
Homomorphic Evaluation of the AES Circuit
(Updated Implementation)

Craig Gentry
IBM Research

Shai Halevi
IBM Research

Nigel P. Smart
University of Bristol

January 3, 2015

Abstract

We describe a working implementation of leveled homomorphic encryption (with or without boot-
strapping) that can evaluate the AES-128 circuit. This implementation is built on top of the HElib library,
whose design was inspired by an early version of this work. Our main implementation (without boot-
strapping) takes about 4 minutes and 3GB of RAM, running on a small laptop, to evaluate an entire
AES-128 encryption operation. Using SIMD techniques, we can process upto 120 blocks in each such
evaluation, yielding an amortized rate of just over 2 seconds per block.

For cases where further processing is needed after the AES computation, we describe a different
setting that uses bootstrapping. We describe an implementation that lets us process 180 blocks in just
over 18 minutes using 3.7GB of RAM on the same laptop, yielding amortized 6 seconds/block. We note
that somewhat better amortized per-block cost can be obtained using “byte-slicing” (and maybe also
“bit-slicing”) implementations, at the cost of significantly slower wall-clock time for a single evaluation.

In this article we describe many of the optimizations that went into this implementation. These
include both AES-specific optimizations, as well as several “generic” tools for FHE evaluation (which
are incorporated in the HElib library). The generic tools include (among others) a different variant
of the Brakerski-Vaikuntanathan key-switching technique that does not require reducing the norm of
the ciphertext vector, and a method of implementing the Brakerski-Gentry-Vaikuntanathan modulus-
switching transformation on ciphertexts in CRT representation.

Keywords. AES, Fully Homomorphic Encryption, Implementation

An early version of this work was published in CRYPTO 2012. The current report describes also more recent imple-
mentation work, done over the last two years.

For the early version, the first and second authors were partly sponsored by DARPA under agreement number
FA8750-11-C-0096. The U.S. Government is authorized to reproduce and distribute reprints of the early version for
Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government. Distribution Statement “A” (Approved for Public
Release, Distribution Unlimited).

For the same early version, the third author was sponsored by DARPA and AFRL under agreement number
FA8750-11-2-0079. The same disclaimers as above apply. He is also supported by the European Commission through
the ICT Programme under Contract ICT-2007-216676 ECRYPT II and via an ERC Advanced Grant ERC-2010-AdG-
267188-CRIPTO, by EPSRC via grant COED–EP/I03126X, and by a Royal Society Wolfson Merit Award. The views
and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the European Commission or EPSRC.

Contents

1 Introduction 1

2 Background 3
2.1 Notations and Mathematical Background . 3
2.2 BGV-type Cryptosystems . 3
2.3 Computing on Packed Ciphertexts . 5

3 General-Purpose Optimizations 6
3.1 A New Variant of Key Switching . 6
3.2 Modulus Switching in Evaluation Representation . 8
3.3 Dynamic Noise Management . 8

4 Homomorphic Evaluation of AES 9
4.1 Homomorphic Evaluation of the Basic Operations . 9

4.1.1 AddKey and SubBytes . 9
4.1.2 ShiftRows and MixColumns . 11
4.1.3 The Cost of One Round Function . 12

4.2 Byte- and Bit-Slice Implementations . 12
4.3 Using Bootstrapping . 12
4.4 Performance Details . 13

References 14

A More Details 16
A.1 Plaintext Slots . 16
A.2 Canonical Embedding Norm . 17
A.3 Double CRT Representation . 17
A.4 Sampling From Aq . 18
A.5 Canonical embedding norm of random polynomials . 18

B The Basic Scheme 19
B.1 Our Moduli Chain . 19
B.2 Modulus Switching . 20
B.3 Key Switching . 20
B.4 Key-Generation, Encryption, and Decryption . 22
B.5 Homomorphic Operations . 23

C Security Analysis and Parameter Settings 24
C.1 Lower-Bounding the Dimension . 24

C.1.1 LWE with Sparse Key . 26
C.2 The Modulus Size . 27
C.3 Putting It Together . 28

D Scale(c, qt, qt−1) in dble-CRT Representation 30

E Other Optimizations 31

2

1 Introduction

In his breakthrough result [13], Gentry demonstrated that fully-homomorphic encryption was theoreti-
cally possible, assuming the hardness of some problems in integer lattices. Since then, many different
improvements have been made, for example authors have proposed new variants, improved efficiency,
suggested other hardness assumptions, etc. Some of these works were accompanied by implementation
[28, 14, 8, 29, 21, 9], but these implementations were either “proofs of concept” that can compute only
one basic operation at a time (at great cost), or special-purpose implementations limited to evaluating very
simple functions. In the early version of this work we reported on the first implementation powerful enough
to support an “interesting real world circuit,” specifically the AES-128 encryption operation. To this end, we
implemented a variant of the leveled FHE-without-bootstrapping scheme of Brakerski, Gentry, and Vaikun-
tanathan [5] (BGV). In the current article we report on an updated implementation of the same circuit, using
the “general purpose” open-source HElib library [18], whose design was inspired by that early version of
our work. (As of December 2014, we made our new implementation available as part of HElib.)

Why AES? We chose to shoot for an evaluation of AES since it seems like a natural benchmark: AES is
widely deployed and used extensively in security-aware applications (so it is “practically relevant” to imple-
ment it), and the AES circuit is nontrivial on one hand, but on the other hand not astronomical. Moreover the
AES circuit has a regular (and quite “algebraic”) structure , which is amenable to parallelism and optimiza-
tions. Indeed, for these same reasons AES is often used as a benchmark for implementations of protocols for
secure multi-party computation (MPC), for example [26, 10, 19, 20]. Using the same yardstick to measure
FHE and MPC protocols is quite natural, since these techniques target similar application domains and in
some cases both techniques can be used to solve the same problem.

Beyond being a natural benchmark, homomorphic evaluation of AES decryption also has interesting
applications: When data is encrypted under AES and we want to compute on that data, then homomorphic
AES decryption would transform this AES-encrypted data into an FHE-encrypted data, and then we could
perform whatever computation we wanted. (Such applications were alluded to in [21, 29, 6]).

Why BGV? Our implementation is based on the (ring-LWE-based) BGV cryptosystem [5], which is one
of the few variants that seem the most likely to yield “somewhat practical” homomorphic encryption. Other
variants are the NTRU-like cryptosystem of Lòpez-Alt et al. [23], the ring-LWE-based scale-invariant cryp-
tosystem of Brakerski [4]. These three variants offer somewhat different implementation tradeoffs, but they
all have similar performance characteristics. We don’t expect the differences between these variants to be
very significant, and moreover most of our optimizations for BGV are useful also for the other two vari-
ants. (Another interesting approach if to implement the newer cryptosystem of Gentry et al. [16], or some
combination thereof.)

Contributions of this work. Our implementation is based on a variant of the BGV scheme [5, 7, 6] (based
on ring-LWE [24]), using the techniques of Smart and Vercauteren (SV) [29] and Gentry, Halevi and Smart
(GHS) [15], and we introduce many new optimizations. Some of our optimizations are specific to AES,
these are described in Section 4. Most of our optimization, however, are more general-purpose and can be
used for homomorphic evaluation of other circuits, these are described in Section 3.

Many of our general-purpose optimizations are aimed at reducing the number of FFTs and CRTs that
we need to perform, by reducing the number of times that we need to convert polynomials between coef-
ficient and evaluation representations. Since the cryptosystem is defined over a polynomial ring, many of

1

the operations involve various manipulation of integer polynomials, such as modular multiplications and
additions and Frobenius maps. Most of these operations can be performed more efficiently in evaluation
representation, when a polynomial is represented by the vector of values that it assumes in all the roots of
the ring polynomial (for example polynomial multiplication is just point-wise multiplication of the evalu-
ation values). On the other hand some operations in BGV-type cryptosystems (such as key switching and
modulus switching) seem to require coefficient representation, where a polynomial is represented by listing
all its coefficients.1 Hence a “naive implementation” of FHE would need to convert the polynomials back
and forth between the two representations, and these conversions turn out to be the most time-consuming
part of the execution. In our implementation we keep ciphertexts in evaluation representation at all times,
converting to coefficient representation only when needed for some operation, and then converting back.

We describe variants of key switching and modulus switching that can be implemented while keeping
almost all the polynomials in evaluation representation. Our key-switching variant has another advantage, in
that it significantly reduces the size of the key-switching matrices in the public key. This is particularly im-
portant since one limiting factor for evaluating “interesting” circuits is the ability to keep the key-switching
matrices in memory. Other optimizations that we present are meant to reduce the number of modulus
switching and key switching operations that we need to do.

Our Implementation and tests. Many of the optimizations described in this work were incorporated in
the HElib C++ library, which is built on top of NTL (and GnuMP). We tested our implementation on a two
years old Lenovo X230 laptop with Intel Core i5-3320M running at 2.6GHz, on which we run an Ubuntu
14.04 VM with 4GB of RAM and with the g++ compiler version 4.9.2. The detailed results of our tests
are described in Section 4.4, the one-line summary is that we can evaluate AES-128 homomorphically on
120 blocks in 245 seconds on that commodity laptop. Also, if we need to incorporate extra processing then
we can use bootstrapping and get evaluation on 180 blocks in under 18 minutes. All of our programs are
single-threaded, so only one core was used in the computations.

We note that there are a multitude of optimizations that one can perform on our basic implementation.
Most importantly, there are great gains to be had by making better use of parallelism: Unfortunately, the
HElib library is not yet thread safe, which severely limits our ability to utilize the multi-core functionality
of modern processors. Much of the work in homomorphic-AES is “embarrassingly parallelizable” and so
we expect a fully parallel implementation to have a speedup factor roughly equal to the number of active
cores (with parallelization opportunities not running our until perhaps 100x of current implementation). The
byte-sliced and bit-sliced implementations (which we did not implement on top of HElib) obviously offer
even more room for parallelism.

Organization. In Section 2 we review the main features of BGV-type cryptosystems [6, 5], and briefly
survey the techniques for homomorphic computation on packed ciphertexts from SV and GHS [29, 15].
Then in Section 3 we describe our “general-purpose” optimizations on a high level, with additional details
provided in Appendices A and B. A brief overview of AES and a high-level description and performance
numbers is provided in Section 4.

1The need for coefficient representation ultimately stems from the fact that the noise in the ciphertexts is small in coefficient
representation but not in evaluation representation.

2

2 Background

2.1 Notations and Mathematical Background

For an integer q we identify the ring Z/qZ with the interval (−q/2, q/2] ∩ Z, and use [z]q to denote the
reduction of the integer z modulo q into that interval. Our implementation utilizes polynomial rings defined
by cyclotomic polynomials, A = Z[X]/Φm(X). The ring A is the ring of integers of a the mth cyclotomic

number field Q(ζm). We let Aq
def
= A/qA = Z[X]/(Φm(X), q) for the (possibly composite) integer q, and

we identify Aq with the set of integer polynomials of degree upto φ(m)− 1 reduced modulo q.

Coefficient vs. Evaluation Representation. Letm, q be two integers such that Z/qZ contains a primitive
m-th root of unity, and denote one such primitive m-th root of unity by ζ ∈ Z/qZ. Recall that the m’th
cyclotomic polynomial splits into linear terms modulo q, Φm(X) =

∏
i∈(Z/mZ)∗(X − ζi) (mod q).

We consider two ways of representing an element a ∈ Aq: Viewing a as a degree-(φ(m) − 1) polyno-
mial, a(X) =

∑
i<φ(m) aiX

i, the coefficient representation of a just lists all the coefficients in order a =〈
a0, a1, . . . , aφ(m)−1

〉
∈ (Z/qZ)φ(m). For the other representation we consider the values that the polyno-

mial a(X) assumes on all primitive m-th roots of unity modulo q, bi = a(ζi) mod q for i ∈ (Z/mZ)∗. The
bi’s in order also yield a vector b ∈ (Z/qZ)φ(m), which we call the evaluation representation of a. Clearly
these two representations are related via b = Vm ·a, where Vm is the Vandermonde matrix over the primitive
m-th roots of unity modulo q. We remark that for all i we have the equality (a mod (X−ζi)) = a(ζi) = bi,
hence the evaluation representation of a is just a polynomial Chinese-Remaindering representation.

In both representations, an element a ∈ Aq is represented by a φ(m)-vector of integers in Z/qZ. If q is
a composite then each of these integers can itself be represented either using the standard binary encoding
of integers or using Chinese-Remaindering relative to the factors of q. We usually use the standard binary
encoding for the coefficient representation and Chinese-Remaindering for the evaluation representation.
(Hence the latter representation is really a double CRT representation, relative to both the polynomial factors
of Φm(X) and the integer factors of q.)

2.2 BGV-type Cryptosystems

Our implementation uses a variant of the BGV cryptosystem due to Gentry, Halevi and Smart, specifically
the one described in [15, Appendix D] (in the full version). In this cryptosystem both ciphertexts and secret
keys are vectors over the polynomial ring A, and the native plaintext space is the space of binary polynomials
A2. (More generally it could be Ap for some fixed p ≥ 2, but in our case we will always use A2.)

At any point during the homomorphic evaluation there is some “current integer modulus q” and “current
secret key s”, that change from time to time. A ciphertext c is decrypted using the current secret key s
by taking inner product over Aq (with q the current modulus) and then reducing the result modulo 2 in
coefficient representation. Namely, the decryption formula is

a ← [[〈c, s〉 mod Φm(X)]q︸ ︷︷ ︸
noise

]2 . (1)

The polynomial [〈c, s〉 mod Φm(X)]q is called the “noise” in the ciphertext c. Informally, c is a valid
ciphertext with respect to secret key s and modulus q if this noise has “sufficiently small norm” relative
to q. The meaning of “sufficiently small norm” is whatever is needed to ensure that the noise does not wrap
around q when performing homomorphic operations, in our implementation we keep the norm of the noise
always below some pre-set bound (which is determined in Appendix C.2).

3

Following [24, 15], the specific norm that we use to evaluate the magnitude of the noise is the “canonical
embedding norm reduced mod q”, specifically we use the conventions as described in [15, Appendix D] (in
the full version). This is useful to get smaller parameters, but for the purpose of presentation the reader can
think of the norm as the Euclidean norm of the noise in coefficient representation. More details are given in
the Appendices. We refer to the norm of the noise as the noise magnitude.

The central feature of BGV-type cryptosystems is that the current secret key and modulus evolve as
we apply operations to ciphertexts. We apply five different operations to ciphertexts during homomorphic
evaluation. Three of them — addition, multiplication, and automorphism — are “semantic operations” that
we use to evolve the plaintext data which is encrypted under those ciphertexts. The other two operations
— key-switching and modulus-switching — are used for “maintenance”: These operations do not change
the plaintext at all, they only change the current key or modulus (respectively), and they are mainly used
to control the complexity of the evaluation. Below we briefly describe each of these five operations on a
high level. For the sake of self-containment, we also describe key generation and encryption in Appendix B.
More detailed description can be found in [15, Appendix D].

Addition. Homomorphic addition of two ciphertext vectors with respect to the same secret key and mod-
ulus q is done just by adding the vectors over Aq. If the two arguments were encrypting the plaintext
polynomials a1, a2 ∈ A2 then the sum will be an encryption of a1 + a2 ∈ A2. This operation has no effect
on the current modulus or key, and the norm of the noise is at most the sum of norms from the noise in the
two arguments.

Multiplication. Homomorphic multiplication is done via tensor product over Aq. In principle, if the two
arguments have dimension n over Aq then the product ciphertext has dimension n2, each entry in the output
computed as the product of one entry from the first argument and one entry from the second.2

This operation does not change the current modulus, but it changes the current key: If the two input
ciphertexts are valid with respect to the dimension-n secret key vector s, encrypting the plaintext polynomi-
als a1, a2 ∈ A2, then the output is valid with respect to the dimension-n2 secret key s′ which is the tensor
product of s with itself, and it encrypts the polynomial a1 · a2 ∈ A2. The norm of the noise in the product
ciphertext can be bounded in terms of the product of norms of the noise in the two arguments. For our choice
of norm function, the norm of the product is no larger than the product of the norms of the two arguments.

Key Switching. The public key of BGV-type cryptosystems includes additional components to enable
converting a valid ciphertext with respect to one key into a valid ciphertext encrypting the same plaintext
with respect to another key. For example, this is used to convert the product ciphertext which is valid with
respect to a high-dimension key back to a ciphertext with respect to the original low-dimension key.

To allow conversion from dimension-n′ key s′ to dimension-n key s (both with respect to the same
modulus q), we include in the public key a matrix W = W [s′ → s] over Aq, where the i’th column of W is
roughly an encryption of the i’th entry of s′ with respect to s (and the current modulus). Then given a valid
ciphertext c′ with respect to s′, we roughly compute c = W · c′ to get a valid ciphertext with respect to s.

In some more detail, the BGV key switching transformation first ensures that the norm of the ciphertext
c′ itself is sufficiently low with respect to q. In [5] this was done by working with the binary encoding of
c′, and one of our main optimization in this work is a different method for achieving the same goal (cf.
Section 3.1). Then, if the i’th entry in s′ is s′i ∈ A (with norm smaller than q), then the i’th column of
W [s′ → s] is an n-vector wi such that [〈wi, s〉 mod Φm(X)]q = 2ei + s′i for a low-norm polynomial

2It was shown in [7] that over polynomial rings this operation can be implemented while increasing the dimension only to 2n−1
rather than to n2.

4

ei ∈ A. Denoting e = (e1, . . . , en′), this means that we have sW = s′ + 2e over Aq. For any ciphertext
vector c′, setting c = W · c′ ∈ Aq we get the equation

[〈c, s〉 mod Φm(X)]q = [sWc′ mod Φm(X)]q = [
〈
c′, s′

〉
+ 2

〈
c′, e

〉
mod Φm(X)]q

Since c′, e, and [〈c′, s′〉 mod Φm(X)]q all have low norm relative to q, then the addition on the right-hand
side does not cause a wrap around q, hence we get [[〈c, s〉 mod Φm(X)]q]2 = [[〈c′, s′〉 mod Φm(X)]q]2, as
needed. The key-switching operation changes the current secret key from s′ to s, and does not change the
current modulus. The norm of the noise is increased by at most an additive factor of 2‖ 〈c′, e〉 ‖.

Modulus Switching. The modulus switching operation is intended to reduce the norm of the noise, to
compensate for the noise increase that results from all the other operations. To convert a ciphertext c with
respect to secret key s and modulus q into a ciphertext c′ encrypting the same thing with respect to the same
secret key but modulus q′, we roughly just scale c by a factor q′/q (thus getting a fractional ciphertext),
then round appropriately to get back an integer ciphertext. Specifically c′ is a ciphertext vector satisfying
(a) c′ = c (mod 2), and (b) the “rounding error term” τ def

= c′ − (q′/q)c has low norm. Converting c
to c′ is easy in coefficient representation, and one of our optimizations is a method for doing the same in
evaluation representation (cf. Section 3.2) This operation leaves the current key s unchanged, changes the
current modulus from q to q′, and the norm of the noise is changed as ‖n′‖ ≤ (q′/q)‖n‖+ ‖τ · s‖. Note that
if the key s has low norm and q′ is sufficiently smaller than q, then the noise magnitude decreases by this
operation.

A BGV-type cryptosystem has a chain of moduli, q0 < q1 · · · < qL−1, where fresh ciphertexts are
with respect to the largest modulus qL−1. During homomorphic evaluation every time the (estimated) noise
grows too large we apply modulus switching from qi to qi−1 in order to decrease it back. Eventually we get
ciphertexts with respect to the smallest modulus q0, and we cannot compute on them anymore (except by
using bootstrapping).

Automorphisms. In addition to adding and multiplying polynomials, another useful operation is convert-
ing the polynomial a(X) ∈ A to a(i)(X)

def
= a(Xi) mod Φm(X). Denoting by κi the transformation

κi : a 7→ a(i), it is a standard fact that the set of transformations {κi : i ∈ (Z/mZ)∗} forms a group
under composition (which is the Galois group Gal(Q(ζm)/Q)), and this group is isomorphic to (Z/mZ)∗.
In [5, 15] it was shown that applying the transformations κi to the plaintext polynomials is very useful, some
more examples of its use can be found in our Section 4.

Denoting by c(i), s(i) the vector obtained by applying κi to each entry in c, s, respectively, it was shown
in [5, 15] that if s is a valid ciphertext encrypting a with respect to key s and modulus q, then c(i) is a valid
ciphertext encrypting a(i) with respect to key s(i) and the same modulus q. Moreover the norm of noise
remains the same under this operation. We remark that we can apply key-switching to c(i) in order to get an
encryption of a(i) with respect to the original key s.

2.3 Computing on Packed Ciphertexts

Smart and Vercauteren observed [28, 29] that the plaintext space A2 can be viewed as a vector of “plaintext
slots”, by an application the polynomial Chinese Remainder Theorem. Specifically, if the ring polynomial
Φm(X) factors modulo 2 into a product of irreducible factors Φm(X) =

∏`−1
j=0 Fj(X) (mod 2), then a

plaintext polynomial a(X) ∈ A2 can be viewed as encoding ` different small polynomials, aj = a mod Fj .
Just like for integer Chinese Remaindering, addition and multiplication in A2 correspond to element-wise
addition and multiplication of the vectors of slots.

5

The effect of the automorphisms is a little more involved. When i is a power of two then the transforma-
tions κi : a 7→ a(i) is just applied to each slot separately. When i is not a power of two the transformation κi
has the effect of roughly shifting the values between the different slots. For example, for some parameters
we could get a cyclic shift of the vector of slots: If a encodes the vector (a0, a1, . . . , a`−1), then κi(a) (for
some i) could encode the vector (a`−1, a0, . . . , a`−2). This was used in [15] to devise efficient procedures
for applying arbitrary permutations to the plaintext slots.

We note that the values in the plaintext slots are not just bits, rather they are polynomials modulo the
irreducible Fj’s, so they can be used to represents elements in extension fields GF(2d). In particular, in our
AES implementations we used the plaintext slots to hold elements of GF(28), and encrypt one byte of the
AES state in each slot. Then we can use an adaption of the techniques from [15] to permute the slots when
performing the AES row-shift and column-mix.

3 General-Purpose Optimizations

Below we summarize our optimizations that are not tied directly to the AES circuit and can be used also in
homomorphic evaluation of other circuits. Underlying many of these optimizations is our choice of keeping
ciphertext and key-switching matrices in evaluation (double-CRT) representation. Roughly speaking, our
chain of moduli is defined via a set of same-size primes, p0, p1, p2, . . ., chosen such that Z/piZ has m’th
roots of unity. (In other words, m|pi − 1 for all i.) For i = 0, . . . , L − 1 we then define our i’th modulus
as qi =

∏i
j=0 pi. To gain efficiency, we actually choose p0 to be half the bit-size of the other pi’s, and so

the odd indexed moduli in the chain are a product of the primes starting at p0 (qi =
∏bi/2c
i=0 pi) and the even-

indexed moduli are products that do not include p0 (qi =
∏i/2
i=1 pi). In our implementation the half-sized

prime has 23-25 bits (and the full-sized primes therefore have 46-50 bits). For easy of exposition, however,
in the rest of this report we ignore this “half-sized” prime and describe all our optimizations as if we were
using only a chain of same-size primes.

In the t-th level of the scheme we have ciphertexts consisting of elements in Aqt (i.e., polynomials
modulo (Φm(X), qt)). We represent an element c ∈ Aqt by a φ(m) × (t + 1) “matrix” of its evaluations
at the primitive m-th roots of unity modulo the primes p0, . . . , pt. Computing this representation from the
coefficient representation of c involves reducing c modulo the pi’s and then t + 1 invocations of the FFT
algorithm, modulo each of the pi (picking only the FFT coefficients corresponding to (Z/mZ)∗). To convert
back to coefficient representation we invoke the inverse FFT algorithm, each time padding the φ(m)-vector
of evaluation point with m − φ(m) zeros (for the evaluations at the non-primitive roots of unity). This
yields the coefficients of the polynomials modulo (Xm − 1, pi) for i = 0, . . . , t, we then reduce each of
these polynomials modulo (Φm(X), pi) and apply Chinese Remainder interpolation. We stress that we try
to perform these transformations as rarely as we can.

3.1 A New Variant of Key Switching

As described in Section 2, the key-switching transformation introduces an additive factor of 2 〈c′, e〉 in
the noise, where c′ is the input ciphertext and e is the noise component in the key-switching matrix. To
keep the noise magnitude below the modulus q, it seems that we need to ensure that the ciphertext c′

itself has low norm. In BGV [5] this was done by representing c′ as a fixed linear combination of small
vectors, i.e. c′ =

∑
i 2ic′i with c′i the vector of i’th bits in c′. Considering the high-dimension ciphertext

c∗ = (c′0|c′1|c′2| · · ·) and secret key s∗ = (s′|2s′|4s′| · · ·), we note that we have 〈c∗, s∗〉 = 〈c′, s′〉, and c∗

has low norm (since it consists of 0-1 polynomials). BGV therefore included in the public key the matrix

6

W = W [s∗ → s] (rather than W [s′ → s]), and had the key-switching transformation computes c∗ from c′

and sets c = W · c∗.
When implementing key-switching, there are two drawbacks to the above approach. First, this increases

the dimension (and hence the size) of the key switching matrix. This drawback is fatal when evaluating deep
circuits, since having enough memory to keep the key-switching matrices turns out to be a limiting factor in
our ability to evaluate such circuits. In addition, for this key-switching we must first convert c′ to coefficient
representation (in order to compute the c′i’s), then convert each of the c′i’s back to evaluation representation
before multiplying by the key-switching matrix. In level t of the circuit, this seem to require Ω(t log qt)
FFTs.

In this work we propose a different variant: Rather than manipulating c′ to decrease its norm, we instead
temporarily increase the modulus q. We recall that for a valid ciphertext c′, encrypting plaintext a with
respect to s′ and q, we have the equality 〈c′, s′〉 = 2e′ + a over Aq, for a low-norm polynomial e′. This
equality, we note, implies that for every odd integer p we have the equality 〈c′, ps′〉 = 2e′′ + a, holding
over Apq, for the “low-norm” polynomial e′′ (namely e′′ = p · e′+ p−1

2 a). Clearly, when considered relative
to secret key ps and modulus pq, the noise in c′ is p times larger than it was relative to s and q. However,
since the modulus is also p times larger, we maintain that the noise has norm sufficiently smaller than the
modulus. In other words, c′ is still a valid ciphertext that encrypts the same plaintext a with respect to secret
key ps and modulus pq. By taking p large enough, we can ensure that the norm of c′ (which is independent
of p) is sufficiently small relative to the modulus pq.

We therefore include in the public key a matrix W = W [ps′ → s] modulo pq for a large enough odd
integer p. (Specifically we need p ≈ q

√
m.) Given a ciphertext c′, valid with respect to s and q, we apply

the key-switching transformation simply by setting c = W ·c′ over Apq. The additive noise term 〈c′, e〉 that
we get is now small enough relative to our large modulus pq, thus the resulting ciphertext c is valid with
respect to s and pq. We can now switch the modulus back to q (using our modulus switching routine), hence
getting a valid ciphertext with respect to s and q.

We note that even though we no longer break c′ into its binary encoding, it seems that we still need to
recover it in coefficient representation in order to compute the evaluations of c′ mod p. However, since we
do not increase the dimension of the ciphertext vector, this procedure requires only O(t) FFTs in level t (vs.
O(t log qt) = O(t2) for the original BGV variant). Also, the size of the key-switching matrix is reduced by
roughly the same factor of log qt.

Our new variant comes with a price tag, however: We use key-switching matrices relative to a larger
modulus, but still need the noise term in this matrix to be small. This means that the LWE problem under-
lying this key-switching matrix has larger ratio of modulus/noise, implying that we need a larger dimension
to get the same level of security than with the original BGV variant. In fact, since our modulus is more than
squared (from q to pq with p > q), the dimension is increased by more than a factor of two. This translates
to more than doubling of the key-switching matrix, partly negating the size and running time advantage that
we get from this variant.

Of course, one can also use a hybrid of the two approaches: we can decrease the norm of c′ only
somewhat by breaking it into a few digits (as opposed to binary bits as in [5]), and then increase the modulus
somewhat until it is large enough relative to the smaller norm of c′. The HElib implementation indeed let
us break c to any number of digits, upto the number of primes in the chain, and in our experiments we used
anywhere between 3 and 6 digits to get the right level of security for the different settings.

7

3.2 Modulus Switching in Evaluation Representation

Given an element c ∈ Aqt in evaluation (double-CRT) representation relative to qt =
∏t
j=0 pj , we want to

modulus-switch to qt−1 – i.e., scale down by a factor of pt; we call this operation Scale(c, qt, qt−1). The
output should be c′ ∈ A, represented via the same double-CRT format (with respect to p0, . . . , pt−1), such
that (a) c′ ≡ c (mod 2), and (b) the “rounding error term” τ = c′ − (c/pt) has a very low norm. As pt is

odd, we can equivalently require that the element c† def
= pt · c′ satisfy

(i) c† is divisible by pt,

(ii) c† ≡ c (mod 2), and

(iii) c† − c (which is equal to pt · τ) has low norm.

Rather than computing c′ directly, we will first compute c† and then set c′ ← c†/pt. Observe that once we
compute c† in double-CRT format, it is easy to output also c′ in double-CRT format: given the evaluations
for c† modulo pj (j < t), simply multiply them by p−1t mod pj . The algorithm to output c† in double-CRT
format is as follows:

1. Set c̄ to be the coefficient representation of c mod pt. (Computing this requires a single “small FFT”
modulo the prime pt.)

2. Add or subtract pt from every odd coefficient of c̄, thus obtaining a polynomial δ with coefficients in
(−pt, pt] such that δ ≡ c̄ ≡ c (mod pt) and δ ≡ 0 (mod 2).

3. Set c† = c− δ, and output it in double-CRT representation.

Since we already have c in double-CRT representation, we only need the double-CRT representation
of δ, which requires t more “small FFTs” modulo the pj’s.

As all the coefficients of c† are within pt of those of c, the “rounding error term” τ = (c† − c)/pt has
coefficients of magnitude at most one, hence it has low norm.

The procedure above uses t + 1 small FFTs in total. This should be compared to the naive method of
just converting everything to coefficient representation modulo the primes (t + 1 FFTs), CRT-interpolating
the coefficients, dividing and rounding appropriately the large integers (of size≈ qt), CRT-decomposing the
coefficients, and then converting back to evaluation representation (t+ 1 more FFTs). The above approach
makes explicit use of the fact that we are working in a plaintext space modulo 2; in Appendix D we present
a technique which works when the plaintext space is defined modulo a larger modulus.

3.3 Dynamic Noise Management

As described in the literature, BGV-type cryptosystems tacitly assume that each homomorphic operation
operation is followed a modulus switch to reduce the noise magnitude. In our implementation, however, we
attach to each ciphertext an estimate of the noise magnitude in that ciphertext, and use these estimates to
decide dynamically when a modulus switch must be performed.

Each modulus switch consumes a level, and hence a goal is to reduce, over a computation, the number of
levels consumed. By paying particular attention to the parameters of the scheme, and by carefully analyzing
how various operations affect the noise, we are able to control the noise much more carefully than in prior
work. In particular, we note that modulus-switching is really only necessary just prior to multiplication
(when the noise magnitude is about to get squared), in other times it is acceptable to keep the ciphertexts at
a higher level (with higher noise).

8

4 Homomorphic Evaluation of AES

Next we describe our homomorphic implementation of AES-128. Our main impelemntation is “packed”,
namely the entire AES state is packed in just one ciphertext. Two other possible implementations (of byte-
slice and bit-slice AES) are described later in Section 4.2. We note that in our earlier work we implemented
all htree versions, but in the newer work we only re-implemented the “packed” version.

A Brief Overview of AES. The AES-128 cipher consists of ten applications of the same keyed round
function (with different round keys). The round function operates on a 4 × 4 matrix of bytes, which are
sometimes considered as element of F28 . The basic operations that are performed during the round function
are AddKey, SubBytes, ShiftRows, MixColumns. The AddKey is simply an XOR operation of the current
state with 16 bytes of key; the SubBytes operation consists of an inversion in the field F28 followed by a
fixed F2-affine map on the bits of the element; the ShiftRows rotates the entries in the row i of the 4 × 4
matrix by i − 1 places to the left; finally the MixColumns operations pre-multiplies the state matrix by a
fixed 4× 4 matrix.

Our Packed Representation of the AES state. For our implementation we chose the native plaintext
space of our homomorphic encryption so as to support operations on the finite field F28 . To this end we
choose our ring polynomial as Φm(X) that factors modulo 2 into degree-d irreducible polynomials such
that 8|d. (In other words, the smallest integer d such that m|(2d − 1) is divisible by 8.) This means that our
plaintext slots can hold elements of F2d , and in particular we can use them to hold elements of F28 which
is a sub-field of F2d . Since we have ` = φ(m)/d plaintext slots in each ciphertext, we can represent upto
b`/16c complete AES state matrices per ciphertext.

Moreover, we choose our parameter m so that there exists an element g ∈ Z∗m that has order 16 in
both Z∗m and the quotient group Z∗m/ 〈2〉. This condition means that if we put 16 plaintext bytes in slots
t, tg, tg2, tg3, . . . (for some t ∈ Z∗m), then the conjugation operation X 7→ Xg implements a cyclic right
shift over these sixteen plaintext bytes. Below we denote the vector of plaintext slots by a = (αi)

`
i=1, with

each αi ∈ F28 . We place the 16 bytes of the AES state in plaintext slots using column-first ordering, namely
we have

a ≈ [α00α10α20α30α01α11α21α31α02α12α22α32α03α13α23α33],

representing the input plaintext matrix

A =
(
αij
)
i,j

=

α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

 .

4.1 Homomorphic Evaluation of the Basic Operations

We now examine each AES operation in turn, and describe how it is implemented homomorphically.

4.1.1 AddKey and SubBytes

The AddKey is just a simple addition of ciphertexts, which yields a 4× 4 matrix of bytes in the input to the
SubBytes operation.

9

During S-box lookup, each plaintext byte αij should be replaced by βij = S(αij), where S(·) is a fixed
permutation on the bytes. Specifically, S(x) is obtained by first computing y = x−1 in F28 (with 0 mapped
to 0), then applying a bitwise affine transformation z = T (y) where elements in F28 are treated as bit strings
with representation polynomial G(X) = x8 + x4 + x3 + x+ 1.

We implement F28 inversion followed by the F2 affine transformation using the Frobenius automor-
phisms, X −→ X2j . Recall that the transformation κ2j (a(X)) = (a(X2j) mod Φm(X)) is applied sepa-
rately to each slot, hence we can use it to transform the vector (αi)

`
i=1 into (α2j

i)`i=1. We note that applying
the Frobenius automorphisms to ciphertexts has almost no influence on the noise magnitude, and hence it
does not consume any levels.3

Inversion over F28 is done using essentially the same procedure as Algorithm 2 from [27] for computing
β = α−1 = α254. This procedure takes only three Frobenius automorphisms and four multiplications,
arranged in a depth-3 circuit (see details below.) To apply the AES F2 affine transformation, we use the fact
that any F2 affine transformation can be computed as a F28 affine transformation over the conjugates. Thus
there are constants γ0, γ1, . . . , γ7, δ ∈ F28 such that the AES affine transformation TAES(·) can be expressed
as TAES(β) = δ +

∑7
j=0 γj · β2

j
over F28 . We therefore again apply the Frobenius automorphisms to

compute eight ciphertexts encrypting the polynomials κ2j (b) for j = 0, 1, . . . , 7, and take the appropriate
linear combination (with coefficients the γj’s) to get an encryption of the vector (TAES(α−1i))`i=1. For our
parameters, a multiplication-by-constant operation consumes roughly half a level in terms of added noise.

One subtle implementation detail to note here, is that although our plaintext slots all hold elements
of the same field F28 , they hold these elements with respect to different polynomial encodings. The AES
affine transformation, on the other hand, is defined with respect to one particular fixed polynomial encoding.
This means that we must implement in the i’th slot not the affine transformation TAES(·) itself but rather
the projection of this transformation onto the appropriate polynomial encoding: When we take the affine
transformation of the eight ciphertexts encrypting bj = κ

2
j (b), we therefore multiply the encryption of bj

not by a constant that has γj in all the slots, but rather by a constant that has in slot i the projection of γj to
the polynomial encoding of slot i.

Below we provide a pseudo-code description of our S-box lookup implementation, together with an
approximation of the levels that are consumed by these operations.

Level
Input: ciphertext c t

// Compute c254 = c−1

1. c2 ← c� 2 t // Frobenius X 7→ X2

2. c3 ← c× c2 t− 1 // Multiplication
3. c12 ← c3 � 4 t− 1 // Frobenius X 7→ X4

4. c14 ← c12 × c2 t− 2 // Multiplication
5. c15 ← c12 × c3 t− 2 // Multiplication
6. c240 ← c15 � 16 t− 2 // Frobenius X 7→ X16

7. c254 ← c240 × c14 t− 3 // Multiplication

// Affine transformation over F2

8. c′
2j
← c254 � 2j for j = 0, 1, 2, . . . , 7 t− 3 // Frobenius X 7→ X2j

9. c′′ ← γ +
∑7

j=0 γj × c′
2j

t− 3.5 // Linear combination over F28

3It does increase the noise magnitude somewhat, because we need to do key switching after these automorphisms. But this is
only a small influence, and we will ignore it here.

10

4.1.2 ShiftRows and MixColumns

As commonly done, we lump together the ShiftRows/MixColumns operations, viewing both as a single
linear transformation over vectors from (F28)16. As mentioned above, by a careful choice of the parameterm
and the placement of the AES state bytes in our plaintext slots, we can implement a rotation-by-i of the rows
of the AES matrix as a single automorphism operationsX 7→ Xgi (for some element g ∈ (Z/mZ)∗). Given
the ciphertext c′′ after the SubBytes step, we use these operations in conjunction with `-SELECT operations
(as described in [15]) to compute four ciphertexts corresponding to the appropriate permutations of the 16
bytes (in each of the `/16 different input blocks). These four ciphertexts are combined via a linear operation
(with coefficients 1, X , and (1 +X)) to obtain the final result of this round function.

Moreover, the multiply-by-constant operations implied by `-SELECT can be folded into the multiply-
by-constant operations of the linear transformations, hence the entire shift-row/mix-column operation con-
sumes only 1/2 level in terms of noise. Finally, it is possible to implement the entire procedure using only
six rotation operations, as described next. Recall our column-byte-ordering of the AES state:

a ≈ [α00α10α20α30α01α11α21α31α02α12α22α32α03α13α23α33]

A =

α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

 .

We apply to the state vector a three right-rotations by 11, 6, and 1 positions to get the three vectors a11, a6, a1
representing the matrices A11, A6, A1, respectively:

a11 ≈ [α11α21α31 . . . α30α01] a6 ≈ [α22α32α03 . . . α02α12] a1 ≈ [α33α00α10 . . . α13α23]

A11 =

α11 α12 α13 α10

α21 α22 α23 α20

α31 α32 α33 α30

α02 α03 α00 α01

 A6 =

α22 α23 α20 α21

α32 α33 α30 α31

α03 α00 α01 α02

α13 α10 α11 α12

 A1 =

α33 α30 α31 α32

α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

Considering the top row in the four matrices (consisting of the bytes in positions 0,4,8,12), we see that
we get exactly the four rows of the matrix after the shift-row operations. Hence these four bytes in the
four matrices are exactly aligned so we can use SIMD operations to compute the column-mix operations.
We next multiply these matrices by constants that have 0’s in all positions except 0,4,8,12, and in those
selected positions they have either 1, X , or X + 1. Below we denote these constants by C1, CX and CX+1,
respectively. Setting

B′0 = A · CX + (A1 +A6) · C1 +A11 · CX+1, B′1 = (A+A1) · C1 +A6 · CX+1 +A11 · CX,
B′2 = (A+A11) · C1 +A1 · CX+1 +A6 · CX, B′3 = A · CX+1 +A1 · CX + (A6 +A11) · C1

we get that the top rows of the four B′i’s contain the four rows of the resulting matrix B after mix-column,
and moreover all the other rows in the B′i’s are zero. Having computed all the rows of the result, we use
three more rotations to move them to place, namely set B = B′0 + (B′1 � 1) + (B′2 � 2) + (B′3 � 3). A
pseudo-code of the combined shift-row/mix-column operation is given below:

11

Level
Input: ciphertext c′′ t− 3.5

10. c′′j ← c′′ � j for j = 0, 1, 6, 11 t− 3.5 // Rotations
11. c∗0 ← c′′0 · CX + (c′′1 + c′′6)C1 + c′′11 · CX+1

c∗1 ← (c′′0 + c′′1)C1 + c′′6 · CX+1 + c′′11 · CX

c∗2 ← (c′′0 + c′′11)C1 + c′′1 · CX+1 + c′′6 · CX

c∗3 ← c′′0 · CX+1 + c′′1 · CX + (c′′6 + c′′11)C1 t− 4 // Linear combinations
12. Output c∗0 + (c∗1 � 1) + (c∗2 � 2) + (c∗3 � 3) t− 4 // Assembling the result

4.1.3 The Cost of One Round Function

The above description yields an estimate of 4 levels for implementing one round function, which is in-
deed what we get in our experiments. The time complexity is dominated by the number of key-switching
operations, which we need to do for every multiplication and every automorphism. The byte-substitution
takes three multiplications and four automorphisms for inversion, and seven more automorphisms for the
affine transformation, for a total of 14 key-switches. The shift-row/mix-column operation adds six more
automorphisms, for a grand total of 20 key-switches per round.

We mention that the byte-slice implementation in Section 4.2 below would consume the same number of
levels but use less key-switching operations per round since the shift-row/column-mix operation no longer
needs automorphisms. Hence we would get 14 rather than 20 key-switching operations per round, so we
expect the amortized complexity of this implementation to be faster by a factor of 20/14 ≈ 1.4. However,
since we need to manipulate 16 times as many ciphertexts, the implementation would take much more time
per evaluation (by a factor of 16 · 14/20 = 11.2) and require more memory.

4.2 Byte- and Bit-Slice Implementations

In the byte sliced implementation we use sixteen distinct ciphertexts to represent a single state matrix. (But
since each ciphertext can hold ` plaintext slots, then these 16 ciphertexts can hold the state of ` different
AES blocks). In this representation there is no interaction between the slots, thus we operate with pure `-fold
SIMD operations. The AddKey and SubBytes steps are exactly as above (except applied to 16 ciphertexts
rather than a single one). The permutations in the ShiftRows/MixColumns step are now “for free”, but the
scalar multiplication in MixColumns still consumes 1/2 level in the modulus chain.

For the bit sliced implementation we represent the entire round function as a binary circuit, and we use
128 distinct ciphertexts (one per bit of the state matrix). However each set of 128 ciphertexts is able to
represent a total of ` distinct blocks. The main issue here is how to create a circuit for the round function
which is as shallow, in terms of number of multiplication gates, as possible. Again the main issue is the
SubBytes operation as all operations are essentially linear. To implement the SubBytes we used the “depth-
16” circuit of Boyar and Peralta [3], which consumes four levels. The rest of the round function can be
represented as a set of bit-additions, Thus, implementing this method means that we should again consume
only four levels per level.

4.3 Using Bootstrapping

Without bootstrapping, implementing ten rounds requires over 40 levels in the modulus chain, which means
that we need a very large dimension to get security. We could hope to use the “bootstrapping as optimiza-
tion” technique from BGV [5] to get smaller dimension, and hence speed up the computation. As it turns

12

Test m φ(m) lvls |Q| security params/key-gen Encrypt Decrypt memory
no bootstrap 53261 46080 40 886 150-bit 26.45 / 73.03 245.1 394.3 3GB
bootstrap 28679 23040 23 493 123-bit 148.2 / 37.2 1049.9 1630.5 3.7GB

Table 1: Performence results of homomorphic AES. Time is in seconds, the modulus size |Q| includes extra
primes as in Section 3.1.

out, however, the reduction in dimension is not enough to compensate for the extra time spent in the re-
cryption procedure itself, so this does not lead to faster process. Bootstrapping is still needed, however, in
applications that further process the result of the AES encryption. Hence in our implementation we also
tested incorporating recryption into the AES computation.

One avenue for optimization in this case is to recrypt several ciphertexts together: The implementation
of recryption in HElib handles “fully packed ciphertexts” whose slots contain elements from F2d (for some
d divisible by 8), but our AES implementation only uses F28 elements (i.e. bytes) in the slots. We can
therefore recrypt several ciphertexts together, packing d/8 bytes in each slot. Since in this setting most of
the AES computation time is spent on recryption, we can process d/8 ciphertexts at nearly the same time
as we do a single ciphertext, yielding a nearly d/8 speedup in amortized time. In our experiments we used
d = 24, so this yields roughly a 3× improvement.

4.4 Performance Details

As remarked in the introduction, we tested our implementations on a two-year-old Lenovo X230 laptop
with Intel Core i5-3320M running at 2.6GHz, on an Ubuntu 14.04 VM with 4GB of RAM, using the g++
compiler version 4.9.2. The results of these tests are summarized in Table 1.

Non-bootstrapping implementation. For the non-bootstrapping experiment we selected parameters large
enough to cope with 40 levels of computation. Appendix C contains our old derivation of the parameters to
use, in our newer implementation we used instead the HElib derivation (that takes into consideration also the
hybrid approach from Section 3.1), and is described in the HElib design document [18, Sec 3.1.4]. A rule-
of-thumb is that for an L-level computation we need the dimension to be roughly 1000 ·L. Specifically here
we worked with the m-th cyclotomic for m = 53261, which yields lattices of dimension φ(m) = 46080.
This setting has 1920 slots, so we can fit 1920/16 = 120 AES blocks in each ciphertext.

For this setting, key-generation took about 1.5 minutes, of which roughly 30 seconds were spent comput-
ing key-independent tables and about one minute was spent generating the keys and key-switching matrices.
The input to the actual computation consisted of 120 plaintext blocks (in cleartext), and the eleven AES
round keys encrypted in eleven packed ciphertext using our homomorphic encryption scheme. Homomor-
phic AES-encryption operation took 252 seconds, yielding throughput of 2 seconds per block.

Implementation using bootstrapping. Since bootstrapping in HElib takes about 12 levels, we chose our
parameters here to cope with more than 20 levels of computation, so that we can compute at least two
AES rounds per recryption. Specifically we had 23 computation levels and worked with m = 28679 and
φ(m) = 23040, a setting that yields 123-bit security by our estimates (see Equation (8) in Appendix C).
This setting features 960 slots per ciphertext, each holding an element of F224 , which is enough to pack 60
AES blocks.

13

Key-generation for this setting took about four minutes, three of which were spent computing key-
independent tables, and under one minute spent on generating the keys and key-switching matrices. The
input to the actual computation consisted of 180 plaintext blocks (in cleartext), and the same 11 packed
cipehrtext encrypting the AES round keys. During the computation we applied the AES operation to three
ciphertexts in parallel, and packed them into a single cipehrtext before each recryption.

The AES-encryption operation took 1050 seconds, of which 823 seconds were spent during two recryp-
tion operations, and the other 227 seconds were spent on the AES computation of the three ciphertexts. With
180 blocks, this gives throughput of 5.8 seconds per block. The entire computation used 3.7GB of memory.

Implementing AES decryption. We also implemented the AES decryption operation, basically by just
reversing all the operations of the AES-encryption circuit. The operations performed in both cases are nearly
identical (except a few multiply-by-constant operations), and yet in our tests the decryption time was about
60% slower than encryption.

For the non-bootstrapping case, one reason is that the AES encryption operation begins with inversion
that lowers the level of the ciphertext, whereas decryption begins with the linear operations that keep the
level more or less the same. As a result, operations on decryption are performed 2-3 levels higher than on
encryption, which means that they need to manipulate more primes in our chain of moduli. It is not clear to
us why this causes such a large slowdown, we speculate that some of it is the result of memory swapping or
some other low-level effects.

For the bootstrapping case, the reason for the large slowdown is that the last inversion operation on
decryption happens quite low in the chain, which triggers one more recryption operation, three on decryption
vs. two on encryption. (This artifactc can probably be removed by special-casing the last round, but we did
not attempt to do it.)

Acknowledgments

We thank Jean-Sebastien Coron for pointing out to us the efficient implementation from [27] of the AES
S-box lookup.

References

[1] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 595–618. Springer, 2009.

[2] Sanjeev Arora and Rong Ge. New algorithms for learning in the presence of errors. In ICALP, volume
6755 of Lecture Notes in Computer Science, pages 403–415. Springer, 2011.

[3] Joan Boyar and René Peralta. A depth-16 circuit for the AES S-box. Manuscript, http://eprint.
iacr.org/2011/332, 2011.

[4] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP.
Manuscript, http://eprint.iacr.org/2012/078, 2012.

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption without
bootstrapping. In Innovations in Theoretical Computer Science (ITCS’12), 2012. Available at http:
//eprint.iacr.org/2011/277.

14

[6] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS’11. IEEE Computer Society, 2011.

[7] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE and secu-
rity for key dependent messages. In Advances in Cryptology - CRYPTO 2011, volume 6841 of Lecture
Notes in Computer Science, pages 505–524. Springer, 2011.

[8] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully homomorphic
encryption over the integers with shorter public keys. In Advances in Cryptology - CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 487–504. Springer, 2011.

[9] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and modulus
switching for fully homomorphic encryption over the integers. In Advances in Cryptology - EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 446–464. Springer, 2012.

[10] Ivan Damgård and Marcel Keller. Secure multiparty aes. In Proc. of Financial Cryptography 2010,
volume 6052 of LNCS, pages 367–374, 2010.

[11] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. Manuscript, 2011.

[12] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In EUROCRYPT, volume 4965 of
Lecture Notes in Computer Science, pages 31–51. Springer, 2008.

[13] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[14] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In
EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 129–148. Springer, 2011.

[15] Craig Gentry, Shai Halevi, and Nigel Smart. Fully homomorphic encryption with polylog overhead.
In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465–482. Springer, 2012.
Full version at http://eprint.iacr.org/2011/566.

[16] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, edi-
tors, Advances in Cryptology - CRYPTO 2013, Part I, pages 75–92. Springer, 2013.

[17] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the
learning with errors assumption. In Innovations in Computer Science - ICS ’10, pages 230–240. Ts-
inghua University Press, 2010.

[18] Shai Halevi and Victor Shoup. Design and implementation of a homomorphic-encryption library.
manuscript, available at http://people.csail.mit.edu/shaih/pubs/he-library.
pdf, Accessed January 2015.

[19] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computation using
garbled circuits. In USENIX Security Symposium, 2011.

[20] C. Orlandi J.B. Nielsen, P.S. Nordholt and S. Sheshank. A new approach to practical active-secure
two-party computation. Manuscript, 2011.

15

[21] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practi-
cal? In CCSW, pages 113–124. ACM, 2011.

[22] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for lwe-based encryption. In CT-RSA,
volume 6558 of Lecture Notes in Computer Science, pages 319–339. Springer, 2011.

[23] Adriana Lòpez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on
the cloud via multikey fully homomorphic encryption. In STOC. ACM, 2012.

[24] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 1–23, 2010.

[25] Daniele Micciancio and Oded Regev. Lattice-based cryptography, pages 147–192. Springer, 2009.

[26] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Steven C. Williams. Secure two-party compu-
tation is practical. In Proc. ASIACRYPT 2009, volume 5912 of LNCS, pages 250–267, 2009.

[27] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In CHES,
volume 6225 of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

[28] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Public Key Cryptography - PKC’10, volume 6056 of Lecture Notes in Computer
Science, pages 420–443. Springer, 2010.

[29] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Manuscript at
http://eprint.iacr.org/2011/133, 2011.

A More Details

Following [24, 5, 15, 29] we utilize rings defined by cyclotomic polynomials, A = Z[X]/Φm(X). We let
Aq denote the set of elements of this ring reduced modulo various (possibly composite) moduli q. The ring
A is the ring of integers of a the mth cyclotomic number field K.

A.1 Plaintext Slots

In our scheme plaintexts will be elements of A2, and the polynomial Φm(X) factors modulo 2 into ` ir-
reducible factors, Φm(X) = F1(X) · F2(X) · · ·F`(X) (mod 2), all of degree d = φ(m)/`. Just as in
[5, 15, 29] each factor corresponds to a “plaintext slot”. That is, we view a polynomial a ∈ A2 as represent-
ing an `-vector (a mod Fi)

`
i=1.

It is standard fact that the Galois group Gal = Gal(Q(ζm)/Q) consists of the mappings κk : a(X) 7→
a(xk) mod Φm(X) for all k co-prime with m, and that it is isomorphic to (Z/mZ)∗. As noted in [15], for
each i, j ∈ {1, 2, . . . , `} there is an element κk ∈ Gal which sends an element in slot i to an element in slot
j. Namely, if b = κi(a) then the element in the j’th slot of b is the same as that in the i’th slot of a. In
addition Gal contains the Frobenius elements, X −→ X2i , which also act as Frobenius on the individual
slots separately.

For the purpose of implementing AES we will be specifically interested in arithmetic in F28 (represented
as F28 = F2[X]/G(X) with G(X) = X8 + X4 + X3 + X + 1). We choose the parameters so that d is
divisible by 8, so F2d includes F2d as a subfield. This lets us think of the plaintext space as containing
`-vectors over F2n .

16

A.2 Canonical Embedding Norm

Following [24], we use as the “size” of a polynomial a ∈ A the l∞ norm of its canonical embedding. Recall
that the canonical embedding of a ∈ A into Cφ(m) is the φ(m)-vector of complex numbers σ(a) = (a(ζim))i
where ζm is a complex primitive m-th root of unity and the indexes i range over all of (Z/mZ)∗. We call
the norm of σ(a) the canonical embedding norm of a, and denote it by

‖a‖can∞ = ‖σ(a)‖∞.

We will make use of the following properties of ‖ · ‖can∞ :

• For all a, b ∈ A we have ‖a · b‖can∞ ≤ ‖a‖can∞ · ‖b‖can∞ .

• For all a ∈ A we have ‖a‖can∞ ≤ ‖a‖1.

• There is a ring constant cm (depending only on m) such that ‖a‖∞ ≤ cm · ‖a‖can∞ for all a ∈ A.

The ring constant cm is defined by cm = ‖CRT−1m ‖∞ where CRTm is the CRT matrix for m, i.e. the
Vandermonde matrix over the complex primitive m-th roots of unity. Asymptotically the value cm can grow
super-polynomially with m, but for the “small” values of m one would use in practice values of cm can be
evaluated directly. See [11] for a discussion of cm.

Canonical Reduction. When working with elements in Aq for some integer modulus q, we sometimes
need a version of the canonical embedding norm that plays nice with reduction modulo q. Following [15],
we define the canonical embedding norm reduced modulo q of an element a ∈ A as the smallest canonical
embedding norm of any a′ which is congruent to a modulo q. We denote it as

|a|canq
def
= min{ ‖a′‖can∞ : a′ ∈ A, a′ ≡ a (mod q) }.

We sometimes also denote the polynomial where the minimum is obtained by [a]canq , and call it the canonical
reduction of a modulo q. Neither the canonical embedding norm nor the canonical reduction is used in the
scheme itself, it is only in the analysis of it that we will need them. We note that (trivially) we have
|a|canq ≤ ‖a‖can∞ .

A.3 Double CRT Representation

As noted in Section 2, we usually represent an element a ∈ Aq via double-CRT representation, with respect
to both the polynomial factor of Φm(X) and the integer factors of q. Specifically, we assume that Z/qZ
contains a primitive m-th root of unity (call it ζ), so Φm(X) factors modulo q to linear terms Φm(X) =∏
i∈(Z/mZ)∗(X − ζj) (mod q). We also denote q’s prime factorization by q =

∏t
i=0 pi. Then a polynomial

a ∈ Aq is represented as the (t + 1) × φ(m) matrix of its evaluation at the roots of Φm(X) modulo pi for
i = 0, . . . , t:

dble-CRTt(a) =
(
a
(
ζj
)

mod pi
)
0≤i≤t,j∈(Z/mZ)∗ .

The double CRT representation can be computed using t+1 invocations of the FFT algorithm modulo the pi,
picking only the FFT coefficients which correspond to elements in (Z/mZ)∗. To invert this representation
we invoke the inverse FFT algorithm t+1 times on a vector of length m consisting of the thinned out values
padded with zeros, then apply the Chinese Remainder Theorem, and then reduce modulo Φm(X) and q.

17

Addition and multiplication in Aq can be computed as component-wise addition and multiplication of
the entries in the two tables (modulo the appropriate primes pi),

dble-CRTt(a+ b) = dble-CRTt(a) + dble-CRTt(b)

dble-CRTt(a · b) = dble-CRTt(a) · dble-CRTt(b).

Also, for an element of the Galois group κk ∈ Gal (which maps a(X) ∈ A to a(Xk) mod Φm(X)), we can
evaluate κk(a) on the double-CRT representation of a just by permuting the columns in the matrix, sending
each column j to column j · k mod m.

A.4 Sampling From Aq

At various points we will need to sample from Aq with different distributions, as described below. We denote
choosing the element a ∈ A according to distributionD by a← D. The distributions below are described as
over φ(m)-vectors, but we always consider them as distributions over the ring A, by identifying a polynomial
a ∈ A with its coefficient vector.

The uniform distribution Uq: This is just the uniform distribution over (Z/qZ)φ(m), which we identify with
(Z ∩ (−q/2, q/2])φ(m)). Note that it is easy to sample from Uq directly in double-CRT representation.

The “discrete Gaussian” DGq(σ2): LetN (0, σ2) denote the normal (Gaussian) distribution on real numbers
with zero-mean and variance σ2, we use drawing from N (0, σ2) and rounding to the nearest integer as
an approximation to the discrete Gaussian distribution. Namely, the distribution DGqt(σ2) draws a real
φ-vector according to N (0, σ2)φ(m), rounds it to the nearest integer vector, and outputs that integer vector
reduced modulo q (into the interval (−q/2, q/2]).

Sampling small polynomials, ZO(p) andHWT (h): These distributions produce vectors in {0,±1}φ(m).
For a real parameter ρ ∈ [0, 1], ZO(p) draws each entry in the vector from {0,±1}, with probability

ρ/2 for each of −1 and +1, and probability of being zero 1− ρ.
For an integer parameter h ≤ φ(m), the distribution HWT (h) chooses a vector uniformly at random

from {0,±1}φ(m), subject to the conditions that it has exactly h nonzero entries.

A.5 Canonical embedding norm of random polynomials

In the coming sections we will need to bound the canonical embedding norm of polynomials that are pro-
duced by the distributions above, as well as products of such polynomials. In some cases it is possible to
analyze the norm rigorously using Chernoff and Hoeffding bounds, but to set the parameters of our scheme
we instead use a heuristic approach that yields better constants:

Let a ∈ A be a polynomial that was chosen by one of the distributions above, hence all the (nonzero)
coefficients in a are IID (independently identically distributed). For a complex primitive m-th root of unity
ζm, the evaluation a(ζm) is the inner product between the coefficient vector of a and the fixed vector zm =
(1, ζm, ζ

2
m, . . .), which has Euclidean norm exactly

√
φ(m). Hence the random variable a(ζm) has variance

V = σ2φ(m), where σ2 is the variance of each coefficient of a. Specifically, when a ← Uq then each
coefficient has variance q2/12, so we get variance VU = q2φ(m)/12. When a← DGq(σ2) we get variance
VG ≈ σ2φ(m), and when a ← ZO(ρ) we get variance VZ = ρφ(m). When choosing a ← HWT (h) we
get a variance of VH = h (but not φ(m), since a has only h nonzero coefficients).

18

Moreover, the random variable a(ζm) is a sum of many IID random variables, hence by the law of large
numbers it is distributed similarly to a complex Gaussian random variable of the specified variance.4 We
therefore use 6

√
V (i.e. six standard deviations) as a high-probability bound on the size of a(ζm). Since the

evaluation of a at all the roots of unity obeys the same bound, we use six standard deviations as our bound
on the canonical embedding norm of a. (We chose six standard deviations since erfc(6) ≈ 2−55, which is
good enough for us even when using the union bound and multiplying it by φ(m) ≈ 216.)

In many cases we need to bound the canonical embedding norm of a product of two such “random
polynomials”. In this case our task is to bound the magnitude of the product of two random variables, both
are distributed close to Gaussians, with variances σ2a, σ

2
b , respectively. For this case we use 16σaσb as our

bound, since erfc(4) ≈ 2−25, so the probability that both variables exceed their standard deviation by more
than a factor of four is roughly 2−50.

B The Basic Scheme

We now define our leveled HE scheme on L levels; including the Modulus-Switching and Key-Switching
operations and the procedures for KeyGen,Enc,Dec, and for Add,Mult, Scalar-Mult, and Automorphism.

Recall that a ciphertext vector c in the cryptosystem is a valid encryption of a ∈ A with respect to
secret key s and modulus q if [[〈c, s〉]q]2 = a, where the inner product is over A = Z[X]/Φm(X), the
operation [·]q denotes modular reduction in coefficient representation into the interval (−q/2,+q/2], and
we require that the “noise” [〈c, s〉]q is sufficiently small (in canonical embedding norm reduced mod q). In
our implementation a “normal” ciphertext is a 2-vector c = (c0, c1), and a “normal” secret key is of the
form s = (1,−s), hence decryption takes the form

a← [c0 − c1 · s]q mod 2. (2)

B.1 Our Moduli Chain

We define the chain of moduli for our depth-L homomorphic evaluation by choosing L “small primes”
p0, p1, . . . , pL−1 and the t’th modulus in our chain is defined as qt =

∏t
j=0 pj . (The sizes will be determined

later.) The primes pi’s are chosen so that for all i, Z/piZ contains a primitive m-th root of unity. Hence we
can use our double-CRT representation for all Aqt .

This choice of moduli makes it easy to get a level-(t− 1) representation of a ∈ A from its level-t repre-
sentation. Specifically, given the level-t double-CRT representation dble-CRTt(a) for some a ∈ Aqt , we can
simply remove from the matrix the row corresponding to the last small prime pt, thus obtaining a level-(t−1)
representation of a mod qt−1 ∈ Aqt−1 . Similarly we can get the double-CRT representation for lower levels
by removing more rows. By a slight abuse of notation we write dble-CRTt

′
(a) = dble-CRTt(a) mod qt′

for t′ < t.
Recall that encryption produces ciphertext vectors valid with respect to the largest modulus qL−1 in our

chain, and we obtain ciphertext vectors valid with respect to smaller moduli whenever we apply modulus-
switching to decrease the noise magnitude. As described in Section 3.3, our implementation dynamically
adjust levels, performing modulus switching when the dynamically-computed noise estimate becomes too
large. Hence each ciphertext in our scheme is tagged with both its level t (pinpointing the modulus qt relative
to which this ciphertext is valid), and an estimate ν on the noise magnitude in this ciphertext. In other words,

4The mean of a(ζm) is zero, since the coefficients of a are chosen from a zero-mean distribution.

19

a ciphertext is a triple (c, t, ν) with 0 ≤ t ≤ L− 1, c a vector over Aqt , and ν a real number which is used
as our noise estimate.

B.2 Modulus Switching

The operation SwitchModulus(c) takes the ciphertext c = ((c0, c1), t, ν) defined modulo qt and produces a
ciphertext c′ = ((c′0, c

′
1), t−1, ν ′) defined modulo qt−1, Such that [c0− s · c1]qt ≡ [c′0− s · c′1]qt−1 (mod 2),

and ν ′ is smaller than ν. This procedure makes use of the function Scale(x, q, q′) that takes an element
x ∈ Aq and returns an element y ∈ Aq′ such that in coefficient representation it holds that y ≡ x (mod 2),
and y is the closest element to (q′/q) · x that satisfies this mod-2 condition.

To maintain the noise estimate, the procedure uses the pre-set ring-constant cm (cf. Appendix A.2) and
also a pre-set constant Bscale which is meant to bound the magnitude of the added noise term from this
operation. It works as follows:

SwitchModulus((c0, c1), t, ν):
1. If t < 1 then abort; // Sanity check
2. ν ′ ← qt−1

qt
· ν +Bscale; // Scale down the noise estimate

3. If ν ′ > qt−1/2cm then abort; // Another sanity check
4. c′i ← Scale(ci, qt, qt−1) for i = 0, 1; // Scale down the vector
5. Output ((c′0, c

′
1), t− 1, ν ′).

The constant Bscale is set as Bscale = 2
√
φ(m)/3 · (8

√
h + 3), where h is the Hamming weight of the

secret key. (In our implementation we use h = 64, so we getBscale ≈ 77
√
φ(m).) To justify this choice, we

apply to the proof of the modulus switching lemma from [15, Lemma 13] (in the full version), relative to the
canonical embedding norm. In that proof it is shown that when the noise magnitude in the input ciphertext
c = (c0, c1) is bounded by ν, then the noise magnitude in the output vector c′ = (c′0, c

′
1) is bounded by

ν ′ = qt−1

qt
· ν + ‖ 〈s, τ〉 ‖can∞ , provided that the last quantity is smaller than qt−1/2.

Above τ is the “rounding error” vector, namely τ def
= (τ0, τ1) = (c′0, c

′
1) −

qt−1

qt
(c0, c1). Heuristically

assuming that τ behaves as if its coefficients are chosen uniformly in [−1,+1], the evaluation τi(ζ) at an
m-th root of unity ζm is distributed close to a Gaussian complex with variance φ(m)/3. Also, s was drawn
from HWT (h) so s(ζm) is distributed close to a Gaussian complex with variance h. Hence we expect
τ1(ζ)s(ζ) to have magnitude at most 16

√
φ(m)/3 · h (recall that we use h = 64). We can similarly bound

τ0(ζm) by 6
√
φ(m)/3, and therefore the evaluation of 〈s, τ〉 at ζm is bounded in magnitude (whp) by:

16
√
φ(m)/3 · h + 6

√
φ(m)/3 = 2

√
φ(m)/3 ·

(
8
√
h+ 3

)
≈ 77

√
φ(m) = Bscale (3)

B.3 Key Switching

After some homomorphic evaluation operations we have on our hands not a “normal” ciphertext which is
valid relative to “normal” secret key, but rather an “extended ciphertext” ((d0, d1, d2), qt, ν) which is valid
with respect to an “extended secret key” s′ = (1,−s,−s′). Namely, this ciphertext encrypts the plaintext
a ∈ A via

a =
[[
d0 − s · d1 − s′ · d2

]
qt

]
2

and the magnitude of the noise
[
d0−s·d1−d2 ·s′

]
qt

is bounded by ν. In our implementation, the component
s is always the same element s ∈ A that was drawn from HWT (h) during key generation, but s′ can vary
depending on the operation. (See the description of multiplication and automorphisms below.)

20

To enable that translation, we use some “key switching matrices” that are included in the public key. (In
our implementation these “matrices” have dimension 2 × 1, i.e., the consist of only two elements from A.)
As explained in Section 3.1, we save on space and time by artificially “boosting” the modulus we use from
qt up to P · qt for some “large” modulus P . We note that in order to represent elements in APqt using our
dble-CRT representation we need to choose P so that Z/PZ also has primitive m-th roots of unity. (In fact
in our implementation we pick P to be a prime.)

The key-switching “matrix”. Denote by Q = P · qL−2 the largest modulus relative to which we need
to generate key-switching matrices. To generate the key-switching matrix from s′ = (1,−s,−s′) to s =
(1,−s) (note that both keys share the same element s), we choose two element, one uniform and the other
from our “discrete Gaussian”,

as,s′ ← UQ and es,s′ ← DGQ(σ2),

where the variance σ is a global parameter (that we later set as σ = 3.2). The “key switching matrix” then
consists of the single column vector

W [s′ → s] =

(
bs,s′

as,s′

)
, where bs,s′

def
=
[
s · as,s′ + 2es,s′ + P s′

]
Q
. (4)

Note that W above is defined modulo Q = PqL−2 , but we need to use it relative to Qt = Pqt for whatever
the current level t is. Hence before applying the key switching procedure at level t, we reduceW moduloQt
to getWt

def
= [W]Qt . It is important to note that sinceQt dividesQ thenWt is indeed a key-switching matrix.

Namely it is of the form (b, a)T with a ∈ UQt and b = [s · a + 2es,s′ + P s′]Qt (with respect to the same
element es,s′ ∈ A from above).

The SwitchKey procedure. Given the extended ciphertext c = ((d0, d1, d2), t, ν) and the key-switching
matrix Wt = (b, a)T , the procedure SwitchKeyWt

(c) proceeds as follows:5

SwitchKey(b,a)((d0, d1, d2), t, ν):

1. Set
(
c′0
c′1

)
←
[(

Pd0 b
Pd1 a

)(
1
d2

)]
Qt

; // The actual key-switching operation

2. c′′i ← Scale(c′i, Qt, qt) for i = 0, 1; // Scale the vector back down to qt
3. ν ′ ← ν +BKs · qt/P +Bscale; // The constant BKs is determined below
4. Output ((c′′0, c

′′
1), t, ν ′).

To argue correctness, observe that although the “actual key switching operation” from above looks
superficially different from the standard key-switching operation c′ ← W · c, it is merely an optimization
that takes advantage of the fact that both vectors s′ and s share the element s. Indeed, we have the equality
over AQt :

c′0 − s · c′1 = [(P · d0) + d2 · bs,s′ − s ·
(
(P · d1) + d2 · as,s′

)
= P · (d0 − s · d1 − s′d2) + 2 · d2 · εs,s′ ,

5For simplicity we describe the SwitchKey procedure as if it always switches back to mod-qt, but in reality if the noise estimate
is large enough then it can switch directly to qt−1 instead.

21

so as long as both sides are smaller than Qt we have the same equality also over A (without the mod-Qt
reduction), which means that we get

[c′0 − s · c′1]Qt = [P · (d0 − s · d1 − s′d2) + 2 · d2 · εs,s′]Qt ≡ [d0 − s · d1 − s′d2]Qt (mod 2).

To analyze the size of the added term 2d2εs,s′ , we can assume heuristically that d2 behaves like a uniform
polynomial drawn from Uqt , hence d2(ζm) for a complex root of unity ζm is distributed close to a complex
Gaussian with variance q2t φ(m)/12. Similarly εs,s′(ζm) is distributed close to a complex Gaussian with
variance σ2φ(m), so 2d2(ζ)ε(ζ) can be modeled as a product of two Gaussians, and we expect that with
overwhelming probability it remains smaller than 2 · 16 ·

√
q2t φ(m)/12 · σ2φ(m) = 16√

3
· σqtφ(m). This

yields a heuristic bound 16/
√

3 · σφ(m) · qt = BKs · qt on the canonical embedding norm of the added
noise term, and if the total noise magnitude does not exceed Qt/2cm then also in coefficient representation
everything remains below Qt/2. Thus our constant BKs is set as

16σφ(m)√
3

≈ 9σφ(m) = BKs (5)

Finally, dividing by P (which is the effect of the Scale operation), we obtain the final ciphertext that we
require, and the noise magnitude is divided by P (except for the added Bscale term).

B.4 Key-Generation, Encryption, and Decryption

The procedures below depend on many parameters, h, σ,m, the primes pi and P , etc. These parameters will
be determined later.

KeyGen(): Given the parameters, the key generation procedure chooses a low-weight secret key and then
generates an LWE instance relative to that secret key. Namely, we choose

s← HWT (h), a← UqL−1 , and e← DGqL−1(σ2)

Then sets the secret key as s and the public key as (a, b) where b = [a · s+ 2e]qL−1 .
In addition, the key generation procedure adds to the public key some key-switching “matrices”, as

described in Appendix B.3. Specifically the matrix W [s2 → s] for use in multiplication, and some matrices
W [κi(s) → s] for use in automorphisms, for κi ∈ Gal whose indexes generates (Z/mZ)∗ (including in
particular κ2).

Encpk(m): To encrypt an element m ∈ A2, we choose one “small polynomial” (with 0,±1 coefficients) and
two Gaussian polynomials (with variance σ2),

v ← ZO(0.5) and e0, e1 ← DGqL−1(σ2)

Then we set c0 = b·v+2·e0+m, c1 = a·v+2·e1, and set the initial ciphertext as c′ = (c0, c1, L−1, Bclean),
where Bclean is a parameter that we determine below.

The noise magnitude in this ciphertext (Bclean) is a little larger than what we would like, so before we
start computing on it we do one modulus-switch. That is, the encryption procedure sets c← SwitchModulus(c′)
and outputs c. We can deduce a value for Bclean as follows:∣∣c0 − s · c1

∣∣can
qt
≤ ‖c0 − s · c1‖can∞
= ‖((a · s+ 2 · e) · v + 2 · e0 + m− (a · v + 2 · e1) · s‖can∞
= ‖m + 2 · (e · v + e0 − e1 · s)‖can∞
≤ ‖m‖can∞ + 2 · (‖e · v‖can∞ + ‖e0‖can∞ + ‖e1 · s‖can∞)

22

Using our complex Gaussian heuristic from Appendix A.5, we can bound the canonical embedding norm of
the randomized terms above by

‖e · v‖can∞ ≤ 16σφ(m)/
√

2, ‖e0‖can∞ ≤ 6σ
√
φ(m), ‖e1 · s‖can∞ ≤ 16σ

√
h · φ(m)

Also, the norm of the input message m is clearly bounded by φ(m), hence (when we substitute our param-
eters h = 64 and σ = 3.2) we get the bound

φ(m) + 32σφ(m)/
√

2 + 12σ
√
φ(m) + 32σ

√
h · φ(m) ≈ 74φ(m) + 858

√
φ(m) = Bclean (6)

Our goal in the initial modulus switching from qL−1 to qL−2 is to reduce the noise from its initial level of
Bclean = Θ(φ(m)) to our base-line bound of B = Θ(

√
φ(m)) which is determined in Equation (12) below.

Decpk(c): Decryption of a ciphertext (c0, c1, t, ν) at level t is performed by setting m′ ← [c0 − s · c1]qt ,
then converting m′ to coefficient representation and outputting m′ mod 2. This procedure works when
cm · ν < qt/2, so this procedure only applies when the constant cm for the field A is known and relatively
small (which as we mentioned above will be true for all practical parameters). Also, we must pick the
smallest prime q0 = p0 large enough, as described in Appendix C.2.

B.5 Homomorphic Operations

Add(c, c′): Given two ciphertexts c = ((c0, c1), t, ν) and c′ = ((c′0, c
′
1), t

′, ν ′), representing messages
m,m′ ∈ A2, this algorithm forms a ciphertext ca = ((a0, a1), ta, νa) which encrypts the message ma =
m + m′.

If the two ciphertexts do not belong to the same level then we reduce the larger one modulo the smaller
of the two moduli, thus bringing them to the same level. (This simple modular reduction works as long as
the noise magnitude is smaller than the smaller of the two moduli, if this condition does not hold then we
need to do modulus switching rather than simple modular reduction.) Once the two ciphertexts are at the
same level (call it t′′), we just add the two ciphertext vectors and two noise estimates to get

ca =
((

[c0 + c′0]qt′′ , [c1 + c′1]qt′′
)
, t′′, ν + ν ′

)
.

Mult(c, c′): Given two ciphertexts representing messages m,m′ ∈ A2, this algorithm forms a ciphertext
encrypts the message m ·m′.

We begin by ensuring that the noise magnitude in both ciphertexts is smaller than the pre-set constant
B (which is our base-line bound and is determined inEquation (12) below), performing modulus-switching
as needed to ensure this condition. Then we bring both ciphertexts to the same level by reducing modulo
the smaller of the two moduli (if needed). Once both ciphertexts have small noise magnitude and the same
level we form the extended ciphertext (essentially performing the tensor product of the two) and apply
key-switching to get back a normal ciphertext. A pseudo-code description of this procedure is given below.

Mult(c, c′):

1. While ν(c) > B do c← SwitchModulus(c); // ν(c) is the noise estimate in c
2. While ν(c′) > B do c′ ← SwitchModulus(c′); // ν(c′) is the noise estimate in c′

3. Bring c, c′ to the same level t by reducing modulo the smaller of the two moduli
Denote after modular reduction c = ((c0, c1), t, ν) and c′ = ((c′0, c

′
1), t, ν

′)

23

4. Set (d0, d1, d2)← (c0 · c′0 , c1 · c′0 + c0 · c′1 , − c1 · c′1);
Denote c′′ = ((d0, d1, d2), t, ν · ν ′)

5. Output SwitchKeyW [s2→s](c
′′) // Convert to “normal” ciphertext

We stress that the only place where we force modulus switching is before the multiplication operation.
In all other operations we allow the noise to grow, and it will be reduced back the first time it is input to a
multiplication operation. We also note that we may need to apply modulus switching more than once before
the noise is small enough.

Scalar-Mult(c, α): Given a ciphertext c = (c0, c1, t, ν) representing the message m, and an element α ∈ A2

(represented as a polynomial modulo 2 with coefficients in {−1, 0, 1}), this algorithm forms a ciphertext
cm = (a0, a1, tm, νm) which encrypts the message mm = α ·m. This procedure is needed in our imple-
mentation of homomorphic AES, and is of more general interest in general computation over finite fields.

The algorithm makes use of a procedure Randomize(α) which takes α and replaces each non-zero co-
efficients with a coefficients chosen at random from {−1, 1}. To multiply by α, we set β ← Randomize(α)
and then just multiply both c0 and c1 by β. Using the same argument as we used in Appendix A.5 for the
distribution HWT (h), here too we can bound the norm of β by ‖β‖can∞ ≤ 6

√
Wt(α) where Wt(α) is the

number of nonzero coefficients of α. Hence we multiply the noise estimate by 6
√

Wt(α), and output the
resulting ciphertext cm = (c0 · β, c1 · β, t, ν · 6

√
Wt(α)).

Automorphism(c, κ): In the main body we explained how permutations on the plaintext slots can be real-
ized via using elements κ ∈ Gal; we also require the application of such automorphism to implement the
Frobenius maps in our AES implementation.

For each κ that we want to use, we need to include in the public key the “matrix” W [κ(s) → s]. Then,
given a ciphertext c = (c0, c1, t, ν) representing the message m, the function Automorphism(c, κ) produces
a ciphertext c′ = (c′0, c

′
1, t, ν

′) which represents the message κ(m). We first set an “extended ciphertext” by
setting

d0 = κ(c0), d1 ← 0, and d2 ← κ(c1)

and then apply key switching to the extended ciphertext ((d0, d1, d2), t, ν) using the “matrix” W [κ(s)→ s].

C Security Analysis and Parameter Settings

Below we derive the concrete parameters for use in our early implementation. This part of the report is
outdated, we left it here for historical purpose.

We begin in Appendix C.1 by deriving a lower-bound on the dimension N of the LWE problem under-
lying our key-switching matrices, as a function of the modulus and the noise variance. (This will serve as
a lower-bound on φ(m) for our choice of the ring polynomial Φm(X).) Then in Appendix C.2 we derive
a lower bound on the size of the largest modulus Q in our implementation, in terms of the noise variance
and the dimension N . Then in Appendix C.3 we choose a value for the noise variance (as small as possible
subject to some nominal security concerns), solve the somewhat circular constraints on N and Q, and set all
the other parameters.

C.1 Lower-Bounding the Dimension

Below we apply to the LWE-security analysis of Lindner and Peikert [22], together with a few (arguably
justifiable) assumptions, to analyze the dimension needed for different security levels. The analysis below

24

assumes that we are given the modulus Q and noise variance σ2 for the LWE problem (i.e., the noise is
chosen from a discrete Gaussian distribution modulo Q with variance σ2 in each coordinate). The goal is to
derive a lower-bound on the dimension N required to get any given security level. The first assumption that
we make, of course, is that the Lindner-Peikert analysis — which was done in the context of standard LWE
— applies also for our ring-LWE case. We also make the following extra assumptions:

• We assume that (once σ is not too tiny), the security depends on the ratio Q/σ and not on Q and σ
separately. Nearly all the attacks and hardness results in the literature support this assumption, with
the exception of the Arora-Ge attack [2] (that works whenever σ is very small, regardless of Q).

• The analysis in [22] devised an experimental formula for the time that it takes to get a particular quality
of reduced basis (i.e., the parameter δ of Gama and Nguyen [12]), then provided another formula for
the advantage that the attack can derive from a reduced basis at a given quality, and finally used a
computer program to solve these formulas for some given values of N and δ. This provides some
time/advantage tradeoff, since obtaining a smaller value of δ (i.e., higher-quality basis) takes longer
time and provides better advantage for the attacker.

For our purposes we made the assumption that the best runtime/advantage ratio is achieved in the
high-advantage regime. Namely we should spend basically all the attack running time doing lattice
reduction, in order to get a good enough basis that will break security with advantage (say) 1/2. This
assumption is consistent with the results that are reported in [22].

• Finally, we assume that to get advantage of close to 1/2 for an LWE instance with modulus Q and
noise σ, we need to be able to reduce the basis well enough until the shortest vector is of size roughly
Q/σ. Again, this is consistent with the results that are reported in [22].

Given these assumptions and the formulas from [22], we can now solve the dimension/security tradeoff
analytically. Because of the first assumption we might as well simplify the equations and derive our lower
bound on N for the case σ = 1, where the ratio Q/σ is equal to Q. (In reality we will use σ ≈ 4 and
increase the modulus by the same 2 bits).

Following Gama-Nguyen [12], recall that a reduced basis B = (b1|b2| . . . |bm) for a dimension-M ,
determinant-D lattice (with ‖b1‖ ≤ ‖b2‖ ≤ · · · ‖bM‖), has quality parameter δ if the shortest vector in that
basis has norm ‖b1‖ = δM · D1/M . In other words, the quality of B is defined as δ = ‖b1‖1/M/D1/M2

.
The time (in seconds) that it takes to compute a reduced basis of quality δ for a random LWE instance was
estimated in [22] to be at least

log(time) ≥ 1.8/ log(δ)− 110. (7)

For a randomQ-ary lattice of rankN , the determinant is exactlyQN whp, and therefore a quality-δ basis has
‖b1‖ = δM ·QN/M . By our second assumption, we should reduce the basis enough so that ‖b1‖ = Q, so we
needQ = δM ·QN/M . The LWE attacker gets to choose the dimensionM , and the best choice for this attack
is obtained when the right-hand-side of the last equality is minimized, namely for M =

√
N logQ/ log δ.

This yields the condition

logQ = log(δMQN/M) = M log δ + (N/M) logQ = 2
√
N logQ log δ,

which we can solve for N to get N = logQ/4 log δ. Finally, we can use Equation (7) to express log δ as a
function of log(time), thus getting N = logQ · (log(time) + 110)/7.2. Recalling that in our case we used

25

σ = 1 (so Q/σ = Q), we get our lower-bound on N in terms of Q/σ. Namely, to ensure a time/advantage
ratio of at least 2k, we need to set the rank N to be at least

N ≥ log(Q/σ)(k + 110)

7.2
(8)

For example, the above formula says that to get 80-bit security level we need to set N ≥ log(Q/σ) · 26.4,
for 100-bit security level we need N ≥ log(Q/σ) · 29.1, and for 128-bit security level we need N ≥
log(Q/σ) · 33.1. We comment that these values are indeed consistent with the values reported in [22].

C.1.1 LWE with Sparse Key

The analysis above applies to “generic” LWE instance, but in our case we use very sparse secret keys (with
only h = 64 nonzero coefficients, all chosen as ±1). This brings up the question of whether one can get
better attacks against LWE instances with a very sparse secret (much smaller than even the noise). We
note that Goldwasser et al. proved in [17] that LWE with low-entropy secret is as hard as standard LWE
with weaker parameters (for large enough moduli). Although the specific parameters from that proof do not
apply to our choice of parameter, it does indicate that weak-secret LWE is not “fundamentally weaker” than
standard LWE. In terms of attacks, the only attack that we could find that takes advantage of this sparse key
is by applying the reduction technique of Applebaum et al. [1] to switch the key with part of the error vector,
thus getting a smaller LWE error.

In a sparse-secret LWE we are given a random N -by-M matrix A (modulo Q), and also an M -vector
y = [sA + e]Q. Here the N -vector s is our very sparse secret, and e is the error M -vector (which is also
short, but not sparse and not as short as s).

Below let A1 denotes the first N columns of A, A2 the next N columns, then A3, A4, etc. Similarly
e1, e2, . . . are the corresponding parts of the error vector and y1,y2, . . . the corresponding parts of y. As-
suming that A1 is invertible (which happens with high probability), we can transform this into an LWE
instance with respect to secret e1, as follows:

We have y1 = sA1 + e1, or alternatively A−11 y1 = s+A−11 e1. Also, for i > 1 we have yi = sAi + ei,
which together with the above gives AiA−11 y1 − yi = AiA

−1
1 e1 − ei. Hence if we denote

B1
def
= A−11 , and for i > 1 Bi

def
= AiA1−1,

and similarly z1 = A−11 y1, and for i > 1 zi
def
= AiA

−1
1 yi,

and then set B def
= (Bt

1|Bt
2|Bt

3| . . .) and z
def
= (z1|z2|z3| . . .), and also f = (s|e2|e3| . . .) then we get the

LWE instance
z = et1B + f

with secret et1. The thing that makes this LWE instance potentially easier than the original one is that the
first part of the error vector f is our sparse/small vector s, so the transformed instance has smaller error than
the original (which means that it is easier to solve).

Trying to quantify the effect of this attack, we note that the optimal M value in the attack from Ap-
pendix C.1 above is obtained at M = 2N , which means that the new error vector is f = (s|e2), which has
Euclidean norm smaller than e = (e1|e2) by roughly a factor of

√
2 (assuming that ‖s‖ � ‖e1‖ ≈ ‖e2‖).

Maybe some further improvement can be obtained by using a smaller value for M , where the shorter error
may outweigh the “non optimal” value of M . However, we do not expect to get major improvement this
way, so it seems that the very sparse secret should only add maybe one bit to the modulus/noise ratio.

26

C.2 The Modulus Size

In this section we assume that we are given the parameter N = φ(m) (for our polynomial ring modulo
Φm(X)). We also assume that we are given the noise variance σ2, the number of levels in the modulus
chain L, an additional “slackness parameter” ξ (whose purpose is explained below), and the number of
nonzero coefficients in the secret key h. Our goal is to devise a lower bound on the size of the largest
modulus Q used in the public key, so as to maintain the functionality of the scheme.

Controlling the Noise. Driving the analysis in this section is a bound on the noise magnitude right after
modulus switching, which we denote below by B. We set our parameters so that starting from ciphertexts
with noise magnitude B, we can perform one level of fan-in-two multiplications, then one level of fan-in-ξ
additions, followed by key switching and modulus switching again, and get the noise magnitude back to the
same B.

• Recall that in the “reduced canonical embedding norm”, the noise magnitude is at most multiplied
by modular multiplication and added by modular addition, hence after the multiplication and addition
levels the noise magnitude grows from B to as much as ξB2.

• As we’ve seen in Appendix B.3, performing key switching scales up the noise magnitude by a factor of
P and adds another noise term of magnitude upto BKs · qt (before doing modulus switching to scale it
back down). Hence starting from noise magnitude ξB2, the noise grows to magnitude PξB2+BKs ·qt
(relative to the modulus Pqt).

Below we assume that after key-switching we do modulus switching directly to a smaller modulus.

• After key-switching we can switch to the next modulus qt−1 to decrease the noise back to our boundB.
Following the analysis from Appendix B.2, switching moduli from Qt to qt−1 decreases the noise
magnitude by a factor of qt−1/Qt = 1/(P · pt), and then add a noise term of magnitude Bscale.

Starting from noise magnitude PξB2 +BKs · qt before modulus switching, the noise magnitude after
modulus switching is therefore bounded whp by

P · ξB2 +BKs · qt
P · pt

+Bscale =
ξB2

pt
+
BKs · qt−1

P
+Bscale

Using the analysis above, our goal next is to set the parameters B,P and the pt’s (as functions of N, σ, L, ξ
and h) so that in every level t we get ξB2

pt
+ BKs·qt−1

P + Bscale ≤ B. Namely we need to satisfy at every
level t the quadratic inequality (in B)

ξ

pt
B2 − B +

(
BKs · qt−1

P
+Bscale︸ ︷︷ ︸

denote this by Rt−1

)
≤ 0 . (9)

Observe that (assuming that all the primes pt are roughly the same size), it suffices to satisfy this inequality
for the largest modulus t = L−2, sinceRt−1 increases with larger t’s. Noting thatRL−3 > Bscale, we want
to get this term to be as close to Bscale as possible, which we can do by setting P large enough. Specifically,
to make it as close as RL−3 = (1 + 2−n)Bscale it is sufficient to set

P ≈ 2n
BKsqL−3
Bscale

≈ 2n
9σNqL−3

77
√
N

≈ 2n−3qL−3 · σ
√
N, (10)

27

Below we set (say) n = 8, which makes it close enough to use just RL−3 ≈ Bscale for the derivation below.
Clearly to satisfy Inequality (9) we must have a positive discriminant, which means 1−4 ξ

pL−2
RL−3 ≥ 0,

or pL−2 ≥ 4ξRL−3. Using the value RL−3 ≈ Bscale, this translates into setting

p1 ≈ p2 · · · ≈ pL−2 ≈ 4ξ ·Bscale ≈ 308ξ
√
N (11)

Finally, with the discriminant positive and all the pi’s roughly the same size we can satisfy Inequality (9) by
setting

B ≈ 1

2ξ/pL−2
=
pL−2
2ξ

≈ 2Bscale ≈ 154
√
N. (12)

The Smallest Modulus. After evaluating our L-level circuit, we arrive at the last modulus q0 = p0 with
noise bounded by ξB2. To be able to decrypt, we need this noise to be smaller than q0/2cm, where cm is
the ring constant for our polynomial ring modulo Φm(X). For our setting, that constant is always below 40,
so a sufficient condition for being able to decrypt is to set

q0 = p0 ≈ 80ξB2 ≈ 220.9ξN (13)

The Encryption Modulus. Recall that freshly encrypted ciphertext have noiseBclean (as defined in Equa-
tion (6)), which is larger than our baseline boundB from above. To reduce the noise magnitude after the first
modulus switching down toB, we therefore set the ratio pL−1 = qL−1/qL−2 so thatBclean/pL−1+Bscale ≤
B. This means that we set

pL−1 =
Bclean

B −Bscale
≈ 74N + 858

√
N

77
√
N

≈
√
N + 11 (14)

The Largest Modulus. Having set all the parameters, we are now ready to calculate the resulting bound
on the largest modulus, namely QL−2 = qL−2 · P . Using Equations (11), and (13), we get

qt = p0 ·
t∏
i=1

pi ≈ (220.9ξN) ·
(
308ξ
√
N
)t

= 220.9 · 308t · ξt+1 ·N t/2+1. (15)

Now using Equation (10) we have

P ≈ 25qL−3σ
√
N ≈ 225.9 · 308L−3 · ξL−2 ·N (L−3)/2+1 · σ

√
N

≈ 2 · 308L · ξL−2σNL/2

and finally

QL−2 = P · qL−2 ≈ (2 · 308L · ξL−2σNL/2) · (220.9 · 308L−2 · ξL−1 ·NL/2)

≈ σ · 216.5L+5.4 · ξ2L−3 ·NL (16)

C.3 Putting It Together

We now have in Equation (8) a lower bound on N in terms of Q, σ and the security level k, and in Equa-
tion (16) a lower bound on Q with respect to N, σ and several other parameters. We note that σ is a free
parameter, since it drops out when substituting Equation (16) in Equation (8). In our implementation we
used σ = 3.2, which is the smallest value consistent with the analysis in [25].

28

For the other parameters, we set ξ = 8 (to get a small “wiggle room” without increasing the parameters
much), and set the number of nonzero coefficients in the secret key at h = 64 (which is already included in
the formulas from above, and should easily defeat exhaustive-search/birthday type of attacks). Substituting
these values into the equations above we get

p0 ≈ 223.9N, pi ≈ 211.3
√
N for i = 1, . . . , L− 2

P ≈ 211.3L−5NL/2, and QL−2 ≈ 222.5L−3.6σNL.

Substituting the last value of QL−2 into Equation (8) yields

N >
(L(logN + 23)− 8.5)(k + 110)

7.2
(17)

Targeting k = 80-bits of security and solving for several different depth parameters L, we get the results in
the table below, which also lists approximate sizes for the primes pi and P .

L N log2(p0) log2(pi) log2(pL−1) log2(P)

10 9326 37.1 17.9 7.5 177.3
20 19434 38.1 18.4 8.1 368.8
30 29749 38.7 18.7 8.4 564.2
40 40199 39.2 18.9 8.6 762.2
50 50748 39.5 19.1 8.7 962.1
60 61376 39.8 19.2 8.9 1163.5
70 72071 40.0 19.3 9.0 1366.1
80 82823 40.2 19.4 9.1 1569.8
90 93623 40.4 19.5 9.2 1774.5

Choosing Concrete Values. Having obtained lower-bounds on N = φ(m) and other parameters, we now
need to fix precise cyclotomic fields Q(ζm) to support the algebraic operations we need. We have two
situations we will be interested in for our experiments. The first corresponds to performing arithmetic on
bytes in F28 (i.e. n = 8), whereas the latter corresponds to arithmetic on bits in F2 (i.e. n = 1). We therefore
need to find an odd value of m, with φ(m) ≈ N and m dividing 2d − 1, where we require that d is divisible
by n. Values of m with a small number of prime factors are preferred as they give rise to smaller values of
cm. We also look for parameters which maximize the number of slots ` we can deal with in one go, and
values for which φ(m) is close to the approximate value for N estimated above. When n = 1 we always
select a set of parameters for which the ` value is at least as large as that obtained when n = 8.

n = 8 n = 1
L m N = φ(m) (d, `) cK m N = φ(m) (d, `) cK
10 11441 10752 (48,224) 3.60 11023 10800 (45,240) 5.13
20 34323 21504 (48,448) 6.93 34323 21504 (48,448) 6.93
30 31609 31104 (72,432) 5.15 32377 32376 (57,568) 1.27
40 54485 40960 (64,640) 12.40 42799 42336 (21,2016) 5.95
50 59527 51840 (72,720) 21.12 54161 52800 (60,880) 4.59
60 68561 62208 (72,864) 36.34 85865 63360 (60,1056) 12.61
70 82603 75264 (56,1344) 36.48 82603 75264 (56,1344) 36.48
80 92837 84672 (56,1512) 38.52 101437 85672 (42,2016) 19.13
90 124645 98304 (48,2048) 21.07 95281 94500 (45,2100) 6.22

29

D Scale(c, qt, qt−1) in dble-CRT Representation

Let qi =
∏i
j=0 pj , where the pj’s are primes that split completely in our cyclotomic field A. We are given

a c ∈ Aqt represented via double-CRT – that is, it is represented as a “matrix” of its evaluations at the
primitive m-th roots of unity modulo the primes p0, . . . , pt. We want to modulus switch to qt−1 – i.e., scale
down by a factor of pt. Let’s recall what this means: we want to output c′ ∈ A, represented via double-CRT
format (as its matrix of evaluations modulo the primes p0, . . . , pt−1), such that

1. c′ = c mod 2.

2. c′ is very close (in terms of its coefficient vector) to c/pt.

In the main body we explained how this could be performed in dble-CRT representation. This made explicit
use of the fact that the two ciphertexts need to be equivalent modulo two. If we wished to replace two with
a general prime p, then things are a bit more complicated. For completeness, although it is not required in
our scheme, we present a methodology below. In this case, the conditions on c† are as follows:

1. c† = c · pt mod p.

2. c† is very close to c.

3. c† is divisible by pt.

As before, we set c′ ← c†/pt. (Note that for p = 2, we trivially have c · pt = c mod p, since pt will be odd.)
This causes some complications, because we set c† ← c+ δ, where δ = −c̄ mod pt (as before) but now

δ = (pt − 1) · c mod p. To compute such a δ, we need to know c mod p. Unfortunately, we don’t have
c mod p. One not-very-satisfying way of dealing with this problem is the following. Set ĉ← [pt]p·c mod qt.
Now, if c encrypted m, then ĉ encrypts [pt]p ·m, and ĉ’s noise is [pt]p < p/2 times as large. It is obviously
easy to compute ĉ’s double-CRT format from c’s. Now, we set c† so that the following is true:

1. c† = ĉ mod p.

2. c† is very close to ĉ.

3. c† is divisible by pt.

This is easy to do. The algorithm to output c† in double-CRT format is as follows:

1. Set c̄ to be the coefficient representation of ĉ mod pt. (Computing this requires a single “small FFT”
modulo the prime pt.)

2. Set δ to be the polynomial with coefficients in (−pt · p/2, pt · p/2] such that δ = 0 mod p and
δ = −c̄ mod pt.

3. Set c† = ĉ+ δ, and output c†’s double-CRT representation.

(a) We already have ĉ’s double-CRT representation.

(b) Computing δ’s double-CRT representation requires t “small FFTs” modulo the pj’s.

30

E Other Optimizations

Some other optimizations that we encountered during our implementation work are discussed next. Not all
of these optimizations are useful for our current implementation, but they may be useful in other contexts.

Three-way Multiplications. Sometime we need to multiply several ciphertexts together, and if their num-
ber is not a power of two then we do not have a complete binary tree of multiplications, which means that at
some point in the process we will have three ciphertexts that we need to multiply together.

The standard way of implementing this 3-way multiplication is via two 2-argument multiplications, e.g.,
x · (y · z). But it turns out that here it is better to use “raw multiplication” to multiply these three ciphertexts
(as done in [7]), thus getting an “extended” ciphertext with four elements, then apply key-switching (and
later modulus switching) to this ciphertext. This takes only six ring-multiplication operations (as opposed
to eight according to the standard approach), three modulus switching (as opposed to four), and only one
key switching (applied to this 4-element ciphertext) rather than two (which are applied to 3-element ex-
tended ciphertexts). All in all, this three-way multiplication takes roughly 1.5 times a standard two-element
multiplication.

We stress that this technique is not useful for larger products, since for more than three multiplicands
the noise begins to grow too large. But with only three multiplicands we get noise of roughly B3 after the
multiplication, which can be reduced to noise ≈ B by dropping two levels, and this is also what we get by
using two standard two-element multiplications.

Commuting Automorphisms and Multiplications. Recalling that the automorphisms X 7→ Xi com-
mute with the arithmetic operations, we note that some ordering of these operations can sometimes be
better than others. For example, it may be better perform the multiplication-by-constant before the auto-
morphism operation whenever possible. The reason is that if we perform the multiply-by-constant after the
key-switching that follows the automorphism, then added noise term due to that key-switching is multiplied
by the same constant, thereby making the noise slightly larger. We note that to move the multiplication-by-
constant before the automorphism, we need to multiply by a different constant.

Switching to higher-level moduli. We note that it may be better to perform automorphisms at a higher
level, in order to make the added noise term due to key-switching small with respect to the modulus. On
the other hand operations at high levels are more expensive than the same operations at a lower level. A
good rule of thumb is to perform the automorphism operations one level above the lowest one. Namely,
if the naive strategy that never switches to higher-level moduli would perform some Frobenius operation
at level qi, then we perform the key-switching following this Frobenius operation at level Qi+1, and then
switch back to level qi+1 (rather then using Qi and qi).

Commuting Addition and Modulus-switching. When we need to add many terms that were obtained
from earlier operations (and their subsequent key-switching), it may be better to first add all of these terms
relative to the large modulus Qi before switching the sum down to the smaller qi (as opposed to switching
all the terms individually to qi and then adding).

Reducing the number of key-switching matrices. When using many different automorphisms κi : X 7→
Xi we need to keep many different key-switching matrices in the public key, one for every value of i that

31

we use. We can reduces this memory requirement, at the expense of taking longer to perform the automor-
phisms. We use the fact that the Galois group Gal that contains all the maps κi (which is isomorphic to
(Z/mZ)∗) is generated by a relatively small number of generators. (Specifically, for our choice of parame-
ters the group (Z/mZ)∗ has two or three generators.) It is therefore enough to store in the public key only
the key-switching matrices corresponding to κgj ’s for these generators gj of the group Gal. Then in order
to apply a map κi we express it as a product of the generators and apply these generators to get the effect of
κi. (For example, if i = g21 · g2 then we need to apply κg1 twice followed by a single application of κg2 .)

32

