Modified version of
“Latin Dances Revisited: New Analytic Results of
Salsa20 and ChaCha”

Tsukasa Ishiguro

KDDI R&D Laboratories Inc.
2-1-15 Ohara, Fujimino, Saitama 356-8502, Japan
tsukasa@kddilabs. jp

1 Contents of modification

This paper is a modified version of own paper “Latin Dances Revisited: New Analytic
Results of Salsa20 and ChaCha” presented in ICICS2011. In the original paper, there
are incorrect data because of software bug in the experimental program. Therefore, we
conducted with a correct program. Additionally, we modified the algorithm with a view

to improvement of analysis precision.

Tablel shows the maximum values per round of Salsa20 and ChaCha, and output
of Mersenne Twister as PRF. This table show there are no double bit biases of 5 or more
round Salsa20 and ChaCha (see Section 4). Therefore, these ciphers are not presently
under threat.

Table 1.Double bit diferentials of Salsa20

|_Type [RoundKey length| [47]; | [4plq [[45]:]] el |

Salsa2(5 256 - - - ||Not Found
Salsa2() 6 256 - - - ||[Not Found
Salsa2(7 256 - - - ||[Not Found
Salsa2() 8 256 - - - ||Not Found
Salsa2() 9 256 - - - |INot Found
ChaCha 4 256 - - - ||[Not Found
ChaCha 5 256 - - - ||Not Found
ChaCha 6 256 - - - |INot Found
ChaCha 7 256 - - - ||[Not Found
ChaCha 8 256 - [- | - [[NotFoung

Latin Dances Revisited: New Analytic Results of
Salsa20 and ChaCha

Tsukasa Ishiguro, Shinsaku Kiyomoto, and Yutaka Miyake

KDDI R&D Laboratories Inc.
2-1-15 Ohara, Fujimino, Saitama 356-8502, Japan
{tsukasa, kiyomoto,miyake}@kddilabs. jp

Abstract. In this paper, we improve an analysis algorithm and apply it to crypt-
analysis of Salsa and ChaCha. We constructed a distinguisher of doublgdpit di
entials to improve Aumasson'’s single-bifférential cryptanalysis. This method
has potential to apply to a wide range of stream ciphers; a double-bit correlation
would be found in case that no single-bit correlation is found. However, there are
no double bit biases of 5 or more round Salsa20 and ChaCha.

Keywords: Stream cipher, Salsa20, ChaCha, eSTREAM

1 Introduction

Efficientimplementations of stream ciphers are useful in any application which requires
high-speed encryption, such as SSL[13] and WEP[21]. The stream cipher project of
ECRYPT(eSTREAM)[11] was launched to identify new stream ciphers that realizes

secure and high-speed encryption. This project ended with a proposal of a list of new
eight algorithms in 2008, and one was removed from the list in 2009[2] due to a new

vulnerability of the cipher. Four algorithms are assumed to apply to software imple-

mentations, and remaining three are for lightweight hardware implementations.

Salsa20, one of algorithms for software implementations, was proposed by Bern-
stein[5] in 2005, and the cipher is the finalist of the eSTREAM. Sals#200a simple,
clean, and scalable design and is suitable for software implementations. Bernstein ad-
vocated use of 8, 12 and 20 round versions of Salsa20. However, in eSTREAM, the
12-round version was adopted due to the balance, combining a very nice performance
profile with what appears to be a comfortable margin for security.

More recently, he has proposed the ChaCha[3], a variant of the Salsa20 family.
ChaCha follows the same design principles as Salsa20, afie¢eedice between Salsa20
family and ChaCha is the core function; the core function of ChaCha realizes faster dif-
fusion than that of Salsa20 family. ChaCha achieves faster software speed than Salsa20
in some platforms.

Related work. There are many ciphers proposed in eSTREAM, and some have been
broken by distinguishing attacks. NLS proposed by Hawkes et al[14], is an extended
version of SOBER[20]. NLS is a software-oriented cipher based on simple 32-bit op-
erations (such as 32-bit XOR and addition modutg) 2and is related to small fixed

2 T. Ishiguro et al.

arrays. This stream cipher was broken by a distinguishing attack[8] and a Crossword
Puzzle Attack[7] which is a variant of the distinguishing attack. LEX[6] has a simple
design and based on AES. A variant of the distinguishing attack[10] was found on LEX.
Yamb[17] is a synchronous encryption algorithm that allows keys of any length in the
range 80-256 bits and allows initial vectors IV of any length in the range 32-128 hits.
Yamb was broken by a distinguishing attack proposed by Wu et al.[24]. Some other
stream ciphers have been broken by distinguishing attacks[16, 22].

Some independent cryptanalyses on Salsa20 have been published, to report key-
recovery attacks for its reduced versions with up to 8 rounds, while Salsa20 has a total
of 20 rounds. Previous attacks on Salsa20 used a distinguishing attack exploiting a
truncated dierential over 3 or 4 rounds. The first attack was presented by Crowley[9],
and it was claimed that an adversary could break the 5-round version of Salsa20 within
385 trials using a 256-bit key. Later, a four roundfdirential was exploited by Fischer
et al.[12] to break 6 rounds int? trials and by Tsnunoo et al.[23] to break 7 rounds in
about 2% trials.

The best attack is proposed by Aumasson et al.[15] so far, and it covers the 8-round
version of Salsa20 with an estimated complexity &f'2Regarding the 128-bit key,
Aumasson proposed key-recovery attacks for reduced versions with up to 7 rounds[15].
Priemuth-Schmid proposed a distinguishing attack using slid pairs[19], but Bernstein
showed that time complexity of the attack is higher than brute force attack[4].

For ChaCha, Aumasson attacked the 6-round version with an estimated complexity
of 213 and the 7-round version with an estimated complexity 6f Bsing a 256-bit
key. Regarding the 128-bit key, Aumasson proposed key-recovery attacks for reduced
versions with up to 7 rounds with an estimated complexity'8f[25].

These attacks are single-bitidirential attacks, a type of correlation attacks. In this
method, an adversary chooses the input paiX’ and observes the output pairz’,
where there is a flierential in one bit betweeK andX’. Then, the adversary collects
many output pairs by changing input pair and observes the oneffaitetitial from the
output pair. If the position of the inputfiiérential correlates strongly with the position
of output diferential, the adversary could distinguish real keystream from a random bit
stream. Additionally, it was indicated a strong correlation from his experimental results.

Contribution. In this paper, we improve an analysis algorithm and apply it to crypt-
analysis of Salsa and ChaCha. We construct a distinguisher using doubl&dyirdi

tials to improve Aumasson’s method, called single-bifegential cryptanalysis[1]. In

our attack, the adversary chooses the input KaX’ with a one-bit diferential in the

same way for a single-bit fierential. Then, the adversary collects many output pairs
by changing the input pair and observing the double-ifiedénce from the output pair.
Finally, the adversary observes a correlation of the double-bit of the output pair and
distinguishes keystream from the random bits. We searched correlations to compute 2-
3 days using a PC, and can not find strong correlations 5 or more round Salsa20 and
ChaCha.

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 3

2 Latin Dances

In this section, we describe the specifications of Salsa20[5] and ChaCha][3].

2.1 Salsa20

Algorithm 1 shows Salsa20 algorithm. The stream cipher Salsa20 operates on 32-bit
words, takes as input a 256-bit kky= (ko, ky, ..., k7) or 128-bit keyk = (ko, k1, ..., k)

and a 64-bit nonce = (vo, v1), and produces a sequence of 512-bit keystream blocks.
Thei-th block is the output of the Salsa20 function that takes as input the key, the nonce,

and a 64-bit counter= (to, t;) corresponding to the integéerThis function acts on the
4 x 4 matrix of 32-bit words written as:

Xo X1 X2 X3 To ko ki ko
xo| X X X X7 | _|ksTiVova
Xg Xg X10 X11 ip i1 T2 ka|

X12 X13 X14 X15 ks ks k7 73
4 4 4
Xo X1 X2 X3 oo Ky K K,
4
Xo| X X X X7 Ky o1 Vo Vi
Xg X9 X10 X11 io i1 o2 K|’
X12 X13 X14 X15 ki K K o3

whereo andr are constants dependent on the key length.
Then a keystream block is defined as:

Z=X+X%

whereX" = Round(X) with the round function of Salsa20 ardis word-wise addi-

tion modulo 22, If Z = X + X", it is called ‘T-round Salsa20”. A round function is
called a doubleround function, and it consists of a columnround function followed by a
rowround function. The doubleround function of Salsa20 is repeated 10 times. A vector
(X0, X1, X2, X3) Of four words is transformed intaq, z;, z,, z3) by calculating as:

z1=%X8((%+X3) < 7)
Z=%® (7 + %) < 9)
z3=X3® ((z +27) <« 13)
2 =X ((z+2)«18)

This nonlinear operation is called a quarterround function and it is a basic part of the
columnround function where it is applied to columrg 4, Xs, X12), (X5, X9, X13, X1), (X10, Y14, Y2, ¥5)
and /15, Y3, 7, Y11), and then rowround function transforms rowsg, k, Xz, X3), (X4, Xs, X6, X7),

(X8, X9, X10, X11), @Nd K12, X13, X14, X15).

4 T. Ishiguro et al.

Algorithm 1 Algorithm of Salsa20

INPUT: Initial matrix X, r € N

OUTPUT: Z=X+X'

X X

for | =0 uptof do
(Xp X1, X5, X3) < quarterroundxg, X;, X5, X5) /* 3-6:Columnround #
(Xg, X6, X7, X;) « quarterroundx;, xg, X7, X;)
(X} X115 Xg, Xg) < quarterroundx;,, X;;, Xg, Xg)
(X5 X100 X153 X14) < Quarterroundx;g, X;,, X5, X;4)
(%> Xy X5, X1,) < quarterroundxg, X;, Xg, X;,) /* 7-10:Rowround 7
(Xg, Xg, X3, X1) < quarterroundxg, Xg, X5, X;)

D (X X1y X5, Xg) < quarterroundx;g, X; 4, X5, Xg)

100 (X X3, X, X4) = quarterroundXyg, Xis, X5, X)

11: end for

12: return X+ X’

QoNOAR®WNE

2.2 ChaCha

Algorithm 2 shows ChaCha algorithm. ChaCha is similar to Salsa20 except the follow-
ing two points. First, the composition of the quarterround function is defined as below.

0=20+2, BB=®2), Zz3=23 <16
L=0+2Z, =090, Z1=2 <12
20=20+2, BB=23®7), Zz=123 <K 8§,
HL=20+2Z3, L=U®D, =<7

Second, the composition of the initial matrix defined as below.

000102 03) (ToT1T273
x|k Kk ki 1Kok ko ks
ky K K, K| [ka ks ke Kk

Vo V1 io i Vo V1 io i

3 Attack on Latin Dances

In this section, we discuss a distinguishing attack on Salsa20 and ChaCha. First, we de-
fine thesemi-regular distinguishesind explain construction of the distinguisher. Next,

we propose a distinguishing attack using double-lfiedéntials. Finally, we analyze the
attack based on experimental results using a PC and estimate the number of keystream
bits required for the attack and time complexity of the attack.

3.1 Types of distinguisher

Three types of a distinguisher are known[18] as below.

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 5

Algorithm 2 Algorithm of ChaCha
INPUT: Initial matrix X, r € N
OUTPUT: Z=X+X'
X X
for | =0 uptof do
(Xp X3 X, X1,) <= quarterroundxg, X;, X5, X;,) /* 3-6:Columnround }
(X7, X5, Xg, X15) < quarterroundx;, Xg, Xg, X;5)
(X5, X6, X100 X14) < quarterroundx;, Xg, X;o, X14)
(X5, X5, X4, X15) < quarterroundxg, X7, X;, X;5)
(%> X5, X105 X15) < quarterroundxg, X;, Xjo, X;) /* 7-10:Rowround ¥
(X, X6 X1, X15) < quarterroundx;, Xg, X, X;,)
(X5, X5, Xg, X15) «— quarterroundx;, X7, Xg, X;.5)
10: (X5, X}, X5, X;) < quarterroundxs, x;, Xg, X7)
11: end for
12: return X+ X’

1. Regular Distinguisher.
The adversary selects a single R8randomly and produces keystream bits, seeded
by the chosen keiV, which is long enough to distinguish it from a random bit
stream with a high probability.

2. Prefix Distinguisher.
The adversary uses many randomly choseril¥é&yrather than a single key and a
few specified bytes from each of the keystream bits generated by thgbe'sey

3. Hybrid Distinguisher.
The adversary uses many ks and for each kejlV the adversary collects long
keystream bits.

In this paper, we define tigemi-regular Distinguisheas follows;

Semi-regular DistinguisheAn adversary uses a single random key and enough ran-
domly chosen IVs to distinguish keystream from random bits with a high probability.
The adversary’s ability is intermediate between a regular distinguisher and prefix dis-
tinguisher.

3.2 Construction of Distinguisher

The adversary chooses a key at random. Then the adversary randomly generates IV
and inputs matrixX, X’ that has a dference ofi-th bit. The number of inputs im.
Output sequences a®, - - - ,Zn-1},1%;,- -+ . Z,,_,}, Wwherez, Z € {0, 1}. After that, the
adversary observes=z ® z, (0 < i < m), whereo is exclusive-or.

If {zo, - ,Zm-1}, (%) - - - ., Z,,_,} Were random bit sequences, the probabilities:

Prlti = 1] = Prft; = 0]
_ %,(og <m

6 T. Ishiguro et al.

are hold.
If {zo,---,Zm1} and{z,---,Z, ,} were keystream bits from a stream cipher, we
obtain the following equations:

Prt = 1] = %(l+ £d)
Prt = 0] = %(1-3(,),(0 <i<m)

In this instance, the number of keystream bits required for a distinguishing attack is
O(ec‘,z), wheregq is the diferential bias explained in Section 3.3&lfis large enough,
an adversary can distinguish keystream bits from random bit sequences. For example
is suficiently large for 7-round Salsa20 to distinguish keystream bits[15]. We propose
a double-bit distinguisher for 9-round Salsa20 and 8-round ChaCha in the later section.

3.3 Distinguishing attack using double-bit diferentials

In this section, we propose a distinguishing attack using double{bérentials, which
extends the single-bit distinguishing attack in[15]. betx, be thei-th word of the
initial matrix X, X", and j-th bit of x; is denoted X;];. Then, let {i{]; be a diferential of
j-th bit of i-th word after rounds, where4?]j = [x]j®[X];. In[15], the diferential of
r rounds output undeuf]; = 1 is denoted (fj]4l[4{];) 1, and a single-bit dferential
is defined by

PrGIIlAN;) = 2(1+ les).

The biaseg represents the strength of the correlations between one bit in input and one
bit in output. If a keystream bit is pseudorandargmust come close to 0. Aumasson
indicated significant dierentials between keystream bits and random bit sequences in
8 rounds of Salsa20 and 7 rounds of ChaCha. However, he could not find a significant
differential, where there were more than rounds and 7 rounds.

In a distinguishing attack using double-bitférentials, the biasy of the output
differential is defined by

Pr(Ipla & [40: = DA = 5(1+ ed).

Whenes is zero, pairs off, q), (s, t) have no significant single-bitflierentials. That
means zero and one appear with a probabilit%olfn other words, a single-bit fier-
ential only indicates a frequency of|f]lq = 1. There is a possibility that a correlation
exists between cases off]; = 1 and {g]; = 1. If the biassq # 0, a double-bit dter-
ential indicates such correlations.

In concrete terms, an adversary chooezéﬂ;j [from a noncev or a counter; there-
fore, i and j for Salsa20 are chosen within the ranges 8 < 10,0 < j < 32.In

1 This notation is dferent from [15] in a precise sense. We defined the reduced version4s
wherer is the number of rounds.

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 7

Algorithm 3 Search for double-bit éierentials
INPUT: r,a,8eN
OUTPUT: Average of double-bit dierential ofr round
1: Initialize all countby zero
2: for | = 0 up toe do

3. forall [47]; such that, j in controllable valuedo
4: Choose keK at random
5: ChooseX, X’ at random wher&X & X’ = [4°]; = 1
6: Z— X+ X
7: Z « X + X"
8: for all [4]q suchthat 0< p < 16,0 < g < 32do
9: for all [4%]; such that < s< 16,0 <t < 32do
10: county g fi, j] < coun g, sli, j1 + ([45]: @ [4}]q)
11: end for
12: end for
13: end for
14: end for
15: averaggq,s < average otount,q, il for all i, j, (p,q.r,)

16: return (averaggqs, (i, j, P, G, 1, S)

ChaChaj and j are chosen within the ranges ¥i < 16,0 < j < 32. The biasy
is dependent on keys and it is dificult to calculate all values afy due to huge time
complexity. The valuey can be guessed as a average valuas follows;

P((Ue ® 143 = DIATL) = 5(1+ 23D,

4 Experimental Results

In this section, we discuss the experimental results for distinguishing attacks using
double-bit diferentials. In Section 4.1, we present an algorithm searching for the maxi-
mum double-bit dierential. Then, we demonstrat&eacy of our method using exper-
imental results.

4.1 Algorithm

In a distinguishing attack using double-bitférentials, the adversary previously
has obtained the positions of the maximum double-Hiedential in order to distin-
guish keystream bits from random bits. First, the adversary chooseska&esandom
and fixes it. Then, the adversary generates many input pairs which have a orfgebit di
ential each other. After the calculation of the output pair corresponding to each input,
the adversary searches all combinations of output positions for doubledfbiteditials.
Finally, the adversary calculates the averages value with randomly changing keys.
Algorithm 3 shows details of the search algorithm. This algorithm requirese
N, wherer is a number of roundy is the number of trials required to calculate the
average. The balance between the precision of outputs and the time complexity depends

8 T. Ishiguro et al.

Algorithm 4 Sieving a list of candidates

INPUT: Setoffi, j,p,q.r, s}

OUTPUT: Subset ofi, j, p,q,r, s}, which have high bias
1: Initialize all countby zero
2: T « Alist of outputs of over threshold valuyeof Algorithm 3
3: for | =0uptog—1do

4: U « Alist of outputs of over threshold valueof Algorithm 3
5 T«TnU

6: if T=¢then

7 return "Not Found”

8: endif

9: end for

10: return T

on these parameters. We discuss the balance and our adoptions in section 4.2. After
the choice ofK at step 3, the chosen key is used for the next loop (from step 4 to
step 15). In the loop, we calculate the average values of the doubleffbiteditial for
fixed key K are calculated. VaIuesAiT]j for all i, j of controllable valuehave to be
chosen at step 5, wheosntrollable valuesare nonceor counterin the initial matrix
(see Section 2, Section 3.2). Hence, in the case of Salsa20, we dherudg within
the ranges K i < 110 < j < 32, or in ChaCha, we choose them within the ranges
12<i<16,0< j < 32. From step 6 to step 13, we calculate the double-Hitdintial
using XOR operation; the computational cost of these steps is dominant in the whole
algorithm. The time complexity of the step iS}2/2 = 27. Remaining computational
costs of the algorithm is calculated as follows; the number of iterations of the loop from
step 5is 3, and the number of iteration of the loop from step &.iF hus, the total cost
of the algorithm isy - 224,

However, If the outputs have large biases, these values can appeared at all times.
Therefore, we constructs Algorithm to check reliability of the outputs of above algo-
rithm. Algorithm 4 shows details of the sieving algorithm.

4.2 Results

In the distinguishing attack using double-biffdrentials, we need to find the maximum
values ofey. Accordingly, we conducted an experiment showmlgorithm 3 to find
the maximum values for Salsa20 and ChaCha. The total time complexity of the experi-
ment is 28: the space of IV is 128 bits@’), the combination of output is'8/2 = 227,
and the number of trials is’2 A Intel Core i7 3.3GHz PC requires 2 days computation
for the experiment.

We sampled 2 output pairs for each per one input pair. leetbe the variance
of samplesN be the average anl’ is the population mean ofA[]; & [4}]q, Where
o ~ VN. The confidence interval i$\/ — 6, N’ + 6] andé ~ 2-12, where the confidence
codficient is 95%. In our experimendy is larger than 2'%; thus, we sey = 2-1/27%2,
The results are shown in table 1 and table 2.

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 9

Table 1.Double bit diferentials of Salsa20

|_Type [RoundKey length| [47]; | [4plq [[45]:]] el |

Salsa2() 5 256 - - - ||Not Found
Salsa2() 6 256 - - - ||[Not Found
Salsa20 7 256 - - - ||[Not Found
Salsa2() 8 256 - - - ||Not Found
Salsa20 9 256 - - - ||[Not Found
ChaCha 4 256 - - - ||[Not Found
ChaCha 5 256 - - - ||Not Found
ChaCha 6 256 - - - |INot Found
ChaCha 7 256 - - - ||[Not Found
ChaCha 8 256 - [- | - [|NotFound

5 Concluding Remarks

We proposed new distinguishing attacks on Salsa20 and ChaCha, which uses double-
bit differentials. In addition, we proposed shieving algorithm to find a proper double bit
biese. However, there are no double bit biases of 5 or more round Salsa20 and ChaCha.
Therefore, these ciphers are not presently under threat. Obviously, the distinguishing
attack using double-bit fferentials can be extended to distinguishing attacks using a
triple-bit differential or more-bit dferentials. We will improve the applicability of our
method to extend the number of bits foffdrentials in our future research.

References

1. JP. Aumasson, S. Fischer, S. Khazaei, and W. Meier. New features of Latin dances: analysis
of Salsa, ChaCha, and Rumba.Hast Software Encryption 2008p. 470-488, 5086.

2. S. Babbage, C. D. Cararie, A. Canteaut, C. Cid, H. Gilbert, T. Johansson, M. Parker,
B. Preneel, V. Rijmen, and M. Robshaw. The estream portfolio (rev. 1). eS-
TREAM, ECRYPT Stream Cipher project, 2008t tp: //www.ecrypt.eu.org/stream/
portfolio_revisionl.pdf.

3. D. J. Bernstein. ChaCha, a variant of SalsaPe State of the Art of Stream Ciphers SASC
2008 2008.http://cr.yp.to/ChaCha.html.

4. D. J. Bernstein. Response to “Slid pairs in Salsa20 and Trivium”, 26@8p: //cr.yp.
to/snuffle/reslid-20080925.pdf.

5. D. J. Bernstein. The Salsa20 family of stream ciphers. In D. Buell, editewy Stream
Cipher DesignsNo. 4986 in Lecture Notes in Computer Science, pp. 84—97. Springer, 2008.
http://cr.yp.to/salsa20.html.

6. A. Biryukov. A new 128-bit key stream cipher LEX. eSTREAM, ECRYPT Stream Cipher
project, 2005http://www.ecrypt.eu.org/stream/nls.html.

7. J. Y. Cho and J. Pieprzyk. Crossword puzzle attack on NLS. Cryptology ePrint Archive,
Report 20049, 2006 http://eprint.iacr.org/.

8. J. Y. Cho and J. Pieprzyk. Linear distinguishing attack on NLSeSA"REAM The ECRYPT
Stream Cipher ProjectNo. 2006044, pp. 285-295, 2006.

10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

T. Ishiguro et al.

. P. Crowley. Truncated fferemtial cryptanalysis of five round SalsaZhe State of the Art

of Stream Ciphers SASC2Qq. 198—202, 2006.

H. Englund, M. Hell, and T. Johansson. A note on distinguishing attaléSE Trans. on
Info. Theory pp. 1-4, 2007.

eSTREAM. Ecrypt stream cipher projetittp: //www.ecrypt.eu.org/stream.

S. Fischer, W. Meier, C. Berbain, J.-F. Biasse, and M. Robshaw. Non-randomness in eS-
TEAM candidate Salsa20 and TSC-4.ltmocrypt2006No. 4329 in Lecture Notes in Com-
puter Science, pp. 2-16. Springer, 2006.

A. O. Freier, P. Kocher, and P. C. Kaltorn. The SSL protocol version 3.0 diaftp:
//home.netscape.com/eng/ssl3/draft302.txt.

P. Hawkes, M. Paddon, G. Rose, and M. Wiggers de Vries. Primitive specification for
NLS. eSTREAM, ECRYPT Stream Cipher project, 200%tp: //www.ecrypt.eu.org/
stream/nls.html.

S. KhazaeiNeutrality-Based Symmetric CryptanalysihD thesis, Lausanne EPFL, 2010.
S. Kunzliand W. Meier. Distinguishing attack on MAG. eSTREMA report, Report ZEH
2005.http://www.ecrypt.eu.org/stream/papersdir/053.pdf.

A. N. Lebedeyv, A. Ivanov, S. Starodubtzev, and A. Kolchkov. Yamb LAN crypto submission
to the ecrypt stream cipher project. 88TREAM The ECRYPT Stream Cipher Projsict
2005034, 2005.

S. Poul, B. Preneel, and G. Sekar. Distinguishing attacks on the stream cipher Ry. In
docrypt2008No. 5365 in Lecture Notes in Computer Science, pp. 1-14. Springer, 2008.
D. Priemuth-Schmid and A. Biryukov. Slid pairs in Salsa20 and Trivium.Fdst Soft-
ware Encryption FSE2006No. 4047 in Lecture Notes in Computer Science, pp. 405-421.
Springer, 2006.

G. Rose. A stream cipher based on linear feedback @#e®). In Proc. Australian Con-
ference on Information Security and Privatpl. 14381998, pp. 135-146. Springer, 1998.
IEEE Computer Society. Wireless lan medium access control (MAC) and physical layer
(PHY) specffications. IEEE Std802.11, 1999.

Y. Tsunoo, T. Saito, H. Kubo, and M. Shigeri. Cryptanalysis of Mir-1, a T-function based
stream cipher, 2006.

Y. Tsunoo, T. Saito, H. Kubo, T. Suzaki, and H. Nakashimaffdbéntial cryptanalysis of
Salsa2fB. The State of the Art of Stream Ciphers SASC 202007.

H. Wu and B. Preneel. Distinguishing attack on stream cipher YamteSIFREAM The
ECRYPT Stream Cipher Proje¢io. 2003043, 2005.

