
On the (In)Security of IDEA
in Various Hashing Modes?

Lei Wei1, Thomas Peyrin1, Przemys law Soko lowski2,
San Ling1, Josef Pieprzyk2, and Huaxiong Wang1

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

wl@pmail.ntu.edu.sg, thomas.peyrin@gmail.com
2 Macquarie University, Australia

Abstract. In this article, we study the security of the IDEA block cipher
when it is used in various simple-length or double-length hashing modes.
Even though this cipher is still considered as secure, we show that one
should avoid its use as internal primitive for block cipher based hashing.
In particular, we are able to generate instantaneously free-start collisions
for most modes, and even semi-free-start collisions, pseudo-preimages
or hash collisions in practical complexity. This work shows a practical
example of the gap that exists between secret-key and known or chosen-
key security for block ciphers. Moreover, we also settle the 20-year-old
standing open question concerning the security of the Abreast-DM and
Tandem-DM double-length compression functions, originally invented to
be instantiated with IDEA. Our attacks have been verified experimentally
and work even for strengthened versions of IDEA with any number of
rounds.

Key words: IDEA, block cipher, hash function, cryptanalysis, colli-
sion, preimage

1 Introduction

Hash functions are considered as a very important building block for many
security and cryptography applications. Informally, a hash function H is
a function that takes an arbitrarily long message as input and outputs
a fixed-length hash value of size n bits. In cryptography, we want these
functions to fulfill three security requirements, namely collision resistance

? The first, fourth and sixth authors are supported by the Singapore National Research
Foundation under Research Grant NRF-CRP2-2007-03 and the first author is also
supported by the Singapore Ministry of Education under Research Grant T206B2204
and by the NTU NAP Startup Grant M58110000. The second author is supported
by the Lee Kuan Yew Postdoctoral Fellowship 2011 and the Singapore National
Research Foundation Fellowship 2012.

and (second)-preimage resistance. It should be impossible for an adversary
to find a collision (two different messages that lead to the same hash value)
in less than 2n/2 hash computations, or a (second)-preimage (a message
hashing to a given challenge) in less than 2n hash computations. Most of
nowadays hash functions divide the whole input message into blocks after
padding it, and then process the blocks in an iterative way. A very known
and utilised example is the Merkle-Damgåard algorithm [12, 33], which
uses an n-bit compression function h in order to process the m message
blocks Mi: CVi+1 = h(CVi,Mi), where CVi is the n-bit internal state (or
chaining variable) that is initialized by a fixed public value CV0 = IV
and the final hash value is Hm. This algorithm is very interesting because
it allows to reduce the collision/preimage security of the hash function
to the collision/preimage security of the compression function. However,
in order to guarantee the soundness of the construction, a designer must
ensure that an attacker can not break the collision/preimage resistance of
the compression function. One can identify different security properties
for a compression function:

• free-start collision: in less than 2n/2 computations, find two different
pairs (CV,M) 6= (CV ′,M ′) such that they lead to the same compres-
sion function output value: h(CV,M) = h(CV ′,M ′),
• semi-free-start collision: in less than 2n/2 computations, find one chain-

ing variable CV and two different message blocks M 6= M ′ such that
they lead to the same compression function output value: h(CV,M)
= h(CV,M ′),
• preimage: in less than 2n computations, find one chaining variable
CV and one message block M such that they lead to a given output
challenge X: h(CV,M) = X.

Note that a semi-free-start collision for the compression function where
the chaining variable CV is not chosen by the attacker directly leads to
a collision for the whole hash function. In any case, a semi-free-start
collision is very dangerous since it means that for some choices of IV ,
the attacker knows how to generate a collision. Even free-start collision
are considered serious as they invalidate the collision resistance assump-
tion on the compression function and we have seen many free-start colli-
sion attacks eventually turning into full hash collision attacks in the re-
cent history (for example free-start collision attacks for MD5 were quickly
identified [14], then upgraded to semi-free-start collision attacks [15] and
eventually to full collision attacks [38]). As for preimage attacks on the
compression function (also known as pseudo-preimages), they are very

relevant since there exist a meet-in-the-middle algorithm that in most
cases can turn them into a preimage attack for the full hash function.

The separation between a block cipher and a compression function has
always been blurry. Constructions are known to turn the former into the
latter [7, 36] or the latter into the former [31]. For example, the Davies-
Meyer mode [1] converts a secure block cipher E into a secure compres-
sion function and is incorporated in a large majority of the currently
known hash functions. While very satisfying solutions exist to transform
a secure n-bit block cipher into an n-bit compression function (Davies-
Meyer, Miyaguchi-Preneel, Matyas-Meyer-Oseas modes [1] or see [7, 36]
for a systematic study of this problem), there is still a lot of research being
actively conducted on double-block length compression functions (where
the block cipher size is n bits and the compression function output size
is 2n), from simple-key block ciphers such as AES-128 or double-key such
as AES-256 [11].

A major difference between the cryptanalysis of block ciphers and
compression functions is that the attacker can fully control the inner be-
havior of the compression function. In other words, the attacker can use
more efficiently the freedom degrees available on the input (i.e. the num-
ber of independent binary variables he has to determine). A new security
model for block ciphers, the so-called known-key model [24], was recently
proposed in order to fill the gap between these two situations. In this
model, the secret key is known to the adversary and its goal is to distin-
guish the behavior of a random instance of the block cipher from the one
of a random permutation by constructing a set of (plaintext, ciphertext)
pairs satisfying an evasive property. Such a property is easy to check but
impossible to achieve with the same complexity and a non-negligible prob-
ability using oracle accesses to a random permutation and its inverse. In
general, these known-key attacks are not regarded as problematic when
the block cipher is used in a classical “secret key” setting. Moreover,
it is rare that such threats are extended to attacks on the compression
function.

A potential candidate for hashing is the 64-bit block cipher IDEA [26,
39] that uses 128-bit keys. While a simple-length hashing mode would
only provide a 64-bit hash output, insufficient for most of nowadays secu-
rity applications, a double-block length construction (DBL) would allow
128-bit hash outputs which can be sufficient in some scenarios. As IDEA

handles double-length keys, more freedom in the constructions is possi-
ble. In fact, the well known Abreast-DM and Tandem-DM modes were
specifically created to perform hashing with IDEA (see page 2 and Section

6 of [39]). These modes were later studied in much details [16, 17, 28, 30],
but the security they provide when instantiated with IDEA remains a 20-
year-old standing open question. In classical “secret key” setting, IDEA
has already been studied a lot [2–6, 9, 10, 13, 18] and is still considered as
a secure cipher despite its age and despite the current best attack [5] that
requires 263 data (half the codebook) and 2114 computations to recover
the secret key for IDEA reduced to 7.5 rounds over a total of 8.5 (the at-
tack on the full cipher from [5] is very marginal with 2126.8 computations
and the one from [22] requires 2126 computations and 252 chosen plain-
texts). One can also cite the work of [6], that exposes a weak-key class of
size 264. Note also that a first step towards analysis of IDEA in hashing
mode was done in [21] where a 3-round chosen-key attack is described
and in [9] where the authors show how to find a free-start near collision
(only a subset of the output collides) when IDEA is plugged into the Hi-
rose DBL mode [9] (and also a free-start collision if the internal constant
c is controlled by the attacker).

Our contribution. In this paper, we study the security of the IDEA block
cipher [26, 39] when plugged into various block cipher based compres-
sion function constructions, such as the classical Davies-Meyer mode [1],
also DBL constructions such as Hirose [19, 20], Abreast-DM and Tandem-
DM [27, 39], Peyrin et al. (II) [35] or MJH-Double [29]. Even if this cipher
is still considered as secure in the classical “secret key” setting, its secu-
rity remains an open problem in hashing mode. Depending on the IDEA-
based hash construction, we show that an attacker can find free-start
collisions instantaneously, preimages or semi-free-start collisions practi-
cally. For some modes, we even describe a method to compute collisions
for the whole hash function. These attacks are based on weak-keys utili-
sation, but in contrary to the “secret key” setting where the goal of the
attacker is to exhibit the biggest weak-key class possible, in hashing mode
the goal is to find and exploit the weakest of all keys. We use the fact that
the key 0 in IDEA is extremely weak, actually rendering the whole encryp-
tion process a T-function [23], already known as dangerous for building
a hash function [34]. While weak-keys are already known to be danger-
ous for block cipher-based hash functions, our method use a novel and
non-trivial almost half-involution property for IDEA. Even strengthened
versions of the cipher with any number of rounds can be attacked with
about the same complexities. This work is one more example that one
has to be very careful when hashing with a block cipher that presents
any weakness when the key is known or controlled by the attacker. In

particular, one should strictly avoid the use of a block cipher for which
weak-keys exist, even if only a single weak-key is known.

2 The IDEA block cipher

The International Data Encryption Algorithm (IDEA) is a 64-bit block
cipher handling 128-bit keys and designed by Lai and Massey [26, 39] in
1990. While its use is reducing over the recent years, it remains deployed
in practice and has not been broken yet despite its advanced age. It
has a very simple design, performing 8.5 rounds composed of only 16-
bit wide XOR, additions and multiplications. More precisely, one round
is composed of three layers: first the key addition layer (denoted KA), a
multiplication-addition layer (denoted MA) and a middle words switching
layer (denoted S). For the eighth round, the switching is omitted.

Let Xi represent the 64-bit internal state of IDEA before applica-
tion of the i-th round and we can view it as four 16-bit subwords Xi =
(Xi

1, X
i
2, X

i
3, X

i
4), with 1 ≤ i ≤ 9. Also, Y i = (Y i

1 , Y
i
2 , Y

i
3 , Y

i
4) will stand for

the intermediate internal state value of IDEA during the i-th round, right
between the KA and the MA layers. We denote by ⊕ the bitwise XOR
operation, by � the addition modulo 216 and by � the multiplication
modulo 216 + 1, where the value 0 is considered as 216 and vice-versa. Fi-
nally, Zi = (Zi1, Z

i
2, Z

i
3, Z

i
4, Z

i
5, Z

i
6) represents the six 16-bit subkeys used

during the i-th round (only the first four subkeys for the last half round).
The KA layer simply incorporates four subkeys:

Y i
1 = Xi

1 � Zi1, Y i
2 = Xi

2 � Zi2, Y i
3 = Xi

3 � Zi3, Y i
4 = Xi

4 � Zi4.

The MA layer first computes B = Zi6 � ((Y i
2 ⊕ Y i

4) � (Zi5 � (Y i
1 ⊕ Y i

3)))
and A = B � (Zi5 � (Y i

1 ⊕ Y i
3)). Then, after application of the S layer we

have:

Xi+1
1 = Y i

1⊕B, Xi+1
2 = Y i

3⊕B, Xi+1
3 = Y i

2⊕A, Xi+1
4 = Y i

4⊕A.

All the subkeys are simply determined by choosing consecutive bits
in the 128-bit master key according to the Table 2 given in Appendix A.
Finally, ciphering the plaintext P with IDEA to obtain the ciphertext C is
defined as: C = KA◦S◦{S◦MA◦KA}8(P). Figure 1 provides a schematic
view of one round of IDEA.

Currently, the best cryptanalysis work published on IDEA [5] can reach
7.5 rounds with 263 data (half the codebook) and 2114 computations.
Concerning weak-keys, the current biggest weak-key class contains 264

elements and has been published in [6].

KA

MA

Zi
1

Zi
6

Zi
5

Xi
3 Xi

4Xi
2Xi

1

Zi
4Zi

3Zi
2

Y i
1 Y i

2 Y i
3 Y i

4

Xi+1
1 Xi+1

2 Xi+1
3 Xi+1

4

S

Fig. 1. One round of IDEA

3 Hashing with a double-length key block cipher

We will study the security of the various block cipher-based constructions
that can use IDEA as the internal primitive. Therefore, we only consider
the ones that use a double-key block cipher. More precisely, we denote
C = EK(P) the process of ciphering the 64-bit plaintext P with IDEA

using the 128-bit key K.

3.1 Simple-length compression function

A simple-length compression function construction with IDEA will provide
a 64-bit output CVi+1.

Davies-Meyer is the most usual simple-length mode [1] and it handles
128-bit message blocks: CVi+1 = EM (CVi)⊕CVi. Most standardized hash
functions are actually implementing this mode, with an ad-hoc internal
block cipher. While some weaknesses such as fixed-points are known, its
security in terms of preimage and collision resistance have been studied

and proved in the ideal cipher model [7]. Namely, we should expect at
least 232 and 264 computations respectively to generate a (semi)-free-start
collision or preimage for the compression function. Note that Miyaguchi-
Preneel and Matyas-Meyer-Oseas simple-block length modes [1] are not
considered in this article since they require the internal primitive to have
the same block and key size, which is not the case for the IDEA block
cipher.

3.2 Double-length compression function

A more interesting design strategy with IDEA would be to define double-
block length constructions, in order to get 128-bit output, represented by
two 64-bit words CV 1i and CV 2i. This problem has already been studied
a lot and remains a very active research domain, even when the internal
primitive is a double-key block cipher.

Abreast-DM and Tandem-DM will of course be considered in this
article since they both have been especially designed for IDEA [27, 39].
Tandem-DM handles a 64-bit message blockM . We defineW = ECV 1i||M (CV 2i)
and then we have

CV 1i+1 = EM ||W (CV 1i)⊕ CV 1i,

CV 2i+1 = W ⊕ CV 2i.

Abreast-DM also handles a 64-bit message block M :

CV 1i+1 = EM ||CV 2i(CV 1i)⊕ CV 1i,

CV 2i+1 = ECV 1i||M (CV 2i)⊕ CV 2i,

where X stands for the bitwise complement of X.

Hirose proposed a construction that contains two independent block
cipher instances [19], later improved to only a single instance [20] by
using a constant c to simulate the two independent ciphers:

CV 1i+1 = ECV 2i||M (CV 1i)⊕ CV 1i,

CV 2i+1 = ECV 2i||M (CV 1i ⊕ c)⊕ CV 1i ⊕ c.

Peyrin et al. described in [35] a compression function (denoted Peyrin et
al.(II)) that utilizes 5 calls to independent 3n-to-n-bit compression func-
tions, advising to be instantiated with double-key internal block ciphers
such as AES-256 or IDEA. It handles two 64-bit message blocks M1 and
M2:

CV 1i+1 = f1(CV 1i, CV 2i,M1)⊕ f2(CV 1i, CV 2i,M2)⊕ f3(CV 1i,M1,M2),

CV 2i+1 = f3(CV 1i,M1,M2)⊕ f4(CV 1i, CV 2i,M1)⊕ f5(CV 2i,M1,M2),

where the functions fi can be build for example by using the IDEA block
cipher into a Davies-Meyer mode and we can simulate their independency
by XORing distinct constants to the plaintext inputs, as it is done in [20]:
fi(U, V,W) = EU ||V (W ⊕ i)⊕W (note that XORing the constants on the
key input would be avoided in practice because it would lead to very
frequent rekeying and therefore reduce the overall performance of the
hash function). Since no real candidate was proposed by the authors, all
possible position permutations of the three fi inputs will be considered.
Note that when cryptanalysing this scheme, we will attack the functions fi
independently. Thus, we will not use any weakness coming from potential
dependencies between the functions fi (apart of course that all 5 functions
are based on IDEA).

MJH-Double is a rate 1 double-block length compression function re-
cently published by Lee and Stam [29]. It uses a double-key block cipher
and handles two 64-bit message blocks M1 and M2:

CV 1i+1 = EM2||CV 2i(CV 1i ⊕M1)⊕ CV 1i ⊕M1,

CV 2i+1 = g · (EM2||CV 2i(f(CV 1i ⊕M1))⊕ f(CV 1i ⊕M1))⊕ CV 1i,

where f is an involution with no fixed point and g 6= 0, 1 is a constant.

For all these double-block length proposals, the conjectured security
is 264 and 2128 computations respectively to generate a (semi)-free-start
collision or preimage for the compression function or hash function. We
summarize all of them in Appendix D.

4 Weak-keys for IDEA

Weak-keys for IDEA has already been studied in details [6, 10, 18], but
what we are looking for is slightly different. Indeed, for block cipher crypt-
analysis, since the attacker can not control the key input he looks for the

biggest possible class of weak-keys, so as to get the highest possible prob-
ability that a weak-key will indeed be chosen. In the case of compression
function cryptanalysis, the key input is fully known or even controlled by
the attacker. The goal is therefore not to find the biggest possible class
of weak-keys, but to find the weakest possible key. As we will show for
IDEA, even if only one weak-key is found, its weakness might directly lead
to successful attacks on the whole compression or hash function.

4.1 Analysis of the internal functions

When looking at the internal round function of IDEA, one might wonder
what would be a weak-key. In IDEA, the most annoying functions for the
cryptanalyst are clearly the multiplications in Z216+1. Indeed, these op-
erations are strongly non-linear and provide good diffusion between the
different bit positions. On the contrary, XOR operations are linear and do
not provide any diffusion between the bit positions, while the additions
in Z216 can be easily approximated linearly and the diffusion between the
bit positions only happens through the carry. Moreover, XOR and addi-
tions are even weaker in IDEA since no rotations are present, comparing
with Addition-Rotation-XOR (ARX) designs. Here the rotation is done
through the multiplications in Z216+1 and our goal is therefore to avoid
them.

When adding (a + b) mod 216, we can avoid any diffusion by forcing
one operand to 0. When multiplying (a � b) = (a · b) mod 216 + 1, the
good diffusion will happen especially when (a · b) ≥ 216 + 1. An easy way
to avoid this is to fix one of the two operands to 1. In that case, we have
(a� 1) = (a · 1) mod 216 + 1 = a mod 216. As already remarked in [10], a
good choice is also 0, since

(a� 0) mod 216 = ((a · 216) mod (216 + 1)) mod 216

= (((a · 216 + a) + (216 + 1)− a) mod (216 + 1)) mod 216

= (0 + 216 + 1− a) mod 216 = 1− a mod 216

= 2 + (216 − 1− a) mod 216 = (2 + a) mod 216

and the multiplication is reduced to only a complement and an addition
with a constant.

4.2 Weak-keys classes

Based on the remark that the operand 0 is very weak for both multiplica-
tions and additions, Daemen et al. [10] generated a class of weak-keys. A

first obvious candidate is the null key (all bits set to zero), which will force
all the subkeys to zero as well. As a consequence, all subkeys additions
can be simply removed and all subkeys multiplications can be replaced
by a complement (or XOR with 0xffff) and an addition with value 2.
At this point, all the operations in IDEA with null key are either XOR
or additions. Therefore, by inserting differences only on the Most Signif-
icant Bit (MSB) of the four 16-bit plaintext input words, the attacker
is ensured that only the MSB of the four output words will contain a
difference. Even better, the mapping from an MSB input difference pat-
tern to an MSB output difference pattern is completely deterministic (is
it linear since on the MSB no carry is propagated). Such a property is
largely sufficient to consider the null key as weak. This reasoning can be
generalized by observing that the attacker does not necessarily need all
subkeys to be null, but only the ones that are multiplied to an internal
word which contains a MSB difference. Since the MSB differential paths
are quite sparse, many of the null constraints on the subkeys are relaxed
and one finally gets 235 weak-keys.

4.3 The null weak-key

We show that the null key is particularly weak for hash function utiliza-
tion. Even if other keys belong to a weak-key class, they do not present
the same special properties as the null key.

Almost half-involution When using the null key, we remark that all
subkeys will be null as well. Then, all rounds layers will be the same
and we write KA0 and MA0 the KA and MA layers with null subkeys. A
nice practical feature of IDEA is that the decryption is done using the very
same algorithm as encryption, but with different subkeys. The decryption
subkeys for the MA layer are the same as the encryption ones since the
MA layer is an involution (i.e. MA=MA−1). The decryption subkeys for
the KA layer are the respective multiplicative and additive inverses of
the encryption subkeys. However, note that a null subkey is both its
own multiplicative and additive inverse and the KA layer becomes an
involution as well (i.e. KA0=KA−10). To summarize, using the null key,
we are ensured that KA0=KA−10 and MA0=MA−10 . Note that we trivially
have S=S−1.

Now, since the KA layer and S layer commute, IDEA with null key can
be rewritten as

C = KA0 ◦ S ◦ {S ◦MA0 ◦KA0}8(P)

= KA0 ◦ S ◦ {S ◦MA0 ◦KA0}3 ◦ S ◦MA0 ◦KA0 ◦ {S ◦MA0 ◦KA0}4(P)

= KA0 ◦MA0 ◦ {S ◦KA0 ◦MA0}3︸ ︷︷ ︸
σ−1

◦KA0 ◦ S︸ ︷︷ ︸
θ

◦ {MA0 ◦KA0 ◦ S}3 ◦MA0 ◦KA0︸ ︷︷ ︸
σ

(P)

which eventually gives C = σ−1 ◦θ ◦σ(P). One can check that since KA0,
MA0 and S are involutions, the operation denoted by σ−1 is indeed the
inverse of the one denoted by σ. Thus, using the notation

P
σ−1

−→ U
θ−→ V

σ−→ C

where U and V are internal state values, we have

P
σ←− U θ−→ V

σ−→ C.

We will use this almost half-involution property in Section 6 to find
free-start collisions and even hash function collisions for some IDEA-based
constructions.

T-function: When using the null key, we have already described that
all operations remaining are either XOR or additions. These operations
are triangular functions [23] (or T-functions) in the sense that any output
bit at position i only depends on the input bits located at a position i or
lower. A composition of T-functions is itself a T-function, therefore the
whole permutation defined by IDEA with the null key is a T-function. As
shown in [34], this property might be very dangerous in a hash function
design. We will explain in Section 7 how to exploit this weakness and
compute preimages by guessing the input words bit layer by bit layer.

5 Simple collision attacks

As shown by Daemen et al. [10], when using the null key for the encryp-
tion process of IDEA, differences inserted uniquely on the MSB of the four
16-bit input plaintext words will lead to differences on the MSB of the
four 16-bit output ciphertext words. Moreover, since this difference map-
ping is linear (the difference on the carry is not propagated further than
the MSB), all possible differential characteristics have a differential prob-
ability 1. For example, we denote by δMSB = 0x8000 the 16-bit word with

difference only on the MSB and by ∆MSB = (δMSB, δMSB, δMSB, δMSB)
the 64-bit difference composed of 4 words with difference δMSB. Then,
∆MSB propagates to itself with probability 1 through one round of IDEA,
or through its last half-round. Therefore, we have with probability 1

∆MSB

IDEAK=0

−−−−−−−−−→ ∆MSB.

Note that instead of using δMSB only, one can generalize the input
difference space and obtain other very good differential paths for the
encryption of IDEA with the null key. However, we omit this generalization
here since the methods described in later sections already provide much
better attacks.

Davies-Meyer. Finding a free-start collision on Davies-Meyer mode in-
stantiated with IDEA is very easy. Since the difference ∆MSB is mapped
to itself through the IDEA encryption process with the null key, the at-
tacker only has to pick M = 0. Then, any value of CV with difference
∆MSB applied to it will lead to a collision with probability 1. We give in
Appendix C.1 examples of such a free-start collision.

Hirose. The same method as for Davies-Meyer mode can be applied to
the Hirose mode in order to find free-start collisions. The attacker fixes
CV 2 = 0 and M = 0 so as to force the null key to both encryptions.
Then, any value of CV 1 with a difference ∆MSB applied to it will lead
to a collision with probability 1, since ∆MSB will appear on the plaintext
input of both encryptions with the null key. We give in Appendix C.3
examples of such a free-start collision.

Abreast-DM. This technique seems impossible to apply to the Abreast-
DM mode since forcing a difference ∆MSB on any of the two encryptions
plaintext input will imply a difference inserted in the key input of the
other encryption block. Therefore, one cannot use ∆MSB difference on
plaintext input with null key in both encryption blocks. Even if the at-
tacker tries to attack only one encryption block with this method, the
other block will not be controlled and he will have to deal with random
differences on its output. These random differences cannot be dealt with
some birthday technique because fixing all inputs of one encryption block
will fix all inputs of the other one as well.

Tandem-DM. This technique seems impossible to apply to the Tandem-
DM mode for the exact same reasons as for Abreast-DM.

Peyrin et al.(II). We have to separate in two groups the possible in-
stances of this construction, obtained by permuting the position of the
three inputs of each internal function fi. If all compression function inputs
CV 1, CV 2, M1 and M2 appear in at least one of the IDEA key inputs
of any fi internal function, then the attack will not apply. Indeed, since
all inputs will be involved at least one time, the attacker will necessarily
have to insert a difference in at least one IDEA key input and he will not
be able to use the differential path with probability 1. Note that these
instances would be avoided in practice because they would lead to more
frequent re-keying and therefore reduce the overall performance of the
hash function. If this condition is not met, then we can apply the fol-
lowing free-start collision attack. Let X ∈ {CV 1, CV 2,M1,M2} denote
the input that is missing in all the IDEA key inputs of the compression
function. The attacker simply fixes the difference ∆MSB on X (one can
give any value to X) and all other inputs are set to 0 in order to get
the null key in every internal IDEA. The attacker ends up with several
Davies-Meyer in parallel, with either no difference at all or with null key
and ∆MSB as plaintext input difference. Thus, he obtains a collision with
probability 1. If X 6∈ {CV 1, CV 2}, then this attack finds semi-free-start
collisions.

MJH-Double. The MJH-Double mode prevents this simple attack since
even if we fix CV 2 = 0 and M2 = 0 in order to get the null key in
both encryptions, it is hard to force the difference ∆MSB on both their
plaintext inputs. Indeed, the f operation will randomize the difference

and in order for the attack to run, we would require ∆MSB
f−→ ∆MSB

which is unlikely to happen.

6 Improved collision attacks

In this section, using the almost half-involution property with the null
key, we will show how to get the same difference on the input and on
the output of the IDEA ciphering process with good probability. Then, we
will use this weakness to derive our collision attacks, for any number of
rounds.

6.1 Exploiting the almost half-involution

We have already shown in Section 4 that when the key is null, IDEA

encryption process can be rewritten as

P
σ←− U θ−→ V

σ−→ C

where

σ = {MA0 ◦KA0 ◦ S}3 ◦MA0 ◦KA0 and θ = KA0 ◦ S.

We denote ∆U the XOR difference between two 64-bit internal state
values U and U ′, i.e ∆U = U⊕U ′, and δUi represents the 16-bit difference
on the i-th word of∆U , that is∆U = (δU1, δU2, δU3, δU4). Let us consider
two random 64-bit internal state values U and U ′ such that δU2 = δU3

and we denote this 16-bit difference δM . For truly random values U and
U ′, this condition happens with probability 2−16. One can check that
applying θ on U and U ′ to obtain V and V ′ respectively will lead to
δV2 = δV3 = δM since layer S only switches the two middle words and
layer KA0 has no effect on them (addition of null subkeys).

Let δL and δR represent the difference on δU1 and δU4 respectively,
i.e. ∆U = (δL, δM , δM , δR). Applying function θ to U and U ′, we
would like the same differences to appear on internal state V and V ′:
∆V = (δL, δM , δM , δR). The previous condition with probability 2−16 al-
ready ensures the two middle differences being the same δM . Concerning
differences δL and δR, they will both be unaffected by layer S, but they
might be modified through layer KA0 that applies a multiplication with
a null subkey. Therefore, we need to study the probability that a random
difference δ is mapped to itself through a multiplication by the null sub-
key. We show in Appendix B that this probability is equal to 2−1.585 and

finally we have Pr[(δL, δM , δM , δR)
θ−→ (δL, δM , δM , δR)] = 2−3.17.

At this point, we proved that for randomly chosen internal state values
U and U ′, we will observe with probability 2−19.17 the same difference on
U and V , i.e. ∆U = ∆V .

One can see that computing backward from internal states U to P
or forward from V to C, the function σ is applied. Our final goal is to
have the same difference on P and C. However, this seems unlikely to
happen since U and V have different values, the forward and backward
computations of σ should be completely unrelated, even with the same
input difference. Yet, this reasoning does not take in account the fact that
while U and V have distinct values, they are far from being independent:

V = θ(U) with θ being a very light function. Moreover, we remarked that
almost each time that we got the same difference on P and C, the same
differences were observed as well in all rounds of the forward and back-
ward σ computations (the round success probability increasing with the
number of rounds already processed). Because all the rounds are not in-
dependent and because U and V are strongly related, it is very difficult to
compute theoretically the probability of observing the same difference on
P and C and we leave this as an open problem. Therefore, we measured
it by choosing random values of U , δL, δM , δR, computing V = θ(U),
and checking for collisions on the difference of P and C. The probability
obtained was 2−16.26 for about 228 tests (note that this probability some-
how contains the 2−3.17 probability computed previously, but we can not
separate them because the two events are not independent).

To conclude, the probability that two randomly chosen internal state
values U and U ′ give the same difference on P and C is equal to 2−16−16.26 =
2−32.26 (instead of 2−64 expected for a random function). In other words,
using the birthday paradox, one can find such a pair with about 216.13

computations.

Interestingly, we have observed that most of the pairs fulfilling the
differential path for the full IDEA will also be valid for a strengthened
version of the cipher with any number of additional rounds. Since the
subkeys are always null, strengthening the cipher would mean that σ =
{MA0 ◦ KA0 ◦ S}t ◦ MA0 ◦ KA0 for any t > 3. We checked that the
probability that two randomly chosen internal state values U and U ′

give the same difference on P and C tends to 2−32.54 when t tends to
infinite. Thus, similarily to the method presented in the previous section,
the attacks using this almost half-involution property will work for any
number of rounds.

6.2 Improving collision attacks

Davies-Meyer. A first obvious application of having the same difference
in P and C is collision search on Davies-Mayer mode, where the feed-
forward will cancel the two differences in the output. The attack finds
collisions for the whole hash function and the procedure is very simple:
we start from the IV and add random differences in the first message
block M0. This will cause random differences in the the first chaining
variable CV1. For the second message block M1, we will set all its bits 0
(M1 = 0), forcing the internal IDEA computation to use the null key. Since
we estimated in the previous section that with the null key a random

pair of inputs has a probability 2−32.26 to give the same input/output
difference, one can use the birthday paradox to generate a collision on
CV2 with only 216.13 distinct message blocks M0. We give in Appendix C.2
examples of hash collisions for the Davies-Meyer mode. Note that finding
semi-free-start collisions with this technique is impossible since we would
have to insert differences in the message input, which forbids the use of
the null key in the internal cipher.

Hirose. We already showed how to find free-start collisions for the Hi-
rose mode. However, finding semi-free-start collisions with this technique
is impossible since we would have to insert differences in the message
input, which forbids the use of the null key in the internal cipher. Also,
concerning hash collisions, it seems hard as well because forcing the null
key during iteration i requires us to obtain a chaining variable CV 2i−1 = 0
during the previous iteration. This half-preimage already costs the same
complexity as a generic collision search on the entire compression func-
tion.

Abreast-DM. One can derive a free-start collision attack for the Abreast-
DM compression function using this technique. The attacker first fixes
CV 1 = 0 and M = 0. Then, he builds a set of 248.13 distinct values CV 2
and checks if a pair of this set leads to a collision. The probability that
a pair leads to a collision on the first (top) branch is 2−32.26 (since the
internal cipher on this part has the null key), and 2−64 on the other half.
Overall, using the birthday paradox on the set of 248.13 values CV 2 is
sufficient to have a good chance to obtain a collision. Note that finding a
semi-free-start collision for the compression function or a collision for the
hash function seems impossible with this method, for the same reasons
as the Hirose mode.

Tandem-DM. The situation of Tandem-DM is absolutely identical to
the Abreast-DM one: one can find free-start collisions for compression
function using this technique. The attacker first fixes CV 1 = 0 and M =
0. Then, he builds a set of 248.13 distinct values CV 2 and checks if a
pair of this set leads to a collision. The probability that a pair leads to a
collision on the first (top) branch is 2−32.26 (since the internal cipher on
this part has the null key), and 2−64 on the other half. Overall, using the
birthday paradox on the set of 248.13 values CV 2 is sufficient to have a
good chance to obtain a collision. Again, finding a semi-free-start collision

for the compression function or a collision for the hash function seems
impossible with this method, for the same reasons as the Hirose mode.

Peyrin et al.(II). We showed in previous section how to find (semi)-
free-start collisions with probability 1 for a certain subset of Peyrin et
al.(II) constructions, but here we provide attacks on a bigger subset. If
all compression function inputs CV 1, CV 2, M1 and M2 appear in at
least one of the IDEA key inputs of f1, f2, f3 (left side) and in at least
one of the IDEA key inputs of f3, f4, f5 (right side), then the attack will
not apply. Indeed, for both left side and right side of the compression
function, the attacker will necessarily have to insert a difference in at
least one key input (since all inputs will be involved) and he will not be
able to use the null key completely. Note that these instances would be
avoided in practice because they would lead to more frequent rekeying and
therefore reduce the overall performance of the hash function. However,
if this condition is not met, then we can apply the following free-start
collision attack. Let X ∈ {CV 1, CV 2,M1,M2} denote the input that
is missing in all the IDEA key inputs of f1, f2, f3 (wlog the reasoning
is the same with f3, f4, f5). The attacker first fixes all inputs but X
to 0 in order to get the null key in every internal IDEA on the left side.
Then he chooses 248.13 random values for X and checks among them
if any pair collides on the whole compression function output. Since he
has a probability 2−32.26 to get a collision on the left side and 2−64 on
the right side, using a birthday search the attacker finds a solution with
complexity 248.13. Again, if X 6∈ {CV 1, CV 2}, then this attack finds semi-
free-start collisions. However, finding a collision for the hash function
seems impossible with this method, because at least one of the chaining
variable inputs CV 1 and CV 2 will be present as key input for one of the
IDEA internal emcryption. Setting this word to 0 is equivalent to a half-
preimage that already costs the same complexity as a generic collision
search on the entire hash function.

MJH-Double. One can derive a semi-free-start collision attack on the
MJH-Double compression function instantiated with IDEA. The attacker
first fixes CV 2 = 0 and M2 = 0 and this will force the null key in
both encryptions. Now he chooses a random value for CV 1 (note that
actually this value could be fixed by the challenger) and builds a set of
232.26 values M1. In this configuration, it is easy to see that one will have
random differences on the plaintext inputs to both encryptions. Since the
null key is used for both, we have a probability 2−64.52 that a pair of

M1 leads to a collision after the feed-forward of both encryptions (on
the output of the bottom block and just before the application of g on
the top block). Therefore, with a birthday technique, one can find such a
pair with only 232.26 computations. Note that while this pair will directly
lead to a collision on the bottom CV 1 output, the difference on M1 is
injected two times before computing the top CV 2 output. Two times of
the same difference will cancel themselves and we eventually get a full
semi-free-start collision. Note that it seems hard to extend this attack to
a hash collision since the attacker would require to force the incoming
chaining variable CV 2 to be equal to 0 and this half-preimage already
costs the same complexity as a generic collision search on the entire hash
function.

7 Preimage attacks

We showed in Section 4 that if used with the null key, the whole permu-
tation defined by IDEA is a T-function. Since any output bit at position i
only depends on the input bits located at a position i or lower, we reuse
the idea of preimage attack for hash functions based on T-functions [34]
where the preimage is computed bit layer by bit layer, starting from the
LSB. However, here our situation is different than the functions studied
in [34] since we do not have any truncation or reduction of the internal
state at the end of the process.

We denote by p the probability that given a random challenge, our
algorithm outputs a preimage for this challenge. We denote by s the av-
erage number of preimage solutions that the algorithm will output, given
that at least one is found. The average number of solutions outputted by
our algorithm is then A = s ·p. For an n-bit ideal compression function, a
generic attack restricted to C computations can generate A = C · 2−n so-
lutions on average. Thus, we can consider that a preimage attack is found
if we exhibit an algorithm that outperforms this generic complexity.

Davies-Meyer. Since the key is fixed to 0 and since the plaintext and
ciphertext sizes are the same, we trivially have that A = 1. We mea-
sured3 that p = 2−17.50, thus we directly deduce that s = A/p = 217.5. A
straightforward implementation is a recursive depth first search, attack-
ing the T-function by bit layer from the LSB to the MSB of the 16-bit
state words. Wrong candidates at lower layers are discarded thanks to

3 from 231 random challenges, we measured that p = 2−17.50 and s = 217.74.

an early-abort strategy. On average, the amount of IDEA encryptions re-
quired to find all the possible preimages (if at least one can be found) can
be estimated as C ' 16 · 24 · s = 225.5, since we have 16 bit layers, each
having 4 bits of input, and on average the number of candidates in one
layer is s. This is a very conservative estimation since only p = 2−17.50 of
the challenges on average will eventually lead to a solution and the early-
abort strategy will make the actual search of very low complexity. In the
ideal case, with C = 225.5 computations allowed, an attacker should only
be able to generate A = 225.5−64 = 2−38.5 solutions on average for an
ideal 64-bit compression function. We give an example of a preimage in
Appendix C.4.

Hirose. We can reuse the attack on Davies-Meyer, but only one of the
two branches will be controlled, with the other behaving randomly. We
first find a preimage for the first branch (with probability 2−17.5) and
then use the 217.5 solutions on average to also match the second branch
(with probability 217.5−64 = 2−46.5). Therefore, our preimage search al-
gorithm have parameters p = 2−17.5−46.5 = 2−64 and s = 1, while the
average number of preimage solutions found is A = 2−64. The complexity
of the search is equivalent to the Davies-Meyer case, C = 225.5. For an
attacker using at most 225.5 computations on an ideal 128-bit compression
function, the average number of solutions he could find is only 2−102.5.

Abreast-DM. Similarly to Hirose, by setting for example M = CV 1 =
0, one can attack one branch bit layer by bit layer while the other branch
will behave randomly. The complexity analysis is identical to Hirose’s
case.

Tandem-DM. Similarly to Hirose, by setting M = CV 1 = 0, one can
attack one branch bit layer by bit layer while the other branch will behave
randomly. The complexity analysis is identical to Hirose’s case.

Peyrin et al.(II). If all compression function inputs CV 1, CV 2, M1
and M2 appear in at least one of the IDEA key inputs of f1, f2, f3 (left
side) and in at least one of the IDEA key inputs of f3, f4, f5 (right side),
then the attack will not apply (because the attacker will not be able to
use the null key completely). Otherwise, similarly to Hirose, by setting all
IDEA keys to 0 on one side, one can attack it bit layer by bit layer while
the other side will behave randomly. The complexity analysis is identical
to Hirose’s case.

MJH-Double. The attacker first fixes M2 = CV 2 = 0 so as to get the
null key for both IDEA encryptions. Then, similarly to the Davies-Meyer
case, he find a preimage with probability p = 2−17.5 for one of the two
sides and this defines the value of M1⊕CV 1. In order to get the preimage
on the second side as well, the attacker only has to modify the value of M1
accordingly. If a solution is found on the first side, the attacker therefore
gets s = 217.5 preimages. On average, he finds A = 1 solutions and the
complexity is again 225.5 computations. For an attacker using at most
225.5 computations on an ideal 128-bit compression function, the average
number of solutions he should find is only 2−102.5.

8 Results and implementations

We depict in Table 1 our results for the block cipher to compression
function modes considered in this article when instantiated with IDEA.
We implemented all attacks of reasonable complexities and provide in
Appendix C the collision/preimage examples obtained.

Table 1. Summary of results for block cipher to compression function modes when
instantiated with IDEA (we did not include MDC-2 as it does not provide ideal collision
resistance). The preimage complexity results find s preimages on average with a certain
probability p, for a total average of A = s · p solutions. The results for Peyrin et al.(II)
construction, marked with a *, depend on the instance considered (see relevant parts
of Sections 5, 6 and 7 for more details).

Mode

hash compression function hash function

output free-start semi-free-start preimage attack collision

size collision attack collision attack complexity (s, p) attack

Davies-Meyer [1] 64 21 225.5 (217.5, 2−17.5) 216.13

Hirose [19, 20] 128 21 225.5 (1, 2−64)

Abreast-DM [27, 39] 128 248.13 225.5 (1, 2−64)

Tandem-DM [27, 39] 128 248.13 225.5 (1, 2−64)

Peyrin et al.(II) [35] 128 21 / 248.13? 21 / 248.13? 225.5 (1, 2−64)?

MJH-Double [29] 128 232.26 232.26 225.5 (217.5, 2−17.5)

Conclusion

In this article, we showed collision and preimage attacks for several single
and double-length block cipher based compression function constructions

when instantiated with the block cipher IDEA. Namely, we analyzed all
known double-key schemes such as Davies-Meyer, Hirose, Abreast-DM,
Tandem-DM, Peyrin et al. (II) and MJH-Double. While most of these
constructions are conjectured or proved to be secure in the ideal cipher
model, we showed that their security is very weak when instantiated with
the block cipher IDEA, which remains considered as secure in the secret
key model. In particular, we answer in the negative for the 20-year-old
standing open question concerning the security of the Abreast-DM and
Tandem-DM instantiated with IDEA. All our practical attacks have been
implemented and they can work even for any number of IDEA rounds. Our
results indicate that one has to be very careful when hashing with a block
cipher that presents any weakness when the key is known or controlled by
the attacker. Also, since we extensively use the presence of weak-keys for
IDEA, as a future work it would be interesting to look at the security of
hash functions based on block ciphers for which some key sets are known
to be weaker than others.

Acknowledgments

The authors would like to thank the anonymous referees for their helpful
comments.

References

1. A. Menezes, P. van Oorschot, and S. Vanstone. CRC-Handbook of Applied Cryp-
tography. CRC Press, 1996.

2. Eyüp Serdar Ayaz and Ali Aydin Selçuk. Improved DST Cryptanalysis of IDEA.
In Eli Biham and Amr M. Youssef, editors, Selected Areas in Cryptography, volume
4356 of Lecture Notes in Computer Science, pages 1–14. Springer, 2006.

3. Eli Biham, Orr Dunkelman, and Nathan Keller. New Cryptanalytic Results on
IDEA. In Lai and Chen [25], pages 412–427.

4. Eli Biham, Orr Dunkelman, and Nathan Keller. A New Attack on 6-Round IDEA.
In Alex Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer Science,
pages 211–224. Springer, 2007.

5. Eli Biham, Orr Dunkelman, Nathan Keller, and Adi Shamir. New Data-Efficient
Attacks on Reduced-Round IDEA. Cryptology ePrint Archive, Report 2011/417,
2011.

6. Alex Biryukov, Jorge Nakahara Jr., Bart Preneel, and Joos Vandewalle. New Weak-
Key Classes of IDEA. In Robert H. Deng, Sihan Qing, Feng Bao, and Jianying
Zhou, editors, ICICS, volume 2513 of Lecture Notes in Computer Science, pages
315–326. Springer, 2002.

7. John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of
the Block-Cipher-Based Hash-Function Constructions from PGV. In Moti Yung,
editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 320–
335. Springer, 2002.

8. Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of LNCS. Springer, 1990.

9. Donghoon Chang. Near-Collision Attack and Collision-Attack on Double Block
Length Compression Functions based on the Block Cipher IDEA. Cryptology
ePrint Archive, Report 2006/478, 2006. http://eprint.iacr.org/.

10. Joan Daemen, René Govaerts, and Joos Vandewalle. Weak Keys for IDEA. In
Stinson [37], pages 224–231.

11. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

12. Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard [8], pages
416–427.

13. Hüseyin Demirci, Ali Aydin Selçuk, and Erkan Türe. A New Meet-in-the-Middle
Attack on the IDEA Block Cipher. In Matsui and Zuccherato [32], pages 117–129.

14. Bert den Boer and Antoon Bosselaers. Collisions for the Compressin Function of
MD5. In EUROCRYPT, pages 293–304, 1993.

15. Hans Dobbertin. Cryptanalysis of MD5 compress. Presented at the rump session
of EUROCRYPT 1996, 1996.

16. Ewan Fleischmann, Michael Gorski, and Stefan Lucks. On the Security of Tandem-
DM. In Orr Dunkelman, editor, FSE, volume 5665 of Lecture Notes in Computer
Science, pages 84–103. Springer, 2009.

17. Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Security of Cyclic Double
Block Length Hash Functions including Abreast-DM. Cryptology ePrint Archive,
Report 2009/261, 2009. http://eprint.iacr.org/.

18. Philip Hawkes. Differential-Linear Weak Key Classes of IDEA. In EUROCRYPT,
pages 112–126, 1998.

19. Shoichi Hirose. Provably Secure Double-Block-Length Hash Functions in a Black-
Box Model. In Choonsik Park and Seongtaek Chee, editors, ICISC, volume 3506
of Lecture Notes in Computer Science, pages 330–342. Springer, 2004.

20. Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash Func-
tions. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in
Computer Science, pages 210–225. Springer, 2006.

21. John Kelsey, Bruce Schneier, and David Wagner. Key-Schedule Cryptoanalysis
of IDEA, G-DES, GOST, SAFER, and Triple-DES. In Neal Koblitz, editor,
CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 237–251.
Springer, 1996.

22. Dmitry Khovratovich, Gaetan Leurent, and Christian Rechberger. Narrow Bi-
cliques: Cryptanalysis of Full IDEA. In EUROCRYPT, 2012, to appear.

23. Alexander Klimov and Adi Shamir. Cryptographic Applications of T-Functions.
In Matsui and Zuccherato [32], pages 248–261.

24. Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some Block
Ciphers. In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of LNCS, pages
315–324. Springer, 2007.

25. Xuejia Lai and Kefei Chen, editors. Advances in Cryptology - ASIACRYPT 2006,
12th International Conference on the Theory and Application of Cryptology and
Information Security, Shanghai, China, December 3-7, 2006, Proceedings, volume
4284 of Lecture Notes in Computer Science. Springer, 2006.

26. Xuejia Lai and James L. Massey. A Proposal for a New Block Encryption Standard.
In EUROCRYPT, pages 389–404, 1990.

27. Xuejia Lai and James L. Massey. Hash Function Based on Block Ciphers. In
EUROCRYPT, pages 55–70, 1992.

28. Jooyoung Lee and Daesung Kwon. The Security of Abreast-DM in the Ideal Cipher
Model. Cryptology ePrint Archive, Report 2009/225, 2009. http://eprint.iacr.
org/.

29. Jooyoung Lee and Martijn Stam. MJH: A Faster Alternative to MDC-2. In Aggelos
Kiayias, editor, CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages
213–236. Springer, 2011.

30. Jooyoung Lee, Martijn Stam, and John P. Steinberger. The Collision Security
of Tandem-DM in the Ideal Cipher Model. In Phillip Rogaway, editor, CRYPTO,
volume 6841 of Lecture Notes in Computer Science, pages 561–577. Springer, 2011.

31. Michael Luby and Charles Rackoff. How to Construct Pseudorandom Permutations
from Pseudorandom Functions. SIAM J. Comput., 17(2):373–386, 1988.

32. Mitsuru Matsui and Robert J. Zuccherato, editors. Selected Areas in Cryptography,
10th Annual International Workshop, SAC 2003, Ottawa, Canada, August 14-15,
2003, Revised Papers, volume 3006 of Lecture Notes in Computer Science. Springer,
2004.

33. Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [8], pages
428–446.

34. Frédéric Muller and Thomas Peyrin. Cryptanalysis of T-Function-Based Hash
Functions. In Min Surp Rhee and Byoungcheon Lee, editors, ICISC, volume 4296
of Lecture Notes in Computer Science, pages 267–285. Springer, 2006.

35. Thomas Peyrin, Henri Gilbert, Frédéric Muller, and Matthew J. B. Robshaw.
Combining Compression Functions and Block Cipher-Based Hash Functions. In
Lai and Chen [25], pages 315–331.

36. Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based on
Block Ciphers: A Synthetic Approach. In Stinson [37], pages 368–378.

37. Douglas R. Stinson, editor. Advances in Cryptology - CRYPTO ’93, 13th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 22-
26, 1993, Proceedings, volume 773 of Lecture Notes in Computer Science. Springer,
1994.

38. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, EUROCRYPT, volume 3494 of LNCS, pages 19–35.
Springer, 2005.

39. Xuejia Lai. On the Design and Security of Block Ciphers. Hartung-Gorre Verlag,
Konstanz, 1992.

A The IDEA subkeys

B Proof of difference preservation through multiplication
with a null subkey

We prove in this section that for randomly chosen values a and a′ with
a ⊕ a′ = δ, the probability that the difference δ is preserved after multi-
plication by the null subkey is equal to 2−1.585. The condition we expect
can be translated into the following equation

δ = a⊕ a′ = (a� 0)⊕ (a′ � 0).

i-th round Z
(i)
1 Z

(i)
2 Z

(i)
3 Z

(i)
4 Z

(i)
5 Z

(i)
6

1 0-15 16-31 32-47 48-63 64-79 80-95

2 96-111 112-127 25-40 41-56 57-72 73-88

3 89-104 105-120 121-8 9-24 50-65 66-81

4 82-97 98-113 114-1 2-17 18-33 34-49

5 75-90 91-106 107-122 123-10 11-26 27-42

6 43-58 59-74 100-115 116-3 4-19 20-35

7 36-51 52-67 68-83 84-99 125-12 13-28

8 29-44 45-60 61-76 77-92 93-108 109-124

OT 22-37 38-53 54-69 70-85

Table 2. Key bits used for subkeys Z
(i)
j in the i-th round of IDEA

Since the � operation is equivalent to a complement (or XOR with
0xffff) and an addition with value 2, we can rewrite

δ = ((a⊕ 0xffff) + 2)⊕ ((a′ ⊕ 0xffff) + 2)

δ = ((a⊕ 0xffff) + 2)⊕ ((a⊕ δ ⊕ 0xffff) + 2)

δ = (b+ 2)⊕ ((b⊕ δ) + 2)

δ ⊕ (b+ 2) = (b⊕ δ) + 2

where b = a⊕ 0xffff. One can check that the least significant bit condi-
tion of this equation is always fulfilled.

If the second least significant bit of b is 0 (probability 1/2), then
(b+ 2) = b⊕ 2 and the equation is fulfilled if and only if the second least
significant bit of (b⊕ δ) is also 0 (probability 1/2). Overall, this situation
happens with probability 1/4.

If the second least significant bit of b is 1 (probability 1/2), then we
will have a carry propagating and we require the second least significant
bit of (b⊕δ) to be also 1 (probability 1/2). If the third least significant bit
of b is 0 (probability 1/2), then (b+2) = b⊕6 and the equation is fulfilled
if and only if the third least significant bit of (b⊕ δ) is also 0 (probability
1/2). Overall, this situation happens with probability (1/4)2.

Continuing this reasoning over all the bits layers, we obtain that the
success probability is equal to

14∑
i=1

(1/4)i = 2−1.585.

C Collision and preimage examples

C.1 Free-start collision for Davies-Meyer mode

CVi : 0x9efc 0x14ef 0x85d6 0xc557

CV ′i : 0x1efc 0x94ef 0x05d6 0x4557

M = M ′ : 0

CVi+1 = H(CVi,M) : 0x7f11 0x83f1 0x7617 0x8af3

CV ′i+1 = H(CV ′i ,M
′) : 0x7f11 0x83f1 0x7617 0x8af3

C.2 Hash function collision for Davies-Meyer mode

We use as initial value the first 64 output bits of the SHA-2 computation
of the string “IDEA”:

SHA-2(”IDEA”) = ”9f8c7b26cde59ca3dacc74ec7afda737ac1d15aa5239206416f79019dbd7ec37”

IV : IV1 = 0x9f8c, IV2 = 0x7b26, IV3 = 0xcde5, IV4 = 0x9ca3

M1: 0xdacc 0xdacc 0xdacc 0xdacc 0xdacc 0xdacc 0xcadc 0x0282

M ′1: 0xdacc 0xdacc 0xdacc 0xdacc 0xdacc 0xdacc 0xcade 0x1a3f

CV1 = H(IV,M1): 0xb782 0x4583 0x83b6 0x0bef

CV ′1 = H(IV,M ′1): 0x1ce2 0x8553 0xe656 0x4387

CV2 = H(CV1, 0): 0xdffd 0x3ffd 0x8e7d 0x6e7d

CV ′2 = H(CV ′1 , 0): 0xdffd 0x3ffd 0x8e7d 0x6e7d

C.3 Free-start collision for Hirose mode

For Hirose mode, we used as constant c the first 64 output bits of the
SHA-2 computation of the string “IDEA”:

SHA-2(”IDEA”) = ”9f8c7b26cde59ca3dacc74ec7afda737ac1d15aa5239206416f79019dbd7ec37”

c : 0x9f8c 0x7b26 0xcde5 0x9ca3

CV 1i : 0x93e8 0x4d86 0x45a5 0xa829

CV 1′i : 0x13e8 0xcd86 0xc5a5 0x2829

CV 2i = CV 2′i : 0

M = M ′ : 0

CV 1i+1 : 0x2101 0x23c9 0xde42 0xdc96

CV 1′i+1 : 0x2101 0x23c9 0xde42 0xdc96

CV 2i+1 : 0x0009 0x0401 0x3d38 0x3934

CV 2′i+1 : 0x0009 0x0401 0x3d38 0x3934

C.4 Preimage for Davies-Meyer mode

Since a random 64-bit challenge has preimage(s) with a probability p, we
show the preimage of a challenge which we are sure at least one preimage
exists (similar to a second-preimage search). In order to get the challenge,
we use as input the first 64 output bits of the SHA-2 computation of the
string “IDEA”, and provide one of the preimages found:

SHA-2(”IDEA”) = ”9f8c7b26cde59ca3dacc74ec7afda737ac1d15aa5239206416f79019dbd7ec37”

The challenge H(0x9f8c7b26cde59ca3, 0) : 0x20ad1fc924e61ba2

CVi+1 = H(CVi,M) : 0x20ad 0x1fc9 0x24e6 0x1ba2

M : 0

CVi : 0x1860 0x002e 0x2d82 0x0200

CVi is one preimage out of 223.585 for CVi+1, the search takes 225.486 IDEA
encryptions, and the average cost per preimage is around 21.9.

D Double-key block cipher based compression functions

CVi+1

CVi

EM

Fig. 2. Davies-Meyer

f1 f2 f3 f4 f5

CV 1i+1 CV 2i+1

CV 1i

M1

M2CV 1i

CV 2i

M1 CV 1i

CV 2i

M2 CV 1i

CV 2i

M1 CV 2i

M1

M2

Fig. 3. Peyrin et al. (II)

c

E

E

CV 1i+1CV 1i

CV 2i

M

CV 2i+1

Fig. 4. Hirose

M

CV 2i+1CV 2i

W

E

CV 1i+1CV 1i E

Fig. 5. Tandem-DM

CV 1i

M

CV 2i
E CV 2i+1

CV 1i+1E

Fig. 6. Abreast-DM

CV 1i+1

E

CV 2i

f

M2

CV 1i E

M1

CV 2i+1·g

Fig. 7. MJH-Double

