
Ring Group Signatures

Liqun Chen

Hewlett-Packard Laboratories,
Long Down Avenue,

Stoke Gifford,
Bristol, BS34 8QZ,
United Kingdom.

liqun.chen@hp.com

Abstract. In many applications of group signatures, not only a signer’s
identity but also which group the signer belongs to is sensitive informa-
tion regarding signer privacy. In this paper, we study these applications
and combine a group signature with a ring signature to create a ring
group signature, which specifies a set of possible groups without reveal-
ing which member of which group produced the signature. The main
contributions of this paper are a formal definition of a ring group signa-
ture scheme and its security model, a generic construction and a concrete
example of such a scheme. Both the construction and concrete scheme
are provably secure if the underlying group signature and ring signature
schemes are secure.1

Keywords: ring signatures, group signatures, ring group signatures,
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1 Introduction

Digital signatures have widely been used to provide services such as en-
tity authentication, data origin authentication, non-repudiation, and data
integrity. Anonymous digital signatures are a special type of digital signa-
ture. In an anonymous digital signature scheme, given a digital signature,
an unauthorised entity, including the verifier, cannot discover the signer’s
identifier. However such a scheme still has the property that only a legit-
imate signer can generate a valid signature.

One of the major differences between a conventional digital signature
and an anonymous digital signature is the nature of the public keys used
to perform the signature verification. To verify a conventional digital sig-
nature, the verifier makes use of a single public verification key which is
bound to the signer’s identifier. To verify an anonymous digital signature,
the verifier makes use of either a group public key or multiple public keys,

1 This paper is an updated version of [19].



which are not bound to an individual signer. In the literature, an anony-
mous signature using a group public key is commonly known as a Group
Signature (GS for short) [17], and an anonymous signature using multiple
public keys is commonly known as a Ring Signature (RS for short) [31].

1.1 Motivation of this work

Given a GS, as proposed over 20 years ago by Chaum and van Heyst [17],
its signer’s identity is hidden in a group, of which the signer is a member,
but the group’s identity is revealed. It is not difficult to see that in many
applications, not only the signer identity but also the group identity might
contain some sensitive information which affects signer privacy. Here are
a few examples of such applications:

Example 1. Affiliation membership authentication. In a social network,
only legitimate members from those affiliations having a contract with the
network service provider are allowed to access to the network. A user need
to prove that he is a legitimate member of a set of legitimate affiliations
but does not have to shown his identity from a specific affiliation.

Example 2. Vehicle communications. A modern vehicular ad hoc network
(VANET), as discussed in [21, 30], allows legitimate vehicles to commu-
nicate with each other. To take part in the network, a driver is required
proving that his vehicle is properly registered, but is not required to show
with which registration authority.

Example 3. Computing platform attestation. By using the trusted com-
puting technology, such as this in [12, 35], a Trusted Platform Module
(TPM) can attest correctness of platform configurations. The owner of a
TPM wants not only to hide the TPM identity but also not to disclose
from which authority the TPM obtains an attestation credential.

Example 4. Fair exchanges between enterprises. When two companies,
say A and B, work on a sensitive contract, neither A nor B wants the
other company to be able to tell a third party that A or B has signed
the contract before both the companies exchange their signatures to each
other, and neither of them wants to reveal which individual employee
signs the contract on behalf of the company.

Protection of group identities in these applications is thus a matter of
importance. Our motivation of this work is to design a special type of GSs
with the property of hiding group identities. We observe the nature of each
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the applications that the number of legitimate groups is reasonably small
compared with the number of legitimate members of each group, and
that the identities of these groups, associated with the group public keys,
are always made publicly available to verifiers. This observation leads us
to the basic idea that we can hide the group identity by following the
elegant method of Ring Signatures (RSs) [31]. As a result, we propose to
merge two notions of a GS and RS to a notion of a Ring Group Signature
(RGS). From a RGS, signer privacy is not only dependent on the size of
the signer’s group but also associated with the size of the group set chosen
by the signer. In the other words, a RGS holds both signer-anonymity
and group-ambiguity. By the signer-anonymity property, we mean that
a signer is hidden in a group, and by the group-ambiguity property, we
mean that the group is hidden in a set of specified groups.

Although the idea of merging these two signatures is straightforward,
combining them smoothly, efficiently, generically and securely is not triv-
ial since both group and ring signatures are delicate and complex. Fur-
thermore, we need figure out how a group with a true signer can trace
a signature to the signer and other groups cannot, and how to avoid an
unbound adversary to break group-ambiguity.

1.2 Related prior works

Many cryptographic primitives have been developed to address the prob-
lem of simultaneously achieving user authentication and user privacy with
a variety of mechanisms and varying degrees of success. Associated with
the digital signature technology, two of the most attractive and significant
primitives are group signatures and ring signatures.

The notion of GS schemes was introduced by Chaum and van Heyst [17]
in 1991. A typical GS scheme involves a group manager, a set of group
members and a set of verifiers. The manager is in charge of verifying the
legitimation of group members and issuing a membership certificate to
each member. With the certificate, a member can create digital signa-
tures on the behalf of the group. A verifier makes use of a group public
key to verify the signature, and cannot identify the individual signer. The
group manager is able to trace the signer’s identity from the signature,
and to revoke any member who is no longer legitimate. Since the pio-
neering work [17], the group signature primitive has become one of the
favorite primitives of cryptographers. Researchers have proposed a large
number of group signature schemes, e.g. [2, 8, 10, 14–16, 20, 25, 29], formal
definitions and security models for the group signature schemes, e.g. [5, 6,
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26], and a variety of group member join and revocation solutions, e.g. [3,
10, 13, 20, 26].

The notion of RS schemes was formalized by Rivest, Shamir and Tau-
man [31] in 2001, although the general concept itself (under different
terminology) was first introduced by Cramer, Damg̊ard and Schoenmak-
ers [24] in 1994. In such a scheme, a signer chooses a set of independent
possible signers including himself, and signs a message by using his secret
key and the others’ public keys without their approval or assistance. A
verifier makes use of the whole public key set to verify the signature, and
is convinced that the signature was signed by one of the signers without
revealing which one is the true signer. Ring signatures are another fruitful
research topic loved by cryptographers. A large number of RS schemes
have been developed, e.g. [7, 9, 11, 22, 36].

Both GSs and RSs preserve signer privacy, but they are suitable for
two different usage models. As mentioned in [31], GSs are useful when
the members want to cooperate, while RSs are useful when the members
do not want to cooperate. In a GS, the signer’s identity is hidden in his
group, and in a RS, the signer’s identity is hidden in a set of possible
signers. In these two signatures, signer privacy is dependent on either the
size of the group or the size of the possible signer set.

In the literature, there are a lot of notions which provide either spe-
cial types of group signatures or special types of ring signatures in or-
der to achieve different levels of signer privacy. For instance, hierarchical
group signatures [33] require group managers are organized in a tree with
a root which enables to trace a hierarchical group signature to a right
group. RGSs do not require different groups having any relationship to
one another, and do not allow roots. Threshold ring signatures [11] allow
an ad-hoc groups of k members from the whole n ring members to make
a k-out-of-n ring signature. Linkable ring signatures [28] allow anyone to
tell whether two signatures are generated by the same signer while still
maintaining the anonymity of the real signer. Linkable threshold ring sig-
natures [34] hold the properties of linkable ring signatures and threshold
ring signatures. Escrowed linkable ring signatures [23] allow a trusted au-
thority to link two ring signatures created by the same signer. Revocable
ring signatures [27] allow a set of authorities to revoke the anonymity of
the real signer, and revocable-iff-linked ring signatures [4] allow anyone
to revoke the actual signer if the signer has signed a single event more
than allowed times.
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1.3 Our contributions

In this paper, we investigate a new variant of special group signatures
and ring signatures and name it Ring Group Signatures (RGSs). We aim
to meet the requirements in both of the GS model and RS model, i.e., the
members inside of a group want to cooperate and outside of their group
do not want to cooperate. The most properties in our variant can be found
in various of the special types of GSs and/or of RSs, mentioned above.
From this point of view, RGSs are not a completely new notion. However,
to our best knowledge, this notion has not been formally explored from
the angle of merging GSs and RSs. It is worth doing this, since we can
benefit from these two well-studied primitives, and also since RGSs have
many interesting applications.

RGS schemes keep the main features from group signature schemes as
well as ring signature schemes. Like group signatures, each group has a
manager and a set of members. Similar to ring signatures, neither setup
procedures nor coordination among groups is required. It is possible for
any member in any group to choose a set of groups including his own, and
to sign a message by using his membership private key and other groups’
public keys without their approval or assistance.

We introduce the concept of RGSs in three aspects: formal definitions,
a generic construction and a concrete scheme. Following a brief overview
of the GS and RS definitions (Section 2), we give a formal definition of
syntax of RGS schemes, of a multi-party adversarial model, and of what
it means for such schemes to be secure (Section 3). Security of them is
defined via the notions of signer-anonymity, signer-traceability, signer-
non-frameability and group-ambiguity. We notice that any suitable GS
and RS schemes can be used to produce a RGS scheme. We choose to
base our generic construction on the generic 3-move type group signa-
ture construction and a 3-move type ring signature scheme (Section 4).
We choose to base our concrete RGS scheme on the GS scheme enable
strong exculpability of [8] and the discrete-logarithm RS scheme of [1]
(Section 5). We prove that both the generic construction and concrete
scheme are unconditionally group-ambiguous and secure in the random
oracle model. Finally, we conclude the paper in Section 6.

2 Preliminaries

Before formally defining a ring group signature (RGS) scheme in the next
section, we first recap on some standard notation used throughout this
paper, and then briefly review syntax and security notions of a group
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signature (GS) scheme and ring signature (RS) scheme; these two are
building blocks of the RGS scheme.

2.1 Notation

Let N be the set of positive integers {1, 2, . . . }. If s is a string, then
`s denotes its length in the binary representation. The empty string is
denoted by ε. If S is a set, then |S| denotes its size, and x←S denotes the
action of sampling an element from S uniformly at random and assigning
the result to x. The empty set is denoted by ∅, the set of binary strings
of length t is denoted by {0, 1}t and the set of binary strings of arbitrary
length is denoted by {0, 1}∗. If n is a positive integer, i.e. n ∈ N, then 1n

denotes the string of n ones, [n] denotes the set of {0, ..., n− 1}.
If A is an algorithm, then z←A(y1, . . . , yn) denotes the action of run-

ning A on inputs y1 . . . , yn and letting z be the output; [A(y1, . . . , yn)]
denotes the set of all points having positive probability of being output
by A on inputs y1, . . . , yn; z

R←− A(y1, . . . , yn) denotes the action as z ←
A(y1, . . . , yn), plus the extra property that A is a randomized algorithm.
If d is a vector of strings, then |d| denotes its size and d is written as (d0,
d1, ..., d|d|−1), and `d denotes its length of the binary representation, i.e.
`d = Σ i ∈ [|d|]`di . When d is taken as input by a hash-function H, written
as H(..., d, ...).

2.2 Definition of group signature schemes

There are several definitions of GS schemes, such as [5, 6, 26]. We follow
the one supporting dynamic groups by Bellare et al. [6]. A GS scheme in-
volves a group manager which consists of a trusted party for initial group
key generation, an issuer and an opener, and a set of users, each with a
unique identity j ∈ N. A GS scheme consists of a tuple of algorithms and
protocols written as GS = (GGS , JGS , SGS , VGS , OGS , JuGS), where

– (gpk , ik , ok) R←− GGS(1κ) is a group key generation algorithm run by
the trusted party, in which κ ∈ N is a security parameter, gpk is a
group public key, ik is the issuer’s private key and ok is the opener’s
private key.

– (msk j , regj)
R←− JGS(ik , j) is a joining protocol run between the issuer

and a member j and creates a membership secret key msk j and its
registration regj (cryptographically bound with j). j obtains msk j

and the issuer records regj in his registration table reg .
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– σGS
R←− SGS(gpk ,msk j ,m) is a signing algorithm that creates a group

signature σGS on a give message m.
– 1/0←VGS(gpk , σGS ,m) is a verification algorithm that outputs 1 for

accepting a given candidate signature σGS on a message m, and 0 for
rejecting.

– (j, τj)/⊥ ←OGS(ok , reg , σGS ,m) is an opening algorithm that outputs
the identity j and proof τj with the meaning that σGS was signed by
j, or ⊥ for nonmatch.

– 1/0←JuGS(gpk , j, regj , σGS, m, τj) is a judge algorithm that outputs 1
for accepting the proof τj and 0 for rejecting.

As shown in [6], GS must satisfy four properties: correctness (honestly
generated signatures verify and trace correctly), anonymity (a signature
does not reveal its signer’s identity), traceability (all signatures trace to
identities of their real signers), and non-frameability (no members of the
group and not even the group manager can produce signatures on behalf
of other group members).

2.3 Definition of ring signature schemes

A number of formal definitions of RS schemes are available in the liter-
ature, e.g. [1, 7]. We follow the one by Abe et al. in [1]. A RS scheme
involves an n-set (n ∈ N) of possible signers, and consists of a triple of
algorithms written as RS = (GRS , SRS , VGS), where

– (pk , sk) R←− GRS(1κ) is a signer key generation algorithm, in which
κ ∈ N is a security parameter, and (pk , sk) is a public and private
key pair.

– σRS
R←− SRS(sk i, m,pk) is a signing algorithm that takes n public keys

written as an n-vector pk = (pk0, ..., pkn−1), a signer i’s private key
sk i for i ∈ [n] and a message m, and outputs a ring signature σRS .

– 1/0←VRS(pk, σRS ,m) is a verification algorithm that takes as input
a candidate signature σRS along with m and pk and outputs 1 for
accepting and 0 for rejecting.

As shown in [1],RS must hold two security properties, signer-ambiguity
(a signature is not bound to its signer) and unforgeability (a signature can-
not be created without knowning a private key corresponding to a public
key in the ring).
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3 Definition of RGS schemes

3.1 Syntax of RGS schemes

This syntax is based on the definitions of GSs and RSs as shown in the
previous section. Let R be a ring with n groups, and let {κ, l, gpk, gsk}
= {κi, li, gpk i, gsk i}i∈[n] refer to the list of security parameters, sizes,
related public and secret keys for the groups in R. Let gsk i = (ik i, ok i)
contain two secret keys for the group issuer and opener respectively if
these two authorities are separated; otherwise gsk i = ik i = ok i. Let (i, j)
denote the j-th member of the i-th group. A ring group signature (RGS)
scheme consists of a tuple of protocols and algorithms written as RGS =
(GRGS , JRGS , SRGS , VRGS , ORGS , JuRGS), where:

– (gpk i, ik i, ok i)
R←− GRGS(1κi) is a group key generation algorithm, in

which each group i uses GGS(1κi) to generate their group key.
– (msk (i,j), reg(i,j))

R←− JRGS(ik i, (i, j)) is a joining protocol, in which
each group i’s issuer and the j-th member run the JGS(ik i, j) protocol
to create the msk (i,j) and reg(i,j) values, and the latter is recorded in
the group registration table reg i.

– σRGS
R←− SRGS(msk (i,j),m, gpk) run by (i, j) is a ring group signing

algorithm that creates a ring group signature σRGS on a given message
m.

– 0/1←VRGS(m, gpk, σRGS) is a ring group signature verification algo-
rithm that outputs 1 for accepting the candidate signature σRGS on
m and 0 for rejecting.

– ((i, j), τ(i,j)/ε)/⊥ ←ORGS(ok i, reg i, m, gpk, σRGS) is a group member
opening algorithm, in which group i’s opener outputs an identity (i, j)
and a proof τ(i,j) saying that σRGS was signed by (i, j) or a letter ε if
the proof is not required, or the symbol ⊥ to indicate nonmatch.

– 1/0←JuRGS(gpk, (i, j), reg(i,j), σRGS ,m, τ(i,j)) run by a trust judger is
a judge algorithm that outputs 1 for accepting the proof τ(i,j) and 0
for rejecting. This algorithm is optional.

Remark 1. An RGS scheme is built on combination of underlying GS
and RS schemes. The groups inRmay use different GS schemes from each
other. The algorithms and protocols of the RGS scheme are according to
the underlying GS schemes of all the groups involved. Security of the
entirely RGS scheme is set to the smallest item of κ.

Remark 2. It is assumed that except the public key gpk i, no further
information about the group i, such as the values li, regi, (i, j), τ(i,j), is

8



accessible by the other groups in R. This assumption is reasonable for a
RGS scheme, since it is designed for the applications where the groups in
R may not trust each other.

Remark 3. In order to find out who the signer of a given signature
is, the opener of each group with the interest of this result runs the
ORGS algorithm under their own key. For a secure RGS scheme, only the
opener from the signer’s group will output the signer identity and the
corresponding proof (if required), and the others will output ⊥.

Remark 4. It is assumed that a judger is a trusted authority out side
of R, and the input to JuRGS is kept at secret to other groups of R.
The JuRGS algorithm is not mandatory (e.g., there may not exist such a
judger in an application). If JuRGS is omitted, the ORGS algorithm outputs
ε instead of τ(i,j).

An RGS scheme is required to satisfy five properties: correctness,
signer-anonymity, signer-traceability, signer-non-frameability, and group-
ambiguity, as defined as follows.

3.2 Correctness

This property ensures that honestly generated signatures verify and trace
correctly. Specifically,RGS must satisfy the following correctness require-
ment: For all m ∈ {0, 1}∗, all n, li, κi ∈ N, all (i, j) ∈ ([n], [li]), all gpk
containing gpki, all (gpk i, ik i, ok i) ∈ [GRGS(1κi)], and all (msk (i,j), reg(i,j))
∈ [JRGS(ik i, (i, j))],

VRGS(m, gpk, SRGS(msk (i,j), m, gpk)) = 1,

ORGS(ok i,m, gpk,SRGS(msk (i,j),m, gpk)) = ((i, j), τ(i,j)),

JuRGS(gpk, (i, j), reg(i,j), σRGS, m, τ(i,j)) = 1.

The first equation shows that a true signature must always be valid;
the second and third equations show that a signature signed under a true
group membership secret must be traced to its true signer by the signer’s
own group opener.

Remark 5. Intuitively, we interpret the differentiation between a true
and a valid signature, between a true and a traced signer, and between a
true and a valid membership secret:

– We say that σRGS is a true signature on m if σRGS ∈ [SRGS(msk (i,j), m,
gpk)], (msk (i,j), .) ∈ [JRGS(ik i, (i, j))], and (gpk i, ik i, .) ∈ [GRGS(1κi)]
where gpk i ∈ gpk; we say that σRGS is a valid signature on m with
respect to gpk if VRGS(m, gpk, σRGS) = 1.
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– We say a player with the identity (i, j) is a true signer of σRGS on
m if σRGS ∈ [SRGS(msk (i,j),m, gpk)], (msk (i,j), .) ∈ [JRGS(ik i, (i, j))],
(gpk i, ik i, .) ∈ [GRGS(1κi)] and gpk i ∈ gpk; we say the player is a traced
signer of σRGS on m with respect to gpk if JuRGS(gpk, (i, j), reg(i,j),
σRGS ,m, τ(i,j)) = 1 for any given values of reg(i,j) and τ(i,j).

– We say that a value of msk (i,j) is a true group membership secret key
with respect to gpk if (msk (i,j), .) ∈ [JRGS(ik i, (i, j))], (gpk i, ik i, .) ∈
[GRGS(1κi)] and gpk i ∈ gpk. We say that the value msk (i,j) is a valid
group membership secret key with respect to gpk if VRGS(gpk, m,
SRGS(msk (i,j), m, gpk)) = 1 for any m.

3.3 Signer-anonymity

This property extends the GS anonymity property of [6] by involving mul-
tiple groups and allowing the adversary to adaptively choose groups. The
property is defined with the following signer-anonymity experiment, run
between a challenger C and an adversaryA and denoted by Expanon−b

RGS,A (κ).
In the experiment, A’s goal is to determine which one out of the two mem-
bers generated a signature.

In the experiment, A can make the following queries to C.

– Group setup. A requests for creating a new group i in one of the two
cases: (1) C runs (gpk i, ik i, ok i)

R←− GRGS(1κi) and sends gpk i and ik i

to A; (2) A suggests the values of (gpk i, ik i, ok i) to C.
– Join. A requests for creating a new member (i, j) in either cases: (1)
C runs the join protocol locally (msk (i,j), reg(i,j)) ← JRGS(ik i, (i, j));
(2) C as the member runs the protocol with A as the issuer.

– Sign. A requests a signature on a message m for a member (i, j) cre-
ated in a Join query and gpk set to the groups which were created in
a set of Group setup queries. C computes σ ← SRGS(msk (i,j),m, gpk)
and returns σ to A.

– Signer corrupt. A requests (i, j)’s membership secret key, and C re-
sponds with msk (i,j).

– Opener corrupt. A requests the opener secret key of an existing group
i, and C responds with ok i.

– Open. A requests for opening a signature σ. C runs the open algo-
rithm by using all the ok i values in C’s possession. If one outputs
((i, j), τ(i,j)/ε) and the remaining outputs ⊥, C returns ((i, j), τ(i,j)/ε)
to A; otherwise C returns ⊥.
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For challenging, A outputs a message m∗ and two members (i, j)0
and (i, j)1 which were created from two Join queries. C chooses a ran-
dom b←{0, 1} (or takes the existing experiment parameter b if available),
computes σ←SRGS(msk (i,j)b

, m∗, gpk), and sends σ∗ to A.
After the challenge phase, A can ask additional queries to C as before

the challenge phase.
Throughout the experiment, A has not made a signer corrupt query

on either (i, j)0 or (i, j)1, an opener corrupt query or a group setup query
with an opening key suggested by A on any group associated with (i, j)0
or (i, j)1, nor an open query on σ∗. Furthermore, A is not allowed to
assign a group key already belonging to one group to another group.

Finally, A outputs a bit b′. A wins if b′ = b.
We denote the advantage of adversary A in breaking the signer-

anonymity of RGS by

Advanon
RGS,A(κ) =
Pr[Expanon−1

RGS,A (κ) = 1]− Pr[Expanon−0
RGS,A (κ) = 0],

We say that RGS is signer-anonymous if for any polynomial-time ad-
versary A, the function Advanon

RGS,A(.) is negligible (as a function of the
minimum security parameter κ = min(κ0, ..., κn−1)).

3.4 Signer-traceability

This property extends the GS traceability property of [6] by involving
multiple groups and allowing the adversary to adaptively choose groups.
The property is defined with the following traceability experiment, de-
noted by Exptrace

RGS,A(κ) and run between a challenger C and an adversary
A, where A’s goal is to forge a valid signature under the conditions that
either A does not have a key or the signature cannot be opened properly.

In the experiment, A can make the following queries to C.

– Group setup.A requests creating a new group i. C runs (gpk i, ik i, ok i)
R←−

GRGS(1κi) and returns gpk i and ok i.
– Join. A requests for creating a new member (i, j) in one of the follow-

ing two cases: (1) C runs the join protocol as the issuer with A as the
member; (2) C runs the join protocol locally.

– Sign. A requests a signature on a message m for (i, j) created in Case
(2) of the join query, and gpk chosen from the existing groups. C
computes σ←SRGS(msk (i,j), m, gpk) and returns σ to A.
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– Signer corrupt. A requests the membership secret key of a member
(i, j), which was created in Case (2) of the join query. C responds with
msk (i,j).

Finally,A outputs a message m∗ and a signature σ∗.A wins if VRGS(m∗,
gpk, σ∗) = 1, ORGS(ok i, reg i, m∗, gpk, σ∗) = ((i, j), τ(i,j)), and JuRGS(gpk,
(i, j), reg(i,j), σ∗,m∗, τ(i,j)) = 1, with the conditions that (i, j) was created
in Case 2 of a Join query, A has not asked the signer corrupt query on
(i, j), and A did not obtain σ∗ by making a sign query on m∗ for (i, j); or
if VRGS(m∗, gpk, σ∗) = 1, but either ORGS returns ⊥ or JuRGS returns 0.
We define the advantage of adversary A in defeating signer-traceability
of RGS by

Advtrace
RGS,A(κ) = Pr[Exptrace

RGS,A(κ) = 1].

We say that RGS is signer-traceable if for any polynomial-time adver-
sary A, the function Advanon

RGS,A(.) is negligible in the minimum security
parameter κ = min(κ0, ..., κn−1).

3.5 Signer-non-frameability

This property extends the GS non-frameability property of [6] by involving
multiple groups and allowing the adversary to adaptively choose groups.
The property is defined with the signer-non-frameability experiment, de-
noted by Expnf

RGS,A(κ). It is run between a challenger C and an adversary
A as follows.

In the experiment, A can make the following queries to C.
– Group setup. A requests for creating a new group i and suggests the

values of (gpk i, ik i, ok i) to C.
– Join. A requests for creating a new member (i, j). C runs the join

protocol as the member with A as the issuer.
– Sign. A requests a signature on a message m for (i, j) created in a

Join query and gpk both at A’s choice. C computes σ←SRGS(msk (i,j),
m, gpk) and returns σ.

– Signer corrupt. A requests the membership secret key of (i, j) created
in a Join query. C responds with msk (i,j).

Finally, A outputs a message m∗, a signature σ∗, an identity (i, j)∗, a
register reg(i,j) and a proof τ∗(i,j). Assume that (i, j)∗ was created in a Join
query, andA did neither corrupt the signer (i, j)∗ nor obtain σ∗ from mak-
ing a Sign query on m∗ with (i, j)∗. A wins the experiment if VRGS(m∗,
gpk, σ∗) = 1 and JuRGS(gpk, (i, j)∗, reg(i,j)∗, σ∗, m∗, τ∗(i,j)) = 1. We
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define the advantage of adversary A in defeating signer-non-frameability
of RGS by

Advnf
RGS,A(κ) = Pr[Expnf

RGS,A(κ) = 1].

We say that RGS is signer-non-frameable if for any polynomial-time ad-
versary A, the function Advnf

RGS,A(.) is negligible in the minimum secu-
rity parameter κ = min(κ0, ..., κn−1).

3.6 Group-ambiguity

This property ensures that a signature is not bound to identity of the
group which its true signer belongs to. More formally, we say RGS is
perfectly group ambiguous if, given a triple (gpk,m, σRGS) for any m ∈
{0, 1}∗, any n, li, κi ∈ N, any gpk with |gpk| = n, any i ∈ [n], any
gpk i ∈ gpk, any (gpk i, gsk i) ∈ [GRGS(1κi)] s.t. gsk i = (ik i, ok i), any
j ∈ [li], any msk (i,j) ∈ [JRGS(ik i, (i, j))], any σRGS ∈ [SRGS(msk (i,j), m,
gpk)], any unbound adversary A outputs k such that gskk = gsk i with
probability exactly 1/n.

Definition 1. An RGS scheme following the syntax of RGS schemes is
secure if it satisfies the five properties: correctness, signer-anonymity,
signer-traceability, signer-non-frameability and group-ambiguity.

4 A generic RGS construction

We now introduce a generic construction of a RGS scheme, which extends
the 3-move type RS scheme of Abe et al. [1] by replacing the underly-
ing Schnorr signature with a generic 3-move type GS scheme. We first
briefly describe a generic construction of 3-move type GS schemes and an
overview of the Abe et al RS scheme, and then demonstrate how to use
these two building blocks to create the RGS construction.

4.1 A 3-move type GS scheme

The generic 3-move type GS construction is based on the concept of 3-
move type signature schemes, which are from 3-move honest verifier zero-
knowledge proofs, i.e. the standard Σ-protocol. Most of the well-known
GS schemes belong to this type, such as [2, 8, 10, 14–16, 25, 29].

In the generic construction of a GS scheme, the algorithms and pro-
tocols of GGS , JGS , OGS JuGS are mechanism specific and do not require
special functionalities to form the generic construction. We will there-
fore omit the details of them in the following description, and focus on
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the signing algorithm SGS and the verification algorithm VGS . In the next
section, we will provide a concrete RGS scheme with fully details. For
simplicity, we will also omit the subscript i from msk i.

The signing algorithm SGS consists of four functions, say T, A,H and
Z, to provide a proof of two level commitment. The verification algorithm
VGS consists of two functions, say V and H, to verify these two level com-
mitment. The abstract of these two algorithms is described in Figure 1.

Signing Verification
SGS(gpk ,msk , m) = VGS(m, gpk , σ) =

t←{0, 1}`t , Parse (msk , t) as x, e←T (x) Parse σGS as (e, c, s)

r←{0, 1}`r , a←A(x, r) a′←V (e, c, s, gpk)
c←H(m, e, a) c′←H(m, e, a′)
s←Z(x, r, c) Return 1 if c′ = c
Return σGS = (e, c, s) Return 0 otherwise

Fig. 1. The construction of a 3-move type GS scheme

Given a message m, a group public key gpk which was generated in
GGS , and a group membership secret msk which was created in JGS, SGS
first generates a set of random strings, written as a vector t, to be used
to randomize msk and to encrypt msk under gpk , in order to guarantee
that the value of msk is not revealed (anonymity) but the identity associ-
ated with msk can be extracted by running OGS (traceability), and then
interprets (msk , t) as a vector of secret values, say x, in which to commit.
The function T takes as input x and outputs the first level commitment,
say e written as a vector of public strings. Subsequently e and x serve
as an ephemeral public and private key pair for a Σ-protocol, which is
frequently referred to as a signature-based knowledge proof denoted by
SPK{(x) : e = T (x)}m.

The functions A,H and Z are used in each stage of the Σ-protocol. A
generates the second level commitment a based on the second randomness
r. H is a hash function {0, 1}∗ → ∆, which takes the message m and the
first and second commitment e and a as input and outputs a challenge,
for generality, which is also written as a vector of strings c. Z generates
a response s to the challenge. SGS returns the three vectors (e, c, s) as
the signature σGS .

Given a candidate signature σGS , VGS first interprets it as (e, c, s).
The function V , as a mirror of the function A, takes e, c, s and gpk as
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input and outputs a′. If the output of H, say c′, is the same as c, implying
a′ is equal to a, then VGS outputs 1; otherwise outputs 0.

Remark that for the purpose of security proof, it is required that all
secrets, including gsk , msk , and randomness t and r, must distribute uni-
formly over certain spaces. It is also required that the functions T and
Z must guarantee their outputs uniformly distributed if their inputs uni-
formly distribute; therefore, if x distributes uniformly over {0, 1}`x , then
e created by T also distributes uniformly over {0, 1}`e ; if r distributes
uniformly over {0, 1}`r , then s from Z also distributes uniformly over
{0, 1}`s . The above conditions are satisfied by many well-known group
signature schemes, e.g. [2, 8, 10]. More formally speaking, except for the
four general properties, thus correctness, anonymity, traceability and non-
frameability, which by following the security notions of [6] any GS scheme
must satisfy, we require that the 3-move type GS schemes must hold two
extra properties, namely collision and simulatability, defined as follows.

Definition 2. (Collision property) There exists a polynomial time algo-
rithm that computes x from e, c, s, c’, s’ and gpk, where (e, c, s) and
(e, c′, s′) are two unequal valid group signatures that correspond to the
same (m,e, a) given to the hash function H.

This property is from the collision property of 3-move signature schemes
[1], and is also called the rewinding property in the literature, based on
the Forking Lemma. This property is frequently used for proving the se-
curity of 3-move type signature schemes, such as the Schnorr signature
scheme [32] and a number of its variants.

Definition 3. (Simulatability in the random oracle model) A group sig-
nature scheme, GS, is (τ, ε, qj , qs, qh)-simulatable in the random ora-
cle model if for any group key (gpk, ik , ok) ∈ [GGS(1κ)] and for any
algorithm A that accesses to the random oracle H at most qh times,
the join protocol JGS(gsk) at most qj times and the signing algorithm
SGS(msk) at most qs times, there exists a triple of interactive machines,
Msim = (Jsim,Ssim,Hsim), that interacts with A in such a way that the
total running time is at most τ , and statistical distance of the probabil-
ity distribution of viewA(gpk, JGS(ik , .), SGS(.,msk , .), H) and viewA(gpk,
Msim(gpk)) is at most ε. Here, the probability is taken over all coin flips
of GGS, JGS, SGS, H, Msim, and A.

Observe that a simulator in control of the random oracle, H : {0, 1}∗ →
∆, can forge a group signature σGS = (e, c, s) by choosing c←∆, x←{0, 1}`x

and s←{0, 1}`s , and computing e←T (x). Obviously the vectors e and s
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created from this simulation distribute uniformly over {0, 1}`e and {0, 1}`s

respectively. This forging operation will be used to create our generic RGS
construction in the next subsection. This property is from the simulata-
bility of an ordinary signature scheme in the random oracle model [1]. The
definition of this property can be generalized to deal with multiple oracles
for group signature schemes that involves multiple hash functions if nec-
essary. Simulatability is featured in the unforgeability property against
adaptive chosen massage attacks (EUF-CMA) signature schemes such as
in the Schnorr signature scheme.

4.2 The AOS RS scheme

This scheme is called all discrete-log scheme in [1]. Let pk be an n-vector
of public keys, written as pk = (pk0, ..., pkn−1), where for each i ∈ [n],
pk i = (yi, pi, qi, gi) is a dis-log setting public key such that pi and qi are
large primes, gi is a generator of a prime subgroup of Z∗pi

with order qi,
and yi = gxi mod pi and let xi ∈ Z∗qi

be the corresponding private key
sk i. Let each user i have such a pair of private and public keys (sk i, pk i).
Suppose the user k (k ∈ [n]) is the true signer, the abstract of the SRS
and VRS algorithms of the AOS RS scheme is described in Figure 2.

Signing Verification
SRS(skk, m, pk) = VRS(m, pk, σRS) =

rk←{0, 1}`qk , ak←grk
k mod pk Parse σ as (c0, s0, ..., sn−1)

ck+1←Hk+1(m, pk, ak) For i = 0, 1, ..., n− 1

For i = k + 1, ..., n− 1, 0, 1, ..., k − 1 {a′i←gsi
i y

c′i
i mod pi)

{si←{0, 1}`qi , ai←gsi
i yci

i mod pi j = i + 1 mod n
j = i + 1 mod n, cj←Hj(m, pk, ai) } c′j←Hj(m, pk, a′i)}

sk←rk − xk · ck mod qk Return 1 if c′0 = c0

Return σRS = (c0, s0, ..., sn−1) Return 0 otherwise

Fig. 2. The AOS RS scheme

As proved in [1], the above RS scheme holds the properties of uncon-
ditional signer-ambiguity and existential unforgeability against adaptive
chosen massage and chosen public-key attacks; see [1] for the details of
these properties.

4.3 A 3-move type RGS scheme

We recall the special requirements of RGS schemes: except gpk any other
information about any group, such as the values of li, regi, (i, j) and τ(i,j),
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is not accessible to the other groups in R, and the judger (if exists) is a
trusted authority and out side of R. If these requirements do not meet,
an adversary may maliciously take a member from another group as a
valid but not true signer.

As described in Section 3.1, an RGS scheme consists of (GGS , JRGS ,
SRGS, VRGS , ORGS, JuRGS), in which each group uses the GGS , JGS , OGS
and JuGS protocols and algorithms from their underlying GS schemes to
achieve GRGS , JRGS, ORGS and JuRGS respectively. A membership secret
key for the j-th member of the i-th group is denoted by msk (i,j). In this
section, for simplicity, we omit the letter j and use the single subscript i,
where it does not cause confusion. In the following RGS scheme specifi-
cation, the true signer is a member of group k and has the membership
secret key mskk, and he signs a given message m with regard to a list of
n group public keys, gpk = (gpk0, gpk1, ..., gpkn−1) where k ∈ [n].

Suppose each group has a 3-move type GS scheme, as described be-
fore. For the i-th group, the signing algorithm SGS consists of four func-
tions, written as Ti, Ai,Hi and Zi, to achieve a proof of two-level com-
mitment, written as ei and ai; the verification algorithm VGS consists of
two functions, written as Vi and Hi; and the group signature is written as
σGSi = (ei, ci, si). By following the approach used in the AOS RS scheme
as shown in Appendix 4.2, an RGS scheme arranges n group signatures,
one from each group, to form a ring by shifting each challenge string ci

to the next position, i.e., ci = ci−1 mod n. With this manipulation, the
signer can forge n− 1 group signatures except the one of his own group.
The abstract of the signing and verification algorithms in such an RGS
scheme is shown in Figure 3.

Signing Verification
SRGS(mskk, m, gpk) = VRGS(m, gpk, σ) =

tk←{0, 1}`tk , Parse (mskk, tk) as xk, ek←Tk(xk) Parse σRGS as

rk←{0, 1}`rk , ak←Ak(xk, rk) (e0, ..., en−1, c0, s0, ..., sn−1)
ck+1←Hk+1(m, gpk, ek, ak) For i = 0, 1, ..., n− 1
For i = k + 1, ..., n− 1, 0, 1, ..., k − 1 {
{ xi←{0, 1}`xi , ei←Ti(xi) a′i←Vi(ei, ci, si, gpk i)

si←{0, 1}`si j = i + 1 mod n
ai←Vi(ei, ci, si, gpk i) c′j←Hj(m, gpk, ei, a

′
i)

j = i + 1 mod n, cj←Hj(m, gpk, ei, ai) } }
sk←Zk(xk, rk, ck) Return 1 if c′0 = c0

Return σRGS = (e0, ..., en−1, c0, s0, ..., sn−1) Return 0 otherwise

Fig. 3. The generic construction of a RGS scheme
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4.4 Security of the 3-move type RGS scheme

In this subsection, we discuss that any RGS scheme with the above 3-move
construction satisfies correctness, signer-anonymity, signer-traceability,
signer-non-frameability and group-ambiguity, as defined in Section 3 and
the following theorems hold. For each theorem, we give a sketch of proof.

Theorem 1. The above RGS scheme is correct, if all the underlying GS
schemes are correct 3-move type GS schemes.

Proof. The proof is straightforward. The correctness property means that
honestly generated signatures verify and trace correctly. Regarding vali-
dation, σRGS contains n group signatures, each from one underlying GS
scheme. The k-th signature is truly created so it is valid. The other n− 1
signatures are simulated. Based on the simulatability of the 3-move type
GS schemes in the random oracle model, these n − 1 signatures are also
valid. Obviously since all of the n signatures are valid, then the ring of
the n signatures, σRGS , must be valid as well. Regarding traceability, since
the k-th signature is a true signature, the OGS algorithm of the k-th GS
scheme will correctly recovers the identity of the signer. In the ORGS al-
gorithm, each group opener follows the OGS algorithm of the underlying
GS scheme, therefore the true signer can always be traced. The theorem
follows. ¤

Theorem 2. This RGS scheme is signer-anonymous if all the n under-
lying GS schemes are anonymous and all the functions Hi for i ∈ [n] in
the scheme are random oracles.

Proof. (sketch) The theorem can be proved by the following reduction: if
there is a polynomial adversary A who is able to break signer-anonymity
of the RGS scheme, then A can be used by another polynomial algorithm
B to break anonymity of one of the underlying GS schemes. Suppose B
has the target to break the k-th underlying GS scheme for k ∈ [n]. To
serve as a challenger B runs Expanon−b

RGS,A (κ) with A, and simultaneously,
to serve as an adversary, B runs Expanon−b

GS,A (κk) with another challenger
C. By controlling the random oracles Hi, B can answer A’s oracle queries
properly.

A adoptively chooses two challenge identities (i, j)0 and (i, j)1 from
the M = Σi∈[n]li potential signers of the n groups; each signer has been
assigned with (i, j) ∈ ([n], [li]) as identity. Suppose with some probability
δ, A chooses both the two identities in the group k, such as (i, j)0 = (k, j0)
and (i, j)1 = (k, j1) for j0, j1 ∈ [lk]. B then takes these two signers on as his
choice and sends j0 and j1 to C in the challenge phase of Expanon−b

GS,A (κk).
At the end of Expanon−b

RGS,A (κ), B receives A’s response, say b′, and B for-
wards it to C as his response to the challenge in Expanon−b

GS,A (κk). It is easy
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to see, if the advantage of A in breaking the signer-anonymity of the RGS
scheme is ε, then the advantage of B in breaking the anonymity of the
k-th underlying GS scheme is ε · δ. δ is not negligible, as it depends on
n and li. If ε is not negligible, this result is contradict to the assumption
that all the underlying GS schemes are anonymous. The theorem follows.
¤

Theorem 3. The above RGS scheme is signer-traceable if all the n un-
derlying GS schemes are traceable and all the functions Hi for i ∈ [n] in
the scheme are random oracles.

Proof. (sketch) As similar to proving signer-anonymity, this theorem can
be proved by the following reduction: if there is a polynomial adversary
A who is able to break signer-traceability of the RGS scheme, then A
can be used by another polynomial algorithm B to break traceability of
one of the underlying GS schemes. Suppose B has the target to break
the k-th underlying GS scheme for k ∈ [n], which means B outputs a
forged GS signature σGS = (e, c, s), which will verify and trace as a
true GS signature. To serve as a challenger B runs Exptrace

RGS,A(κ) with
A, and simultaneously, to serve as an adversary, B runs Exptrace

GS,A(κk)
with another challenger C. Recall that B is allowed to control the random
oracles Hi in Exptrace

RGS,A(κ). When B receives the Hk query from A with
the input (m, gpk,ek−1,ak−1), B outputs ck = H ′

k(m, ek, ak), where H ′
k

is the k-th H function of the GS scheme, and the values of (m,ek,ak) are
from A’s Hk+1 query. The value of ck is obtained in Exptrace

GS,A(κk) either
from C or computed by B itself. B maintains the consistence of all the
Hi outputs of the RGS scheme as usual. At the end of Exptrace

RGS,A(κ), B
receives σRGS = (e0, ..., en−1, c0, s0, ..., sn−1) from A.

Suppose A chooses the forged true signer randomly from one of the n
groups associated with gpk. With the probability of 1/n, σRGS traces to a
member of the group k. In that case, B sends (ek, ck, sk) to C as his input
to Exptrace

GS,A(κk). In the case that A outputs a signature which is valid but
which cannot be opened, B can still use A’s result in his Exptrace

GS,A(κk)
with C in the same way, since A’s output includes at least one underlying
group signature which is valid but cannot be opened. Since A’s operation
is a random selection, with the probability of 1/n, this is from the k-th
group.

As a result, if the advantage of A in breaking the signer-traceability of
the RGS scheme is ε, then the advantage of B in breaking the traceability
of the k-th underlying GS scheme is ε/n. If ε is not negligible, this result
is contradict to the assumption that all the underlying GS schemes are
traceable. The theorem follows. ¤
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Theorem 4. This RGS scheme is signer-non-frameable, if all the n un-
derlying GS schemes are non-frameable and all the functions Hi for i ∈ [n]
in the scheme are random oracles.

Proof. (sketch) As similar to proving signer-anonymity, this theorem can
be proved by the following reduction: if there is a polynomial adversary
A who is able to break signer-non-frameability of the RGS scheme, then
A can be used by another polynomial algorithm B to break non-frame-
ability of one of the underlying GS schemes. Suppose B has the target to
break the k-th underlying GS scheme for k ∈ [n], which means B outputs
a forged GS signature σGS = (e, c, s), which will verify and trace as a
true GS signature. To serve as a challenger B runs Expnf

RGS,A(κ) with
A, and simultaneously, to serve as an adversary, B runs Expnf

GS,A(κk)
with another challenger C. Recall that B is allowed to control the random
oracles Hi in Expnf

RGS,A(κ). When B receives the Hk query from A with
the input (m, gpk,ek−1,ak−1), B outputs ck = H ′

k(m, ek, ak), where H ′
k

is the k-th H function of the GS scheme, and the values of (m,ek,ak) are
from A’s Hk+1 query. The value of ck is obtained in Expnf

GS,A(κk) either
from C or computed by B itself. B maintains the consistence of all the
Hi outputs of the RGS scheme as usual. At the end of Expnf

RGS,A(κ), B
receives σRGS = (e0, ..., en−1, c0, s0, ..., sn−1) from A.

Suppose A chooses the forged true signer randomly from one of the
n groups associated with gpk. With the probability of 1/n, σRGS traces
to a member of the group k. In that case, B sends (ek, ck, sk) to C as his
input to Expnf

GS,A(κk). As a result, if the advantage of A in breaking the
signer-non-frameability of the RGS scheme is ε, then the advantage of B
in breaking the non-frameability of the k-th underlying GS scheme is ε/n.
If ε is not negligible, this result is contradict to the assumption that all
the underlying GS schemes are non-frameable. The theorem follows. ¤

Theorem 5. The above RGS scheme is unconditionally group ambigu-
ous, if all the n underlying GS schemes are secure 3-move type GS schemes.

Proof. (sketch) The idea of proving this theorem is to argue that all the
values in σRGS distribute uniformly with respect to gpk and regardless
to the position of the group of the true signer, k. Observe that except for
sk, all si are taken uniformly at random from {0, 1}`s ; also except for ek,
all ei are computed by using Ti from ti which are uniformly chosen from
{0, 1}`ti . As mentioned earlier, the function Ti keep the uniformly distri-
bution property between their inputs and outputs, therefore, ei must also
distribute uniformly over {0, 1}`ei . The vectors ek and sk are computed
by following the k-th underlying 3-move type GS scheme with a minor
modification that takes a challenge string different from ck in the original
GS scheme. Since all ci in the RGS scheme are outputs from the random
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oracle Hi, so this modification does not change the uniformly distribution
property of ek and sk. By following the specification of the above 3-move
type GS scheme, ek and sk also distribute uniformly over {0, 1}`e and
{0, 1}`s respectively. Therefore, for any fixed (gpk,m), (e0, ..., en−1, s0,
..., sn−1) has

∏n−1
i=0 2`ei+`si variations that equally likely regardless of the

position of k. Remaining c0 in a signature is determined uniquely from
(gpk, m), ei’s and si’s. As a result of this argument, even an unbound ad-
versary cannot find the value k with a higher probability than randomly
guessing. The theorem follows. ¤

Note that the unbound adversary can compute any group secret keys
(ik i, ok i) from any group public keys gpk i in gpk, and also can retrieve
any corresponding values of msk i from a given ring group signature. It is
important to see that although the adversary can compute all the valid
membership secret keys of all possible group members, he is not able to
tell which values are true group membership keys. On the other hand, in a
real RGS scheme, for any valid result (i.e. the signer identity (i, j) and its
proof τ(i,j)) from the group opening algorithm ORGS , the issuer/opener of
the i-th group cannot deny that the member (i, j) has actually joined the
group, because every valid msk i value belongs to a true group member.

5 A concrete RGS scheme

In this section, we introduce a concrete RGS scheme. For the underlying
GS scheme, we make use of the GS scheme by Boneh et al. [8], which
is a modification of their original short GS scheme by adding a join-
ing protocol to allow each member to contribute to his own secret key.
This modification is mentioned in Section 7 of [8]. Since their original
GS scheme is called the SDH GS scheme, in this paper, we name this
modification the SDH+ GS scheme. Actually this is one of many pos-
sible choices, because any suitable 3-move type of GS schemes can be
used to build our RGS scheme following the generic construction of RGS
described in Section 4.3.

5.1 The SDH+ GS scheme

Choose a bilinear group pair (G1,G2) of prime order p with a computable
isomorphism ψ, where g1 = ψ(g2) for g1 and g2 being the respective
generators of G1 and G2, and a bilinear map ê : G1×G2 → GT , such that
the Strong Diffie-Hellman (SDH) assumption holds on (G1,G2), and the
Linear assumption holds on G1; we refer the reader to [8] for the definition
of these two assumptions. Also choose a hash function H : {0, 1}∗←Zp,
which is treated as a random oracle in the proof of security in [8].
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– GGS(1κ). Given a security parameter κ, it generates the group issuer’s
secret key ik = γ, the group opener’s secret key ok = (ξ, ζ) and
the group public key gpk = (g1, g2, w, d, h, u, v), where γ, ξ, ζ

R←− Z∗p,
w = gγ

2 , d, h
R←− G1\{1G1}, u, v ∈ G1 such that uξ = vζ = h.

– JGS(γ, j). It registers each user j ∈ [l] (the value l is the number
of members in the group) and generates the user’s membership secret
key msk j = (fj , χj , Aj). During the joining process, the user j chooses
fj

R←− Z∗p and sends Fj = dfj ∈ G1 along with a proof of possession
of fj to the group issuer, who verifies the proof and then returns
χj

R←− Z∗p and Aj←(g1 · Fj)1/(γ+χj) ∈ G1 back. The issuer records
regj = (Fj , χj , Aj) ∈ reg.

– SGS(gpk ,msk j ,m). It creates the signature σ = (e, c, s) on m ∈ {0, 1}∗
by performing the following steps:
1. Choose a 2-vector of the first level random integers as t = (t1, t2)

R←− Zp.
2. Set a 6-vector of ephemeral secret keys as x = (x0, x1, x2, x3, x4, x5)

by x0 = fj , x1 = t1, x2 = t2, x3 = χj , x4 = χj · t1 and x5 = χj · t2.
3. Compute a 3-vector of ephemeral public keys as e = (e1, e2, e3) by

e1←ux1 , e2←vx2 and e3←Aj · hx1+x2 .
4. Choose a 6-vector of the second level random integers as r = (r0,

r1, r2, r3, r4, r5)
R←− Zp.

5. Compute a 5-vector of commitment values as a = (a1, a2, a3, a4, a5)
by a1←ur1 , a2←vr2 , a3←ê(e3, g2)r3 · ê(d, g2)−r0 · ê(h,w)−r1−r2 ·
ê(h, g2)−r4−r5 , a4←er3

1 · u−r4 and a5←er3
2 · v−r5 .

6. Compute a challenge string as c = H(m,e, a).
7. Compute a 6-vector of response values as s = (s0, s1, s2, s3, s4, s5)

by si = ri + c · xi (0 ≤ i ≤ 5).
8. Output the signature σ = (e, c, s).

– VGS(gpk , σ,m). It verifies a candidate signature σ on a message m in
the following operations:
1. Parse σ as (e1, e2, e3, c, s0, s1, s2, s3, s4, s5).
2. Compute a 5-vector of commitment values as a′ = (a′1, a

′
2, a

′
3, a

′
4, a

′
5)

by a′1←us1 ·e−c
1 , a′2←vs2 ·e−c

2 , a′3←ê(e3, g2)s3 ·ê(d, g2)−s0 ·ê(h, w)−s1−s2 ·
ê(h, g2)−s4−s5 · (ê(e3, w)/ê(g1, g2))c, a′4←es3

1 · u−s4 and a′5 ← es3
2 ·

v−s5 .
3. Check whether c = H(m,e,a′) holds; if the check succeeds output

1 and otherwise 0.
– OGS(ξ, ζ, reg, σ,m). It computes Aj←e3/(eξ

1e
ζ
2), retrieves regj = (Fj ,

χj , Aj) and outputs regj and the proof τj : SPK{(ξ, ζ) : e3/Aj =
eξ
1e

ζ
2 ∧ h = uξ = vζ}.
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– JuGS(gpk , regj , σ,m, τj). It verifies τj and ê(Aj , w ·gχj

2 ) = ê(g1 ·Fj , g2);
outputs 1 if the verification succeeds or 0 otherwise.

The reader is referred to [8] for security proof of the original SDH GS
scheme, and [18] demonstrates that the modification in SDH+ does not
affect security of SDH.

5.2 The concrete RGS scheme

Suppose n groups are taken into a ring, and all of them support the
SDH+ GS scheme. Let {gpk, l} = {gpk i, li}i∈[n] be the lists of the n group
public keys and sizes, where gpk i = (g1i, g2i, wi, di, hi, ui, vi) and its issuer
secret key is γi and opener secret key is (ξi, ζi). The j-th member in the
i-th group ((i, j) ∈ ([n], [li])) has a membership secret key msk (i,j) =
(f(i,j), χ(i,j), A(i,j)) and registration value reg(i,j) = (F(i,j), χ(i,j), A(i,j)).
These values are generated by using GGS and JGS as described in SDH+

GS. More specifically, we have f(i,j), χ(i,j) ∈ Z∗p, wi = gγi
2i , u

ξi
i = vζi

i = hi,

F(i,j) = d
f(i,j)

i , and A(i,j) = (g1i · F(i,j))1/(γi+χ(i,j)).
To sign a message m ∈ {0, 1}∗ with respect to gpk, the j-th member

of the k-th group (k, j) (k ∈ [n]) performs the following steps by running
the algorithm SRGS((f(k,j), χ(k,j), A(k,j)),m, gpk):

1. Initiate the ring by following the steps 1 - 5 of SGS in SDH+ GS to
compute tk, xk, ek, rk and ak.

2. Compute ck+1 = H(m, gpk, ek, ak).
3. For i = k + 1, ..., n − 1, 0, 1, ..., k − 1, choose two random vectors ei

and si by ezi
R←− Zpi (1 ≤ z ≤ 3) and szi

R←− Zpi (0 ≤ z ≤ 5), compute
ai = (a1i, a2i, a3i, a4i, a5i) by following the second step of VGS in SDH+

GS, and compute ci+1 mod n = Hi+1 mod n(m, gpk, ei,ai).
4. Close the ring by computing a 6-vector of response values as sk =

(s0k, s1k, s2k, s3k, s4k, s5k), where szk = rzk + ck ·xzk (0 ≤ z ≤ 5).
5. Output the signature σ = (e0, ..., en−1, c0, s0, ..., sn−1).

To verify a candidate ring group signature σ, a verifier run the VRGS(m,
gpk, σ) algorithm as follows:

1. Parse σ as (e0, ..., en−1, c0, s0, ..., sn−1).
2. For i = 0 to n − 1, compute a 5-vector of commitment values a′i by

following the second step of VGS in SDH+ GS, and then c′i+1 mod n =
Hi+1 mod n(m, gpk, ei, a

′
i).

3. Check whether c′0 = c0 holds; output 1 if the check succeeds and 0
otherwise.
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Both the ORGS and JuRGS algorithms are identical to the OGS and
JuGS algorithms respectively in SDH+ GS. The ring group signature can
be traced to the true signer only by the opener in the right group. This
result is based on the assumption that except gpk all the information
of any group is not accessible to the other groups and the judger is a
trust authority out side of R. Otherwise, obviously a malicious user can
insert a set of valid A values in the relevant positions of R. This would
cause the openers of all the relevant groups to output plausible identi-
ties. As mentioned before, this is a reasonable assumption for our target
applications.

Theorem 6. The concrete RGS scheme is secure, i.e. it is correct, signer-
anonymous, signer-traceable, signer-non-frameable and group-ambiguous,
under the random oracle model and the assumption that the underlying
group signature scheme is secure.

Proof. The RGS scheme is a 3-move type RGS scheme and has a single
underlying GS scheme, the SDH+ GS scheme. This underlying GS scheme
is a secure 3-move type GS scheme, based on the security analysis given
in [8]. Therefore, the theorem simply follows Theorems 1, 2, 3, 4 and 5. ¤

6 Conclusions

We proposed the concept of ring group signatures (RGSs) including a for-
mal definition of its syntax and security. RGSs support a set of attractive
properties: correctness, signer-anonymity, signer-traceability, signer-non-
frameability and group-ambiguity. We presented a generic construction
of RGS schemes and proved that any RGS scheme following this con-
struction holds the five properties as long as the underlying GS schemes
are secure. Our security analysis is under the random oracle model. The
ring group signature solution will benefit any applications based on group
signatures, in which group identities are sensitive.
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