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Abstract. A private set intersection (PSI) protocol allows two parties to compute
the intersection of their input sets privately. Most of the previous PSI protocols
only output the result to one party and the other party gets nothing from running
the protocols. However, a mutual PSI protocol in which both parties can get the
output is highly desirable in many applications. A major obstacle in designing a
mutual PSI protocol is how to ensure fairness. In this paper we present the first
fair mutual PSI protocol which is efficient and secure. Fairness of the protocol
is obtained in an optimistic fashion, i.e. by using an offline third party arbiter.
In contrast to many optimistic protocols which require a fully trusted arbiter,
in our protocol the arbiter is only required to be semi-trusted, in the sense that
we consider it to be a potential threat to both parties’ privacy but believe it will
follow the protocol. The arbiter can resolve disputes without knowing any private
information belongs to the two parties. This feature is appealing for a PSI protocol
in which privacy may be of ultimate importance.

1 Introduction

An interesting problem in secure computation is private set intersection (PSI). Namely,
how to enable two mutually untrusted parties to compute jointly the intersection of their
private input sets. PSI has many potential applications in private data mining, online
recommendation services, online dating services, medical databases and so on. There
have been many protocols proposed to solve the PSI problem [1–10]. The majority
of them are single-output protocols, i.e. only one party obtains the intersection and
the other party gets nothing. However, there are many motivating scenarios in which
both parties want to know the intersection. Several examples have been given in [6] to
demonstrate the need for such mutual PSI protocols:

– Two real estate companies would like to identify customers (e.g., homeowners) who
are double-dealing, i.e., have signed exclusive contracts with both companies to
assist them in selling their properties.

– A government agency needs to make sure that employees of its industrial contrac-
tor have no criminal records. Neither the agency nor the contractor are willing to
disclose their respective data-sets (list of convicted felons and employees, respec-
tively) but both would like to know the intersection, if any.



A mutual PSI protocol must be fair, i.e. if one party knows the intersection, the
other party should also know it. However fairness is hard to achieve in cryptographic
protocols (see Section 2 for a brief overview). To efficiently achieve fairness, most fair
cryptographic protocols are optimistic which requires help from an offline arbiter who
is a trusted third party. The arbiter only participates if one party unfairly aborts the pro-
tocol and can recover the output from the protocol for the honest party. Incorporating
optimistic fairness in PSI protocols is not easy for two reasons: firstly, although there
is a generic structure, there is no generic construction for optimistic fair protocols. Sec-
ondly, the arbiter usually has to get access to some private information and therefore
has to be fully trusted. However, in reality it is hard to find such a fully trusted third
party. Think about the examples above: an independent entity, e.g. an auditing service
provider, could be well qualified to resolve the disputes, however giving a third party
access to private data may raise privacy concerns. We can find more cases in which
the two parties may trust a third party for fairly resolving disputes, but may not trust it
for privacy.

In this paper, we present the first fair mutual PSI protocol. The protocol has built-in
support for optimistic fairness and does not require setup assumptions such as certified
input sets. In addition, the third party acting as the arbiter can resolve disputes without
knowing the private inputs or the output of the PSI protocol. Hence we can significantly
reduce the trust placed on the arbiter. This makes the protocol more flexible in terms of
practical usage as any third party can become an arbiter as long as they are believed to
be able to correctly carry out instructions.

2 Related Work

Private Set Intersection (PSI) protocols allow two parties, each with a private set, to
securely compute the intersection of their sets. It was first introduced by Freedman et al
in [1]. Their protocol is based on oblivious polynomial evaluation. Dachman-Soled et al
[2], Hazay and Nissim [3] followed the oblivious polynomial evaluation approach and
proposed protocols which are more efficient in the presence of malicious adversaries.
Hazey and Lindell [4] proposed another approach for PSI which is based on oblivious
pseudorandom function evaluation. This approach is further improved by Jarecki and
Liu [5]. De Cristofaro et al [6, 7] proposed PSI protocols with linear communication
and computational complexities. Huang et al [11] presented a PSI protocol based on
garble circuits, and shows in the semi-honest model the protocol can be very efficient.
There are also protocols based on commutative encryption [12, 13].

All of the above protocols are single-output, i.e. one party gets the output and the
other party gets nothing. This is a traditional way to simplify protocol design in the ma-
licious model because it removes the need for fairness, i.e. how to prevent the adversary
from aborting the protocol pre-maturely after obtaining the output (and before the other
party obtains it) [14].

Nevertheless, there have been a few mutual PSI protocols which are designed to
output the intersection to both parties. Kissner and Song [8] proposed the first mutual
PSI protocol. The protocol itself does not guarantee fairness, but relies on the assump-
tion that the homomorphic encryption scheme they use has a fair threshold decryption
protocol. However, unless there is an online trusted third party, it is also non-trivial



to achieve fairness in threshold decryption protocols. On the other hand, if an online
trust third party is available, the PSI functionality can be trivially computed by giv-
ing the input sets to the trusted party. Camenisch and Zaverucha [9] sketched a mutual
PSI protocol which requires the input sets to be signed and certified by a trusted party.
Their mutual PSI protocol is obtained by weaving two symmetric instances of a single-
output PSI protocol with certified input sets. Fairness is obtained by incorporating an
optimistic fair exchange scheme. However this protocol does not work in general cases
where inputs are not certified because it is hard to force the two parties to use the same
inputs in the two instances. Another mutual PSI protocol is proposed by Kim et al [10],
but they specifically state that fairness is not considered in their security model.

Fairness is a long discussed topic in cryptographic protocols. Cleve [15] showed that
complete fairness is impossible in two-party protocols in the malicious model. How-
ever, partial fairness can be achieved. Partial fairness means that one party can have
an unfair advantage, but the advantage is computationally insignificant. Many protocols
achieve partial fairness by using the gradual release approach [16–18]. However, this
approach is very inefficient in nature. The Optimistic approach, which uses an offline
trusted third party, has been widely used to obtain fairness efficiently. It is called op-
timistic because it cannot prevent the unfair behaviour but later the trusted third party
can recover the output for the honest party. There has been a long line of research in
this direction [19–25]. Previously, the trusted third party in an optimistic fair protocol
which requires non-trivial computation on the inputs needs to be fully trusted and can
get the output or inputs of the protocol if one party raises a dispute. This might not
be desirable when the output or inputs should be strictly kept private. There are also
other approaches for achieving partial fairness efficiently. But usually they work only
for a specific problem. For example, the concurrent signatures protocol [26] allows two
parties to produce and exchange two ambiguous signatures until an extra piece of infor-
mation (called keystone) is released by one of the parties. The two parities obtain the
signature from the other party concurrently when the keystone is released and therefore
fairness is achieved. Kamara el al [27] proposed a new computation model in which
a non-colluding server is involved. Fairness can be achieved in this model if there is
a semi-trusted server, but the server has to be online during the computation. In our
protocol we also require a semi-trusted server but it can be offline most of the time.

3 Building Blocks

3.1 Homomorphic Encryption

A semantically secure homomorphic public key encryption scheme is used as a build-
ing block in the protocol. There are two types of homomorphic encryption, additive
and multiplicative. The additive homomorphic property can be stated as follows: (1)
given two ciphertexts Epk(m1), Epk(m2), Epk(m1 + m2) = Epk(m1) · Epk(m2);
(2) given a ciphertext Epk(m1) and a constant c, Epk(c · m1) = Epk(m1)c. The
multiplicative homomorphic property can be stated as follows: (1) given two cipher-
texts Epk(m1), Epk(m2), Epk(m1 ·m2) = Epk(m1) ·Epk(m2); (2) given a ciphertext
Epk(m1) and a constant c, Epk(mc

1) = Epk(m1)c.



3.2 The Freedman-Nissim-Pinkas (FNP) protocol

Our starting point is the PSI protocol in the semi-honest model proposed by Freedman
et al. [1], which is based on oblivious polynomial evaluation. In this protocol, one party
A has an input set X and another party B has an input set Y such that |X| = |Y | = n.5

The two parties interact as follows
1. A chooses a key pair (pk, sk) for an additive homomorphic encryption scheme and

makes the public key pk available to B.
2. A defines a polynomialQ(y) = (y−x1)(y−x2) . . . (y−xn) =

∑n
i=0 diy

i, where
each element xi ∈ X is a root of Q(y). A then encrypts each coefficient di using
the public key chosen in the last step and sends the encrypted coefficients Epk(di)
to B.

3. For each element yj ∈ Y , B evaluates Q(yj) obliviously using the homomorphic
property Epk(Q(yj)) =

∏n
i=0Epk(di)

yij . B also encrypts yj using A’s public key.
B then chooses a random rj and uses the homomorphic property again to compute
Epk(rj ·Q(yj)+yj) = Epk(Q(yj))

rj ·Epk(yj).B sends eachEpk(rj ·Q(yj)+yj)
to A. 6

4. A decrypts each ciphertext received from B. If yj ∈ X ∩ Y , then Q(yj) = 0, thus
the decryption will be yj which is also an element in X , otherwise, the decryption
will be a random value. By checking whether the decryption is in X , A can output
X ∩ Y while learns nothing about other elements in Y but not in X .

3.3 Zero Knowledge Proof
A zero knowledge proof protocol allows a prover to prove the validity of a statement
without leaking any other information. The protocol presented in Section 3.2 is secure
against semi-honest adversaries. However, in the presence of malicious adversaries we
have to prevent the adversaries from deviating from the protocol. We enforce this by
requiring each party to use zero knowledge proofs to convince the other party that it
follows the protocol correctly. We will name the protocols as PK(...) and use the nota-
tion introduced in [28] to present the protocols in the rest of the paper

u {ωi ∈ I∗(mωi
)}ni=1 : ∃{χj ∈ I∗(mχj

)}mj=1 : φ(ω1, ..., ωn, χ1, ..., χm)
In short, the prover is proving the knowledge of ω1, ..., ωn and the existence of χ1, ..., χm
such that these values satisfy certain predicate φ(ω1, ..., ωn, χ1, ..., χm). Each ωi and
χj belongs to some integer domain I∗(mωi

) and I∗(mχj
). Each predicate is a boolean

formula built from atomic predicates of discrete logarithms y =
∏n
i=1 g

Fi(ω1,...,ωn)
i ,

where Fi is an integer polynomial. All quantities except ω1, ..., ωn are assumed to be
publicly known.

For example, the following means that given a certain group structure and a tuple
(α, β, g, h), the prover can prove in zero knowledge that it knows the discrete logarithm
x of α and there exists some s such that β = hxgs.

u x ∈ Zq : ∃s ∈ Zq : α = gx ∧ β = hxgs
5 In our protocol described in 4, we have a different requirement on the size of the input sets.

This is due to the fact that the FNP protocol is a single output PSI protocol and ours is a mutual
PSI protocol.

6 For the sake of simplicity, we neglect the optimisations made in the paper to polynomial eval-
uation by using balanced allocation scheme and Horner’s rule.



3.4 Verifiable Encryption
In a nutshell, a verifiable encryption scheme is a public key encryption scheme accom-
panied by an efficient zero knowledge proof of the plaintext satisfies certain properties
[29]. It has numerous applications in key escrow, secret sharing and optimistic fair
exchange. In optimistic fair exchange protocols, a convention is to let a party create a
verifiable escrow of a data item. The escrow is essentially an encryption of the escrowed
item under the offline arbiter’s public key. A public data called a label is attached so that
the arbiter can verify the decryption against the label to ensure certain properties hold.
It also allows efficient zero knowledge proof of correct decryption to be constructed.

3.5 Perfectly Hiding Commitment

In our protocol, we also use a perfectly hiding commitment scheme [30] in zero knowl-
edge proof protocols. Generally speaking, a commitment scheme is a protocol between
two parties, the committer and the receiver. The committer can commit to a value v by
generating a commitment com(v) and sends it to the receiver. The commitment can be
used as input to zero knowledge proof protocols. The commitment has two properties:
hiding which means it is infeasible for the receiver to find v; binding which means it
is infeasible for the committer to find another v′ such that com(v′) = com(v). The
strength of hiding and binding can be perfect or computational. In our case, we want
a perfectly hiding commitment scheme which means the receiver cannot recover the
value committed, even with unbounded computational power.

4 Overview of the Protocol
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Fig. 1. Overview of the Fair PSI protocol

In this section, we give a high level view of the protocol as depicted in Fig. 1. The
protocol has two sub-protocols: a PSI protocol to compute the set intersection between
A and B and a dispute resolution protocol. Note in our protocol, all encryptions are



in exponential form, i.e. rather than encrypting directly a message m, we encrypt gm

where g is a generator of a certain group. This modification is necessary to allow zero
knowledge proof, and the modification does not affect the correctness or security of
the encryption schemes. With this modification, oblivious polynomial evaluation is still
possible if we use a multiplicative homomorphic encryption scheme rather than an ad-
ditive one. The polynomial is moved to the exponent and the evaluation is done by
operations on exponents. This is a standard technique in homomorphic encryption. For
example, given Epk(ga), Epk(gb) and x, we can evaluate ax + b obliviously and get
Epk(gax+b) by computing (Epk(ga))x ·Epk(gb). Having polynomial evaluation results
on exponents is sufficient for our protocol, as the parties only need to test whether for
certain y, Q(y) is 0. This can be done effectively because Q(y) = 0 iff gQ(y) = 1.

– Setup: Choose a homomorphic encryption schemeE, a verifiable encryption scheme
E , publish the public parameters. The offline arbiter R also generates a key pair for
E and publishes the public key through a CA.

– Private Set Intersection: A and B are parties who engage in the computation of
the set intersection, and each has a private input set X and Y respectively. In our
protocol we require that A’s set contains at least one random dummy element in
each protocol execution. The sizes of X and Y are also required to be different.
Namely, |X| = n′, |Y | = n such that n′ > n. The requirements are placed to
protect A’s polynomial (see remark 1). A and B each also generates a random key
pair for E and sends the public key to the other. They also negotiate a message
authentication code (MAC) key k. This key is used by both parties to ensure the
messages in the protocol execution comes from the other party. A general method
to achieve this is using a MAC algorithm. To simplify presentation, we omit the
MAC in the protocol description .
1. A generates a polynomial based on A’s set X as described in Section 3.2. If
dn′ is zero, regenerates the random dummy elements in X and the polynomial
again until dn′ is not zero. A encrypts all the coefficients as EpkA(gd0), ...,
EpKA

(gdn′ ) and sends the ciphertexts to B. A then runs a zero knowledge
proof protocol PKpoly to prove that the polynomial is indeed correctly con-
structed.

2. For each element yj ∈ Y , B evaluates the polynomial using the homomorphic
property. Unlike in the FNP protocol that evaluates toEpkA(rj ·Q(yj)+yj), in
our protocol, B also uses another random blinding factor r′j to blind the result.
So the polynomial evaluates to EpkA(grj ·Q(yj)+r′j+yj ). B sends all ciphertexts
to A. B then encrypts all the blinding factors r′j using R’s public key with a
label L as ELpkR(gr

′
j ). L includes a session ID and a hash value of all communi-

cation in the the protocol execution so far (see remark 2). B sends the encrypted
blinding factors to A, and uses PKprop to prove that (1) the polynomial eval-
uation is properly done and (2) the encryption of blinding factors is properly
done.

3. A decrypts eachEpkA(grj ·Q(yj)+r′j+yj ) and then encrypts each grj ·Q(yj)+r′j+yj

using B’s public key. Each ciphertext EpkB (grj ·Q(yj)+r′j+yj ) is sent to B and
A must prove to B that the ciphertext is a correct re-encrypted ciphertext of
the correspondingEpkA(grj ·Q(yj)+r′j+yj ).B then decrypts each ciphertext and



checks whether there is gyj+r′j that matches the decryption grj ·Q(yj)+r′j+yj , if
so yj is in X ∩ Y .

4. B then sends gr
′
1 , ..., gr

′
n and proves they are correct with regard to the encryp-

tion sent in step 2. Then A will be able to test all combinations of gxi+r
′
j to see

whether there is a match of a decryption grj ·Q(yj)+r′j+yj it obtained in step 3,
if so xi is in X ∩ Y . If B does not send gr

′
1 , ..., gr

′
n or fail to prove they are

valid, A can raise a dispute with R by sending a dispute resolution request.
– Dispute Resolution:

1. A sends all messages sent and received in the first two setps of the PSI protocol
execution toR.R verifies it by checking the consisitence between the messages
and the label. If the transcript ends before the end of step 2 of the PSI protocol,
R simply aborts as neither party gets any advantage.

2. A then encrypts each grj ·Q(yj)+r′j+yj using B’s public key. The ciphertext
EpkB (grj ·Q(yj)+r′j+yj ) is sent toR andAmust prove toR that the ciphertext is
a correct re-encrypted ciphertext of the corresponding EpkA(grj ·Q(yj)+r′j+yj )
in the transcript.

3. R decrypts ELpkR(gr
′
1), ..., ELpkR(gr

′
n) and sends gr

′
1 , ..., gr

′
n to A, so that A can

learn the intersection X ∩ Y .
4. R also sends all EpkB (grj ·Q(yj)+r′j+yj ) to B.

Remark 1: In the initialisation stage of the PSI protocol, we require A to randomise its
set X by adding at least one random and secret dummy element, and make sure |X| >
|Y |. This is to protect A’s privacy. Plaintext in each EpkB (grj ·Q(yj)+r′j+yj ) needs to be
released to B in the PSI protocol. As rj and r′j are chosen by B, B might be able to
recover gQ(yj). B can recover A’s polynomial if it can obtain at least n′ (gQ(yj), yj)
pairs. In any execution of the protocol, B can recover at most n pairs. Because n′ > n,
the attack is not possible. Randomising the polynomial in each execution prevents B
from pooling information gathered from different executions to recoverA’s polynomial.
Remark 2: We let B to encrypt blinding factors with a label L in step 2. The label L
is for two purposes: (1) to ensure timeliness of dispute resolution. A session ID is at-
tached to each protocol execution and B uses it as an input when generating the label.
We assume a standard format and semantics of the session ID have been agreed by all
parities beforehand, so that R can verify the identities of the two parties involved and
that the protocol execution is within a certain time window. (2) To ensure the integrity
of the messages in the first two steps of the protocol. As only A can raise a dispute
resolution, B needs to ensure A cannot get any advantage by modifying critical mes-
sages, e.g. the encrypted coefficients and polynomial evaluation results. By using the
hash of past communication as an input for the label, B can ensure that. This is because
the ciphertext with the label is encrypted under R’s public key so cannot be modified
without R’s private key, and any modification to the messages will invalidate the label
so R can detect it.
Remark 3: In our protocol B adds an additional blinding factor r′j when evaluating A’s
polynomial. This is because if we follow the FNP protocol and do not add this blinding
factor, then there is no good way to deal the case in which A aborts after decrypting
all EpkA(grj ·Q(yj)+yj ). In this case to maintain fairness, B needs R to recover the set
intersection. A would have to to provide a verifiable encryption of its private key skA



in order for R to decrypt EpkA(grj ·Q(yj)+yj ) for B. But that will violate A’s privacy
because given the private key R can also recover A’s polynomial coefficients from the
transcript. Our design is better because now R only gets random numbers gr

′
1 , ..., gr

′
n

which contain no information about both parties’ sets.
Remark 4: In the last step of the dispute resolution protocol,R sendsEpkB (grj ·Q(yj)+r′j+yj )
to B. This is needed because from the transcript, R cannot tell whether A has sent them
to B or not. It is possible that A unfairly aborts the protocol after finishing step 2 and
then uses R to recover the result. we add this step to make sure B also receives the out-
put in this case. And because this is the only case that A can gain advantage by unfairly
aborting the protocol, we do not need a dispute resolution protocol for B.

5 A Concrete Construction
5.1 Verifiable Encryption

As a setup requirement. the arbiter R must have a key pair of a verifiable encryption
scheme. In the second step of the PSI protocol, B must encrypt the blinding factors
r′1, r

′
2, ..., r

′
n under R’s public key. The encryption scheme used by R is the Cramer-

Shoup encryption [31] with a small modification. The system works in this way:

– Setup: On input 1k, output two prime numbers p, q such that q divides p−1, a cyclic
group G with two generator g, h such that G is the unique order q subgroup of Z∗p.

Choose u1, u2, v1, v2, w
R← Zq . Compute a = gu1hu2 , b = gv1hv2 , c = gw. Then

publish (a, b, c) along with G, q, g, h as the public key and retain (u1, u2, v1, v2, w)
as the private key.

– Encryption: To encrypt a message m, calculate the following:
• e1 = gz, e2 = hz, e3 = czm where z R← Zq .
• σ = H(e1, e2, e3, L) , where H is a hash function and L is the label.
• e4 = azbzσ

• The ciphertext is (e1, e2, e3, e4).
– Decryption: To decrypt, compute σ = H(e1, e2, e3, L), then verify eu1

1 eu2
2 (ev11 e

v2
2 )σ =

e4. If the verification succeeds, then decrypt m = e3/(e
w
1 )

The only modification we made to the original Cramer-Shoup encryption is that L is
added as an ingredient of σ. All security properties of the Cramer-Shoup encryption are
inherited.

5.2 A Homomorphic Encryption Scheme
At the core of our construction is a semantically secure homomorphic encryption scheme.
Our choice is the ElGamal [32] encryption scheme. This allows us to construct efficient
zero knowledge proofs needed in the protocol. To simplify design, we share certain
parameters between E and E . The scheme is described as follows:

– Setup: Use the same group G and generator g as in section 5.1. Choose x R← Zq
and compute gx. The public key is pk = (G, g, gx, q) and the private key is sk = x.

– Encryption: Choose r R← Zq and output the ciphertext c(m) = (gr,m(gx)r).
– Decryption: The ciphertext is decrypted as m(gx)r · (gr)−x = mgrx−rx = m.

ElGamal is multiplicative homomorphic, so it is suitable in our protocol. As mentioned
before we will convert the plaintext m to gm before encryption, so that oblivious poly-
nomial evaluation is possible using ElGamal.



5.3 Zero Knowledge Proof Protocols
PKpoly: Proof of Correct Construction of a Polynomial In step 1 of the PSI proto-
col, A has to prove to B that the polynomial is constructed correctly. Namely, A has to
convince B that it knows the polynomial and the polynomial has no more than n′ roots.
For each coefficient di, the ciphertext is EpkA(gdi) = (gti , gdigxAti) = (αdi , α

′
di

),
where ti is a random number in Zq . To prove it knows the polynomial, A runs the
following protocol:

u di ∈ Zq : ∃ti ∈ Zq : αdi = gti ∧ α′di = gdi(gxA)ti

As the maximum degree of the polynomial is determined beforehand and can be verified
by counting the number of encrypted coefficients received, then for a polynomial of
degree n′, the only case that it can have more than n′ roots is when all coefficients are
zero. To show the coefficients are not all zero, we require A to prove that dn′ is not zero
by running

∃tn′ , t′n′ ∈ Zq : αdn′ = gtn′ ∧ α′dn′ = (gxA)t
′
n′ ∧ tn′ 6= t′n′

Intuitively, t′n′ = tn′ + dn′/xA and therefore tn′ = t′n′ iff dn′ = 0. So by verify-
ing tn′ 6= t′n′ , B can be convinced that dn′ 6= 0. To prove the inequality of discrete
logarithms, we can use the protocol proposed in [29].

PKprop: Proof of Proper Polynomial Evaluation and Encryption In step 2 of the
PSI protocol, B must prove that each EpkA(grj ·Q(yj)+r′j+yj ) is a proper ciphertext for
grj ·Q(yj)+r′j+yj , and also each ELpkR(gr

′
j ) is a proper encryption under R’s public key

and the label L.
Recall that for an encrypted coefficient di,EpkA(gdi) = (gri , gdigxAri) = (αdi , α

′
di

).
Then for each term diy

i
j of the polynomial, the ciphertext computed using the homo-

morphic property from EpkA(gdi) is EpkA(gdiy
i
j ) = ((αdi)

yij , (α′di)
yij ). Similarly, for

each rj ·Q(yj), the ciphertext is

EpkA(grj ·Q(yj)) = ((

n′∏
i=0

(αdi)
rjy

i
j ), (

n′∏
i=0

(α′di)
rjy

i
j ))

B also encrypts gr
′
j+yj by itself, and the ciphertextEpkA(gr

′
j+yj ) = (gr̂

′
j , gr

′
jgyjgxAr̂

′
j ).

The ciphertext of the whole can be obtained by multiplying the corresponding compo-
nents of the two:
EpkA(grj ·Q(yj)+r′j+yj ) = (α, β) = ((

n′∏
i=0

(αdi)
rjy

i
j ) ·gr̂′j , (

n′∏
i=0

(α′di)
rjy

i
j ) ·gr′jgyjgxAr̂

′
j )

For each ELpkR(gr
′
j ), the ciphertext is (e1j , e2j , e3j , e4j), such that e1j = gzj , e2j =

hzj , e3j = czjgr
′
j ,e4j = azj bzjσ where zj

R← Zq and σ = H(e1j , e2j , e3j , L).
The proof has two steps. In the first step, B commits to yj and rjyij for each yj ∈ Y

and 0 ≤ i ≤ n′. We use the Pedersen Commitment Scheme [30] here. This commitment
scheme is known to be perfectly hiding and computationally binding. It is a discrete
logarithm based scheme, that enables us to re-use the parameters used for the encryption
schemes. We use the same group G, and parameters q, g, h as in section 5.1. To commit
to v, choose a random s and create com(v) = gvhs. So we have com(yj) = gyjhs̃j ,
and com(aj,i) = grjy

i
jhsi for each aj,i = rjy

i
j . Then starting from i = 1, B must

prove that the value committed in com(aj,i) is the product of the values committed in
com(aj,i−1) and com(yj). To do this, we use the protocol from [33] which proves a



committed value in γi is the product of two other values committed in δ, γi−1:
∃yj , aj,i−1, aj,i, s̃j , si−1, si ∈ Zq : γi = gaj,ihsi ∧ δ = gyjhs̃j ∧ γi−1 = gaj,i−1hsi−1

The protocol is correct because aj,i = aj,i−1 · yj . Now A has a series of correct
commitments of a geometric sequence aj,i = rjy

i
j for 0 ≤ i ≤ n′. In the second step,

B runs the following protocol for each 0 ≤ j ≤ n:
u r′j , yj ∈ Zq : ∃aj,0, ..., aj,n′ , r̂′j , zj ∈ Zq : δ = gyjhs̃j

n′∧
i=0

γi = gaj,ihsi

∧α = (

n′∏
i=0

(αdi)
aj,i) · gr̂′j ∧ β = (

n′∏
i=0

(α′di)
aj,i) · gr′jgyjgxAr̂

′
j

∧e1j = gzj ∧ e2j = hzj ∧ e3j = czjgr
′
j ∧ e4j = azj bzjσ

B proves in the first two lines that it knows yj , r′j , also each exponent aj,i in α and β
match the value committed in γi, yj in β matches the value committed in δ, r′j matches
the value encrypted in e3j , and (α, β) is a proper ciphertext of the polynomial evaluation
result. In the last line, B proves that the verifiable encryption is correct.

PKre-enc: Proof of Correct Re-encryption In step 3 of the PSI protocol and step
2 of the dispute resolution protocol, A must prove that each value sent is the cor-
rect ciphertext EpKB

(grj ·Q(yj)+r′j+yj ). A generates the ciphertext by first decrypting
EpKA

(grj ·Q(yj)+r′j+yj ), and then re-encrypting the result using B’s public key. The
two ciphertexts are

EpkA(grj ·Q(yj)+r′j+yj ) = (gtj , grj ·Q(yj)+r′j+yjgxAtj ) = (gtj ,mjg
xAtj )

EpkB (grj ·Q(yj)+r′j+yj ) = (gt
′
j , grj ·Q(yj)+r′j+yjgxBt

′
j = (gt

′
j ,mjg

xBt
′
j ))

where tj , t′j are random numbers. The protocol is then:
∃xA, t′j ∈ Zq : pkA = gxA ∧ α = mj(g

tj )xA ∧ β = gt
′
j ∧ γ = mj(g

xB )t
′
j

The proof shows that the two ciphertexts are correct and encrypt the same plaintext.

PKdec: Proof of Correct Decryption In step 4 of the PSI protocol, B needs to prove
that each gr

′
j is a correct decryption of ELpkR(gr

′
j ). For each ELpkR(gr

′
j ), the ciphertext is

(e1j , e2j , e3j , e4j), such that e1j = gzj , e2j = hzj , e3j = czjgr
′
j ,e4j = azj bzjσ where

zj
R← Zq and σ = H(e1j , e2j , e3j , L). What B needs to show is that it knows zj and zj

is used consistently in all ciphertext compoents.
∃zj ∈ Zq : e1j = gzj ∧ e2j = hzj ∧ e3j = czjgr

′
j ∧ e4j = azj (bσ)zj

If gr
′
j is not the correct decryption, then B cannot find a zj that satisfies the relation.

5.4 Complexity Analysis
Now we give an account of the complexity of the protocol. The computational and
communication complexity of the zero knowledge proof protocol is linear in the number
of statements to be proved, so we separate it from the main protocol. In the PSI protocol,
A needs to perform 3n′ exponentiations to encrypt the coefficients in step 1, and 3n
exponentiations to decrypt and re-encrypt the polynomial evaluation results in step 3,
B needs 2(n′n + 2n) exponentiations to evaluate the polynomial obliviously and 3n
exponentiations for the verifiable encryption in step 2. The messages sent in the protocol
consist of 2n′ + 9n group elements. In the dispute resolution protocol, R needs 6n
exponentiations to verify and decrypt the ciphertexts of the verifiable encryption. The



total traffic generated includes 5n group elements, plus the transcript sent in step 1. In
total, the computational complexity is O(nn′) and the communication complexity is
O(n + n′). The complexity of the zero-knowledge proof protocols: PKpoly is O(n′),
PKprop is O(nn′), PKre-enc is O(n), and PKdec is O(n). The complexity of our
protocol is similar to other PSI protocols in the malicious model [2, 3].

6 Security Analysis
6.1 Security Model
The basic security requirements of our protocol are correctness, privacy and fairness.
Informally, correctness means an honest party is guaranteed that the output it receives
is correct with regard to the actual input and the functionality realised by the protocol;
privacy means no party should learn more than its prescribed output from the execution
of the protocol; fairness means a dishonest party should receive its output if and only if
the honest party also receives its output.

We define a security model to capture the above security requirements in terms of
the simulation paradigm [14]. We model the parties A, B and R as probabilistic in-
teractive Turing machines. A functionality is denoted as f : XA × XB → YA × YB ,
In our protocol, the functionality to be computed by A and B is the set intersection.
The model is similar to the one used in the optimistic fair secure computation proto-
col [23]. Generally speaking the protocol is executed in a real world model where the
participants may be corrupted and controlled by an adversary. To show the protocol is
secure, we define an ideal process which satisfies all the security requirements. In the
ideal process, there is an incorruptible trusted party which helps in the computation of
the functionality, e.g. in our case the set intersection. The protocol is said to be secure if
for every adversary in the real world model there is also an adversary in the ideal world
model who can simulate the real world adversary.
The real world. The protocol has three participants A,B and R. All participants have
the public parameters of the protocol including the function f∩, the security parameter
κ, R’s public key and other cryptographic parameters to be used. A has a private input
X , B has a private input Y and R has an input ∈ {�,⊥}. The participants of the
protocol can be corrupted by an adversary. The adversary can corrupt up to two parties
in the protocol. We use C to denote the adversary. The adversary can behave arbitrarily,
e.g. substitute local input, abort the protocol prematurely, and deviate from the protocol
specification. At the end of the execution, an honest party outputs whatever prescribed
in the protocol, a corrupted party has no output, and an adversary outputs its view.
For a fixed adversary C, and input X,Y , the joint output of A,B,R,C is denoted by
OABRC(X,Y ) which is the random variable consisted of all the outputs as stated.
The ideal process. In the ideal process, there is an incorruptible trust party T , and
parties Ā, B̄, R̄. Ā has input X , B̄ has input Y and R̄ has an input ∈ {�,⊥}. The
operation is as follows:

– Ā sends X ′ or ⊥ to T, then B̄ sends Y ′ or ⊥ to T, then R̄ sends two messages
bA ∈ YA ∪ {�,⊥} and bB ∈ YB ∪ {�,⊥} to T . The actual input X ′ and Y ′ may
be different from X and Y if the party is malicious.

– T sends private delayed output to Ā and B̄. T ’s reply to Ā depends on Ā and B̄’s
messages and bA. T ’s reply to B̄ depends on Ā and B̄’s messages and bB .



• T to Ā: (1) If bA = �, Ā sends X ′ and B̄ sends Y ′, T sends X ′ ∩ Y ′ to Ā.
(2) Else if bA = �, but Ā or B̄ sends ⊥, T sends ⊥ to Ā
(3) Else if bA 6= �, T sends bA to Ā.

• T to B̄: (1) If bB = �, Ā sends X ′ and B̄ sends Y ′, T sends X ′ ∩ Y ′ to B̄.
(2) Else if bB = �, but Ā or B̄ sends ⊥, T sends ⊥ to B̄.
(3) Else if bA 6= �, T sends bB to B̄ .

Honest parties in the ideal process behave as follows: Ā and B̄ send their input to T and
R̄ sends ba = � and bB = �. The ideal process adversary C̄ controls the behaviours of
corrupted parties. It gets the input of a corrupted party and may substitute them. It also
gets T ’s answer to corrupted parties. For a fixed adversary C̄, and input X,Y , the joint
output of Ā, B̄, R̄, C̄ in the ideal process is denoted by OĀB̄R̄C̄(X,Y ).
Simulatability. The security definition is in terms of simulatability:
Definition 1. Let f∩ be the set intersection functionality. We say a protocol Π securely
computes f∩ if for every real-world adversary C, there exists an adversary C̄ in the
ideal process such that for all X ∈ XA, for all Y ∈ XB , the joint distribution of all
outputs of the ideal process is computationally indistinguishable from the outputs in the
real world, i.e.,

OĀ,B̄,R̄,C̄(X,Y )
c≈ OABRC(X,Y )

The design of the ideal process captures the security we want to achieve from the
real protocol. Our assumption is that in real world, we can find a semi-trusted arbiter that
can be trusted for fairly resolving disputes, but not for privacy. Then by incorporating
such an arbiter in a two-party private set intersection protocol, we can achieve fairness,
correctness and privacy. In the ideal process, if R̄ follows the protocol and does not
collude with Ā or B̄ then all security properties are guaranteed. In this case, Ā and B̄
will always get the correct intersection with regard to the actual input to the protocol,
and know nothing more than that. On the other hand, if R̄ is corrupted and colludes
with Ā or B̄, then fairness is not guaranteed. However, even in this case privacy is
guaranteed. That is, the corrupted parties will not get more information about the honest
party’s set other than the intersection.

6.2 Security Proof
We are now ready to state and prove the security of our protocol. The protocol uses zero
knowledge proof protocols as subprotocols. As they are obtained by using existing se-
cure protocols and standard composition techniques, they are consequently secure and
we omit the security proofs of them. To prove the main theorem below, we work in a
hybrid model in which the real protocol is replaced with a hybrid protocol such that
every invocation of the subprotocols is replaced by a call to an ideal functionality com-
puted by a trusted party. In our case we need ideal functionalities for zero knowledge
proofs and certification authority. If the subprotocols are secure, then by the compo-
sition theorem [34] the output distribution of the hybrid execution is computationally
indistinguishable from the output distribution of the real execution. Thus, it suffices to
show that the ideal execution is indistinguishable from the hybrid execution.
Theorem 1. If the encryption E and E are semantically secure, and the associated
proof protocols are zero knowledge proof, the optimistic fair mutual private set inter-
section protocol securely computes f∩.



Because of limited space, below we only sketch the proof. The detailed proof will ap-
pear in the full version.
Proof. Let’s first consider the cases that the adversary C corrupts two parties.
Case 1: C corrupts and controls A and B. This is a trivial case because C has full
knowledge on X,Y and if the encryption scheme used by R is semantically secure, a
simulator can always be constructed.
Case 2: C corrupts and controls A and R. We construct a simulator S in the ideal
process that corrupts and controls Ā and R̄. It uses the adversary C as a subroutine and
we will show the simulatability holds in this case.

1. S is given A and R’s inputs, S invokes an ideal functionality CA to obtain R’s key
pair, then invokes C and plays the role of B.

2. S generates a public/private key pair pkB/skB and gives the public key to C.
3. S receives the encrypted coefficients EpkA(di) from C. S also receives di, 0 ≤ i ≤
n′ for the ideal computation of PKpoly, where di is a coefficient of the polynomial.
If the polynomial is not correctly constructed, then S instructs Ā to send ⊥ to T
and terminates the execution. If the polynomial is correct, S extracts input X ′ from
the coefficients, instructs Ā to send X ′ to T and instructs R̄ to send bA = � to T .
S then receives the intersection X ′ ∩ Y from T .

4. S then constructs Y ′ from the intersection received in last step by adding random
dummy elements until |Y ′| = n. Then It generates a set of random blinding factors
r′1, r

′
2, ..., r

′
n, computes EPKA

(grj ·Q(y′j)+r′j+y′j ) and encrypts all blinding factors
using R’s public key. It also generates commitments for each y′j and rjy′ij . S sends
all commitments and ciphertexts to C and also emulates the ideal computation of
PKprop by sending “accept” to C. Depends on C’s reply, executes step 5, 6 or 7.
In the next three steps, S will send an instruction to T when it is ready to output,
then T sends the delayed output to B̄

5. If C instructs both A and R to abort, then S instructs R̄ to send bB = ⊥ to T , then
outputs whatever C outputs and terminates.

6. If C instructs A to abort and instructs R to send n ciphertexts, S decrypts them
using B’s private key, constructs a set by testing whether any elements in Y ′ match
the decryption results. Then S collects all matching elements, put them in a set
and instructs R̄ to send the set as bB . Then S outputs whatever C outputs and
terminates.

7. If C instructs A to send n ciphertexts, then S extracts a set of elements from the
reply and engages in the ideal computation of PKre−enc. If the reply is correct,
S instructs R̄ to send bB = � to T and sends gr

′
1 , ..., gr

′
n to C. If the reply is not

correct and C instructs R to abort, S instructs R̄ to send bB = ⊥ to T . If the reply
is not correct and C instructs R to send n ciphertexts, S extracts a set of elements
from the cipehrtexts and instructs R̄ to send the set as bB to T . Then it outputs
whatever C outputs and terminates.

In the joint output, the honest parties’ outputs are always the same. All we need to check
is whether the view of the simulator is indistinguishable from the view of an adversary
in the hybrid execution. The difference between a simulation and a hybrid execution is
that in the simulation S uses Y ′ which is not the same as Y . However, this does not
affect the distribution of the views. From how Y ′ is constructed we can see that Y ′



contains the correct intersection (Y ∩ X ′ ⊆ Y ′). For those elements in the intersec-
tion, they produce the same distributions in the simulation (using Y ′) and the hybrid
execution (using Y ). For any elements y′j ∈ Y ′ and yj ∈ Y not in the intersection, the
commitments produced should be indistinguishable because the commitment scheme
is perfectly hiding. Also grj ·Q(yj)+r′i+y

′
j and grj ·Q(y′j)+r′i+yj are uniformly random

because Q(yj) and Q(y′j) are both non-zero, and so are the ciphertexts of them. The
blinding factors and their ciphertexts are uniformly random in both the simulation and
the hybrid execution. Therefore the two views are indistinguishable.
Case 3: C corrupts and controls B and R. We construct a simulator S in the ideal
process that corrupts and controls B̄ and R̄. It uses the adversary C as a subroutine.

1. S is given B and R’s inputs, S invokes an ideal functionality CA to obtain R’s key
pair, then invokes C and plays the role of A.

2. S generates a key pair pkA/skA and gives the public key to C.
3. S generates a random set X ′ such that |X ′| = n′, then constructs a polynomial

using elements in X ′. S encrypts the coefficients, sends them to C and simulates
the ideal computation of PKpoly by sending “accept” to C.

4. S receives the commitments and ciphertexts from C, then receives inputs to the
ideal computation of PKprop, including (yj , r

′
j), 0 ≤ j ≤ n. If the ciphertexts are

not properly produced, S instructs B̄ to send ⊥ to T , otherwise S extract Y ′ and
instructs B̄ to send Y ′ to T and instructs R̄ to send bB = � to T , and receives
X ∩ Y ′ from T .

5. S constructs another set X ′′ such that X ∩ Y ′ ⊆ X ′′ and |X ′′| = n′. S then
constructs another polynomial Q′′, and evaluates the polynomial using (yj , g

r′j ) to
construct EpkB (grj ·Q

′′(yj)+r′j+yj ). The ciphertexts are sent to C, S also simulates
the ideal computation of PKre−enc by sending “accept” to C. Depends on C’s
reply, executes step 6,7 or 8. In the next three steps, S will send an instruction to T
when it is ready to output, then T sends the delayed output to Ā

6. If C instructs B to send the blinding factors, then S instructs R̄ to send bA = �,
outputs whatever C outputs and terminates.

7. If C instructs both B and R to abort, then S instructs R̄ to send bA = ⊥, outputs
whatever C outputs and terminates.

8. If C instructs B to abort and R to send n blinding factors, use the blinding factors
to extract a set, and then instructs R̄ to send the extracted set as bA to T . S then
outputs whatever C outputs and terminates.

The difference between a simulation and a hybrid execution is that the simulator uses
X ′ andX ′′ rather than the honest party’s inputX . UsingX ′ does not affect the distribu-
tion of the view ifE is semantically secure, because the ciphertexts generated usingA’s
public key are indistinguishable. Using X ′′ also does not affect the distribution of the
view. For the two sets X ′′ and X , two polynomials are constructed from them Q′′ and
Q. We also knowX ′′∩Y ′ = X∩Y ′, soQ′′(yj) = 0 iffQ(yj) = 0 for any yj ∈ Y ′. For
each grj ·Q

′′(yj)+r′j+yj and grj ·Q(yj)+r′j+yj , if Q′′(yj) = 0 then Q(yj) = 0 so the dis-
tribution of the two depends only on yj and r′j , if Q′′(yj) 6= 0 then Q(yj) 6= 0 and both
Q′′(yj) andQ′′(yj) are uniformly random, so grj ·Q

′′(yj)+r′j+yj and grj ·Q(yj)+r′j+yj are
also uniformly random. Therefore the distributions of the views are indistinguishable.



For cases that C corrupts only one party, proofs can be constructed similarly. In the
case that R is corrupted, R is not involved in the protocol because A and B are honest,
so it is trivial to construct a simulator. In the case thatA orB is corrupted, the simulator
can be constructed as in case 2 step 1 – 4 or case 3 step 1 – 5, except now R̄ is honest
and always sends � to T . The view from the simulation is still indistinguishable.

7 Conclusion and Future Work
In this paper, we have presented a fair mutual PSI protocol which allows both parties
to obtain the output. The protocol is optimistic which means fairness is obtained by
using an offline third party arbiter. To address the possible privacy concerns raised by
introducing a third party, the protocol is designed to enable the arbiter to resolve dis-
pute blindly without knowing any private information from the two parties. We have
analysed and shown that the protocol is secure.

The communication and computation complexity of our protocol are both O(nn′).
The main overhead comes from the oblivious polynomial evaluation and the large ac-
companying zero knowledge proof. We would like to investigate PSI protocols based on
other primitives, e.g. [6, 7], to see whether efficiency can be improved. Another area we
would like to investigate is whether the protocol structure that we use to obtain fairness
can be made general so that it can be applied to other secure computation protocols.
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