hierarchical network setting. We retain our
assumption that the adversary compromises all nodes with equal probability, and give each
type of link in the network the same weight. In Table II we see comparisons between the
approximation fail1,est and our more detailed calculation of fail1.

Lemma 5.2. The resilience is given by

fail1 =
1

T

((
p

2

)
Pr1,1fail1,1 + p(v − p)Pr1,2fail1,2+(
v − p

2

)
Pr2,2

[
v − p− x
v − p− 1

fail2,2,a +
x− 1

v − p− 1
fail2,2,b

])
,

where Pr1,1,Pr1,2 and Pr2,2 are as given above,

fail1,1 =
κ1(p− 2) + κ2(v − p)

m(v − 2)
,

fail1,2 ≈
1

v − 2

(
κ1(p− 1) + κ2(v − p− x)

m
+ x− 1

)
,

fail2,2,a ≈
1

v − 2

(
κ1p+ κ2(v − p− 2x)

m
+ 2(x− 1)

)
,

fail2,2,b ≈
1

v − 2

(
κ1p+ κ2(v − p− x)

m
+ x− 2

)
,

and

T =

(
p

2

)
Pr1,1 + p(v − p)Pr1,2 +

(
v − p

2

)
Pr2,2 .

Proof. We begin by finding the total number of links in the network, before any com-
promise, which is

T =

(
p

2

)
Pr1,1 + p(v − p)Pr1,2 +

(
v − p

2

)
Pr2,2 .

Now we consider each type of link and its resilience.

— Primary-primary links
There are

(
p
2

)
Pr1,1 primary node to primary node links. Fix such a link between some

primary nodes Ni and Nj , and consider the advantage to an adversary of compromising
a single node Nk /∈ {Ni, Nj}. If Nk is a primary node, the adversary will learn κ1 keys; if
Nk is secondary it will reveal κ2 keys. Thus the adversary breaks the link with probability

fail1,1 =
1

m

(
κ1
p− 2

v − 2
+ κ2

v − p
v − 2

)
=

κ1(p− 2) + κ2(v − p)
m(v − 2)

.



Table II. Examples of connectivity and resilience metrics (to four decimal
places) and broadcast load for fixed network size v = 1000 and varying: the
average number of secondary nodes to which a single temporal key set is
sent, x; the number of primary nodes p; the number of keys in the key pool
m; and the number of keys given to primary and secondary nodes, κ1 and
κ2 respectively.
x p m κ1 κ2 Pr1,1 Pr1,2 Pr2,2 fail1 b
22 50 500 50 10 0.9962 0.6548 0.1870 0.0290 4875
23 50 500 50 10 0.9962 0.6548 0.1905 0.0357 3687.5
24 50 500 50 10 0.9962 0.6548 0.1973 0.0492 3093.75
23 100 500 50 10 0.9962 0.6548 0.1908 0.0383 6125
23 250 500 50 10 0.9962 0.6548 0.1921 0.0476 13437.5
23 50 1000 50 10 0.9280 0.4027 0.1027 0.0236 3687.5
23 50 500 80 10 0.9999 0.8281 0.1905 0.0384 5187.5
23 50 500 50 20 0.9962 0.8835 0.5683 0.0554 4875
23 50 500 50 30 0.9962 0.9617 0.8536 0.0744 6062.5

— Primary-secondary links
The number of primary node to secondary node links is p(v − p)Pr1,2. Fix such a link
between primary node Ni and secondary node Nj . Suppose that the base station is using
less than the maximum broadcast load. Then the adversary can certainly break the link
if it compromises a secondary node which is ‘near’ to Nj in the LKH tree, such that it
stores the same set of temporal keys as Nj . That is, if we assume that on average, each set
of temporal keys is broadcast to x secondary nodes, then an adversary who compromised
a secondary node Nj will certainly be able to break the p(x− 1) links between primary
nodes and the x−1 secondary nodes with which Nj shares the underlying LKH key used
for the broadcast. Therefore, we have that a primary-secondary node link is broken with
probability

fail1,2 ≈
1

v − 2

(
κ1(p− 1) + κ2(v − p− x)

m
+ x− 1

)
,

where the approximation comes from x being an average value.
— Secondary-secondary links

There are
(
v−p
2

)
Pr2,2 secondary node to secondary node links. Fix such a link between

secondary nodes Ni and Nj . As with primary-secondary links, the adversary can break
the link with certainty if the broadcast load is less than the maximum and the adverary
compromises a secondary node Nk which has received the same temporal key set as one
(or both) of Ni and Nj . Suppose that Ni and Nj have different temporal key sets KNi
and KNj . Then the probability of the link being broken after the compromise of a single
node is

fail2,2,a ≈
1

v − 2

(
κ1p+ κ2(v − p− 2x)

m
+ 2(x− 1)

)
,

and finally, if KNi = KNj , then the probability of breaking the link is

fail2,2,b ≈
1

v − 2

(
κ1p+ κ2(v − p− x)

m
+ x− 2

)
.

Combining these results gives the stated formula.

We illustrate some example values of fail1 in Table II.
We observe that



— increasing x reduces the broadcast load and creates a marginal increase in Pr2,2, leaving
the other connectivities unchanged. However, it noticeably increases fail1, that is, it
substantially reduces the resilience.

— for most applications the number of primary nodes need not be large; Pr1,1 and Pr1,2
can be set to be high independently of p, whilst increasing p reduces the resilience and
significantly increases the broadcast load.

— as we would expect, increasing m lowers the connectivity probabilities and fail1, increas-
ing the resilience. The broadcast load is unaffected.

— increasing κ2 substantially increases the connectivity Pr2,2, whilst increasing the broad-
cast load and reducing the resilience to a lesser extent. It may seem, therefore, that a
comparatively high value of κ2 will be desirable for most network applications. However,
secondary node to secondary node communication may be unnecessary as long as Pr1,2 is
high enough to ensure that most secondary nodes are connected to at least one primary
node. It may therefore be desirable to keep κ2 very low in order to increase resilience,
reduce broadcast load and conserve battery power in anticipation of secondary nodes
becoming primary nodes in the future.

6. CONCLUDING REMARKS

We have introduced the term broadcast-enhanced key predistribution schemes (BEKPS)
to describe schemes which combine key predistribution with a trusted base station and
broadcast channel, and discussed some of the many motivations for using BEKPSs. We
developed a framework for the design and analysis of BEKPSs, and demonstrated its use
throughout our paper. In Section 3 we provided simpler proofs for some of the results given
by Cichoń et al. in [Cichoń et al. 2010] for their scheme, which we classify as a BEKPS.
We derived more general formulae to calculate the resilience and explained how intersection
thresholds can be used to increase resilience at the cost of decreasing connectivity.

In Sections 4 and 5 we proposed appropriate BEKPS protocols for specific applications. In
Section 4, we demonstrated a practical BEKPS where revocation can be performed without
any uncompromised nodes losing keys. We showed that for a given key storage parameter
σ, suitable trade-offs can be found between the connectivity, resilience and broadcast load
by varying the size of the temporal key pool, and the number and size of LKH trees used to
distribute underlying keys. In Section 5 we demonstrated a BEKPS which creates a network
with two-layer hierarchy. This brings the benefit of more efficient data routing. The ability
to dynamically change the connectivity probabilities and the allocation of primary nodes
reduces the risks of battery drainage and lowered resilience from which other hierarchical
networks suffer.

For future work, there are many variations of BEKPSs which can be studied. We note
the following open questions:

— Are there BEKPS scenarios where an underlying key predistribution based on a revoca-
tion scheme is not the best choice?

— Can other revocation schemes provide advantages over LKH in the underlying key pre-
distribution of a BEKPS?

— Are there advantages to assigning temporal keys deterministically (other than aiding
shared key discovery)?

— How can a BEKPS design be adapted to be more efficient if the locations of nodes are
known to the base station?

REFERENCES

Berkovits, S. 1991. How to broadcast a secret. In Advances in Cryptology - Eurocrypt ’91. Lecture Notes
in Computer Science Series, vol. 547. Springer, 535–541.



Blackburn, S., Martin, K. M., Paterson, M. B., and Stinson, D. R. 2008. Key refreshing in wireless
sensor networks. In ICITS 2008 Proceedings. Lecture Notes in Computer Science Series, vol. 5155.
Springer, 156–170.

Blom, R. 1985. An optimal class of symmetric key generation systems. In Advances in Cryptology - Euro-
crypt ’84. Lecture Notes in Computer Science Series, vol. 209. Springer, 335–338.

Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., and Yung, M. 1993. Perfectly-
secure key distribution for dynamic conferences. In Advances in Cryptology – CRYPTO ’92. Lecture
Notes in Computer Science Series, vol. 740. Springer, 471–486.

Bose, M., Dey, A., and Mukerjee, R. 2013. Key predistribution schemes for distributed sensor networks
via block designs. Designs, Codes and Cryptography 67, 1, 111–136.

Çamtepe, S. A. and Yener, B. 2005. Key distribution mechanisms for wireless sensor networks: a survey.
Rensselaer Polytechnic Institute, Computer Science Department, Technical Report TR-05-07 .

Çamtepe, S. A., Yener, B., and Yung, M. 2006. Expander graph based key distribution mechanisms in
wireless sensor networks. In ICC 06, IEEE International Conference on Communications. 2262–2267.

Chan, H., Perrig, A., and Song, D. 2003. Random key predistribution schemes for sensor networks. In
SP ’03: Proceedings of the 2003 IEEE Symposium on Security and Privacy. IEEE Computer Society,
197–213.

Choi, T., Acharya, H., and Gouda, M. G. 2013. The best keying protocol for sensor networks. Pervasive
and Mobile Computing 9, 4, 564–571.

Cichoń, J., Go lȩbiewski, Z., and Kuty lowski, M. 2010. From key predistribution to key redistribution. In
Algorithms for Sensor Systems. Lecture Notes in Computer Science Series, vol. 6451. Springer, 92–104.

Colbourn, C. J. and Dinitz, J. H. 2006. Handbook of Combinatorial Designs, Second Edition. Chapman
& Hall / CRC.

Desmedt, Y., Duif, N., van Tilborg, H., and Wang, H. 2009. Bounds and constructions for key distri-
bution schemes. Advances in Mathematics of Communications 3, 3, 273–293.

Du, W., Deng, J., Han, Y. S., Varshney, P. K., Katz, J., and Khalili, A. 2005. A pairwise key predis-
tribution scheme for wireless sensor networks. ACM Transactions on Information and System Security
(TISSEC) 8, 2, 228–258.

Eschenauer, L. and Gligor, V. D. 2002. A key-management scheme for distributed sensor networks. In
Proceedings of the 9th ACM Conference on Computer and Communications Security - CCS ’02. ACM,
41–47.

Fiat, A. and Naor, M. 1994. Broadcast encryption. In Advances in Cryptology - CRYPTO ’93. Lecture
Notes in Computer Science Series, vol. 773. Springer, 480–491.

Harney, H. and Harder, E. 1999. Logical key hierarchy protocol. Internet Draft, Internet Engineering
Task Force.

Henry, K. and Stinson, D. R. 2011. Secure network discovery in wireless sensor networks using combi-
natorial key pre-distribution. In Lightweight Security & Privacy: Devices, Protocols and Applications
(LightSec), 2011 Workshop on. IEEE, 34–43.

Kendall, M., Kendall, E., and Kendall, W. S. 2012. A generalised formula for calculating the resilience
of random key predistribution schemes. Preprint. http://eprint.iacr.org/2012/426.

Lee, J. and Stinson, D. R. 2005. A combinatorial approach to key predistribution for distributed sensor
networks. In IEEE Wireless Communications and Networking Conference. IEEE, 1200–1205.

Liu, D. and Ning, P. 2004. Multilevel µtesla: Broadcast authentication for distributed sensor networks.
ACM Transactions on Embedded Computing Systems 3, 4, 800–836.

Lu, K., Qian, Y., and Hu, J. 2006. A framework for distributed key management schemes in hetero-
geneous wireless sensor networks. IEEE International Performance Computing and Communications
Conference, 513–520.

Martin, K. M. 2009. On the applicability of combinatorial designs to key predistribution for wireless sensor
networks. In Coding and Cryptology: Second International Workshop (IWCC2009). Lecture Notes in
Computer Science Series, vol. 5557. Springer, 124–145.

Martin, K. M., Paterson, M. B., and Stinson, D. R. 2010. Key predistribution for homogeneous wireless
sensor networks with group deployment of nodes. ACM Transactions on Sensor Networks 7, 2, 1–19.

Naor, D., Naor, M., and Lotspiech, J. 2002. Revocation and tracing schemes for stateless receivers. In
Advances in Cryptology - Crypto 2001. Lecture Notes in Computer Science Series, vol. 2139. Springer,
41–62.

Paterson, M. B. and Stinson, D. R. 2012. A unified approach to combinatorial key predistribution schemes
for sensor networks. Designs, Codes and Cryptography, advance online publication, doi: 10.1007/s10623-
012-9749-4. Springer.



Pegueroles, J. and Rico-Novella, F. 2003. Enabling secure multicast using a new java LKH rekeying tool.
In Proceedings of the 2003 international conference on Web Engineering. ICWE’03. Springer-Verlag,
Berlin, Heidelberg, 293–294.

Ruj, S. and Roy, B. 2009. Key predistribution schemes using codes in wireless sensor networks. In In-
formation Security and Cryptology. Lecture Notes in Computer Science Series, vol. 5487. Springer,
275–288.

Soro, S. and Heinzelman, W. B. 2009. Cluster head election techniques for coverage preservation in
wireless sensor networks. Ad Hoc Networks 7, 5, 955–972.

Wallner, D., Harder, E., and Agee, R. 1999. Key Management for Multicast: Issues and Architectures.
Internet Engineering Task Force 2627.

Wong, C. K., Gouda, M., and Lam, S. S. 1998. Secure group communications using key graphs. Proceedings
of the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, 68–79.

Xiao, Y., Rayi, V. K., Sun, B., Du, X., Hu, F., and Galloway, M. 2007. A survey of key management
schemes in wireless sensor networks. Computer Communications 30, 11-12, 2314–2341.


