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Abstract. HMAC is the most widely-deployed cryptographic-hash-function-based
message authentication code. First, we describe a security issue that arises because of
inconsistencies in the standards and the published literature regarding keylength. We
prove a separation result between two versions of HMAC, which we denote HMACstd

and HMACBel, the former being the real-world version standardized by Bellare et

al. in 1997 and the latter being the version described in Bellare’s proof of security
in his Crypto 2006 paper. Second, we describe how HMACNIST (the FIPS version
standardized by NIST), while provably secure (in the single-user setting), succumbs
to a practical attack in the multi-user setting. Third, we describe a fundamental defect
from a practice-oriented standpoint in Bellare’s 2006 security result for HMAC, and
show that because of this defect his proof gives a security guarantee that is of little
value in practice. We give a new proof of NMAC security that gives a stronger result
for NMAC and HMAC and we discuss why even this stronger result by itself fails to
give convincing assurance of HMAC security.

1. Introduction

In the first two sections our aim is to convey the general ideas using informal language,
a minimum of notation and terminology, and no abbreviations or acronyms.1 Details
and formal statements can be found in later sections.

Suppose that Alice and Bob have a shared secret key K for use during a session in
which they are exchanging messages M . A message authentication code is a function
t = H(K,M), where t is called the “tag” of the message M (under the key K); Alice
sends t along with the message M in order to provide Bob with some assurance that
the message he receives was truly sent by Alice and was not altered before he got it.

By a compression function we mean a function z = f(x, y), where y ∈ {0, 1}b and
x, z ∈ {0, 1}c. We suppose that b ≥ c, so the compression function reduces size by at
least a factor of 2; typically b = 512, c = 160. Given a compression function f , the
most common way to create an iterated hash function h is as follows [11, 24]. Let IV
(called the initializing vector) be a publicly known bitstring of length c that is fixed
once and for all. Suppose that M = (M1, . . . ,Mm) is a message consisting of m ≤ n
b-bit blocks (where nb is some bound on message length; for simplicity in this paper we
shall suppose that all message lengths are multiples of b). Then we set x0 = IV, and

Date: February 19, 2012; updated on April 25, 2013.
1Except for the one in the title of the paper, which stands for “hash-based message authentication

code.”
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for i = 1, . . . ,m we recursively set xi = f(xi−1,Mi); finally, we set hIV(M) = xm. The
function hIV takes a message that can be very long and outputs its c-bit hash value.2

One of the earliest ideas for converting an iterated hash function hIV into a message
authentication code H(K,M) was simply to prepend the secret key K for the session.
In other words, one can define H(K,M) = hIV(K‖M). (If the length k of the key is
less than b, as it usually is, then the key can be padded with zero bits or with a fixed
string of b− k bits.)

However, it was soon realized that this construction has a security flaw: without
knowing K, anyone who knows the tag of a message M = (M1, . . . ,Mm) can easily
compute the tag of any longer message whose first m blocks coincide with M (see
Example 9.64 in [23]).

A message authentication code H(K,M) that does not have this flaw can be defined
by setting H(K1,K2,M) = hK2

(hK1
(M)0), where K1 and K2 are c-bit keys that serve

as two different IV’s for the hash function h. (Because hK1
(M) is shorter than a message

block, it is padded by a sequence of 0-bits or some other fixed (b− c)-bit sequence; this
is denoted by the superscript 0.) This construction – which is called a “Nested Message
Authentication Code” [2] – has no obvious security flaws.

Nevertheless, computer engineers were dissatisfied for two reasons. In the first place,
the construction needed two keys rather than one – or, equivalently, a single key of 2c
bits – and they didn’t like having to double the bitlength of the key. More importantly,
the construction required that the IV be changed. The engineers wanted to use an off-
the-shelf iterated hash function that already had a fixed IV built into it. The message
authentication code HMAC was developed in response to these two objections.

First, to deal with the objection to two keys, a single k-bit key K is used, and two
keys K1 and K2 are obtained from it by XORing with two fixed bitstrings P1 and
P2: K1 = K ⊕ P1, K2 = K ⊕ P2. Next, in order to use a fixed hash function with
given initializing vector IV, the definition of H(K,M) was changed to the following:
H(K,M) = hIV(K

0
2‖hIV(K0

1‖M)0), where the zero superscript means that zero bits (or
any fixed and publicly known sequences of bits) are appended to fill out the block of b
bits.

In [2] Bellare, Canetti, and Krawczyk gave a security proof for the Nested Message
Authentication Code, which they then extended to an argument for the security of
HMAC. They made two assumptions about the hash function. First, they assumed that
the underlying compression function z = f(x, y) is itself a secure message authentication
code. This means that an adversary, given access to an oracle that chooses a random key
K ∈ {0, 1}c and responds to any query M ∈ {0, 1}b with the value f(K,M), cannot in
a reasonable length of time with non-negligible probability produce a forgery f(K,M∗)
of some message M∗ that it didn’t query.

The second condition was that the hash function hIV is collision-resistant, that is, one
cannot in a reasonable length of time find two different messages with the same hash
value. But in subsequent years the most commonly-used hash functions were shown not

2Before applying an iterated hash function, generally one appends a message block that gives the
block-length of the message; with this modification it is possible to give a simple proof that collision-
resistance of f implies collision-resistance of h.
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to have this property [33, 34].3 This did not mean that any attack on HMAC had been
found, but only that the proof-based guarantee did not apply to HMAC with the hash
functions used in practice. The first objective of Bellare’s paper [1] was to restore the
proof-based guarantee by giving a new proof based on assumptions that had not been
invalidated by the work in [33, 34] for the hash functions that are currently in use. A
second purpose of [1] was to remove the two-key gap, that is, give a formal proof in the
case when the keys K1 and K2 are not independent, but rather K2 is the XOR-shift of
K1 by a fixed and known bitstring.

The first assumption in [1] is that the underlying compression function z = f(x, y) is a
pseudorandom function in the following sense. Suppose you choose a random x ∈ {0, 1}c
and flip a coin. Your adversary is allowed to query values of y ∈ {0, 1}b; if the coin was
heads, you must always answer the query with the correct value of f(x, y), whereas if
the coin was tails, you always reply to the query with a random value of z ∈ {0, 1}c
(subject only to the condition that if the same query is repeated, the same random
value of z must be given). Then f(x, y) is said to be a pseudorandom function if the
adversary, based on your answers to her queries, is unable in a reasonable length of time
to determine whether the coin was heads or tails with significantly greater than 50%
chance of success.

The second assumption in [1] deals with the fact that K1 and K2 are not independent
of one another, but rather are connected by the relationship K2 = K1 ⊕P1 ⊕P2, where
P1 and P2 are fixed and publicly known. In order to rule out the possibility that
this relationship weakens HMAC, Bellare assumes that f(x, y) satisfies a weak form
of pseudorandomness with respect to its other argument. Namely, fix x = IV, which
is the value of x in the first iteration of f(x, y) in the hash function hIV. If f(IV, y)
is evaluated with y set equal to one of the two related keys, that should not give an
adversary any significant information about the value of f(IV, y) with y set equal to the
other key. Here the adversary does not know either key, but does know the relationship
between them.

More precisely, following [5], Bellare has the related-key adversary attempt to distin-
guish with success probability significantly greater than 50% between random answers
to queries and answers coming from the related keys. That is, suppose you choose a
random K ∈ {0, 1}b and flip a coin. The adversary makes two queries: it asks for
f(IV,K ⊕ P1) and for f(IV,K ⊕ P2). If your coin was heads, you answer correctly,
whereas if it was tails, then you give random replies. If the adversary is unable to guess
heads or tails with significantly greater than 50% chance of success, then the compres-
sion function f(x, y) (with the fixed IV) is said to be secure against the appropriate
type of related-key attack.

2. Overview of results

2.1. Separation between HMACstd and HMACBel. In cryptography often “the
devil is in the details.” The keylength specifications for HMAC are different in the

3It was actually a slightly weaker assumption, called weak collision-resistance, that was needed in
[2]. However, the collision-finding techniques in [33, 34] show that even this weaker property fails for
the commonly-used hash functions.
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standards [3] than in the definition of HMAC used in the security proof in [1]. We shall
refer to the former variant as HMACstd and the latter one as HMACBel.

Theorem 2.1. Let f be any compression function that compresses by a factor of at least

3 and satisfies the conditions in [1] that are needed for the proof of security for HMACBel,

and let f∗ be the slightly modified function defined in §3 below. Then f∗ satisfies the

same conditions, and so HMACBel with f replaced by f∗ still has the security level

established by the proof. But if f is replaced by f∗ in the version HMAC std that is in

the standards [3], then HMAC std has no security at all, because the message tags do not

depend on the keys and can be computed by anyone.

It should be noted that we do not claim that there is any difference in the real-world
security of the two versions of HMAC. Rather, this theorem is a theoretical result that
points to the need for a stronger related-key attack assumption than the one in [1] if
one wants the proof to apply to HMAC as defined in the standards.

2.2. Attack on HMAC as standardized in [26]. Although the keylength k in the
standard [3] is the same as the taglength c, in the security proof in [2] that supports [3]
there is nothing that requires that they be the same. In fact, as far as the security proof
is concerned, there is no reason to choose k greater than c/2. So it is not surprising
that the HMAC standardization in [26] with c = 160 allows 80-bit keys. The security
definitions assume the single-user setting, where there is no known reason to insist on
longer keys. However, in §4 we describe a practical attack in the multi-user setting (see
also [9]). Thus, even though HMAC as standardized in [26] is “provably secure” (in the
unrealistic single-user setting), it is insecure when there are a large number of users. In
fact, if there are 2a users, then it has at most 80− a bits of security.

In §§3-4 we show how security issues arise because of inconsistences in the standards
and security proofs in [2, 3, 26, 1] concerning whether the keylength is c, c/2, or b.
This discrepancy is quite surprising, given the widespread use of HMAC and the insis-
tence by cryptographers who work in provable security that a careful match between
specifications and formal security proofs is crucial in both the design and analysis of
protocols.

2.3. Drawbacks of the main result in [1]. In reducing a problem P ′ to a problem
P , one often uses such phraseology as “there exists an efficient algorithm for P ′ with
an oracle for P .” However, the words “there exists” traditionally mean that one has an
explicitly described algorithm; they do not have the much weaker meaning that such
words have in existence theorems in mathematics. (See [29] for a discussion of this
distinction.)

An example of the misuse of the words “there exists an efficient algorithm” would be
to say that there exists an efficient algorithm for finding a collision in the most recent
improved version of the Secure Hash Algorithm (or any other hash function). Trivially,
any function from an extremely large set to a much smaller set has a vast number of
collisions. Therefore, a collision exists, and one particular collision can be hardwired into
an algorithm that simply outputs the collision. But to say that “an extremely efficient
algorithm exists to break the Secure Hash Algorithm” is useless and misleading.

An analogous problematic use of the notion of an algorithm existing occurs several
times in [1]. In §6 we identify the places where this occurs. Then, based on Bellare’s
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explanation (personal communication) that the main result in [1] is intended to be
interpreted in the non-uniform model of complexity, we investigate adversaries of the
compression function that exist in that model. We show that the analysis in §3.2 of
[1] of the concrete security guarantee provided by the main theorem in that paper is
fallacious. We describe a low-resource adversary that renders that theorem useless in
practice.

2.4. Need for stronger pseudorandomness assumption. In §9 we argue that
Pietrzak’s recent attack [27] on NMAC shows the deficiencies of the usual definition
of pseudorandomness in the context of an iterated hash function, which vastly magni-
fies the impact of even a small proportion of weak keys. It appears that any reductionist
security theorem that assumes only pseudorandomness (in the usual sense) of the com-
pression function will of necessity have such a huge tightness gap as to be worthless in
practice.

2.5. New proof. In §10 we give a new, self-contained proof of security without collision-
resistance. Although this proof is based on very similar ideas to the proof in [1], it is
valid in the uniform model of complexity and for that reason gives a much stronger
result.

But even this improved result by itself is, we believe, not nearly good enough to serve
as a convincing real-world guarantee of security of HMAC. In §11 we discuss our proof
from a practice-oriented standpoint and conclude that it is nearly worthless.

Stylistically, our proof resembles the 1996 security proof with collision-resistance in
[2] much more than it resembles the proof without collision-resistance in [1]. That
is, it is written in a style that was popular in the 1990s before the introduction of
turgid notation and “game-hopping” caused many security proofs to become virtually
unreadable. Like the proof in [2], our proof is straightforward and is intended to be
accessible to anyone with math or computer science background.

3. Keylength

The main difference between the Nested Message Authentication Code (NMAC) and
the modified version HMAC that was introduced for reasons of real-world efficiency
is that in HMAC the keys are inserted in a way that is less natural, at least from a
theoretical point of view. In the first place, the keys enter in the second argument of
the compression function f(x, y), (x, y) ∈ {0, 1}c × {0, 1}b, which typically consists of
512 bits. No one wants to use such long keys, so in [3], where the recommended bitlength
of the keys is 128 or 160, they are padded with 384 or 352 zero bits.4 In the second
place, the two keys for HMAC are formed by XORing a single key with two fixed (and
publicly known) padding vectors, called ipad and opad.

One of the main goals of [1] is to extend security results from NMAC to HMAC.
However, the definition of HMAC used in [1] specifies a random key of bitlength b, and
so the security results apply only to this HMAC, not to the version that is implemented

4The two most widely-used hash functions, MD5 and SHA-1, have tags of 128 and 160 bits, respec-
tively. In both cases b = 512. Wang et al. showed in [34] that collisions can be found for MD5 in roughly
239 operations and in [33] that collisions can be found for SHA-1 in roughly 263 operations (see also
[10]). However, no attack faster than a generic birthday attack has yet been found against HMAC with
either MD5 or SHA-1.
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in practice, for example in [3]. We next prove Theorem 2.1, a separation result that
shows that the security assumption used for HMAC as defined in [1] is insufficient for
the security of HMAC as defined in [3].

For any compression function f(x, y) from {0, 1}c × {0, 1}b to {0, 1}c, define the
corresponding function f∗(x, y) as follows: f∗(x, y) = 0 if both

(i) x = IV (the initializing vector for the hash function being used) and
(ii) the last b−c bits of y coincide with the last b−c bits of either of the two padding

vectors ipad or opad;

for all other (x, y) we set f∗(x, y) = f(x, y).

Proof of Theorem 2.1. If f(x, y) satisfies the two assumptions in [1] – namely,
pseudorandomness as a function of y for a fixed hidden random x, and immunity from
the appropriate related-key attack for fixed known x = IV and y equal to two related
keys – then we claim that f∗(x, y) also satisfies these assumptions. The first property
still holds because there is negligible probability 2−c that x = IV, and the second
property holds because there is negligible probability at most 21−c that for a random
b-bit K one has b − c zero bits at the end of either K⊕ipad or K⊕opad. Here we are
using the assumption that f(x, y) compresses by a factor of at least 3, that is, b ≥ 2c.
Thus, the assumptions in the proof of security hold for HMACBel with f(x, y) replaced
by f∗(x, y). However, if f(x, y) is replaced by f ∗(x, y) in the standardized version
HMACstd, where the last b− c bits of the keys agree with those in either ipad or opad,
then the first iteration of the compression function outputs zero in both the inner and
outer hIV computations. The tag hence does not depend on the key. �

Thus, in order for the security proof to apply to the version of HMAC that has been
standardized in [3] the following stronger related-key assumption is needed. Suppose you
choose a random K ∈ {0, 1}c and flip a coin. Let K0 ∈ {0, 1}b denote the key padded
by b−c zero bits. The adversary makes two queries: it asks for f(IV,K0⊕ ipad) and for
f(IV,K0 ⊕ opad). If your coin was heads, you answer correctly, whereas if it was tails,
then you give random replies. If the adversary is unable to guess heads or tails with
significantly greater than 50% chance of success, then the compression function f(x, y)
(with the fixed IV) satisfies the desired related-key condition.

4. A practical attack on HMACNIST

The attack in this section is a special case of a type of attack described in [9] that
applies to a wide range of protocols in the multi-user setting.

Suppose that HMAC is being implemented with keys of 80 bits and tags of c bits, and
there are 2a users (that is, 2a sessions from which the adversary can make queries). The
attacker chooses an arbitrary fixed message M and queries each user for the tag of M
under the user’s key. The attacker then chooses random keys and for each key computes
the corresponding tag of M and looks for a match with a user’s tag. Once the attacker
finds a match, she hopes (see below) that the collision occurred because the randomly
chosen key happens to coincide with the user’s secret key, in which case she has broken
HMAC (in the sense of existential key recovery, see §5 of [20]). The expected number
of keys she has to run through before one of them collides with a user’s key is 280−a.

Often c is greater than 80 – in many applications the recommended value is c = 160;
for example, see [3]. Then a collision of tags most often comes from a collision of keys, so
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the attacker really finds a user’s key in time roughly 280−a. However, small taglengths
might be allowed in settings where users are not worried about tag-guessing attacks.
If c < 80 the above attack fails because a collision that’s found is most likely just a
collision of tags corresponding to different keys. In that case a slight modification of
the above attack removes this difficulty. Namely, the attacker queries s different fixed
messages, where s is chosen so that sc > 80. This in effect lengthens the tags and allows
the adversary to be confident that a simultaneous collision of all s tags was caused by
a key-collision. The attacker’s running time is increased only by a factor of s ≈ 80/c.
For example, the attack on an application with 80-bit keys and 32-bit tags would take
just 3 times as long as an attack when the taglength is 160.

5. A remark on a very weak form of collision-resistance

As mentioned in the Introduction, the primary objective of Bellare’s paper [1] was to
restore the proof-based guarantee for HMAC that had been undermined by the work
[33, 34] that found collisions in MD5 and SHA-1. However, after proving the theorem
with weak collision-resistance, the authors of [2] had commented:

Remark 4.5. The weak-collision-freeness assumption made in the the-
orem can be replaced by the significantly weaker assumption that the
inner hash function is collision-resistant to adversaries that see the hash
value only after it was hashed again with a different secret key.

It is interesting to note that the work of [33, 34] does not compromise this weaker
property. Namely, an oracle for weak collision-resistance means one that responds to a
message query M by giving h(K1,M), where K1 is a hidden random key; whereas an
oracle for the “significantly weaker” property in the remark means one that responds by
giving f(K2, h(K1,M)0), whereK1 andK2 are hidden random keys. Given the first type
of oracle, the attackers in [33, 34] can simply query an arbitrary initial message block
M1 and then set IV = h(K1,M1). Then the collision they find for hIV will immediately
lead to a collision for the original h(K1, .). However, given the second type of oracle the
attackers in [33, 34] are apparently stymied.

This leads us to ask: if the theorem in [2] can be proved with a weaker assumption
that still (so far as we know) holds for MD5 and SHA-1, then why was it necessary to
write [1] in order to recover the proof-based guarantee? We cannot be sure, but the
reason might have been (although this was not mentioned anywhere in [2] or [1]) a loss
of tightness in the theorem in [2] that occurs if one passes to the weaker assumption.
If one makes the obvious modifications in the proof in [2] needed to accommodate the
weaker assumption, one finds a tightness gap of q (the bound on the number of queries).
Whether or not this is important in practice depends on how large q is likely to be.

It should also be recalled that another objective of Bellare in [1] was to establish
a property of NMAC and HMAC that is stronger than just being a secure message
authentication code – namely, being a pseudorandom function.

6. Questions about Bellare’s NMAC proof

By far the lengthiest argument in [1] is the proof of the main security result for NMAC
(see Theorem 3.3); the extension from NMAC to HMAC is a relatively short proof. In
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the sequel we are concerned with the security result for NMAC and not its extension to
HMAC.

We quote a passage from [1] that contains a crucial step in the NMAC proof. In the
excerpt A6 denotes an adversary that takes two messages as input and is attacking the
pseudorandomness of a function h (which is the compression function, that is, f in our
notation), B+ is the space of messages, ‖M‖b denotes the number of b-bit blocks in M ,

and Adv
prf
h (A6(M1,M2)) is a measure of the success probability of A6. The passage is

from the last long paragraph in §3.3:
Let M∗

1 ,M
∗

2 ∈ B+ be distinct messages such that ‖M∗

1 ‖b ≤ ‖M∗

2 ‖b ≤ n
and

Adv
prf
h (A6(M1,M2)) ≤ Adv

prf
h (A6(M

∗

1 ,M
∗

2 ))

for all distinct M1,M2 ∈ B+ with ‖M1‖b ≤ ‖M2‖b ≤ n, where n is as
in the Lemma statement. Now let A be the adversary that has M∗

1 ,M
∗

2
hardwired in its code and, given oracle g, returns Ag

6(M
∗

1 ,M
∗

2 ). The
adversary A has time-complexity as claimed in the Lemma statement.

In other words, M∗

1 ,M
∗

2 are defined to be a message-pair for which the adversary A6 is
maximally successful. Such a pair obviously exists. But how in the world could one find
such M∗

1 ,M
∗

2 algorithmically? It’s a tremendous leap to let A be an efficient algorithm
that somehow has the pair of optimal messages for A6 hardwired into its code.

To put it another way, let’s ask: What sort of security theorem can come out of this
type of unconstructible adversary? Such a theorem essentially says that if NMAC has
an adversary with a non-negligible advantage, then an algorithm A exists that solves a
certain hard problem. However, A exists only in the sense of a mathematical existence
theorem, and from a practice-oriented standpoint there is no convincing way to derive
a concrete security bound – that is, one cannot conclude anything about the actual
security of NMAC.

We find this type of argument elsewhere in [1]: in the proof of Lemma 3.2 relating
the pseudorandomness of NMAC to the almost-universal property and the pseudoran-
domness of the compression function (see the last paragraph of §3.4); in the proof of
the generalization of the main theorem, Theorem 3.4 (see the sentence in parentheses
following (21) in §3.5); and in the proof of Lemma 4.2, which is used to prove security
under an assumption on the compression function that is weaker than pseudorandom-
ness (see the last sentence of §4). The author justifies these steps by citing “a standard
‘coin-fixing’ argument” (p. 22), but in fact the steps greatly complicate any attempt to
use the theorems to derive concrete security bounds.

7. Non-uniformity

After the first version of this paper was posted, Bellare contacted us and told us that
Theorem 3.3 of [1] was meant to be understood in the sense of a certain non-uniform
model of complexity. In that model a proof is permitted to use an algorithm that exists
in the mathematical sense, irrespective of whether or not one can give a feasible way
to construct it. We use the term “unconstructible” to refer to such an algorithm or
adversary.

The claim that Bellare’s proofs are in the non-uniform model of complexity may be
puzzling to readers of [1], since the paragraph titled “Techniques” in the Introduction
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would lead a careful reader to conclude that Bellare is not using unconstructible algo-
rithms in his paper. He writes: “We show (Lemma 3.1) that if a compression function
h is a PRF then the iterated compression function h∗ is computationally almost uni-

versal (cAU), a computational relaxation of the standard information-theoretic notion
of almost-universality (AU).” But since cAU is trivially equivalent to AU in the face of
unconstructible adversaries (similar to the one Bellare uses in §3.3 of [1], see above),
this statement makes no sense if the paper [1] implicitly assumes Bellare’s non-uniform
model. Thus, a careful reader would be led to believe that Bellare’s results are intended
to be valid in the uniform model of complexity.

Moreover, in the next section we show that the analysis of his theorem that Bellare
provides in §3.2 of [1] is flawed, because it implicitly assumes that his proof is valid in
the uniform model of complexity.

When Bellare chooses to prove his theorem in the non-uniform model, a consequence
is that the theorem is then based on the extremely strong assumption of prf-security
even against an unconstructible adversary. That is, the adversary in the hypothesis
of the theorem is given tremendous power, namely, access to any information (such as
messages with very unusual properties with respect to some function) that exists in
the mathematical sense, whether or not anyone knows a feasible way to find it. (For
a systematic discussion of issues of non-uniformity and unconstructibility in provable
security reductions, see [21].)

Remark 7.1. An indication of the dramatic difference between assuming prf-security
against uniform adversaries and assuming prf-security against non-uniform adversaries
(in the sense in which Bellare uses the term “non-uniform”) is that one can prove a
separation result similar to Theorem 2.1 (proved in §3). That is, given a compression
function f(K,M), one can modify it slightly so as to obtain a function f ∗(K,M) that
has the same security against uniform adversaries but no security against non-uniform
ones. Here’s an example of how to construct f∗ when c = 160 and b = 512. Choose
a random 160-bit string y0, a random 512-bit prime p, and a random 5000-bit prime
q, and set N = pq. Define f ∗(K,M) to equal y0 for all keys K if M |N and M > 1;
otherwise define f∗(K,M) = f(K,M). In the uniform model clearly f ∗(K,M) has the
same prf-security as f(K,M) unless the adversary can factor N , but in the non-uniform
model it has no prf-security at all.

In §11 below, where we explain why our Theorem 10.1 does not provide convincing
assurance of the real-world security of HMAC, we comment that prf-security of the
compression function f is a strong property for which there is little evidence in the
case of MD5 and SHA-1. This is true even though our theorem was proved in the old-
fashioned complexity model going back to Turing, where f was assumed to be prf-secure
only against adversaries that can be efficiently constructed.

In contrast, in [1] the prf-security assumption must be interpreted as holding against
much more powerful adversaries. In order for Theorem 3.3 of [1] to have content – that is,
in order for the right hand side of inequality (4) to be less than 1 – one has to know that
all low-resource (i.e., at most 2 queries and running time at most 2nT ) prf-adversaries
A2 of the compression function, whether constructible or not, have advantage less than
1/(q2n). In practice, how could one have evidence for such a bound, say in the case of
MD5?
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In the next section we give a description of a low-resource unconstructible adversary
that is very simple but very powerful.

8. Flawed concrete security analysis

Let’s turn to Bellare’s analysis of tightness of his bound in §3.2 of [1]. He argues

that his bound in (4) “justifies NMAC up to roughly 2c/2/n queries” (we’ve replaced his
notation for the block-length bound by our notation n), whereas the birthday attack in

[28] shows that one cannot expect a security bound that has any content with 2c/2/
√
n

queries.
Bellare’s argument goes essentially as follows. The dominant term on the right in (4)

is q2n ·Adv
prf
f (A2). To find a bound on the number of queries for which (4) could have

content – that is, for which the right hand side is less than 1 – he sets A2 equal to the
best low-resource algorithm that is known that applies generically – namely, exhaustive
key search. For simplicity he sets T = 1. In the course of its running time n the
adversary A2 is able to try n keys, and so its advantage is n2−c. Setting q2n ·n2−c equal
to 1 leads to his estimate 2c/2/n for the number of queries before Theorem 3.3 loses any
content.

This argument makes sense in the uniform complexity model, where it is correct to
say that there is no known generic attack on the pseudorandomness of f that is faster
than exhaustive key search. However, in the complexity model in which Bellare wants
us to understand his theorem, this is definitely not the case. We claim that one expects
a low-resource adversary A2 to exist with advantage at least equal to 2−c/2. To see this,
let’s suppose that we want to attack the pseudorandomness of a compression function f
that has extremely good randomness properties, and in fact let’s model f with a random
function.

We consider the following adversary A2. Let u(x) be a fixed bit-valued function
of c-bit strings that for random input has equal chance of taking value 0 and 1. For
example, u(x) could just pick out the 29-th bit of its input, or it could take the XOR-
sum of some fixed subset of its input bits. For a 1-block message M let Prob(M)
denote the probability, assessed over all keys K, that u(f(K,M)) = 1, and let M∗ be
a fixed message for which this probability is maximal. Just as in Bellare’s coin-fixing
argument, we hardwire M∗ into A2. Then A2 works as follows. It makes only one query
M∗ to the prf-oracle O; if u(O(M∗)) = 1, it guesses that the oracle is f(K, .), whereas
if u(O(M∗)) = 0, it guesses that the oracle is random. It is not hard to see that the
advantage of this A2 is equal to Prob(M∗)− 1

2 .
We claim that there almost certainly exists a 1-block messageM∗ such that Prob(M∗) >

1
2+2−c/2. The reason is that the standard deviation from the starting point in a random
walk is equal to the squareroot of the number of steps. That is, running through the
2c keys K, we can think of u(f(K,M)) as a forward step if it’s 1 and a backward step

if it’s 0. For most M one expects to end up roughly 2c/2 steps away from the starting
point. That can, of course, be on either side, but recall that our fixed M∗ was chosen
so as to maximize forward progress.

In order for a compression function f not to succumb to such an attack with advantage
2−c/2, it would have to have some very peculiar properties. For example, for any 1-block
message M and any i = 1, . . . , c, the i-th bit of f(K,M) for variable K would have to
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be much more evenly divided between 0’s and 1’s than would be expected of a random
function. It is extremely unlikely that the compression function for either MD5 or
SHA-1 satisfies such a property.

Thus, there exists a low-resource (unconstructible) generic adversary A2 with advan-

tage 2−c/2. Substituting this into inequality (4) of Theorem 3.3 of [1], we see that the

theorem loses content if q > 2c/4/
√
n, which is the squareroot of the value claimed in

§3.2 of [1]. If, say, n = 220, then the claim in [1] is that Theorem 3.3 justifies NMAC
up to roughly 244 queries for MD5 and 260 queries for SHA-1. But in view of our A2

described above, the Theorem says nothing at all if q > 222 for MD5 and if q > 230

for SHA-1. The mistake in §3.2 of [1] illustrates how difficult it is to appreciate all of
the security implications of assuming that a compression function has prf-security even
against unconstructible adversaries.5

Remark 8.1. Alternatively, one can define a somewhat more powerful adversary A2 as
follows. For a non-empty subset S of {1, 2, . . . , c} define uS(x) to be the XOR-sum of the
subset S of the c bits of x. For any 1-block message M , any S, and any bit t, consider
the probability Prob(uS(f(K,M)) = t) as K varies over 2c keys. Let (M∗, S∗, t∗) be
a fixed triple for which this probability is maximal, and hardwire this triple into A2.
Then A2 queries M∗ to the oracle O; if uS∗(O(M∗)) = t∗, it guesses that the oracle
is f(K, .), whereas if uS∗(O(M∗)) = 1 − t∗, it guesses that the oracle is random. This

low-resource adversary has advantage ≥ 2−c/2 unless the compression function f has the
property that for every single fixed pair (M,S) (of which there are ≈ 2b+c) the values
uS(f(K,M)) as K varies are much more evenly split between 0 and 1 than would be
expected for a random function. No one can reasonably expect such a property to hold
for any real-world compression function, including those in MD5, SHA-1, SHA256 or
SHA512.

9. Pietrzak’s attack and the need for a stronger pseudorandomness

assumption

A compression function f that maps from {0, 1}c × {0, 1}b to {0, 1}c is said to be an
(ǫ, t, q)-secure pseudorandom function if no adversary can distinguish between f with a
hidden key and a random function with advantage ≥ ǫ in time ≤ t with ≤ q queries.6

Suppose that NMAC is constructed from f . Then NMAC is said to be an (ǫ, t, q, n)-
secure pseudorandom function if no adversary can distinguish between NMAC with
hidden keys and a random function with advantage ≥ ǫ in time ≤ t with ≤ q queries of
block length ≤ n.

In [27] Pietrzak gives a simple but elegant and powerful attack on the pseudorandom-
ness of NMAC that has advantage Θ(nqǫ), where the underlying compression function

5According to [13] (comment on page 284), in complexity theory it has been well known for some
time that a pseudorandom function loses at least half of its bits of security in the face of non-uniform
adversaries.

6Recall that in this setting the advantage of the adversary is defined as follows. Let Of be an oracle
that with equal probability is either the compression function f with hidden key or else a random
function. The adversary’s advantage is the following difference: the conditional probability that the
adversary guesses that Of is f with hidden key given that Of actually is f with hidden key minus
the conditional probability that the adversary guesses that Of is f with hidden key given that Of is a
random function.
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f is an (ǫ, t, q)-secure pseudorandom function. We briefly describe his attack and then
discuss its implications.

Let f ′ be an (ǫ/2, t, q)-secure pseudorandom function, let K be a subset of keys
containing (ǫ/2)2c of the keys, and let K0 be a fixed key in K. Let n0 be less than n.
(Pietrzak chooses n0 = n− 1, K0 to be the zero vector, and K to be the keys that start
with log(2/ǫ) zeros.) Define f(K,M) = K0 for all M if K ∈ K and f(K,M) = f ′(K,M)
otherwise. One checks that f is an (ǫ, t, q)-secure pseudorandom function.

The attacker A chooses q/2 random n0-block messages M i and then makes his queries
in pairs. For each M i he asks his oracle ONMAC to tag two queries M i‖X and M i‖Y ,
where X and Y are distinct message blocks. If ONMAC is NMAC with hidden keys,
the adversary wins when there is a collision, which happens any time the iterated hash
function hits the set K of bad keys as it evaluates any of the M i. The probability of
this is at least (q/2)n0(ǫ/2), that is, Θ(nqǫ).

Notice that this attack is much worse than just a break in pseudorandomness of
NMAC. In fact, once A produces a collision between M i0‖X and M i0‖Y he knows the
NMAC tag of any message whose first n0 blocks coincide with M i0 .

This attack shows that if one just assumes that f is an (ǫ, t, q)-secure pseudorandom
function, one cannot hope to rule out catastrophic failure of NMAC unless ǫ ≪ 1/(qn).
Since values such as n = 220 and q = 230 are reasonable, in practice one would have
to take ǫ ≪ 2−50. But it is no easy matter in general to get convincing evidence of
pseudorandomness of real-world compression functions f ; to expect to be able to make
a case that a real-world f is an ǫ-secure pseudorandom function for ǫ ≪ 2−50 is totally
unrealistic.

The basic difficulty with the standard definition of the pseudorandom property is
that it allows the function to collapse into triviality at ǫ proportion of the keys.

If there is to be any hope of getting a meaningful practice-oriented pseudorandom-
ness result for NMAC, one must, unfortunately, assume a stronger pseudorandomness
property for f . One has to allow the oracle’s key to vary during an attack. One way to
do this would be to adopt the multiple-oracle model in [4]. In that model the adversary
can query any of a set of q oracles which either are all f with different hidden keys or
else are all random functions. We propose a definition that is slightly different and not
quite as strong.

We shall say that a compression function f is a strongly (ǫ, t, q)-secure pseudorandom
function if it satisfies the usual definition of (ǫ, t, q)-security with the addition that the
adversary is permitted before any query to ‘reset’ the oracle Of , by which we mean that
in response to the adversary’s request Of selects a new random key (if Of is f with
hidden key) or a new random function.

With this definition one can remove the q-factor in the tightness gap; we do this in
the next section.

10. Uniform proof of NMAC security

Theorem 10.1. Suppose that f is a strongly (ǫ, t, q)-secure pseudorandom function.

Then NMAC is a (2n(ǫ+
(q
2

)

2−c), t− (qnT +Cq log q), q, n)-secure pseudorandom func-

tion. Here C is an absolute constant and T denotes the time for one evaluation of

f .
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Proof. We will prove the following equivalent statement: if the compression function f
is a strongly (( ǫ

2n −
(

q
2

)

2−c), t+(qnT +Cq log q), q)-secure pseudorandom function, then
NMAC is an (ǫ, t, q, n)-secure pseudorandom function. The proof starts by supposing
that we have an adversary that defeats the pseudorandomness test for NMAC with
advantage ≥ ǫ in time ≤ t with at most q queries of block-length at most n, and then
proceeds to construct an adversary for f that satisfies the specified parameters.

Let h be the corresponding iterated function, and let fh be the NMAC function,
which for a key K = (K1,K2) is defined as fh(M) = f(K2, h(K1,M)), where M =
(M1, . . . ,Mm) is an m-block message, m ≤ n, and the second argument in f needs to
be padded by b − c bits (denoted by overlining, as in [2]). Let g(M) denote a random
function of messages, and let g′(M1) denote a random function of 1-block messages. In
response to an input of suitable length, g′ or g outputs a random c-bit string, subject
only to the condition that if the same input is given a second time the output will be
the same. In the test for pseudorandomness the oracle is either a random function or
the function being tested, as determined by a random bit (coin toss).

The theorem says: If f is a strongly secure pseudorandom function (prf), then fh is a
secure pseudorandom function. To prove this we suppose that we have an adversary Afh

that, interacting with its oracle Ofh, defeats the prf-test for fh, and we then use Afh

to construct a set of adversaries, at least one of which, interacting with the oracle Of ,
defeats the prf-test for f . Each adversary makes at most the same number of queries as
Afh and has a comparable running time. More precisely, the bound t+(qnT +Cq log q)
on the running time of one of the adversaries comes from the time required to run Afh,
make at most q computations of h-values, and store at most q values (coming from
oracle responses and h-computations) in lexicographical order and sort them looking
for collisions.

For an oracle O we let O(M) denote the response of O to the query M . The adversary
Af is given an oracle Of and, using Afh as a subroutine, has to decide whether Of is
f(K2, .) or g

′(.). He chooses a randomK1 and presents the adversary Afh with an oracle

that is either f(K2, h(K1, .)) or else g(.) – that is, he simulates Ofh (see below). In time

≤ t with ≤ q queries Afh is able with probability 1+ǫ
2 to guess correctly whether Ofh is

fh with hidden keys or a random function g. Here is how Af simulates Ofh: in response

to a query M i from Afh, he computes h(K1,M i), which he queries to Of , and then gives

Afh the value Of (h(K1,M i)). Eventually (unless the simulation is imperfect, see below)
Afh states whether it believes that its oracle Ofh is fh or g, at which point Af states
the same thing for the oracle Of – that is, if Afh said fh, then he says that Of must
have been f , whereas if Afh said that Ofh is g, then he says that Of is g′. Notice that
if the oracle Of is f(K2, .), then the oracle Ofh that Af simulates for Afh is fh (with
random key K = (K1,K2)); if the oracle Of is g′(.), then the oracle that Af simulates
for Afh acts as g with the important difference that if h(K1,M

i) coincides with an
earlier h(K1,M

j) the oracle outputs the same value (even though M i 6= M j) rather
than a second random value.7 If the latter happens with negligible probability, then
this algorithm Af is as successful in distinguishing f from a random function as Afh is

7If Afh fails to produce a guess about the oracle Ofh in time t, as can happen if the simulation is
imperfect, then Af guesses that Of is a random function. Note that the simulation is perfect if Of is
f with hidden key.
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in distinguishing fh from a random function. Otherwise, two sequences of adversaries

A
(m)
f and B

(m)
f come into the picture, as described below.

The general idea of these adversaries is that they each test the oracle Of by looking
for collisions between h-values of two different messages M i,M j queried by Afh. More
precisely, the m-th adversary in a sequence works not with all of a queried message, but
rather with the message with its first m − 1 blocks deleted. If a collision is produced,
then with a certain probability Of must be f(K2, .); however, one must also account for

the possibility that Of is g′(.), and in the case of A
(m)
f this brings in the next adversary

in the sequence A
(m+1)
f .

First we make a remark about probabilities, which are taken over all possible coin
tosses of the adversary, all possible keys, the oracle’s “choice bit” (which determines
whether it is the function being tested or a random function), and the coin tosses of the
oracle in the case when it outputs a random function.8 If the adversary’s oracle is f or
fh with hidden keys, then the adversary’s queries in general depend on the keys (upon
which the oracle’s responses depend) as well as the adversary’s coin tosses. However, if
the adversary’s oracle is a random function – which is the situation when Af fails and the

sequences of adversaries A
(m)
f and B

(m)
f are needed – then the oracle responses can be

regarded simply as additional coin tosses, and the adversary’s queries then depend only
on the coin tosses and are independent of the keys. This is an important observation
for understanding the success probabilities of the adversaries.

For the i-th message query M i we use the notation M i
ℓ to denote its ℓ-th block,

we let M i,[m] = (M i
1, . . . ,M

i
m) be the truncation after the m-th block, and we set

M i,(m) = (M i
m,M i

m+1, . . .), that is, M i,(m) is the message with the first m − 1 blocks
deleted. We say that a message M is “non-empty” and write M 6= ∅ if its block length
is at least 1.

We define α0 to be the probability, taken over all coin tosses of Afh (including those
coming from random oracle responses) and all keys K1, that the sequence of Afh-queries
M i satisfies the following property:

there exist i and j, j < i, such that h(K1,M
i) = h(K1,M

j).

For m ≥ 1 we define αm to be the probability, taken over all coin tosses of Afh and
all q-tuples of keys (K1,K2, . . . ,Kq), that the sequence of Afh-queries M

i satisfies the
following property:

(1m) there exist i and j, j < i, such that M i,(m+1) 6= ∅, M j,(m+1) 6= ∅,
h(Kℓi ,M

i,(m+1)) = h(Kℓj ,M
j,(m+1)),

where for any index i for which M i,(m+1) 6= ∅ we let ℓi denote the smallest index for
which M ℓi,(m+1) 6= ∅ and M i,[m] = M ℓi,[m].

Finally, for m ≥ 1 we define βm to be the probability, taken over all coin tosses of Afh

and all q-tuples of keys (K1,K2, . . . ,Kq), that the sequence of Afh-queries M
i satisfies

the following property:

8The term “over all possible coin tosses” means over all possible runs of the algorithm with each
weighted by 2−s, where s is the number of random bits in a given run.



ANOTHER LOOK AT HMAC 15

(2m) there exist i and j such that M i,(m+1) = ∅, M j,(m+1) 6= ∅,
M i,[m] = M j,[m], and h(Ki,M

j,(m+1)) = Ki.

We now return to the situation where with non-negligible probability α0 the queries
made by Afh lead to at least one collision h(K1,M

i) = h(K1,M
j). Note that the

advantage of the adversary Af is at least ǫ− α0.

The first adversary in the sequence A
(m)
f is A′

f , which is given the oracle Of that

is either f(K1, .) with a hidden random key K1 or else g′(.). As A′

f runs Afh, giving

random responses to its queries, she9 queries Of with the first block M i
1 of each Afh-

query M i. If M i,(2) is non-empty, she then computes yi = h(Of (M
i
1),M

i,(2)); if M i,(2) is
empty, she just takes yi = Of (M

i
1). If Of is f(K1, .), then yi will be h(K1,M

i), whereas

if Of is g′(.), then yi will be h(Li,M
i,(2)) for a random key Li = Of (M

i
1) if M i,(2) is

non-empty and will be a random value Li if M
i,(2) is empty. As the adversary A′

f gets
these values, she looks for a collision with the yj-values obtained from earlier queries
M j . If a collision occurs, she guesses that Of is f with hidden key; if not, she guesses
that Of is g′(.).

It is, of course, conceivable that even whenOf is g′(.) there is a collision h(Li,M
i,(2)) =

h(Lj ,M
j,(2)) with M i,(2) and M j,(2) non-empty. Note that Li = Lj if M i

1 = M j
1 , but

Li and Lj are independent random values if M i
1 6= M j

1 . In other words, we have (11).
Recall that the probability that this occurs is α1.

It is also possible that even when Of is g′(.) there is a collision involving one or both

of the random values Li or Lj that is produced when M i,(2) or M j,(2) is empty. If both

are empty, then the probability that Li = Lj is 2−c. If, say, M j,(2) is non-empty, then

in the case M i
1 6= M j

1 we again have probability 2−c that Li = h(Lj ,M
j,(2)), whereas in

the case M i
1 = M j

1 we have (21) with Ki = Li.
Bringing these considerations together, we see that the advantage of A′

f is ≥ α0 −
α1 − β1 −

(q
2

)

2−c.

We next describe the sequence of adversaries A
(m)
f , m ≥ 2. Let Of again denote

the prf-test oracle for f that A
(m)
f can query. Like A′

f , he runs Afh once and gives

random responses to its queries. As Afh makes queries, he sorts their prefixes (where
we are using the word “prefix” to denote the first m − 1 blocks of a query that has
block-length at least m). If the i-th query has block-length at least m and if its prefix
coincides with that of an earlier query, he records the index ℓi of the first query that
has the same prefix; if it has a different prefix from earlier queries he sets ℓi = i. After
running Afh, he goes back to the first query M j1 that has block-length at least m and
for all i for which ℓi = j1 (that is, for all queries that have the same prefix as M j1) he

queries M i
m to Of and computes yi = h(Of (M

i
m),M i,(m+1)) if M i,(m+1) is non-empty

and otherwise takes yi = Of (M
i
m). Then he resets Of and goes to the first j2 such that

M j2 has block-length at least m and a different prefix from M j1 . For all i for which
ℓi = j2 he queries M i

m to Of and computes yi = h(Of (M
i
m),M i,(m+1)) if M i,(m+1) is

non-empty and otherwise takes yi = Of (M
i
m). He continues in this way until he’s gone

9We’ll alternate the adversaries’ genders, not so much for reasons of gender equity, but rather for the
purpose of avoiding confusion between two successive adversaries in a discussion.
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through all the queries. He then looks for two indices j < i such that yj = yi. If he
finds a collision, he guesses that Of is f with hidden key; otherwise, he guesses that it
is a random function.

The adversary A
(m)
f takes advantage of the αm−1 probability of a collision of the

form (1m−1), and if such a collision occurs he guesses that Of is f with hidden key. The
possibility that Of is really g′(.) is due to two conceivable circumstances – a collision
of the form (1m) or a collision among random values (either a collision between two

random values Li and Lj or between Li and h(Lj ,M
j,(m+1)), or else a collision of the

form (2m) with Ki = Li — here the probability of such a collision is bounded by
(q
2

)

2−c

and by βm, respectively).

Finally, the sequence of adversaries B
(m)
f , m ≥ 1, is defined as follows. As usual,

Of denotes the prf-test oracle for f that B
(m)
f can query. She runs Afh once and gives

random responses to its queries. As Afh makes queries, she sorts their prefixes (where
this time we are using the word “prefix” to denote the first m blocks of a query that
has block-length at least m). She makes up a list of pairs (i, S(i)), where the i-th query
has block-length exactly m and coincides with the prefix of at least one other query; in
that case S(i) denotes the set of indices j 6= i such that M j,[m] = M i. After running

Afh, she chooses a message-block Y that is different from all the blocks M j
m+1 of all

queries M j . She goes through all indices i with non-empty S(i). For each such i she

queries Y to Of and for each j ∈ S(i) she also queries M j
m+1 to Of and computes

yj = h(Of (M
j
m+1),M

j,(m+2), Y ). She looks for a collision between Of (Y ) and yj for
j ∈ S(i). Before going to the next i she resets Of . If she finds a collision for any
of the i, she guesses that Of is f with hidden key; otherwise, she guesses that it is a
random function. The advantage of this adversary is at least βm − q2−c, because if Of

is f(Ki, .) and h(Ki,M
j,(m+1)) = Ki, then h(Of (M

j
m+1),M

j,(m+2), Y ) = f(Ki, Y ) =

Of (Y ), whereas if Of is a random function, then Of (Y ) has probability only 2−c of
coinciding with this h-value.

We thus have the following lower bounds for the advantages of the adversaries:
Af : ǫ− α0;
A′

f : α0 − α1 − β1 −
(q
2

)

2−c;

A
(m)
f , m ≥ 2: αm−1 − αm − βm −

(q
2

)

2−c;

B
(m)
f , m ≥ 1: βm − q2−c.

Trivially we have αn = βn = 0, and so the adversaries go no farther than A
(n)
f and

B
(n−1)
f . The sum of all the advantages of the 2n adversaries telescopes and is at least

ǫ− (2n − 1)
(q
2

)

2−c.
Since we have no way of knowing which of these adversaries has the greatest ad-

vantage, we make a random selection. That is, the adversary A we use to attack the
pseudorandomness of f consists of randomly choosing one of the 2n adversaries Af , A

′

f ,

A
(m)
f (2 ≤ m ≤ n), B

(m)
f (1 ≤ m ≤ n−1) and running it. The advantage of the adversary

A is the expectation obtained by summing the advantages of the 2n adversaries with
each one weighted by the probability 1/(2n) that we choose the corresponding adversary.
This advantage is at least 1

2n(ǫ− (2n − 1)
(q
2

)

2−c)) > ( ǫ
2n −

(q
2

)

2−c), as claimed. �
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Remark 10.2. In Theorem 2.1 the term 2n(ǫ+
(

q
2

)

2−c) can be replaced by 2nǫ, because
there is a generic adversary Astrong prf of the strong pseudorandomness property that
has advantage of order (qt/T )2−c; since one must have t > qnT in order for the theorem
to have content, this gives ǫ ≫ q22−c. The adversary Astrong prf is constructed as follows.
Astrong prf chooses two random message blocks M1 and M2 and queries Of with those
messages q/2 times, resetting the oracle each time. He then guesses (t−qT )/2T random
keys Ki and computes f(Ki,M

1) and f(Ki,M
2) for each key. He looks for a collision

with the pair of values Of (M
1), Of (M

2) for one of the oracle settings. If Of is f with
hidden key, there is a probability roughly (qt/4T )2−c that such a collision will occur,
whereas if Of is a random function that probability is negligible.

Lemma 3.3 of [4] implies that if f is an (ǫ, t, q)-secure pseudorandom function, then f
is strongly (qǫ, t− C ′(qT + q log q), q) secure for some absolute constant C ′. Combined
with Theorem 10.1, we obtain:

Corollary 10.3. Suppose that f is an (ǫ, t, q)-secure pseudorandom function. Then

NMAC is a (2n(qǫ+
(q
2

)

2−c), t− (qnT + Cq log q), q, n)-secure pseudorandom function.

Here C is an absolute constant and T denotes the time for one evaluation of f .

Remark 10.4. In the statement of Corollary 10.3 the term 2n(qǫ +
(q
2

)

2−c) can be
replaced simply by 2nqǫ. To see this, recall that the generic key-guessing attack on the
pseudorandom property of a compression function has advantage roughly t2−c. Since
t > qn for Corollary 10.3 to have content, one always has ǫ ≫ q2−c.

Remark 10.5. As far as we know, our proof of Corollary 10.3 is the first uniform proof
of O(nqǫ)-security of NMAC assuming ǫ-security of f in the usual sense. Of course, in
view of the huge tightness gap of order nq one can justifiably respond to our claim by
saying “Who cares?”

11. Interpretations

How useful is the bound in Theorem 10.1 as a guarantee of real-world security? In
the case of Corollary 10.3 the answer to the analogous question is clearly “not much,”
because of the nq tightness gap, which in practice might be greater than 250. Thus, it
is interesting to ask whether or not Theorem 10.1 is equivalent to Corollary 10.3, which
would be the case if the converse of Lemma 3.3 of [4] is true, i.e., if strong (qǫ, t, q)-
security of f implies (ǫ, t′, q)-security of f in the usual sense (where t′ has comparable
magnitude to t). We do not know the answer to this question. On the one hand,
the key-guessing adversary against the pseudorandom property corresponds to a strong
key-guessing adversary Astrong prf that has roughly q times the advantage. On the other
hand, Astrong prf needs q/2 times as many queries as the former key-guessing adversary.
In general, given a prf-adversary Aprf , we do not see how to construct from it a strong
prf-adversary Astrong prf with magnified advantage but with the same number of queries
as Aprf . This allows us to conjecture (or at least hope) that the converse of Lemma 3.3
of [4] is false, in which case Theorem 10.1 is a stronger result than Corollary 10.3.

Even if the “true” tightness gap in Theorem 10.1 is only n (rather than nq in disguise,
as it would be if Theorem 10.1 is equivalent to Corollary 10.3), one can still question
the usefulness of the theorem. Since values such as 220 and 230 are reasonable for the
block-length bound, the tightness gap can be quite significant.
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A second limitation of Theorem 10.1 is that it is in the single-user setting, where, as
we saw in §4, one might have security assurances that fail in the more realistic multi-user
setting.

In the third place, Theorem 10.1 has a very strong hypothesis – strong pseudoran-
domness of the compression function.10 This property is extremely difficult to evaluate
for the compression functions used in practice, for example in SHA-1 and MD5. And
one really has to question the value of a theorem if one has no good reason to believe
the hypothesis.

We would not want to go out on a limb and say that our Theorem 10.1 is totally
worthless. However, its value as a source of assurance about the real-world security of
HMAC is questionable at best.

In our opinion none of the provable security theorems for HMAC with MD5 or SHA-1
(including the proof in [15]) by themselves provide a useful guarantee of security. At
most they offer partial evidence of security that must be supplemented by hundreds of
person-years of cryptanalysis of the versions of HMAC that are in use.

It is also important to note that the level of security that one needs depends on
the particular application. If HMAC is being used only as a message authentication
code, and a given session is fairly short-lived, then a bound of, say, 250 queries might
be reasonable. Moreover, as pointed out in [3], in general only short-term security
is needed, because, unlike in the case of encryption, no harm is done if an adversary
determines the shared secret key after the session is over.

On the other hand, HMAC can also be used as a pseudorandom function in applica-
tions such as key-derivation [12, 17, 22] and one-time passwords [25]. In those settings
one often needs a much greater level of assurance than anything that’s provided by
theoretical results such as our Theorem 10.1.

12. Conclusions

1. A security proof using standard definitions based on the single-user setting does
not necessarily give any useful guarantee of the security of the protocol in a multi-user
setting.

2. HMAC with 80-bit keys – such as the version standardized in [26] – should probably
not be used in the multi-user setting, because it has at most 80−a bits of security when
there are 2a users.

3. When HMAC is used with a hash function that is not collision-resistant, confidence
in its security cannot come from the proof in [1] – or even from our proof in §10 –
but rather must be based upon the large number of person-years that engineers and
cryptanalysts have devoted to testing it. This is especially the case in an application
where one needs pseudorandomness and where short-term security is not enough.

4. The coin-fixing technique, which was described in one form in §7.3 of [7] and ap-
peared in a somewhat different form in [1], should be used with caution. One should ask
what concrete bounds can result if such arguments are used. In general this technique
cannot be employed as a magic bullet to convert a non-tight bound into a tight one.

10Note that Theorem 2 needs the compression function to be strongly (ǫ, t, q)-secure for a rather
small value of ǫ, since the theorem loses content if ǫ > 1/(2n).
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In addition to the proofs in [1], other questionable uses of coin-fixing arguments can be
found in [35] (Lemma 1), [36] (Theorem 1), [37], [6] (Theorem 2), and [14].

5. A defect or an unstated strong assumption in a theorem – particularly when it’s
in a paper that appears in the proceedings of a prestigious conference – is likely to
propagate to other papers as different authors use it to prove their own results. For
example, Theorem 2 of [16] contains a bound that’s of questionable practical significance
as a result of the authors’ reliance on a bound in [1] which, in turn, was derived using
a coin-fixing argument.11

6. A theorem that has an unstated strong assumption or is accompanied by a fallacious
interpretation could also mislead practitioners if it is used as a basis for recommenda-
tions. For example, Rogaway’s 2011 evaluation of block ciphers [30] for the Government
of Japan contains an erroneous statement of the security assurance provided by the main
theorem about NMAC security in [1]. §9.4 of Rogaway’s report repeats the fallacious
argument of Bellare that would have been valid if his proof had been in the uniform
model.

7. Game-hopping proofs [7, 31] are often especially prone to errors, misunderstand-
ings, and omissions because they are much lengthier than proofs written in a conven-
tional mathematical style. In conferences such as Crypto, program committee members
are instructed that they are not responsible for reading anything that is not contained
in the main body of a paper, and a strict page limit is imposed on the main body of
submissions. Long proofs, such as proofs with sequences of games, are omitted or rele-
gated to appendices that are rarely read by referees. Another reason why game-hopping
proofs often receive even less peer review than other proofs is that many people find
them especially hard to read. See [18, 19] for further discussion of the drawbacks of
game-hopping proofs.

8. In [32] Stern, Pointcheval, Malone-Lee, and Smart comment (in connection with the
error in the original security proof for OAEP [8]) that proofs “need time to be validated
through public discussion” and that “flaws in security proofs themselves might have
a devastating effect on the trustworthiness of cryptography.” One can only hope that
the research culture in cryptography changes in such a way that proofs start to get the
detailed peer review they need.
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